1
|
Lin JC, Daigle CL, Tang PC, Wang CK. Influence of sex hormones on the aggressive behavior during peck order establishment and stabilization in meat and egg type chickens. Poult Sci 2024; 103:103669. [PMID: 38603931 PMCID: PMC11017360 DOI: 10.1016/j.psj.2024.103669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
In the poultry industry, broiler and layer strains are genetically selected for different purposes (e.g., high meat-yield and high egg-production). Genetic selection for productivity can have unintended consequences on the behavioral repertoire of the birds, including aggression. Alongside the increasing societal concern regarding the welfare of animal in agriculture, the number of countries that are advocating the prohibition of using battery cages for laying hens has resulted in the transition and adoption of cage-free or free-range systems. Thus, both broiler and layer chickens are housed in large flocks rather than housed individually in cages. Housing birds in groups increases the opportunity for birds to engage in social behaviors, including aggression, that are used to establish social status. Aggressive interactions are associated with the risk of injury and the potential for a subordinate animal to have unmet needs (e.g., access to feed). The aim of this study was to characterize the relationships among aggressive behavior, neurobiology, and hormones during peck order establishment and social hierarchy stabilization of 2 divergently selected strains (meat- and egg-type chicken). Meat-type strains performed more male on male (P < 0.001), male on female (P < 0.0001), and female on female (P < 0.0001) non-reciprocal aggression behavior (NRA) than egg-type strains. Greater serum testosterone and estradiol concentrations in the weeks after the peck order establishment were observed in meat-type birds compared those in egg-type birds for both males and females (all P < 0.05). Greater (P < 0.05) cellular densities of androgen receptors, but not estrogen receptors, were observed in the hypothalamus of meat-type birds compared to egg-type birds. These findings suggest that greater sex hormone concentrations in the meat-type birds may be a consequence of genetic selection for rapid growth resulting in more sex hormones-induced aggressive behavior.
Collapse
Affiliation(s)
- Jou-Ching Lin
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan
| | - Courtney Lynd Daigle
- Department of Animal Science, Texas A&M University, Kleberg Center, College Station, TX 77843, USA
| | - Pin-Chi Tang
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Chien-Kai Wang
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
2
|
Phillips-Farfán BV, Quintanar BG, Reyes R, Fernández-Guasti A. Distribution of estrogen receptors alpha and beta in the brain of male rats with same-sex preference. Physiol Behav 2023; 268:114237. [PMID: 37192686 DOI: 10.1016/j.physbeh.2023.114237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/24/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023]
Abstract
Two distinct estrogen receptors (ERs) exist, ERα and ERβ. Both receptors participate in the sexual differentiation of the rat brain and likely participate in the regulation of adult sexual orientation (i.e. partner preference). This last idea was investigated herein by examining males treated with the aromatase inhibitor, letrozole, administered prenatally (0.56 μg/kg G10-22). This treatment usually provokes same-sex preference in 1-2 males per litter. Vehicle-treated males (with female preference) and females in spontaneous proestrus (with male preference) were included as controls. ERα and ERβ expression was analyzed by immunohistochemistry in brain areas known to control masculine sexual behavior and partner preference, like the medial preoptic area (MPOA), bed nucleus of the stria terminalis (BNST), medial amygdala (MeA) and ventromedial hypothalamic nucleus (VMH), as well as other brain regions suspected to participate in these processes. In addition, serum levels of estradiol were determined in all male groups. Letrozole-treated male rats that preferred sexually experienced males (LPM) showed over-expressed ERα in the hippocampal cornu Ammonis (CA 1, 3, 4) and dentate gyrus. The LPM group showed up-regulated ERβ expression in the CA2 and reticular thalamic nucleus. The levels of estradiol did not differ between the groups. The higher expression of ERs in these males was different than their expression in females, with male sex-preference. This suggests that males with same-sex preference showed a unique brain, this sui generis steroid receptor expression probably participates in the biological underpinnings of sexual preference.
Collapse
Affiliation(s)
| | | | - Rebeca Reyes
- Departament of Pharmacobiology, Cinvestav, Unidad Coapa
| | | |
Collapse
|
3
|
Aspesi D, Bass N, Kavaliers M, Choleris E. The role of androgens and estrogens in social interactions and social cognition. Neuroscience 2023:S0306-4522(23)00151-3. [PMID: 37080448 DOI: 10.1016/j.neuroscience.2023.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 03/02/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
Gonadal hormones are becoming increasingly recognized for their effects on cognition. Estrogens, in particular, have received attention for their effects on learning and memory that rely upon the functioning of various brain regions. However, the impacts of androgens on cognition are relatively under investigated. Testosterone, as well as estrogens, have been shown to play a role in the modulation of different aspects of social cognition. This review explores the impact of testosterone and other androgens on various facets of social cognition including social recognition, social learning, social approach/avoidance, and aggression. We highlight the relevance of considering not only the actions of the most commonly studied steroids (i.e., testosterone, 17β-estradiol, and dihydrotestosterone), but also that of their metabolites and precursors, which interact with a plethora of different receptors and signalling molecules, ultimately modulating behaviour. We point out that it is also essential to investigate the effects of androgens, their precursors and metabolites in females, as prior studies have mostly focused on males. Overall, a comprehensive analysis of the impact of steroids such as androgens on behaviour is fundamental for a full understanding of the neural mechanisms underlying social cognition, including that of humans.
Collapse
Affiliation(s)
- Dario Aspesi
- Department of Psychology and Neuroscience Program, University of Guelph
| | - Noah Bass
- Department of Psychology and Neuroscience Program, University of Guelph
| | - Martin Kavaliers
- Department of Psychology and Neuroscience Program, University of Guelph; Department of Psychology, University of Western Ontario, London, Canada; Graduate Program in Neuroscience, University of Western Ontario, London, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph.
| |
Collapse
|
4
|
He J, Yan JJ, Zha X, Ding XJ, Zhang YL, Lu Z, Xu XH. Sexually dimorphic effects of estrogen receptor 2 deletion in the dorsal raphe nucleus on emotional behaviors. J Neuroendocrinol 2023; 35:e13195. [PMID: 36072992 DOI: 10.1111/jne.13195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 11/27/2022]
Abstract
Sex differences in emotional behaviors and affective disorders have been widely noted, of which sexually dimorphic secretion of gonadal steroid hormones such as estrogen is suspected to play a role. However, the underlying neural mechanisms remain poorly understood. We noted that the expression of estrogen receptor 2 (Esr2, or ERβ), a key mediator of estrogen signaling in the brain, was enriched in the dorsal raphe nucleus (DRN), a region involved in emotion regulation. To investigate whether DRN Esr2 expression confers sex-specific susceptibility or vulnerability in emotional behaviors, we generated a conditional allele of Esr2 that allowed for site-specific deletion of Esr2 in the DRN via local injection of Cre-expressing viruses. DRN-specific Esr2 deletion mildly increased anxiety behaviors in females, as shown by decreased time spent in the center zone of an open field in knockout females. By contrast, DRN Esr2 deletion had no effects on anxiety levels in males, as demonstrated by knockout males spending comparable time in the center zone of an open field and open arms of an elevated-plus maze. Furthermore, in the tail suspension test, DRN Esr2 deletion reduced immobility, a depression-like behavior, in a male-biased manner. Together, these results reveal sex-specific functions of DRN Esr2 in regulating emotional behaviors and suggest targeted manipulation of DRN Esr2 signaling as a potential therapeutic strategy to treat sex-biased affective disorders.
Collapse
Affiliation(s)
- Jing He
- Department of Psychiatry, Tongji Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Jing-Jing Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Xi Zha
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Xiao-Jing Ding
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Yan-Li Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Zheng Lu
- Department of Psychiatry, Tongji Hospital of Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| |
Collapse
|
5
|
Paletta P, Bass N, Aspesi D, Choleris E. Sex Differences in Social Cognition. Curr Top Behav Neurosci 2022; 62:207-234. [PMID: 35604571 DOI: 10.1007/7854_2022_325] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this review we explore the sex differences underlying various types of social cognition. Particular focus will be placed on the behaviors of social recognition, social learning, and aggression. Known similarities and differences between sexes in the expressions of these behaviors and the known brain regions where these behaviors are mediated are discussed. The role that the sex hormones (estrogens and androgens) have as well as possible interactions with other neurochemicals, such as oxytocin, vasopressin, and serotonin is reviewed as well. Finally, implications about these findings on the mediation of social cognition are mediated and the sex differences related to humans are considered.
Collapse
Affiliation(s)
- Pietro Paletta
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Noah Bass
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Dario Aspesi
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
6
|
David CD, Wyrosdic BN, Park JH. Strain differences in post-castration sexual and aggressive behavior in male mice. Behav Brain Res 2022; 422:113747. [PMID: 35038461 DOI: 10.1016/j.bbr.2022.113747] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 11/02/2022]
Abstract
The degree to which male sexual behavior and territorial aggression are regulated by gonadal steroid hormones depends strongly on species and experience. While castration abolishes male sexual behavior in most laboratory rodents, approximately one third of B6D2F1 mice retain the full repertoire of male sexual behaviors long term ("maters"). It is not yet known whether maters retain other behaviors that typically rely on gonadal steroids to a greater extent than non-maters. In this study, we tested aggressive behavior in B6D2F1 males and males of each parental strain (C57BL/6J and DBA/2J) in the resident intruder paradigm before and after castration, as well as male sexual behavior after castration. Before castration, B6D2F1 residents displayed more attacks compared to DBA/2J males (p < 0.05). There was no difference in attack frequency between B6D2F1 and C57BL/6J males nor between DBA/2J and C57BL/6J males (p > 0.2). A greater proportion of hybrid males demonstrated intromissions and the ejaculatory reflex compared to males of either parental strain (p < 0.01). After castration, B6D2F1 residents attacked more than C57BL/6J males, but not DBA/2J males (p < 0.05; p > 0.2). There was no difference in post-castration attack frequency between maters and non-maters (p > 0.7). Finally, residents that attacked during all 3 pre-castration resident intruder tests displayed more attacks post-castration than animals that attacked during 1 pre-castration test (p < 0.05). These data suggest that strain and experience influence the expression of aggressive behavior after castration and warrant future study in experience-induced transient increases in extragonadal testosterone.
Collapse
Affiliation(s)
- Caroline D David
- Psychology Department, University of Massachusetts Boston, Boston, MA 02125.
| | - Brianna N Wyrosdic
- Psychology Department, University of Massachusetts Boston, Boston, MA 02125
| | - Jin Ho Park
- Psychology Department, University of Massachusetts Boston, Boston, MA 02125
| |
Collapse
|
7
|
Ogawa S, Parhar IS. Functions of habenula in reproduction and socio-reproductive behaviours. Front Neuroendocrinol 2022; 64:100964. [PMID: 34793817 DOI: 10.1016/j.yfrne.2021.100964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/11/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022]
Abstract
Habenula is an evolutionarily conserved structure in the brain of vertebrates. Recent reports have drawn attention to the habenula as a processing centre for emotional decision-making and its role in psychiatric disorders. Emotional decision-making process is also known to be closely associated with reproductive conditions. The habenula receives innervations from reproductive centres within the brain and signals from key reproductive neuroendocrine regulators such as gonadal sex steroids, gonadotropin-releasing hormone (GnRH), and kisspeptin. In this review, based on morphological, biochemical, physiological, and pharmacological evidence we discuss an emerging role of the habenula in reproduction. Further, we discuss the modulatory role of reproductive endocrine factors in the habenula and their association with socio-reproductive behaviours such as mating, anxiety and aggression.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
8
|
Pan D, Xu ZH, Gao Q, Li M, Guan Y, Zhao ST. Relationship between penile erection and the ratio of estradiol to testosterone: A retrospective study. Andrologia 2020; 52:e13701. [PMID: 32539180 DOI: 10.1111/and.13701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/23/2020] [Accepted: 05/16/2020] [Indexed: 12/01/2022] Open
Abstract
Previous studies have found that the ratio of estradiol to testosterone (E2/T ratio) has a negative effect on sexual function, but the relationship between the E2/T ratio and erection of the penis is not clarified. We conducted a retrospective study of 183 patients with erectile dysfunction and 52 healthy men to investigate the relationship between penis base erection and tip erection. All participants underwent nocturnal penile tumescence tests and medical history checks and had relevant biochemical and endocrine indicators measured. The ratio of estradiol to testosterone was calculated. The relationship between E2/T ratio and erectile time of penile tip and penile base was determined by univariate analysis, multivariate analysis and stratification analysis. After adjusting for mixed factors, the results showed that the E2/T ratio had a more significant negative effect on the base of the penis compared with the tip of the penis (Hazard ratio: -4.34 95% CI: -6.52, -2.16 p = .0001). Moreover, when the effective erection time was ≥10 min, the negative effect of E2/T on penile root erection was more obvious (HR ratio: -4.46 95% CI: -6.50, -2.43 p < .0001). In summary, our study demonstrated a negative relationship between E2/T ratio and penile erection, particularly at the root of the penis.
Collapse
Affiliation(s)
- Dong Pan
- Department of Urology, Shandong Provincial Hospital, Shandong, China
- Department of Urology, The Second Hospital of Shandong University, Jinan, China
| | - Zhi-He Xu
- Department of Urology, The Second Hospital of Shandong University, Jinan, China
| | - Qiang Gao
- Department of General Surgery, Taishan Medical University, Taian, China
| | - Ming Li
- Department of Urology, Shandong Provincial Hospital, Shandong, China
| | - Yong Guan
- Department of Urology, Shandong Provincial Hospital, Shandong, China
| | - Sheng-Tian Zhao
- Department of Urology, Shandong Provincial Hospital, Shandong, China
| |
Collapse
|
9
|
Dombret C, Naulé L, Trouillet AC, Parmentier C, Hardin-Pouzet H, Mhaouty-Kodja S. Effects of neural estrogen receptor beta deletion on social and mood-related behaviors and underlying mechanisms in male mice. Sci Rep 2020; 10:6242. [PMID: 32277160 PMCID: PMC7148327 DOI: 10.1038/s41598-020-63427-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022] Open
Abstract
Estradiol derived from neural aromatization of testosterone plays a key role in the organization and activation of neural structures underlying male behaviors. This study evaluated the contribution of the estrogen receptor (ER) β in estradiol-induced modulation of social and mood-related behaviors by using mice lacking the ERβ gene in the nervous system. Mutant males exhibited reduced social interaction with same-sex congeners and impaired aggressive behavior. They also displayed increased locomotor activity, and reduced or unaffected anxiety-state level in three paradigms. However, when mice were exposed to unescapable stress in the forced swim and tail suspension tests, they spent more time immobile and a reduced time in swimming and climbing. These behavioral alterations were associated with unaffected circadian and restraint stress-induced corticosterone levels, and unchanged number of tryptophan hydroxylase 2-immunoreactive neurons in the dorsal raphe. By contrast, reduced mRNA levels of oxytocin and arginine-vasopressin were observed in the bed nucleus of stria terminalis, whereas no changes were detected in the hypothalamic paraventricular nucleus. The neural ERβ is thus involved to different extent levels in social and mood-related behaviors, with a particular action on oxytocin and arginine-vasopressin signaling pathways of the bed nucleus of stria terminalis, yet the involvement of other brain areas cannot be excluded.
Collapse
Affiliation(s)
- Carlos Dombret
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Lydie Naulé
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Anne-Charlotte Trouillet
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Caroline Parmentier
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Hélène Hardin-Pouzet
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France.
| |
Collapse
|
10
|
Sandhu KV, Demiray YE, Yanagawa Y, Stork O. Dietary phytoestrogens modulate aggression and activity in social behavior circuits of male mice. Horm Behav 2020; 119:104637. [PMID: 31783026 DOI: 10.1016/j.yhbeh.2019.104637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 01/02/2023]
Abstract
Phytoestrogens comprise biologically active constituents of human and animal diet that can impact on systemic and local estrogen functions in the brain. Here we report on the importance of dietary phytoestrogens for maintaining activity in a brain circuit controlling aggressive and social behavior of male mice. After six weeks of low-phytoestrogen chronic diet (diadzein plus genistein <20 μg/g) a reduction of intermale aggression and altered territorial marking behavior could be observed, compared to littermates on a standard soy-bean based diet (300 μg/g). Further, mice on low-phyto diet displayed a decrease in sociability and a reduced preference for social odors, indicating a general disturbance of social behavior. Underlying circuits were investigated by analysing the induction of the activity marker c-Fos upon social encounter. Low-phyto diet led to a markedly reduced c-Fos induction in the medial as well as the cortical amygdala, the lateral septum, medial preoptic area and bed nucleus of the stria terminalis. No difference between groups was observed in the olfactory bulb. Together our data suggest that dietary phytoestrogens critically modulate social behavior circuits in the male mouse brain.
Collapse
Affiliation(s)
- Kiran Veer Sandhu
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Yunus Emre Demiray
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Yuchio Yanagawa
- Department of Genetic and Behavioural Neuroscience, Gunma University Graduate School of Medicine and JST, CREST, Maebashi 371-8511, Japan
| | - Oliver Stork
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; Center for Behavioural Brain Sciences, Magdeburg, 39120 Magdeburg, Germany.
| |
Collapse
|
11
|
Tsuda MC, Nagata K, Sagoshi S, Ogawa S. Estrogen and oxytocin involvement in social preference in male mice: a study using a novel long-term social preference paradigm with aromatase, estrogen receptor-α and estrogen receptor-β, oxytocin, and oxytocin receptor knockout male mice. Integr Zool 2019; 13:698-710. [PMID: 29873451 DOI: 10.1111/1749-4877.12343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Certain aspects of social behavior help animals make adaptive decisions during encounters with other animals. When mice choose to approach another conspecific, the motivation and preference behind the interaction is not well understood. Estrogen and oxytocin are known to influence a wide array of social behaviors, including social motivation and social preference. The present study investigated the effects of estrogen and oxytocin on social preference using aromatase (ArKO), estrogen receptor (ER) α (αERKO), ERβ (βERKO), oxytocin (OTKO), oxytocin receptor (OTRKO) knockout and their respective wild-type (WT) male mice. Mice were presented with gonadally-intact versus castrated male (IC), intact male versus ovariectomized female (IF), or intact male versus empty cage (IE) stimuli sets for 5 days. ArWT showed no preference for either stimuli in IC and IF and intact male preference in IE, but ArKO mice preferred a castrated male or an ovariectomized female, or had no preference for either stimulus in IC, IF and IE stimuli sets, respectively, suggesting reduced intact male preference. α and β WT mice preferred a castrated male, showed no preference, and preferred an intact male in IC, IF and IE, respectively. αERKO mice displayed similar modified social preference patterns as ArKO, whereas the social preference of βERKO mice remained similar to βWT. OTWT preferred a castrated male whereas OTKO, OTRWT and OTRKO mice failed to show any preference in IC and none showed preference for either stimuli in IF. Collectively, these findings suggest that estrogen regulates social preference in male mice and that impaired social preference in oxytocin-deficient mice may be due to severe deficits in social recognition.
Collapse
Affiliation(s)
- Mumeko C Tsuda
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuyo Nagata
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shoko Sagoshi
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Sonoko Ogawa
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
12
|
Ogawa S, Tsukahara S, Choleris E, Vasudevan N. Estrogenic regulation of social behavior and sexually dimorphic brain formation. Neurosci Biobehav Rev 2018; 110:46-59. [PMID: 30392880 DOI: 10.1016/j.neubiorev.2018.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
Abstract
It has long been known that the estrogen, 17β-estradiol (17β-E), plays a central role for female reproductive physiology and behavior. Numerous studies have established the neurochemical and molecular basis of estrogenic induction of female sexual behavior, i.e., lordosis, in animal models. In addition, 17β-E also regulates male-type sexual and aggressive behavior. In males, testosterone secreted from the testes is irreversibly aromatized to 17β-E in the brain. We discuss the contribution of two nuclear receptor isoforms, estrogen receptor (ER)α and ERβ to the estrogenic regulation of sexually dimorphic brain formation and sex-typical expression of these social behaviors. Furthermore, 17β-E is a key player for social behaviors such as social investigation, preference, recognition and memory as well as anxiety-related behaviors in social contexts. Recent studies also demonstrated that not only nuclear receptor-mediated genomic signaling but also membrane receptor-mediated non-genomic actions of 17β-E may underlie the regulation of these behaviors. Finally, we will discuss how rapidly developing research tools and ideas allow us to investigate estrogenic action by emphasizing behavioral neural networks.
Collapse
Affiliation(s)
- Sonoko Ogawa
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan.
| | - Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nandini Vasudevan
- School of Biological Sciences, University of Reading, WhiteKnights Campus, Reading, RG6 6AS, United Kingdom
| |
Collapse
|
13
|
Krolick KN, Zhu Q, Shi H. Effects of Estrogens on Central Nervous System Neurotransmission: Implications for Sex Differences in Mental Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 160:105-171. [PMID: 30470289 PMCID: PMC6737530 DOI: 10.1016/bs.pmbts.2018.07.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nearly one of every five US individuals aged 12 years old or older lives with certain types of mental disorders. Men are more likely to use various types of substances, while women tend to be more susceptible to mood disorders, addiction, and eating disorders, all of which are risks associated with suicidal attempts. Fundamental sex differences exist in multiple aspects of the functions and activities of neurotransmitter-mediated neural circuits in the central nervous system (CNS). Dysregulation of these neural circuits leads to various types of mental disorders. The potential mechanisms of sex differences in the CNS neural circuitry regulating mood, reward, and motivation are only beginning to be understood, although they have been largely attributed to the effects of sex hormones on CNS neurotransmission pathways. Understanding this topic is important for developing prevention and treatment of mental disorders that should be tailored differently for men and women. Studies using animal models have provided important insights into pathogenesis, mechanisms, and new therapeutic approaches of human diseases, but some concerns remain to be addressed. The purpose of this chapter is to integrate human and animal studies involving the effects of the sex hormones, estrogens, on CNS neurotransmission, reward processing, and associated mental disorders. We provide an overview of existing evidence for the physiological, behavioral, cellular, and molecular actions of estrogens in the context of controlling neurotransmission in the CNS circuits regulating mood, reward, and motivation and discuss related pathology that leads to mental disorders.
Collapse
Affiliation(s)
- Kristen N Krolick
- Center for Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH, United States
| | - Qi Zhu
- Center for Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH, United States
| | - Haifei Shi
- Center for Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH, United States; Cellular, Molecular and Structural Biology, Miami University, Oxford, OH, United States.
| |
Collapse
|
14
|
Jager A, Maas DA, Fricke K, de Vries RB, Poelmans G, Glennon JC. Aggressive behavior in transgenic animal models: A systematic review. Neurosci Biobehav Rev 2018; 91:198-217. [DOI: 10.1016/j.neubiorev.2017.09.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/10/2017] [Accepted: 09/19/2017] [Indexed: 11/25/2022]
|
15
|
Cooke PS, Nanjappa MK, Ko C, Prins GS, Hess RA. Estrogens in Male Physiology. Physiol Rev 2017; 97:995-1043. [PMID: 28539434 PMCID: PMC6151497 DOI: 10.1152/physrev.00018.2016] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/06/2017] [Accepted: 01/17/2017] [Indexed: 02/06/2023] Open
Abstract
Estrogens have historically been associated with female reproduction, but work over the last two decades established that estrogens and their main nuclear receptors (ESR1 and ESR2) and G protein-coupled estrogen receptor (GPER) also regulate male reproductive and nonreproductive organs. 17β-Estradiol (E2) is measureable in blood of men and males of other species, but in rete testis fluids, E2 reaches concentrations normally found only in females and in some species nanomolar concentrations of estrone sulfate are found in semen. Aromatase, which converts androgens to estrogens, is expressed in Leydig cells, seminiferous epithelium, and other male organs. Early studies showed E2 binding in numerous male tissues, and ESR1 and ESR2 each show unique distributions and actions in males. Exogenous estrogen treatment produced male reproductive pathologies in laboratory animals and men, especially during development, and studies with transgenic mice with compromised estrogen signaling demonstrated an E2 role in normal male physiology. Efferent ductules and epididymal functions are dependent on estrogen signaling through ESR1, whose loss impaired ion transport and water reabsorption, resulting in abnormal sperm. Loss of ESR1 or aromatase also produces effects on nonreproductive targets such as brain, adipose, skeletal muscle, bone, cardiovascular, and immune tissues. Expression of GPER is extensive in male tracts, suggesting a possible role for E2 signaling through this receptor in male reproduction. Recent evidence also indicates that membrane ESR1 has critical roles in male reproduction. Thus estrogens are important physiological regulators in males, and future studies may reveal additional roles for estrogen signaling in various target tissues.
Collapse
Affiliation(s)
- Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Manjunatha K Nanjappa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - CheMyong Ko
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Gail S Prins
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Rex A Hess
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
16
|
Freudenberg F, Carreño Gutierrez H, Post AM, Reif A, Norton WHJ. Aggression in non-human vertebrates: Genetic mechanisms and molecular pathways. Am J Med Genet B Neuropsychiatr Genet 2016; 171:603-40. [PMID: 26284957 DOI: 10.1002/ajmg.b.32358] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/28/2015] [Indexed: 11/07/2022]
Abstract
Aggression is an adaptive behavioral trait that is important for the establishment of social hierarchies and competition for mating partners, food, and territories. While a certain level of aggression can be beneficial for the survival of an individual or species, abnormal aggression levels can be detrimental. Abnormal aggression is commonly found in human patients with psychiatric disorders. The predisposition to aggression is influenced by a combination of environmental and genetic factors and a large number of genes have been associated with aggression in both human and animal studies. In this review, we compare and contrast aggression studies in zebrafish and mouse. We present gene ontology and pathway analyses of genes linked to aggression and discuss the molecular pathways that underpin agonistic behavior in these species. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Florian Freudenberg
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt am Main, Germany
| | | | - Antonia M Post
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt am Main, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt am Main, Germany
| | - William H J Norton
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| |
Collapse
|
17
|
Effects of Prepubertal or Adult Site-Specific Knockdown of Estrogen Receptor β in the Medial Preoptic Area and Medial Amygdala on Social Behaviors in Male Mice. eNeuro 2016; 3:eN-NWR-0155-15. [PMID: 27066533 PMCID: PMC4819287 DOI: 10.1523/eneuro.0155-15.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 11/21/2022] Open
Abstract
Testosterone, after being converted to estradiol in the brain, acts on estrogen receptors (ERα and ERβ) and controls the expression of male-type social behavior. Previous studies in male mice have revealed that ERα expressed in the medial preoptic area (MPOA) and medial amygdala (MeA) are differently involved in the regulation of sexual and aggressive behaviors by testosterone action at the time of testing in adult and/or on brain masculinization process during pubertal period. However, a role played by ERβ in these brain regions still remains unclear. Here we examined the effects of site-specific knockdown of ERβ (βERKD) in the MPOA and MeA on male social behaviors with the use of adeno-associated viral mediated RNA interference methods in ICR/Jcl mice. Prepubertal βERKD in the MPOA revealed that continuous suppression of ERβ gene expression throughout the pubertal period and adulthood decreased aggressive but not sexual behavior tested as adults. Because βERKD in the MPOA only in adulthood did not affect either sexual or aggressive behaviors, it was concluded that pubertal ERβ in the MPOA might have an essential role for the full expression of aggressive behavior in adulthood. On the other hand, although neither prepubertal nor adult βERKD in the MeA had any effects on sexual and aggressive behavior, βERKD in adulthood disrupted sexual preference of receptive females over nonreceptive females. Collectively, these results suggest that ERβ in the MPOA and MeA are involved in the regulation of male sexual and aggressive behavior in a manner substantially different from that of ERα.
Collapse
|
18
|
Veroude K, Zhang-James Y, Fernàndez-Castillo N, Bakker MJ, Cormand B, Faraone SV. Genetics of aggressive behavior: An overview. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:3-43. [PMID: 26345359 DOI: 10.1002/ajmg.b.32364] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/05/2015] [Indexed: 12/24/2022]
Abstract
The Research Domain Criteria (RDoC) address three types of aggression: frustrative non-reward, defensive aggression and offensive/proactive aggression. This review sought to present the evidence for genetic underpinnings of aggression and to determine to what degree prior studies have examined phenotypes that fit into the RDoC framework. Although the constructs of defensive and offensive aggression have been widely used in the animal genetics literature, the human literature is mostly agnostic with regard to all the RDoC constructs. We know from twin studies that about half the variance in behavior may be explained by genetic risk factors. This is true for both dimensional, trait-like, measures of aggression and categorical definitions of psychopathology. The non-shared environment seems to have a moderate influence with the effects of shared environment being unclear. Human molecular genetic studies of aggression are in an early stage. The most promising candidates are in the dopaminergic and serotonergic systems along with hormonal regulators. Genome-wide association studies have not yet achieved genome-wide significance, but current samples are too small to detect variants having the small effects one would expect for a complex disorder. The strongest molecular evidence for a genetic basis for aggression comes from animal models comparing aggressive and non-aggressive strains or documenting the effects of gene knockouts. Although we have learned much from these prior studies, future studies should improve the measurement of aggression by using a systematic method of measurement such as that proposed by the RDoC initiative.
Collapse
Affiliation(s)
- Kim Veroude
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Yanli Zhang-James
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York.,Departments of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Mireille J Bakker
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Bru Cormand
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York.,Departments of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York.,K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| |
Collapse
|
19
|
Kyi-Tha-Thu C, Okoshi K, Ito H, Matsuda KI, Kawata M, Tsukahara S. Sex differences in cells expressing green fluorescent protein under the control of the estrogen receptor-α promoter in the hypothalamus of mice. Neurosci Res 2015; 101:44-52. [DOI: 10.1016/j.neures.2015.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/26/2015] [Accepted: 07/08/2015] [Indexed: 01/06/2023]
|
20
|
Ervin KSJ, Lymer JM, Matta R, Clipperton-Allen AE, Kavaliers M, Choleris E. Estrogen involvement in social behavior in rodents: Rapid and long-term actions. Horm Behav 2015; 74:53-76. [PMID: 26122289 DOI: 10.1016/j.yhbeh.2015.05.023] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/16/2015] [Accepted: 05/26/2015] [Indexed: 12/21/2022]
Abstract
This article is part of a Special Issue ("Estradiol and cognition"). Estrogens have repeatedly been shown to influence a wide array of social behaviors, which in rodents are predominantly olfactory-mediated. Estrogens are involved in social behavior at multiple levels of processing, from the detection and integration of socially relevant olfactory information to more complex social behaviors, including social preferences, aggression and dominance, and learning and memory for social stimuli (e.g. social recognition and social learning). Three estrogen receptors (ERs), ERα, ERβ, and the G protein-coupled ER 1 (GPER1), differently affect these behaviors. Social recognition, territorial aggression, and sexual preferences and mate choice, all requiring the integration of socially related olfactory information, seem to primarily involve ERα, with ERβ playing a lesser, modulatory role. In contrast, social learning consistently responds differently to estrogen manipulations than other social behaviors. This suggests differential ER involvement in brain regions important for specific social behaviors, such as the ventromedial and medial preoptic nuclei of the hypothalamus in social preferences and aggression, the medial amygdala and hippocampus in social recognition, and the prefrontal cortex and hippocampus in social learning. While the long-term effects of ERα and ERβ on social behavior have been extensively investigated, our knowledge of the rapid, non-genomic, effects of estrogens is more limited and suggests that they may mediate some social behaviors (e.g. social learning) differently from long-term effects. Further research is required to compare ER involvement in regulating social behavior in male and female animals, and to further elucidate the roles of the more recently described G protein-coupled ERs, both the GPER1 and the Gq-mER.
Collapse
Affiliation(s)
- Kelsy S J Ervin
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| | - Jennifer M Lymer
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| | - Richard Matta
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada
| | | | - Martin Kavaliers
- Department of Psychology, University of Western Ontario, London, Ontario, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
21
|
Heimovics SA, Ferris JK, Soma KK. Non-invasive administration of 17β-estradiol rapidly increases aggressive behavior in non-breeding, but not breeding, male song sparrows. Horm Behav 2015; 69:31-8. [PMID: 25483754 DOI: 10.1016/j.yhbeh.2014.11.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 11/25/2014] [Accepted: 11/27/2014] [Indexed: 12/19/2022]
Abstract
17β-Estradiol (E2) acts in the brain via genomic and non-genomic mechanisms to influence physiology and behavior. There is seasonal plasticity in the mechanisms by which E2 activates aggression, and non-genomic mechanisms appear to predominate during the non-breeding season. Male song sparrows (Melospiza melodia) display E2-dependent territorial aggression throughout the year. Field studies show that song sparrow aggression during a territorial intrusion is similar in the non-breeding and breeding seasons, but aggression after an intrusion ends differs seasonally. Non-breeding males stop behaving aggressively within minutes whereas breeding males remain aggressive for hours. We hypothesize that this seasonal plasticity in the persistence of aggression relates to seasonal plasticity in E2 signaling. We used a non-invasive route of E2 administration to compare the non-genomic (within 20min) effects of E2 on aggressive behavior in captive non-breeding and breeding season males. E2 rapidly increased barrier contacts (attacks) during an intrusion by 173% in non-breeding season males only. Given that these effects were observed within 20min of E2 administration, they likely occurred via a non-genomic mechanism of action. The present data, taken together with past work, suggest that environmental cues associated with the non-breeding season influence the molecular mechanisms through which E2 influences behavior. In song sparrows, transient expression of aggressive behavior during the non-breeding season is highly adaptive: it minimizes energy expenditure and maximizes the amount of time available for foraging. In all, these data suggest the intriguing possibility that aggression in the non-breeding season may be activated by a non-genomic E2 mechanism due to the fitness benefits associated with rapid and transient expression of aggression.
Collapse
Affiliation(s)
- Sarah A Heimovics
- Department of Biology, University of St. Thomas, St. Paul, MN, USA; Neuroscience Program, University of St. Thomas, St. Paul, MN, USA.
| | - Jennifer K Ferris
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Kiran K Soma
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
22
|
Tsuda MC, Yamaguchi N, Nakata M, Ogawa S. Modification of female and male social behaviors in estrogen receptor beta knockout mice by neonatal maternal separation. Front Neurosci 2014; 8:274. [PMID: 25228857 PMCID: PMC4151037 DOI: 10.3389/fnins.2014.00274] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/14/2014] [Indexed: 01/20/2023] Open
Abstract
Maternal separation (MS) is an animal model mimicking the effects of early life stress on the development of emotional and social behaviors. Recent studies revealed that MS stress increased social anxiety levels in female mice and reduced peri-pubertal aggression in male mice. Estrogen receptor (ER) β plays a pivotal role in the regulation of stress responses and anxiety-related and social behaviors. Behavioral studies using ERβ knockout (βERKO) mice reported increased social investigation and decreased social anxiety in βERKO females, and elevated aggression levels in βERKO males compared to wild-type (WT) mice. In the present study, using βERKO and WT mice, we examined whether ERβ contributes to MS effects on anxiety and social behaviors. βERKO and WT mice were separated from their dam daily (4 h) from postnatal day 1–14 and control groups were left undisturbed. First, MS and ERβ gene deletion individually increased anxiety-related behaviors in the open field test, but only in female mice. Anxiety levels were not further modified in βERKO female mice subjected to MS stress. Second, βERKO female mice showed higher levels of social investigation compared with WT in the social investigation test and long-term social preference test. However, MS greatly reduced social investigation duration and elevated number of stretched approaches in WT and βERKO females in the social investigation test, suggesting elevated levels of social anxiety in both genotypes. Third, peri-pubertal and adult βERKO male mice were more aggressive than WT mice as indicated by heightened aggression duration. On the other hand, MS significantly decreased aggression duration in both genotypes, but only in peri-pubertal male mice. Altogether, these results suggest that βERKO mice are sensitive to the adverse effects of MS stress on subsequent female and male social behaviors, which could then have overrode the ERβ effects on female social anxiety and male aggression.
Collapse
Affiliation(s)
- Mumeko C Tsuda
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba Tsukuba, Japan
| | - Naoko Yamaguchi
- Department of Pharmacology, School of Medicine, Aichi Medical University Nagakute, Japan
| | - Mariko Nakata
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba Tsukuba, Japan
| | - Sonoko Ogawa
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba Tsukuba, Japan
| |
Collapse
|
23
|
Meyer K, Korz V. Estrogen receptor α functions in the regulation of motivation and spatial cognition in young male rats. PLoS One 2013; 8:e79303. [PMID: 24236119 PMCID: PMC3827345 DOI: 10.1371/journal.pone.0079303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 09/22/2013] [Indexed: 11/24/2022] Open
Abstract
Estrogenic functions in regulating behavioral states such as motivation, mood, anxiety, and cognition are relatively well documented in female humans and animals. In males, however, although the entire enzymatic machinery for producing estradiol and the corresponding receptors are present, estrogenic functions have been largely neglected. Therefore, and as a follow-up study to previous research, we sub-chronically applied a specific estrogen receptor α (ERα) antagonist in young male rats before and during a spatial learning task (holeboard). The male rats showed a dose-dependent increase in motivational, but not cognitive, behavior. The expression of hippocampal steroid receptor genes, such as glucocorticoid (GR), mineralocorticoid (MR), androgen (AR), and the estrogen receptor ERα but not ERβ was dose-dependently reduced. The expression of the aromatase but not the brain-derived neurotrophic factor (BDNF) encoding gene was also suppressed. Reduced gene expression and increased behavioral performance converged at an antagonist concentration of 7.4 µmol. The hippocampal and blood serum hormone levels (corticosterone, testosterone, and 17β-estradiol) did not differ between the experimental groups and controls. We conclude that steroid receptors (and BDNF) act in a concerted, network-like manner to affect behavior and mutual gene expression. Therefore, the isolated view on single receptor types is probably insufficient to explain steroid effects on behavior. The steroid network may keep motivation in homeostasis by supporting and constraining the behavioral expression of motivation.
Collapse
Affiliation(s)
- Katrin Meyer
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute for Biology, Otto-von-Guericke University, Magdeburg, Germany
| | - Volker Korz
- Institute for Biology, Otto-von-Guericke University, Magdeburg, Germany
- Center for Behavioral Neuroscience, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
24
|
Fergus DJ, Bass AH. Localization and divergent profiles of estrogen receptors and aromatase in the vocal and auditory networks of a fish with alternative mating tactics. J Comp Neurol 2013; 521:2850-69. [PMID: 23460422 PMCID: PMC3688646 DOI: 10.1002/cne.23320] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/11/2013] [Accepted: 02/13/2013] [Indexed: 11/06/2022]
Abstract
Estrogens play a salient role in the development and maintenance of both male and female nervous systems and behaviors. The plainfin midshipman (Porichthys notatus), a teleost fish, has two male reproductive morphs that follow alternative mating tactics and diverge in multiple somatic, hormonal, and neural traits, including the central control of morph-specific vocal behaviors. After we identified duplicate estrogen receptors (ERβ1 and ERβ2) in midshipman, we developed antibodies to localize protein expression in the central vocal-acoustic networks and saccule, the auditory division of the inner ear. As in other teleost species, ERβ1 and ERβ2 were robustly expressed in the telencephalon and hypothalamus in vocal-acoustic and other brain regions shown previously to exhibit strong expression of ERα and aromatase (estrogen synthetase, CYP19) in midshipman. Like aromatase, ERβ1 label colocalized with glial fibrillary acidic protein (GFAP) in telencephalic radial glial cells. Quantitative polymerase chain reaction revealed similar patterns of transcript abundance across reproductive morphs for ERβ1, ERβ2, ERα, and aromatase in the forebrain and saccule. In contrast, transcript abundance for ERs and aromatase varied significantly between morphs in and around the sexually polymorphic vocal motor nucleus (VMN). Together, the results suggest that VMN is the major estrogen target within the estrogen-sensitive hindbrain vocal network that directly determines the duration, frequency, and amplitude of morph-specific vocalizations. Comparable regional differences in steroid receptor abundances likely regulate morph-specific behaviors in males and females of other species exhibiting alternative reproductive tactics.
Collapse
Affiliation(s)
- Daniel J Fergus
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
25
|
Meyer K, Korz V. Age dependent differences in the regulation of hippocampal steroid hormones and receptor genes: relations to motivation and cognition in male rats. Horm Behav 2013; 63:376-84. [PMID: 23238103 DOI: 10.1016/j.yhbeh.2012.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 11/28/2012] [Accepted: 12/03/2012] [Indexed: 11/16/2022]
Abstract
Estrogen and estrogenic functions are age-dependently involved in the modulation of learning, memory and mood in female humans and animals. However, the investigation of estrogenic effects in males has been largely neglected. Therefore, we investigated the hippocampal gene expression of estrogen receptors α and β (ERα, β) in 8-week-old, 12-week-old and 24-week-old male rats. To control for possible interactions between the expression of the estrogen receptor genes and other learning-related steroid receptors, androgen receptors (AR), corticosterone-binding glucocorticoid receptors (GR) and mineralocorticoid receptors (MR) were also measured. Furthermore, the concentrations of the ligands 17β-estradiol, testosterone and corticosterone were measured. The spatial training was conducted in a hole-board. The 8-week-old rats exhibited higher levels of general activity and exploration during the training and performed best with respect to spatial learning and memory, whereas no difference was found between the 12-week-old and 24-week-old rats. The trained 8-week-old rats exhibited increased gene expression of ERα compared with the untrained rats in this age group as well as the trained 12-week-old and 24-week-old rats. The concentrations of estradiol and testosterone, however, were generally higher in the 24-week-old rats than in the 8-week-old and 12-week-old rats. The ERα mRNA concentrations correlated positively with behavior that indicate general learning motivation. These results suggest a specific role of ERα in the age-related differences in motivation and subsequent success in the task. Thus, estrogen and estrogenic functions may play a more prominent role in young male behavior and development than has been previously assumed.
Collapse
Affiliation(s)
- K Meyer
- Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany.
| | | |
Collapse
|
26
|
Sano K, Tsuda MC, Musatov S, Sakamoto T, Ogawa S. Differential effects of site-specific knockdown of estrogen receptor α in the medial amygdala, medial pre-optic area, and ventromedial nucleus of the hypothalamus on sexual and aggressive behavior of male mice. Eur J Neurosci 2013; 37:1308-19. [PMID: 23347260 DOI: 10.1111/ejn.12131] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/11/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
Abstract
Testosterone is known to play an important role in the regulation of male-type sexual and aggressive behavior. As an aromatised metabolite of testosterone, estradiol-induced activation of estrogen receptor α (ERα) may be crucial for the induction of these behaviors in male mice. However, the importance of ERα expressed in different nuclei for this facilitatory action of testosterone has not been determined. To investigate this issue, we generated an adeno-associated virus vector expressing a small hairpin RNA targeting ERα to site-specifically knockdown ERα expression. We stereotaxically injected either a control or ERα targeting vector into the medial amygdala, medial pre-optic area (MPOA), or ventromedial nucleus of the hypothalamus (VMN) in gonadally intact male mice. Two weeks after injection, all mice were tested biweekly for sexual and aggressive behavior, alternating between behavior tests each week. We found that suppressing ERα in the MPOA reduced sexual but not aggressive behavior, whereas in the VMN it reduced both behaviors. Knockdown of ERα in the medial amygdala did not alter either behavior. Additionally, it was found that ERα knockdown in the MPOA caused a parallel reduction in the number of neuronal nitric oxide synthase-expressing cells. Taken together, these results indicate that the testosterone facilitatory action on male sexual behavior requires the expression of ERα in both the MPOA and VMN, whereas the testosterone facilitatory action on aggression requires the expression of ERα in only the VMN.
Collapse
Affiliation(s)
- Kazuhiro Sano
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
27
|
Estrogen dependent activation function of ERβ is essential for the sexual behavior of mouse females. Proc Natl Acad Sci U S A 2012; 58:e41. [PMID: 23150547 DOI: 10.1073/pnas.1217668109] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/05/2019] [Indexed: 12/26/2022] Open
Abstract
We previously generated and characterized a genuine estrogen receptor (ER) β-null mouse line (named ERβ(ST)(L-/L-)) and showed that ERβ(ST)(L-/L-) mice were sterile, due to an ovulation impairment in females and to an unknown reason in males, as their reproductive organs and spermatozoid motility appeared normal. We report here an assessment of the sexual behavior of ERβ(ST)(L-/L-) null mice. We found that ERβ(ST)(L-/L-) males display mildly impaired sexual behavior and that ERβ(ST)(L-/L-) females are significantly less receptive and less attractive than wild-type (WT) females. Decreased attractivity is also exhibited by ERβAF2(0) but not by ERβAF1(0) mutant females (females devoid of either AF2 or AF1 activation function of ERβ). Interestingly, by using an odor preference test, we have determined that the low attractiveness of ERβ(ST)(L-/L-) and ERβAF2(0) females is related to a deficiency of a volatile chemosignal.
Collapse
|
28
|
Bâ A. Perinatal thiamine deficiency-induced spontaneous abortion and pup-killing responses in rat dams. Nutr Neurosci 2012; 16:69-77. [PMID: 22889588 DOI: 10.1179/1476830512y.0000000032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The current study attempts to determine whether thiamine (B1 vitamin) deficiency and chronic alcohol-related thiamine-deficient (TD) status, disturb maternal behavior towards pups. METHODS During gestation and lactation, Wistar rat dams were exposed to the following treatments: (i) prenatal TD dams; (ii) perinatal TD dams; (iii) postnatal TD dams; (iv) 12% alcohol/water drinking mothers; (v) ad libitum control dams. Pair-feeding treatments controlled malnutrition related to thiamine deficiency; (vi) prenatal pair-fed (PF) dams; (vii) perinatal PF dams; (viii) postnatal PF dams and included also the control of alcohol consummation: (ix) PF saccharose dams. Dams were observed for gestation outcome and for apparent disorders of the maternal behavior related to the pups at parturition. RESULTS From the nine experimental groups studied, only pre- and perinatal TD dams exhibited spontaneous abortion (33.36 and 41.66%, respectively) followed by pups-killing responses where, respectively, 4 dams/7 (57.14%) and 5 dams/7 (71.43%) showed disruption of maternal behavior and appearance of cannibalism towards pups which all were killed within 48 hours after parturition. Spontaneous abortion and pup-killing responses were not observed in the dams of any other experimental group, suggesting that perinatal disturbances of hormonal factors underlay these maternal disorders. DISCUSSION Previous studies reported that thiamine deficiency-induced degeneration of dopamine neurons may be related to mouse-killing aggression in rats. The present study suggests that perinatal thiamine deficiency-induced alteration of dopaminergic neurons in maternal brain could be a trigger factor of pup-killing responses. Central dopamine and oxytocin have been strongly associated with both the onset and maintenance of maternal behavior and the regulation of maternal aggressiveness as well. Our studies suggest that estrogen control oxytocin levels in brain structures of pregnancy-terminated rats via dopamine transmission. Thiamine may modulate cAMP/Ca2+ -dependent estradiol-triggered responses which in turn control dopamine synthesis. Consequently, thiamine deficiency induced perinatally triggers pup-killing responses in pregnancy-terminated rats by the following toxic effects: (i) disturbances of estrogen production and/or release affecting dopamine synthesis; (ii) alterations of dopamine inhibition on central oxytocinergic system-related maternal aggressiveness. Likewise, our results indicate also that perinatal thiamine deficiency alone induces spontaneous abortion, reduces litter size, and lowers birth weight, which together suggest changing in the fetoplacental estrogen receptor alpha/progesterone receptor A ratio during gestation, via autocrine/paracrine regulation disturbances. Those hypotheses should be confirmed by further investigations.
Collapse
Affiliation(s)
- Abdoulaye Bâ
- Université de Cocody, UFR Biosciences, Abidjan, Côte d'Ivoire.
| |
Collapse
|
29
|
Male risk taking, female odors, and the role of estrogen receptors. Physiol Behav 2012; 107:751-61. [PMID: 22472459 DOI: 10.1016/j.physbeh.2012.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/07/2012] [Accepted: 03/15/2012] [Indexed: 12/17/2022]
Abstract
Male risk-taking and decision making are affected by sex-related cues, with men making riskier choices and decisions after exposure to either women or stimuli associated with women. In non-human species females and, or their cues can also increase male risk taking. Under the ecologically relevant condition of predation threat, brief exposure of male mice to the odors of a sexually receptive novel female reduces the avoidance of, and aversive responses to, a predator. We briefly review evidence showing that estrogen receptors (ERs), ERα and ERβ, are associated with the mediation of these risk taking responses. We show that ERs influence the production of the female odors that affect male risk taking, with the odors of wild type (ERαWT, ERβWT), oxytocin (OT) wildtype (OTWT), gene-deleted 'knock-out' ERβ (ERβKO), but not ERαKO or oxytocin (OT) OTKO or ovariectomized (OVX) female mice reducing the avoidance responses of male mice to cat odor. We further show that administration of specific ERα and ERβ agonists to OVX females results in their odors increasing male risk taking and boldness towards a predator. We also review evidence that ERs are involved in the mediation of the responses of males to female cues, with ERα being associated with the sexual and both ERβ and ERα with the sexual and social mechanisms underlying the effects of female cues on male risk taking. The implications and relations of these findings with rodents to ERs and the regulation of human risk taking are briefly considered.
Collapse
|
30
|
Clipperton-Allen AE, Almey A, Melichercik A, Allen CP, Choleris E. Effects of an estrogen receptor alpha agonist on agonistic behaviour in intact and gonadectomized male and female mice. Psychoneuroendocrinology 2011; 36:981-95. [PMID: 21247705 DOI: 10.1016/j.psyneuen.2010.12.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 10/15/2010] [Accepted: 12/20/2010] [Indexed: 11/15/2022]
Abstract
Gonadal hormones mediate both affiliative and agonistic social interactions. Research in estrogen receptor alpha (ERα) or beta (ERβ) knockout (KO) mice suggests that ERα increases and ERβ decreases male aggression, while the opposite is found for female ERαKO and ERβKO mice. Using a detailed behavioural analysis of the resident-intruder test, we have shown that the ERβ selective agonist WAY-200070 increased agonistic behaviours, such as aggressive grooming and pushing down a gonadectomized (gonadex) intruder, in gonadally intact but not gonadex male and female resident mice, while leaving attacks unaffected. The role of acute activation of ERα in agonistic behaviour in adult non-KO CD1 mice is presently unknown. The current study assesses the effects of the ERα selective agonist 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT) on the social and agonistic responses of gonadally intact and gonadex male and female CD1 mice to a gonadex, same-sex intruder. PPT had few effects in gonadally intact mice, but seems to increase sex-typical aggression (i.e., attacks in males, other dominance-related behaviours in females) in gonadex mice. In untreated mice, we confirmed our previous findings that gonadally intact males attacked the intruder more than females, but females spent more time engaged in agonistic behaviour than males. As in our previous results, we observed that gonadex mice generally show behaviour patterns more like those of the gonadally intact opposite sex, while leaving overall levels of agonistic behaviour unaffected. Taken together, our current and previous results show that exogenous activation of ERα had no effects in gonadally intact mice, but increased sex-typical agonistic behaviour in gonadex mice, while ERβ had no effects in gonadex mice, but increased non-attack agonistic behaviour in gonadally intact animals. This suggests that, as in social recognition, ERα may be necessary for the activation of agonistic responses, while ERβ may play a modulatory role.
Collapse
Affiliation(s)
- Amy E Clipperton-Allen
- Department of Psychology, University of Guelph, 50 Stone Rd East, Guelph, ON, Canada N1G 2W1
| | | | | | | | | |
Collapse
|
31
|
Abstract
Estrogens regulate a diverse range of physiological processes and affect multiple tissues. Estrogen receptors (ERs) regulate transcription by binding to DNA at conserved estrogen response elements, and such elements have been used to report ER activity in cultured cells and in transgenic mice. We generated stable, transgenic zebrafish containing five consecutive elements upstream of a c-fos minimal promoter and green fluorescent protein (GFP) to visualize and quantify transcriptional activation in live larvae. Transgenic larvae show robust, dose-dependent estrogen-dependent fluorescent labeling in the liver, consistent with er gene expression, whereas ER antagonists inhibit GFP expression. The nonestrogenic steroids dexamethasone and progesterone fail to activate GFP, confirming ER selectivity. Natural and synthetic estrogens activated the transgene with varying potency, and two chemicals, genistein and bisphenol A, preferentially induce GFP expression in the heart. In adult fish, fluorescence was observed in estrogenic tissues such as the liver, ovary, pituitary gland, and brain. Individual estrogen-responsive neurons and their projections were visualized in the adult brain, and GFP-positive neurons increased in number after 17β-estradiol exposure. The transgenic estrogen-responsive zebrafish allow ER signaling to be monitored visually and serve as in vivo sentinels for detection of estrogenic compounds.
Collapse
Affiliation(s)
- Daniel A Gorelick
- Carnegie Institution for Science, Department of Embryology, 3520 San Martin Drive, Baltimore, Maryland 21218, USA.
| | | |
Collapse
|
32
|
Seredynski AL, Ball GF, Balthazart J, Charlier TD. Specific activation of estrogen receptor alpha and beta enhances male sexual behavior and neuroplasticity in male Japanese quail. PLoS One 2011; 6:e18627. [PMID: 21533185 PMCID: PMC3077394 DOI: 10.1371/journal.pone.0018627] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 03/07/2011] [Indexed: 01/01/2023] Open
Abstract
Two subtypes of estrogen receptors (ER), ERα and ERβ, have been identified in humans and numerous vertebrates, including the Japanese quail. We investigated in this species the specific role(s) of each receptor in the activation of male sexual behavior and the underlying estrogen-dependent neural plasticity. Castrated male Japanese quail received empty (CX) or testosterone-filled (T) implants or were daily injected with the ER general agonist diethylstilbestrol (DES), the ERα-specific agonist PPT, the ERβ-specific agonist DPN or the vehicle, propylene glycol. Three days after receiving the first treatment, subjects were alternatively tested for appetitive (rhythmic cloacal sphincter movements, RCSM) and consummatory aspects (copulatory behavior) of male sexual behavior. 24 hours after the last behavioral testing, brains were collected and analyzed for aromatase expression and vasotocinergic innervation in the medial preoptic nucleus. The expression of RCSM was activated by T and to a lesser extent by DES and PPT but not by the ERβagonist DPN. In parallel, T fully restored the complete sequence of copulation, DES was partially active and the specific activation of ERα or ERβ only resulted in a very low frequency of mount attempts in few subjects. T increased the volume of the medial preoptic nucleus as measured by the dense cluster of aromatase-immunoreactive cells and the density of the vasotocinergic innervation within this nucleus. DES had only a weak action on vasotocinergic fibers and the two specific ER agonists did not affect these neural responses. Simultaneous activation of both receptors or treatments with higher doses may be required to fully activate sexual behavior and the associated neurochemical events.
Collapse
Affiliation(s)
- Aurore L. Seredynski
- Research Group in Behavioral Neuroendocrinology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Gregory F. Ball
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jacques Balthazart
- Research Group in Behavioral Neuroendocrinology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Thierry D. Charlier
- Research Group in Behavioral Neuroendocrinology, GIGA-Neurosciences, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
33
|
Srilatha B, Adaikan PG. Endocrine milieu and erectile dysfunction: is oestradiol-testosterone imbalance, a risk factor in the elderly? Asian J Androl 2011; 13:569-73. [PMID: 21423199 DOI: 10.1038/aja.2010.129] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Oestrogens are not exclusive to the female gender but occur in moderate circulating levels of 25-70 pg ml⁻¹ in men, compared to 44-153 pg ml⁻¹ in women. Arising from aromatisation of testosterone (T), oestrogen is considered to have many opposing physiological functions and the progressive T decline in the aging male is associated with relative and/or absolute increase in serum oestradiol (E₂). Sexual disinterest and erectile dysfunction (ED) in the elderly may well be due to pathophysiological E₂-T imbalance; the altered hormonal ratio may also explain the higher incidence of ED in hyperestrogenism or following exposure to environmental/plant oestrogens.
Collapse
Affiliation(s)
- Balasubramanian Srilatha
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Hospital, National University of Singapore, Singapore
| | | |
Collapse
|
34
|
Wacker DW, Wingfield JC, Davis JE, Meddle SL. Seasonal changes in aromatase and androgen receptor, but not estrogen receptor mRNA expression in the brain of the free-living male song sparrow, Melospiza melodia morphna. J Comp Neurol 2010; 518:3819-35. [PMID: 20653036 DOI: 10.1002/cne.22426] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Free-living male song sparrows experience three annually repeating life history stages associated with differential expression of sex steroid-dependent reproductive and aggressive behavior. In the breeding stage, they display reproductive and aggressive behavior and have elevated circulating testosterone levels. During molt, males show little or no aggression and no reproductive behavior, and have basal levels of circulating testosterone. In the non-breeding stage, they display high levels of aggression and no reproductive behavior, and have basal levels of circulating testosterone. In order to understand more fully the neural regulation of seasonal aggressive and reproductive behavior, birds were collected during all three life history stages, and levels of neural aromatase, androgen receptor (AR), and estrogen receptor alpha (ERalpha) and beta (ERbeta) mRNA expression were measured. Breeding males had the highest levels of aromatase expression in both the preoptic area (POA) and medial preoptic area/medial bed nucleus of the stria terminalis (mPOA/BSTm), and the highest AR expression levels in the POA, consistent with the well-established role these regions play in the regulation of male reproductive behavior. Aromatase expression in the ventromedial nucleus of the hypothalamus (VMH) was higher during breeding and non-breeding compared with molt, suggesting that the VMH may play a role in the estrogen-dependent regulation of aggression in this species. AR expression also varied in medial HVC and pvMSt, a newly described periventricular region in the medial striatum. ERalpha and ERbeta mRNA expression did not vary seasonally in any brain region examined, suggesting that estrogen-dependent changes in behavior are mediated by differences in neural estrogen synthesis.
Collapse
Affiliation(s)
- Douglas W Wacker
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.
| | | | | | | |
Collapse
|
35
|
Filby AL, Paull GC, Hickmore TF, Tyler CR. Unravelling the neurophysiological basis of aggression in a fish model. BMC Genomics 2010; 11:498. [PMID: 20846403 PMCID: PMC2996994 DOI: 10.1186/1471-2164-11-498] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 09/16/2010] [Indexed: 01/12/2023] Open
Abstract
Background Aggression is a near-universal behaviour with substantial influence on and implications for human and animal social systems. The neurophysiological basis of aggression is, however, poorly understood in all species and approaches adopted to study this complex behaviour have often been oversimplified. We applied targeted expression profiling on 40 genes, spanning eight neurological pathways and in four distinct regions of the brain, in combination with behavioural observations and pharmacological manipulations, to screen for regulatory pathways of aggression in the zebrafish (Danio rerio), an animal model in which social rank and aggressiveness tightly correlate. Results Substantial differences occurred in gene expression profiles between dominant and subordinate males associated with phenotypic differences in aggressiveness and, for the chosen gene set, they occurred mainly in the hypothalamus and telencephalon. The patterns of differentially-expressed genes implied multifactorial control of aggression in zebrafish, including the hypothalamo-neurohypophysial-system, serotonin, somatostatin, dopamine, hypothalamo-pituitary-interrenal, hypothalamo-pituitary-gonadal and histamine pathways, and the latter is a novel finding outside mammals. Pharmacological manipulations of various nodes within the hypothalamo-neurohypophysial-system and serotonin pathways supported their functional involvement. We also observed differences in expression profiles in the brains of dominant versus subordinate females that suggested sex-conserved control of aggression. For example, in the HNS pathway, the gene encoding arginine vasotocin (AVT), previously believed specific to male behaviours, was amongst those genes most associated with aggression, and AVT inhibited dominant female aggression, as in males. However, sex-specific differences in the expression profiles also occurred, including differences in aggression-associated tryptophan hydroxylases and estrogen receptors. Conclusions Thus, through an integrated approach, combining gene expression profiling, behavioural analyses, and pharmacological manipulations, we identified candidate genes and pathways that appear to play significant roles in regulating aggression in fish. Many of these are novel for non-mammalian systems. We further present a validated system for advancing our understanding of the mechanistic underpinnings of complex behaviours using a fish model.
Collapse
Affiliation(s)
- Amy L Filby
- School of Biosciences, University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter, Devon EX4 4PS, UK.
| | | | | | | |
Collapse
|
36
|
Agonistic behavior in males and females: effects of an estrogen receptor beta agonist in gonadectomized and gonadally intact mice. Psychoneuroendocrinology 2010; 35:1008-22. [PMID: 20129736 PMCID: PMC2891273 DOI: 10.1016/j.psyneuen.2010.01.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 12/17/2009] [Accepted: 01/06/2010] [Indexed: 10/19/2022]
Abstract
Affiliative and agonistic social interactions are mediated by gonadal hormones. Research with estrogen receptor alpha (ERalpha) or beta (ERbeta) knockout (KO) mice show that long-term inactivation of ERalpha decreases, while inactivation of ERbeta increases, male aggression. Opposite effects were found in female alphaERKO and betaERKO mice. The role of acute activation of ERalpha or ERbeta in the agonistic responses of adult non-KO mice is unknown. We report here the effects of the ERbeta selective agonist WAY-200070 on agonistic and social behavior in gonadally intact and gonadectomized (gonadex) male and female CD-1 mice towards a gonadex, same-sex intruder. All 15min resident-intruder tests were videotaped for comprehensive behavioral analysis. Separate analyses assessed: (1) effects of WAY-200070 on each sex and gonadal condition; (2) differences between sexes, and between gonadally intact and gonadex mice, in untreated animals. Results show that in gonadally intact male and female mice, WAY-200070 increased agonistic behaviors such as pushing down the intruder and aggressive grooming, while leaving attacks unaffected. In untreated mice, males attacked more than females, and gonadex animals showed less agonistic behavior than same-sex, gonadally intact mice. Overall, our detailed behavioral analysis suggested that in gonadally intact male and female mice, ERbeta mediates patterns of agonistic behavior that are not directly involved in attacks. This suggests that specific aspects of aggressive behavior are acutely mediated by ERbeta in adult mice. Our results also showed that, in resident-intruder tests, female mice spend as much time in intrasexual agonistic interactions as males, but use agonistic behaviors that involve extremely low levels of direct attacks. This non-attack aggression in females is increased by acute activation of ERbeta. Thus, acute activation of ERbeta similarly mediates agonistic behavior in adult male and female CD-1 mice.
Collapse
|
37
|
Milner TA, Thompson LI, Wang G, Kievits JA, Martin E, Zhou P, McEwen BS, Pfaff DW, Waters EM. Distribution of estrogen receptor β containing cells in the brains of bacterial artificial chromosome transgenic mice. Brain Res 2010; 1351:74-96. [PMID: 20599828 DOI: 10.1016/j.brainres.2010.06.038] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 06/04/2010] [Accepted: 06/11/2010] [Indexed: 01/11/2023]
Abstract
In the brain, estrogen receptor beta (ERbeta) plays important roles in autonomic functions, stress reactivity and learning and memory processes. However, understanding the function of ERbeta has been restricted by the limited availability of specific antisera, by difficulties discriminating the discrete localization of ERbeta-immunoreactivity (ir) at the light microscopic level in many brain regions and the identification of ERbeta-containing neurons in neurophysiological and molecular studies. Here, we demonstrate that a Esr2 bacterial artificial chromosome (BAC) transgenic mouse line that expresses ERbeta identified by enhanced green fluorescent protein (EGFP) overcomes these shortcomings. Throughout the brain, ERbeta-EGFP was detected in the nuclei and cytoplasm of cells, the majority of which resembled neurons. EGFP often extended into dendritic processes and could be identified either natively or following intensification of EGFP using immunolabeling. The distribution of ERbeta-EGFP cells in brain closely corresponded to that reported for ERbeta protein and mRNA. In particular, ERbeta-EGFP cells were found in autonomic brain regions (i.e., hypothalamic paraventricular nucleus, rostral ventrolateral medulla and nucleus of the solitary tract), in regions associated with anxiety and stress behaviors (i.e., bed nucleus of the stria terminalis, amygdala, periaqueductal gray, raphe and parabrachial nuclei) and in regions involved in learning and memory processes (i.e., basal forebrain, cerebral cortex and hippocampus). Additionally, dual label light and electron microscopic studies in select brain areas demonstrate that cell containing ERbeta-EGFP colocalize with both nuclear and extranuclear ERbeta-immunoreactivity. These findings support the utility of Esr2 BAC transgenic reporter mice for future studies understanding the role of ERbeta in CNS function.
Collapse
Affiliation(s)
- Teresa A Milner
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065, USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Louisa I Thompson
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065, USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Gang Wang
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065, USA
| | - Justin A Kievits
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065, USA
| | - Eugene Martin
- Laboratory of Neurobiology and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Ping Zhou
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065, USA
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Donald W Pfaff
- Laboratory of Neurobiology and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Elizabeth M Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
38
|
Tetel MJ, Pfaff DW. Contributions of estrogen receptor-α and estrogen receptor-ß to the regulation of behavior. Biochim Biophys Acta Gen Subj 2010; 1800:1084-9. [PMID: 20097268 DOI: 10.1016/j.bbagen.2010.01.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 01/15/2010] [Accepted: 01/16/2010] [Indexed: 01/02/2023]
Abstract
Studies of the mechanisms by which estrogens influence brain function and behavior have advanced from the explication of individual hormone receptors, neural circuitry and individual gene expression. Now, we can report patterns of estrogen receptor subtype contributions to patterns of behavior. Moreover, new work demonstrates important contributions of nuclear receptor coactivator expression in the central nervous system. In this paper, our current state of knowledge is reviewed.
Collapse
Affiliation(s)
- Marc J Tetel
- Neuroscience Program, Wellesley College, Wellesley, MA, USA
| | | |
Collapse
|
39
|
Walf AA, Koonce CJ, Frye CA. Estradiol or diarylpropionitrile decrease anxiety-like behavior of wildtype, but not estrogen receptor beta knockout, mice. Behav Neurosci 2009; 122:974-81. [PMID: 18823154 DOI: 10.1037/a0012749] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Clinical and basic studies demonstrate that estrogen (E-sub-2)-based therapies influence anxiety and mood, but the receptor targets (e.g., a or ss isoform of the estrogen receptor, ER) for these effects requires further investigation. To address the specificity of E2's anxiolytic-like effects through ERss, anxiety, motor, and nociceptive behavior of ovariectomized, wildtype (WT), and ERss knockout (ssERKO) mice was examined. Mice were administered oil vehicle or ER agonists, 17ss-E2 (E2; 0.1 mg/kg; similar affinity for ERa and ERss), and a selective ER modulator, diarylpropionitrile (DPN; 0.1 mg/kg; greater affinity for ERss than ERa). Performance of mice in anxiety (open field, elevated plus maze, elevated zero maze, social interaction), motor activity (activity monitor) and nociception (tailflick, pawlick) measures was compared. Results supported our hypothesis that ERss is important in modulation of anxiety-like behavior by E2 in some tasks. Administration of E2 or DPN to WT, but not ssERKO, mice increased open field central entries, plus maze open arm time, zero maze open quadrant time, and social interaction. This pattern was neither seen in motor activity nor pain threshold measures. Thus, actions of ERss may be important for modulating anxiety-like behavior of mice.
Collapse
Affiliation(s)
- Alicia A Walf
- Department of Psychology, University at Albany-State University of New York, USA
| | | | | |
Collapse
|
40
|
Kavaliers M, Devidze N, Choleris E, Fudge M, Gustafsson JÅ, Korach KS, Pfaff DW, Ogawa S. Estrogen receptors alpha and beta mediate different aspects of the facilitatory effects of female cues on male risk taking. Psychoneuroendocrinology 2008; 33:634-42. [PMID: 18374493 PMCID: PMC4775092 DOI: 10.1016/j.psyneuen.2008.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 02/08/2008] [Accepted: 02/08/2008] [Indexed: 11/16/2022]
Abstract
Male risk taking and decision making are affected by sex-related cues, with men making poorer and riskier decisions in the presence of females and, or their cues. In non-human species, female cues can also increase male risk taking, reducing their responses to predator threat. As estrogen receptors alpha and beta (ERalpha and ERbeta) are involved in the mediation of social and sexual responses, we investigated their roles in determining the effects of female-associated cues on male risk taking. We examined the effects of brief pre-exposure to the odors of either a novel or familiar estrous female on the avoidance of, and aversive responses to, predator threat (cat odor) in ERalpha and ERbeta wild type (alphaERWT, betaERWT) and gene-deleted (knockout, alphaERKO, betaERKO) male mice. Exposure of alphaERWT and betaERWT males to the odors of a novel, but not a familiar, estrous female mouse resulted in enhanced risk taking with the males displaying reduced avoidance of, and analgesic responses to, cat odor. In contrast, alphaERKO male mice failed to show any changes in risk taking, while betaERKO males, although displaying greater risk taking, did not distinguish between novel and familiar females, displaying similarly reduced avoidance responses to cat odor after exposure to either a novel or familiar female odor. These findings indicate that the gene for ERalpha is associated with the sexual mechanisms (response to estrous female) and the genes for ERbeta and ERalpha with the social (recognition of novel female) mechanisms underlying the effects of female cues on male risk taking.
Collapse
Affiliation(s)
- Martin Kavaliers
- Department Psychology, University of Western Ontario, London, Ontario, Canada N6A 5C2.
| | - Nino Devidze
- Laboratory of Neurobiology of Behavior, The Rockefeller University, New York, NY 10021, USA
| | - Elena Choleris
- Department Psychology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Melissa Fudge
- Department Psychology, University of Western Ontario, London, Ontario, Canada N6A 5C2
| | - Jan-Åke Gustafsson
- Department of Biosciences and Nutrition, Karolinska Institute S-14186 Huddinge, Sweden
| | - Kenneth S. Korach
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Donald W. Pfaff
- Laboratory of Neurobiology of Behavior, The Rockefeller University, New York, NY 10021, USA
| | - Sonoko Ogawa
- Laboratory of Neurobiology of Behavior, The Rockefeller University, New York, NY 10021, USA,Laboratory of Behavioral Neuroendocrinology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, 305-8577, Japan
| |
Collapse
|
41
|
ERalpha, but not ERbeta, mediates the expression of sexual behavior in the female rat. Behav Brain Res 2008; 191:111-7. [PMID: 18433893 DOI: 10.1016/j.bbr.2008.03.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Revised: 03/11/2008] [Accepted: 03/14/2008] [Indexed: 11/23/2022]
Abstract
Estrogen has well known effects on sexual behavior, however the role of the estrogen receptors (ER) alpha and beta on sexual behavior remains to be fully determined. This study investigated the individual and co-operative involvement of ERalpha and beta on sexual behaviors in the adult female rat. Subtype selective ER agonists, propyl-pyrazole triol (PPT; ERalpha agonist) and diarylpropionitrile (DPN; ERbeta agonist) were utilized to examine each receptor subtype's contribution, individual and co-operative, for both receptive (lordosis) and proceptive (hopping/darting, 'ear wiggling') female sexual behaviors. Ovariectomized female rats received subcutaneous injections of either: sesame oil (OIL), dimethylsulfoxide (DMSO), estradiol benzoate (EB; 10 microg/0.1 ml OIL), one of three doses of the ERalpha agonist PPT (1.25mg, 2.5mg or 5.0mg/0.1 ml DMSO), one of three doses of the ERbeta agonist DPN (1.25mg, 2.5mg or 5.0mg/0.1 ml DMSO) or a combination dose of PPT and DPN (2.5mg PPT+2.5mg DPN/0.1 ml DMSO) for two consecutive days, 48 and 24h prior to testing followed by a progesterone injection (500 microg/0.1 ml OIL) 4h prior to testing in order to elicit sexual behavior. The ERalpha agonist PPT, but not the ERbeta agonist DPN, elicited both proceptive and receptive behavior. PPT at doses of 2.5 and 5.0mg significantly elicited lordosis and proceptive behavior ('ear wiggling', hopping and darting). Intriguingly, the administration of both agonists together at the 2.5mg dose resulted in reduced levels of proceptivity and receptivity, suggesting that ERbeta modulates ERalpha's ability to elicit receptive and proceptive sexual behavior.
Collapse
|
42
|
Sterility and absence of histopathological defects in nonreproductive organs of a mouse ERbeta-null mutant. Proc Natl Acad Sci U S A 2008; 105:2433-8. [PMID: 18268329 DOI: 10.1073/pnas.0712029105] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Estrogen signaling is mediated by estrogen receptors alpha (ERalpha) and beta (ERbeta). Although a consensus has now been reached concerning many physiological functions of ERalpha, those of ERbeta are still controversial: When housed and examined in two distant laboratories, mice originating from the same initial ERbeta mutant exhibited widely different phenotypes, which were themselves different from the phenotype of another ERbeta mutant previously generated in our laboratory. Because, in addition to a knockout insertion in exon 3, all these mouse mutants displayed alternative splicing transcripts, we have now constructed a ERbeta mouse mutant (ERbeta(ST)(L-/L-)) in which exon 3 was cleanly deleted by Cre/LoxP-mediated excision and was devoid of any transcript downstream of exon 3. Both females and males were sterile. The histology of the ovary was mildly affected, and no histological defects were detected in other organs, neither in females nor in males. Our present results, which are in contrast with previously published data, suggest that, with the notable exception of male and female reproduction, ERbeta is not required in the mouse for the development and homeostasis of the major body systems.
Collapse
|
43
|
Trainor BC, Finy MS, Nelson RJ. Paternal aggression in a biparental mouse: parallels with maternal aggression. Horm Behav 2008; 53:200-7. [PMID: 17991466 PMCID: PMC2218985 DOI: 10.1016/j.yhbeh.2007.09.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 09/22/2007] [Accepted: 09/25/2007] [Indexed: 10/22/2022]
Abstract
Environmental and social factors have important effects on aggressive behaviors. We examined the effect of reproductive experience on aggression in a biparental species of mouse, Peromyscus californicus. Estrogens are important in mediating aggressive behavior so we also examined estrogen receptor expression and c-fos for insights into possible mechanisms of regulation. Parental males were significantly more aggressive than virgin males, but no significant differences in estrogen receptor alpha or beta expression were detected. Patterns of c-fos following aggression tests suggested possible parallels with maternal aggression. Parental males had more c-fos positive cells in the medial amygdala, and medial preoptic area relative to virgin males. The medial preoptic area is generally considered to be relatively less important for male-male aggression in rodents, but is known to have increased activity in the context of maternal aggression. We also demonstrated through habituation-dishabituation tests that parental males show exaggerated investigation responses to chemical cues from a male intruder, suggesting that heightened sensory responses may contribute to increased parental aggression. These data suggest that, in biparental species, reproductive experience leads to the onset of paternal aggression that may be analogous to maternal aggression.
Collapse
Affiliation(s)
- Brian C Trainor
- Department of Psychology, University of California, Davis, CA 95616, USA.
| | | | | |
Collapse
|
44
|
Trainor BC, Finy MS, Nelson RJ. Rapid effects of estradiol on male aggression depend on photoperiod in reproductively non-responsive mice. Horm Behav 2008; 53:192-9. [PMID: 17976598 PMCID: PMC2190085 DOI: 10.1016/j.yhbeh.2007.09.016] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 09/12/2007] [Accepted: 09/21/2007] [Indexed: 10/22/2022]
Abstract
In three genuses and four species of rodents, housing in winter-like short days (8L:16D) increases male aggressive behavior. In all of these species, males undergo short-day induced regression of the reproductive system. Some studies, however, suggest that the effect of photoperiod on aggression may be independent of reproductive responses. We examined the effects of photoperiod on aggressive behavior in California mice (Peromyscus californicus), which do not display reproductive responsiveness to short days. As expected, short days had no effect on plasma testosterone. Estrogen receptor alpha and estrogen receptor beta immunostaining did not differ in the lateral septum, medial preoptic area, bed nucleus of the stria terminalis, or medial amygdala. However, males housed in short days were significantly more aggressive than males housed in long days. Similar to previous work in beach mice (Peromyscus polionotus), estradiol rapidly increased aggression when male California mice were housed in short days but not when housed in long days. These data suggest that the effects of photoperiod on aggression and estrogen signaling are independent of reproductive responses. The rapid action of estradiol on aggression in short-day mice also suggests that nongenomic mechanisms mediate the effects of estrogens in short days.
Collapse
Affiliation(s)
- Brian C Trainor
- Department of Psychology, University of California, Davis, CA 95616, USA.
| | | | | |
Collapse
|
45
|
Trainor BC, Rowland MR, Nelson RJ. Photoperiod affects estrogen receptor alpha, estrogen receptor beta and aggressive behavior. Eur J Neurosci 2007; 26:207-18. [PMID: 17614949 PMCID: PMC2071923 DOI: 10.1111/j.1460-9568.2007.05654.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Estrogens have important effects on male and female social behavior. Despite growing knowledge of the anatomy and behavioral effects of the two predominant estrogen receptor subtypes in mammals (ERalpha and ERbeta), relatively little is known about how these receptors respond to salient environmental stimuli. Many seasonally breeding species respond to changing photoperiods that predict seasonal changes in resource availability. We characterized the effects of photoperiod on aggressive behavior in two species of Peromyscus that exhibit gonadal regression in short days. P. polionotus (old field mice) were more aggressive than P. maniculatus (deer mice) and both species were more aggressive in short days. We used immunocytochemistry and real-time polymerase chain reaction to characterize the effects of photoperiod on ERalpha and ERbeta expression. In both species ERalpha-immunoreactive staining in the posterior bed nucleus of the stria terminalis (BNST) was increased in short vs. long days. Both species had reduced ERbeta-immunoreactive expression in the posterior BNST in short days. In the medial amygdala ERbeta immunoreactivity was increased in long days for both species. Using real-time polymerase chain reaction on punch samples that included the BNST, we observed that ERalpha mRNA was increased and ERbeta mRNA was decreased in short days. These data suggest that the effects of photoperiod on ERalpha and ERbeta expression may thus have important behavioral consequences.
Collapse
Affiliation(s)
- Brian C Trainor
- Department of Psychology, Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
46
|
Abstract
Unchecked aggression and violence exact a significant toll on human societies. Aggression is an umbrella term for behaviours that are intended to inflict harm. These behaviours evolved as adaptations to deal with competition, but when expressed out of context, they can have destructive consequences. Uncontrolled aggression has several components, such as impaired recognition of social cues and enhanced impulsivity. Molecular approaches to the study of aggression have revealed biological signals that mediate the components of aggressive behaviour. These signals may provide targets for therapeutic intervention for individuals with extreme aggressive outbursts. This Review summarizes the complex interactions between genes, biological signals, neural circuits and the environment that influence the development and expression of aggressive behaviour.
Collapse
Affiliation(s)
- Randy J Nelson
- Department of Psychology, Institute for Behavioural Medicine Research, The Ohio State University, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
47
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas II. Curr Opin Endocrinol Diabetes Obes 2007; 14:329-57. [PMID: 17940461 DOI: 10.1097/med.0b013e3282c3a898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Fan X, Warner M, Gustafsson JÅ. Estrogen receptor beta expression in the embryonic brain regulates development of calretinin-immunoreactive GABAergic interneurons. Proc Natl Acad Sci U S A 2006; 103:19338-43. [PMID: 17159139 PMCID: PMC1748227 DOI: 10.1073/pnas.0609663103] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Our previous studies with estrogen receptor beta knockout (ERbeta(-/-)) mice demonstrated that ERbeta is necessary for embryonic development of the brain as early as embryonic day 14.5 (E14.5) and is involved in neuronal migration. Such early effects of ER were unexpected because estradiol synthesis and action in the brain occur at E18.5. In the present study, we examined the distribution of ERbeta in the developing brain and identified a population of ERbeta-regulated interneurons. ERbeta appears in the brain at E12.5, mainly localized in the wall of the midbrain, neuromere, hypothalamus, thalamus, and basal plate of pons. At E15.5 and E16.5, ERbeta expression increased in the hypothalamus, thalamus, and midbrain and appeared in the limbic forebrain. At E18.5, ERbeta expression was strongly expressed throughout the brain, including the cerebellum and striatum, whereas there were very few positive cells in the ventricular region. In the paraventricular thalamic nucleus and parafascicular nucleus, most of the calretinin-immunopositive interneurons expressed ERbeta. In ERbeta(-/-) mice, calretinin expression was markedly lower than in WT mice in the hippocampus, thalamus, and amygdala both at E16.5 and at E18.5. Epidermal growth factor receptor expression was lower in the cortex of ERbeta(-/-) than in WT mice at E15.5 and, unlike WT mice, was absent from the superficial marginal zone. These findings suggest that ERbeta in the embryonic brain is necessary for the development of calretinin-immunoreactive GABAergic interneurons and for neuronal migration in the cortex through modulating epidermal growth factor receptor expression at middle and later embryonic stages.
Collapse
Affiliation(s)
- Xiaotang Fan
- Division of Medical Nutrition, Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 141 86 Huddinge, Sweden
| | - Margaret Warner
- Division of Medical Nutrition, Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 141 86 Huddinge, Sweden
| | - Jan-Åke Gustafsson
- Division of Medical Nutrition, Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 141 86 Huddinge, Sweden
- *To whom correspondence may be addressed at:
Division of Medical Nutrition, Department of Biosciences and Nutrition, Karolinska Institutet, Novum, 141 86 Huddinge, Sweden. E-mail:
| |
Collapse
|
49
|
Ascenzi P, Bocedi A, Marino M. Structure-function relationship of estrogen receptor alpha and beta: impact on human health. Mol Aspects Med 2006; 27:299-402. [PMID: 16914190 DOI: 10.1016/j.mam.2006.07.001] [Citation(s) in RCA: 361] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
17Beta-estradiol (E2) controls many aspects of human physiology, including development, reproduction and homeostasis, through regulation of the transcriptional activity of its cognate receptors (ERs). The crystal structures of ERs with agonists and antagonists and the use of transgenic animals have revealed much about how hormone binding influences ER conformation(s) and how this conformation(s), in turn, influences the interaction of ERs with co-activators or co-repressors and hence determines ER binding to DNA and cellular outcomes. This information has helped to shed light on the connection between E2 and the development or progression of numerous diseases. Current therapeutic strategy in the treatment of E2-related pathologies relies on the modulation of ER trancriptional activity by anti-estrogens; however, data accumulated during the last five years reveal that ER activities are not only restricted to the nucleus. ERs are very mobile proteins continuously shuttling between protein targets located within various cellular compartments (e.g., membrane, nucleus). This allows E2 to generate different and synergic signal transduction pathways (i.e., non-genomic and genomic) which provide plasticity for cell response to E2. Understanding the structural basis and the molecular mechanisms by which ER transduce E2 signals in target cells will allow to create new pharmacologic therapies aimed at the treatment of a variety of human diseases affecting the cardiovascular system, the reproductive system, the skeletal system, the nervous system, the mammary gland, and many others.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Department of Biology, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | | | | |
Collapse
|