1
|
Kent RD. The Feel of Speech: Multisystem and Polymodal Somatosensation in Speech Production. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:1424-1460. [PMID: 38593006 DOI: 10.1044/2024_jslhr-23-00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
PURPOSE The oral structures such as the tongue and lips have remarkable somatosensory capacities, but understanding the roles of somatosensation in speech production requires a more comprehensive knowledge of somatosensation in the speech production system in its entirety, including the respiratory, laryngeal, and supralaryngeal subsystems. This review was conducted to summarize the system-wide somatosensory information available for speech production. METHOD The search was conducted with PubMed/Medline and Google Scholar for articles published until November 2023. Numerous search terms were used in conducting the review, which covered the topics of psychophysics, basic and clinical behavioral research, neuroanatomy, and neuroscience. RESULTS AND CONCLUSIONS The current understanding of speech somatosensation rests primarily on the two pillars of psychophysics and neuroscience. The confluence of polymodal afferent streams supports the development, maintenance, and refinement of speech production. Receptors are both canonical and noncanonical, with the latter occurring especially in the muscles innervated by the facial nerve. Somatosensory representation in the cortex is disproportionately large and provides for sensory interactions. Speech somatosensory function is robust over the lifespan, with possible declines in advanced aging. The understanding of somatosensation in speech disorders is largely disconnected from research and theory on speech production. A speech somatoscape is proposed as the generalized, system-wide sensation of speech production, with implications for speech development, speech motor control, and speech disorders.
Collapse
|
2
|
Kofler M, Hallett M, Iannetti GD, Versace V, Ellrich J, Téllez MJ, Valls-Solé J. The blink reflex and its modulation - Part 1: Physiological mechanisms. Clin Neurophysiol 2024; 160:130-152. [PMID: 38102022 PMCID: PMC10978309 DOI: 10.1016/j.clinph.2023.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
The blink reflex (BR) is a protective eye-closure reflex mediated by brainstem circuits. The BR is usually evoked by electrical supraorbital nerve stimulation but can be elicited by a variety of sensory modalities. It has a long history in clinical neurophysiology practice. Less is known, however, about the many ways to modulate the BR. Various neurophysiological techniques can be applied to examine different aspects of afferent and efferent BR modulation. In this line, classical conditioning, prepulse and paired-pulse stimulation, and BR elicitation by self-stimulation may serve to investigate various aspects of brainstem connectivity. The BR may be used as a tool to quantify top-down modulation based on implicit assessment of the value of blinking in a given situation, e.g., depending on changes in stimulus location and probability of occurrence. Understanding the role of non-nociceptive and nociceptive fibers in eliciting a BR is important to get insight into the underlying neural circuitry. Finally, the use of BRs and other brainstem reflexes under general anesthesia may help to advance our knowledge of the brainstem in areas not amenable in awake intact humans. This review summarizes talks held by the Brainstem Special Interest Group of the International Federation of Clinical Neurophysiology at the International Congress of Clinical Neurophysiology 2022 in Geneva, Switzerland, and provides a state-of-the-art overview of the physiology of BR modulation. Understanding the principles of BR modulation is fundamental for a valid and thoughtful clinical application (reviewed in part 2) (Gunduz et al., submitted).
Collapse
Affiliation(s)
- Markus Kofler
- Department of Neurology, Hochzirl Hospital, Zirl, Austria.
| | - Mark Hallett
- National Institute of Neurological Disorders and Stroke, NIH, USA.
| | - Gian Domenico Iannetti
- University College London, United Kingdom; Italian Institute of Technology (IIT), Rome, Italy.
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy.
| | - Jens Ellrich
- Friedrich-Alexander-University Erlangen-Nuremberg, Germany.
| | | | - Josep Valls-Solé
- IDIBAPS (Institut d'Investigació August Pi i Sunyer), University of Barcelona, Spain.
| |
Collapse
|
3
|
Moncho D, Poca MA, Rahnama K, Sánchez Roldán MÁ, Santa-Cruz D, Sahuquillo J. The Role of Neurophysiology in Managing Patients with Chiari Malformations. J Clin Med 2023; 12:6472. [PMID: 37892608 PMCID: PMC10607909 DOI: 10.3390/jcm12206472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Chiari malformation type 1 (CM1) includes various congenital anomalies that share ectopia of the cerebellar tonsils lower than the foramen magnum, in some cases associated with syringomyelia or hydrocephalus. CM1 can cause dysfunction of the brainstem, spinal cord, and cranial nerves. This functional alteration of the nervous system can be detected by various modalities of neurophysiological tests, such as brainstem auditory evoked potentials, somatosensory evoked potentials, motor evoked potentials, electromyography and nerve conduction studies of the cranial nerves and spinal roots, as well as brainstem reflexes. The main goal of this study is to review the findings of multimodal neurophysiological examinations in published studies of patients with CM1 and their indication in the diagnosis, treatment, and follow-up of these patients, as well as their utility in intraoperative monitoring.
Collapse
Affiliation(s)
- Dulce Moncho
- Department of Clinical Neurophysiology, Vall d’Hebron University Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (K.R.); (M.Á.S.R.); (D.S.-C.)
- Neurotraumatology and Neurosurgery Research Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain;
| | - Maria A. Poca
- Neurotraumatology and Neurosurgery Research Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain;
- Department of Neurosurgery, Vall d’Hebron University Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Department of Surgery, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Kimia Rahnama
- Department of Clinical Neurophysiology, Vall d’Hebron University Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (K.R.); (M.Á.S.R.); (D.S.-C.)
| | - M. Ángeles Sánchez Roldán
- Department of Clinical Neurophysiology, Vall d’Hebron University Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (K.R.); (M.Á.S.R.); (D.S.-C.)
| | - Daniela Santa-Cruz
- Department of Clinical Neurophysiology, Vall d’Hebron University Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (K.R.); (M.Á.S.R.); (D.S.-C.)
| | - Juan Sahuquillo
- Neurotraumatology and Neurosurgery Research Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain;
- Department of Neurosurgery, Vall d’Hebron University Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Department of Surgery, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
4
|
Tram M, Ibrahim T, Hovhannisyan A, Akopian A, Ruparel S. Lingual innervation in male and female marmosets. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100134. [PMID: 38099285 PMCID: PMC10719518 DOI: 10.1016/j.ynpai.2023.100134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 12/17/2023]
Abstract
Several gaps in knowledge exists in our understanding of orofacial pain. Some of these include type of peripheral sensory innervation in specific tissues, differences in innervation between sexes and validation of rodent studies in higher order species. The current study addresses these gaps by validating mouse studies for sensory innervation of tongue tissue in non-human primates as well as assesses sex-specific differences. Tongue and trigeminal ganglia were collected from naïve male and female marmosets and tested for nerve fibers using specific markers by immunohistochemistry and number of fibers quantified. We also tested whether specific subgroups of nerve fibers belonged to myelinating or non-myelinating axons. We observed that similar to findings in mice, marmoset tongue was innervated with nerve filaments expressing nociceptor markers like CGRP and TRPV1 as well as non-nociceptor markers like TrkB, parvalbumin (PV) and tyrosine hydroxylase (TH). Furthermore, we found that while portion of TrkB and PV may be sensory fibers, TH-positive fibers were primarily sympathetic nerve fibers. Moreover, number of CGRP, TrkB and TH-positive nerve fibers were similar in both sexes. However, we observed a higher proportion of myelinated TRPV1 positive fibers in females than in males as well as increased number of PV + fibers in females. Taken together, the study for the first time characterizes sensory innervation in non-human primates as well as evaluates sex-differences in innervation of tongue tissue, thereby laying the foundation for future orofacial pain research with new world smaller NHPs like the common marmoset.
Collapse
Affiliation(s)
- Meilinn Tram
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| | - Tarek Ibrahim
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| | - Anahit Hovhannisyan
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| | - Armen Akopian
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| | - Shivani Ruparel
- Department of Endodontics, School of Dentistry, University of Texas Health San Antonio, USA
| |
Collapse
|
5
|
Szelényi A, Fava E. Long latency responses in tongue muscle elicited by various stimulation sites in anesthetized humans - New insights into tongue-related brainstem reflexes. Brain Stimul 2022; 15:566-575. [PMID: 35341967 DOI: 10.1016/j.brs.2022.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Long Latency Responses (LLR) in tongue muscles are a scarcely described phenomenon, the physiology of which is uncertain. OBJECTIVES The aim of this exploratory, observational study was to describe tongue-LLR elicited by direct trigeminal nerve (DTNS), dorsal column (DoColS), transcranial electric (TES) and peripheral median nerve (MNS) stimulation in a total of 93 patients undergoing neurosurgical procedures under general anesthesia. METHODS Bilateral tongue responses were derived concurrently after each of the following stimulations: (1) DTNS applied with single monophasic or train-of-three pulses, ≤5 mA; (2) DoColS applied with a train-of-three pulses, ≤10 mA; (3) TES consisting of an anodal train-of-five stimulation, ≤250 mA; (4) MNS at wrist consisting of single or train-of-three monophasic pulses, ≤50 mA. Polyphasic tongue muscle responses exceeding the latencies of tongue compound muscle action potentials or motor evoked potentials were classified as LLR. RESULTS Tongue-LLR were evoked from all stimulation sites, with latencies as follows: (1) DTNS: solely ipsilateral 20.2 ± 3.3 msec; (2) DoColS: ipsilateral 25.9 ± 1.6 msec, contralateral 25.1 ± 4.2 msec; (3) TES: contralateral 55.3 ± 10.2 msec, ipsilateral 54.9 ± 12.0 msec; (4) MNS: ipsilateral 37.8 ± 4.7 msec and contralateral 40.3 ± 3.5 msec. CONCLUSION The tongue muscles are a common efferent in brainstem pathways targeted by trigeminal and cervical sensory fibers. DTNS can elicit the "trigemino-hypoglossal-reflex". For the MNS elicited tongue-LLR, we propose the term "somatosensory-evoked tongue-reflex". Although the origin of the TES related tongue-LLR remains unclear, these data will help to interpret intraoperative tongue recordings.
Collapse
Affiliation(s)
- Andrea Szelényi
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany.
| | - Enrica Fava
- Department of Neurosurgery, Great Metropolitan Hospital of Niguarda, University of Milano, Italy
| |
Collapse
|
6
|
Mirallave Pescador A, Téllez MJ, Sánchez Roldán MDLÁ, Samusyte G, Lawson EC, Coelho P, Lejarde A, Rathore A, Le D, Ulkatan S. Methodology for eliciting the brainstem trigeminal-hypoglossal reflex in humans under general anesthesia. Clin Neurophysiol 2022; 137:1-10. [DOI: 10.1016/j.clinph.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 11/03/2022]
|
7
|
Dempsey B, Sungeelee S, Bokiniec P, Chettouh Z, Diem S, Autran S, Harrell ER, Poulet JFA, Birchmeier C, Carey H, Genovesio A, McMullan S, Goridis C, Fortin G, Brunet JF. A medullary centre for lapping in mice. Nat Commun 2021; 12:6307. [PMID: 34728601 PMCID: PMC8563905 DOI: 10.1038/s41467-021-26275-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/27/2021] [Indexed: 01/14/2023] Open
Abstract
It has long been known that orofacial movements for feeding can be triggered, coordinated, and often rhythmically organized at the level of the brainstem, without input from higher centers. We uncover two nuclei that can organize the movements for ingesting fluids in mice. These neuronal groups, IRtPhox2b and Peri5Atoh1, are marked by expression of the pan-autonomic homeobox gene Phox2b and are located, respectively, in the intermediate reticular formation of the medulla and around the motor nucleus of the trigeminal nerve. They are premotor to all jaw-opening and tongue muscles. Stimulation of either, in awake animals, opens the jaw, while IRtPhox2b alone also protracts the tongue. Moreover, stationary stimulation of IRtPhox2b entrains a rhythmic alternation of tongue protraction and retraction, synchronized with jaw opening and closing, that mimics lapping. Finally, fiber photometric recordings show that IRtPhox2b is active during volitional lapping. Our study identifies one of the subcortical nuclei underpinning a stereotyped feeding behavior.
Collapse
Affiliation(s)
- Bowen Dempsey
- Institut de Biologie de l'ENS (IBENS), Inserm, CNRS, École normale supérieure, PSL Research University, Paris, France
| | - Selvee Sungeelee
- Institut de Biologie de l'ENS (IBENS), Inserm, CNRS, École normale supérieure, PSL Research University, Paris, France
| | - Phillip Bokiniec
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), and Neuroscience Research Center, Charité-Universitätsmedizin, Berlin, Germany
| | - Zoubida Chettouh
- Institut de Biologie de l'ENS (IBENS), Inserm, CNRS, École normale supérieure, PSL Research University, Paris, France
| | - Séverine Diem
- Université Paris-Saclay, CNRS, Institut des Neurosciences NeuroPSI, Gif-sur-Yvette, France
| | - Sandra Autran
- Université Paris-Saclay, CNRS, Institut des Neurosciences NeuroPSI, Gif-sur-Yvette, France
| | - Evan R Harrell
- Institut Pasteur, INSERM, Institut de l'Audition, Paris, France
| | - James F A Poulet
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), and Neuroscience Research Center, Charité-Universitätsmedizin, Berlin, Germany
| | - Carmen Birchmeier
- Developmental Biology/Signal Transduction, Max Delbrueck Center for Molecular Medicine, and Cluster of Excellence NeuroCure, Neuroscience Research Center, Charité-Universitätsmedizin, Berlin, Germany
| | - Harry Carey
- Faculty of Medicine, Health & Human Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Auguste Genovesio
- Institut de Biologie de l'ENS (IBENS), Inserm, CNRS, École normale supérieure, PSL Research University, Paris, France
| | - Simon McMullan
- Faculty of Medicine, Health & Human Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Christo Goridis
- Institut de Biologie de l'ENS (IBENS), Inserm, CNRS, École normale supérieure, PSL Research University, Paris, France
| | - Gilles Fortin
- Institut de Biologie de l'ENS (IBENS), Inserm, CNRS, École normale supérieure, PSL Research University, Paris, France
| | - Jean-François Brunet
- Institut de Biologie de l'ENS (IBENS), Inserm, CNRS, École normale supérieure, PSL Research University, Paris, France.
| |
Collapse
|
8
|
Montuelle SJ, Olson RA, Curtis H, Williams SH. Unilateral lingual nerve transection alters jaw-tongue coordination during mastication in pigs. J Appl Physiol (1985) 2020; 128:941-951. [PMID: 32191597 DOI: 10.1152/japplphysiol.00398.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
During chewing, movements and deformations of the tongue are coordinated with jaw movements to manage and manipulate the bolus and avoid injury. Individuals with injuries to the lingual nerve report both tongue injuries due to biting and difficulties in chewing, primarily because of impaired bolus management, suggesting that jaw-tongue coordination relies on intact lingual afferents. Here, we investigate how unilateral lingual nerve (LN) transection affects jaw-tongue coordination in an animal model (pig, Sus scrofa). Temporal coordination between jaw pitch (opening-closing) and 1) anteroposterior tongue position (i.e., protraction-retraction), 2) anteroposterior tongue length, and 3) mediolateral tongue width was compared between pre- and post-LN transection using cross-correlation analyses. Overall, following LN transection, the lag between jaw pitch and the majority of tongue kinematics decreased significantly, demonstrating that sensory loss from the tongue alters jaw-tongue coordination. In addition, decrease in jaw-tongue lag suggests that, following LN transection, tongue movements and deformations occur earlier in the gape cycle than when the lingual sensory afferents are intact. If the velocity of tongue movements and deformations remains constant, earlier occurrence can reflect less pronounced movements, possibly to avoid injuries. The results of this study demonstrate that lingual afferents participate in chewing by assisting with coordinating the timing of jaw and tongue movements. The observed changes may affect bolus management performance and/or may represent protective strategies because of altered somatosensory awareness of the tongue.NEW & NOTEWORTHY Chewing requires coordination between tongue and jaw movements. We compared the coordination of tongue movements and deformation relative to jaw opening-closing movements pre- and post-lingual nerve transection during chewing in pigs. These experiments reveal that the timing of jaw-tongue coordination is altered following unilateral disruption of sensory information from the tongue. Therefore, maintenance of jaw-tongue coordination requires bilateral sensory information from the tongue.
Collapse
Affiliation(s)
- Stéphane J Montuelle
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Warrensville Heights, Ohio
| | - Rachel A Olson
- Department of Biological Sciences, Ohio University, Athens, Ohio
| | - Hannah Curtis
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio
| | - Susan H Williams
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio
| |
Collapse
|
9
|
Qiao Y, Liang HC, Zhang JD, Luo PF, Su AL, Zhang T, Zhu HN. Is there a primitive reflex residue underlying Marcus Gunn Syndrome? Rat electrophysiology. Int J Ophthalmol 2020; 13:29-35. [PMID: 31956567 DOI: 10.18240/ijo.2020.01.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/16/2019] [Indexed: 11/23/2022] Open
Abstract
AIM To make an electrophysiological demonstration of a possible jaw muscle afferents-oculomotor neural pathway that was proposed by our previous works on rats, which substantiates an early "release hypothesis" on pathogenesis of human Marcus Gunn Syndrome (MGS). METHODS Extracellular unit discharge recording was applied and both orthodromic and spontaneous unitary firing were recorded in the oculomotor nucleus (III), and the complex of pre-oculomotor interstitial nucleus of Cajal and Darkschewitsch nucleus (INC/DN), following electric stimulation of the ipsilateral masseter nerve (MN) in rats. RESULTS Extracellular orthodromic unit discharges, with latencies of 3.7±1.3 and 4.7±2.9ms, were recorded unilaterally in the III, and the INC/DN neurons, respectively. Spontaneous unit discharges were also recorded mostly in the INC/DN and less frequently in the III. Train stimulation could prompt either facilitation or inhibition on those spontaneous unit discharges. The inhibition pattern of train stimulation on the spontaneous discharging was rather different in the III and INC/DN. A slow inhibitory pattern in which spontaneous firing rate decreased further and further following repeated train stimulation was observed in the III. While, some high spontaneous firing rate units, responding promptly to the train stimuli with a short-term inhibition and recovered quickly when stimuli are off, were recorded in the INC/DN. However, orthodromic unit discharge was not recorded in the III and INC/DN in a considerable number of experiment animals. CONCLUSION A residual neuronal circuit might exist in mammals for the primitive jaw-eyelid reflex observed in amphibians, which might not be well-developed in all experimental mammals in current study. Nonetheless, this pathway can be still considered as a neuroanatomic substrate for development of MGS in some cases among all MGS with different kind of etiology.
Collapse
Affiliation(s)
- Ying Qiao
- Xi'an First Hospital, Key Clinic Ophthalmology Lab, Shaanxi Province Eye Research Institute, Xi'an 710002, Shaanxi Province, China
| | - Hou-Cheng Liang
- Xi'an First Hospital, Key Clinic Ophthalmology Lab, Shaanxi Province Eye Research Institute, Xi'an 710002, Shaanxi Province, China.,Xi'an BRIGHT Eye Hospital, 234 West Youyi Road, Xi'an 710068, Shaanxi Province, China.,Department of Ophthalmology, Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710002, Shaanxi Province, China
| | - Jing-Dong Zhang
- Xi'an First Hospital, Key Clinic Ophthalmology Lab, Shaanxi Province Eye Research Institute, Xi'an 710002, Shaanxi Province, China.,Xi'an BRIGHT Eye Hospital, 234 West Youyi Road, Xi'an 710068, Shaanxi Province, China
| | - Pi-Fu Luo
- Department of Pathology, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - An-Le Su
- Xi'an First Hospital, Key Clinic Ophthalmology Lab, Shaanxi Province Eye Research Institute, Xi'an 710002, Shaanxi Province, China
| | - Ting Zhang
- Xi'an First Hospital, Key Clinic Ophthalmology Lab, Shaanxi Province Eye Research Institute, Xi'an 710002, Shaanxi Province, China
| | - Hong-Na Zhu
- Xi'an First Hospital, Key Clinic Ophthalmology Lab, Shaanxi Province Eye Research Institute, Xi'an 710002, Shaanxi Province, China
| |
Collapse
|
10
|
Giuca MR, Pasini M, Giuca G, Mannella EC, Gandini P. Clinical association between dental malocclusion and strabismus in adolescents: a retrospective dental cast analysis. ACTA ACUST UNITED AC 2019; 68:11-16. [PMID: 30667200 DOI: 10.23736/s0026-4970.18.04156-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The aim of this retrospective study was to evaluate the occlusion in adolescents with strabismus in comparison with healthy subjects without vision problems. METHODS The test group included 50 subjects (23 males and 27 females) with a diagnosis of strabismus and the control group included 50 healthy patients (23 males and 27 females) without any past or present disturbance of vision. Dental cast analysis was performed to evaluate antero-posterior, transversal and vertical malocclusion and dental crowding. Furthermore, oral habits (mouth breathing, atypical swallowing, finger sucking) were recorded. Mann-Whitney test was performed in order to evaluate significant differences between the groups regarding overbite, overjet and dental crowding; Kruskal-Wallis non-parametric test was adopted to compare the samples. Chi square test and Fisher test were adopted for the analysis of cross-bite, Angle Class, and oral habits. RESULTS No significant difference was found regarding the malocclusion and the unhealthy oral habits between the groups (P>0.05). The test group showed a slightly higher prevalence of cross-bite but the difference between the two groups was not significant (P>0.05). CONCLUSIONS A possible relationship between the stomatognathic system and strabismus was not confirmed by the results of this study.
Collapse
Affiliation(s)
- Maria R Giuca
- Unit of Pediatric Dentistry, Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Marco Pasini
- Unit of Pediatric Dentistry, Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy -
| | - Giacomo Giuca
- Unit of Pediatric Dentistry, Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Enza C Mannella
- Unit of Pediatric Dentistry, Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Paola Gandini
- Unit of Orthodontics, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
11
|
Characterization of sensory neuronal subtypes innervating mouse tongue. PLoS One 2018; 13:e0207069. [PMID: 30408082 PMCID: PMC6224080 DOI: 10.1371/journal.pone.0207069] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022] Open
Abstract
The tongue is uniquely exposed to water-soluble environmental chemicals that may lead to injury or tumorigenesis. However, comparatively little research has focused on the molecular and functional organization of trigeminal ganglia (TG) afferent neurons innervating the tongue. The current study identified and characterized lingual sensory neurons based on a neuronal subtype classification previously characterized in the dorsal root ganglion (DRG) neurons. We employed immunohistochemistry on transgenic reporter mouse lines as well as single-cell PCR of known markers of neuronal subtypes to characterize neuronal subtypes innervating the tongue. Markers expressed in retrogradely labeled TG neurons were evaluated for the proportion of neurons expressing each marker, intensity of expression, and overlapping genes. We found that tongue-innervating sensory neurons primarily expressed CGRP, TRPV1, TrkC, 5HT3A and Parvalbumin. These markers correspond to peptidergic and a subgroup of non-peptidergic C-nociceptors, peptidergic A nociceptors, proprioceptors and myelinated low-threshold mechanoreceptors (LTMRs). Interestingly, as reported previously, we also found several differences between TG and DRG neurons indicating the need for single-cell sequencing of neuronal types based on tissue type within all TG as well as DRG neurons.
Collapse
|
12
|
Mameli O, Caria MA, Biagi F, Zedda M, Farina V. Neurons within the trigeminal mesencephalic nucleus encode for the kinematic parameters of the whisker pad macrovibrissae. Physiol Rep 2018; 5:e13206. [PMID: 28546281 PMCID: PMC5449554 DOI: 10.14814/phy2.13206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/20/2017] [Indexed: 11/24/2022] Open
Abstract
It has been recently shown in rats that spontaneous movements of whisker pad macrovibrissae elicited evoked responses in the trigeminal mesencephalic nucleus (Me5). In the present study, electrophysiological and neuroanatomical experiments were performed in anesthetized rats to evaluate whether, besides the whisker displacement per se, the Me5 neurons are also involved in encoding the kinematic properties of macrovibrissae movements, and also whether, as reported for the trigeminal ganglion, even within the Me5 nucleus exists a neuroanatomical representation of the whisker pad macrovibrissae. Extracellular electrical activity of single Me5 neurons was recorded before, during, and after mechanical deflection of the ipsilateral whisker pad macrovibrissae in different directions, and with different velocities and amplitudes. In several groups of animals, single or multiple injections of the tracer Dil were performed into the whisker pad of one side, in close proximity to the vibrissae follicles, in order to label the peripheral terminals of the Me5 neurons innervating the macrovibrissae (whisking‐neurons), and therefore, the respective perikaria within the nucleus. Results showed that: (1) the whisker pad macrovibrissae were represented in the medial‐caudal part of the Me5 nucleus by a single cluster of cells whose number seemed to match that of the macrovibrissae; (2) macrovibrissae mechanical deflection elicited significant responses in the Me5 whisking‐neurons, which were related to the direction, amplitude, and frequency of the applied deflection. The specific functional role of Me5 neurons involved in encoding proprioceptive information arising from the macrovibrissae movements is discussed within the framework of the whole trigeminal nuclei activities.
Collapse
Affiliation(s)
- Ombretta Mameli
- Department Clinical and Experimental Medicine: Human Physiology Division, Sassari, Italy
| | - Marcello A Caria
- Department Clinical and Experimental Medicine: Human Physiology Division, Sassari, Italy
| | - Francesca Biagi
- Department Veterinary Medicine: Anatomy of Domestic Animals Division, Sassari, Italy
| | - Marco Zedda
- Department Veterinary Medicine: Anatomy of Domestic Animals Division, Sassari, Italy
| | - Vittorio Farina
- Department Veterinary Medicine: Anatomy of Domestic Animals Division, Sassari, Italy
| |
Collapse
|
13
|
McElvain LE, Friedman B, Karten HJ, Svoboda K, Wang F, Deschênes M, Kleinfeld D. Circuits in the rodent brainstem that control whisking in concert with other orofacial motor actions. Neuroscience 2018; 368:152-170. [PMID: 28843993 PMCID: PMC5849401 DOI: 10.1016/j.neuroscience.2017.08.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/12/2017] [Accepted: 08/15/2017] [Indexed: 12/25/2022]
Abstract
The world view of rodents is largely determined by sensation on two length scales. One is within the animal's peri-personal space; sensorimotor control on this scale involves active movements of the nose, tongue, head, and vibrissa, along with sniffing to determine olfactory clues. The second scale involves the detection of more distant space through vision and audition; these detection processes also impact repositioning of the head, eyes, and ears. Here we focus on orofacial motor actions, primarily vibrissa-based touch but including nose twitching, head bobbing, and licking, that control sensation at short, peri-personal distances. The orofacial nuclei for control of the motor plants, as well as primary and secondary sensory nuclei associated with these motor actions, lie within the hindbrain. The current data support three themes: First, the position of the sensors is determined by the summation of two drive signals, i.e., a fast rhythmic component and an evolving orienting component. Second, the rhythmic component is coordinated across all orofacial motor actions and is phase-locked to sniffing as the animal explores. Reverse engineering reveals that the preBötzinger inspiratory complex provides the reset to the relevant premotor oscillators. Third, direct feedback from somatosensory trigeminal nuclei can rapidly alter motion of the sensors. This feedback is disynaptic and can be tuned by high-level inputs. A holistic model for the coordination of orofacial motor actions into behaviors will encompass feedback pathways through the midbrain and forebrain, as well as hindbrain areas.
Collapse
Affiliation(s)
- Lauren E McElvain
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA
| | - Beth Friedman
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA
| | - Harvey J Karten
- Department of Neurosciences, University of California at San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Karel Svoboda
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Fan Wang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Martin Deschênes
- Department of Psychiatry and Neuroscience, Laval University, Québec City, G1J 2G3, Canada
| | - David Kleinfeld
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA; Section of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA; Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
14
|
Urban PP. Trigeminal-hypoglossal silent period: A pontomedullary brainstem reflex. Muscle Nerve 2015; 51:538-40. [DOI: 10.1002/mus.24349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Peter P. Urban
- Department of Neurology; Asklepios Klinik Barmbek; Rübenkamp 220 22291 Hamburg Germany
| |
Collapse
|
15
|
Neural circuits underlying tongue movements for the prey-catching behavior in frog: distribution of primary afferent terminals on motoneurons supplying the tongue. Brain Struct Funct 2015; 221:1533-53. [PMID: 25575900 DOI: 10.1007/s00429-014-0988-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/30/2014] [Indexed: 12/17/2022]
Abstract
The hypoglossal motor nucleus is one of the efferent components of the neural network underlying the tongue prehension behavior of Ranid frogs. Although the appropriate pattern of the motor activity is determined by motor pattern generators, sensory inputs can modify the ongoing motor execution. Combination of fluorescent tracers were applied to investigate whether there are direct contacts between the afferent fibers of the trigeminal, facial, vestibular, glossopharyngeal-vagal, hypoglossal, second cervical spinal nerves and the hypoglossal motoneurons. Using confocal laser scanning microscope, we detected different number of close contacts from various sensory fibers, which were distributed unequally between the motoneurons innervating the protractor, retractor and inner muscles of the tongue. Based on the highest number of contacts and their closest location to the perikaryon, the glossopharyngeal-vagal nerves can exert the strongest effect on hypoglossal motoneurons and in agreement with earlier physiological results, they influence the protraction of the tongue. The second largest number of close appositions was provided by the hypoglossal and second cervical spinal afferents and they were located mostly on the proximal and middle parts of the dendrites of retractor motoneurons. Due to their small number and distal location, the trigeminal and vestibular terminals seem to have minor effects on direct activation of the hypoglossal motoneurons. We concluded that direct contacts between primary afferent terminals and hypoglossal motoneurons provide one of the possible morphological substrates of very quick feedback and feedforward modulation of the motor program during various stages of prey-catching behavior.
Collapse
|
16
|
Nasse JS. A novel slice preparation to study medullary oromotor and autonomic circuits in vitro. J Neurosci Methods 2014; 237:41-53. [PMID: 25196216 DOI: 10.1016/j.jneumeth.2014.08.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/22/2014] [Accepted: 08/24/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND The medulla is capable of controlling and modulating ingestive behavior and gastrointestinal function. These two functions, which are critical to maintaining homeostasis, are governed by an interconnected group of nuclei dispersed throughout the medulla. As such, in vitro experiments to study the neurophysiologic details of these connections have been limited by spatial constraints of conventional slice preparations. NEW METHOD This study demonstrates a novel method of sectioning the medulla so that sensory, integrative, and motor nuclei that innervate the gastrointestinal tract and the oral cavity remain intact. RESULTS Immunohistochemical staining against choline-acetyl-transferase and dopamine-β-hydroxylase demonstrated that within a 450 μm block of tissue we are able to capture sensory, integrative and motor nuclei that are critical to oromotor and gastrointestinal function. Within slice tracing shows that axonal projections from the NST to the reticular formation and from the reticular formation to the hypoglossal motor nucleus (mXII) persist. Live-cell calcium imaging of the slice demonstrates that stimulation of either the rostral or caudal NST activates neurons throughout the NST, as well as the reticular formation and mXII. COMPARISON WITH EXISTING METHODS This new method of sectioning captures a majority of the nuclei that are active when ingesting a meal. Tradition planes of section, i.e. coronal, horizontal or sagittal, contain only a limited portion of the substrate. CONCLUSIONS Our results demonstrate that both anatomical and physiologic connections of oral and visceral sensory nuclei that project to integrative and motor nuclei remain intact with this new plane of section.
Collapse
Affiliation(s)
- Jason S Nasse
- Division of Biosciences, College of Dentistry, 305 West 12th Avenue, 4154 Postle Hall, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
17
|
Injection of WGA-Alexa 488 into the ipsilateral hemidiaphragm of acutely and chronically C2 hemisected rats reveals activity-dependent synaptic plasticity in the respiratory motor pathways. Exp Neurol 2014; 261:440-50. [PMID: 25086272 DOI: 10.1016/j.expneurol.2014.07.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/16/2014] [Accepted: 07/23/2014] [Indexed: 01/22/2023]
Abstract
WGA-Alexa 488 is a fluorescent neuronal tracer that demonstrates transsynaptic transport in the central nervous system. The transsynaptic transport occurs over physiologically active synaptic connections rather than less active or silent connections. Immediately following C2 spinal cord hemisection (C2Hx), when WGA-Alexa 488 is injected into the ipsilateral hemidiaphragm, the tracer diffuses across the midline of the diaphragm and retrogradely labels the phrenic nuclei (PN) bilaterally in the spinal cord. Subsequently, the tracer is transsynaptically transported bilaterally to the rostral Ventral Respiratory Groups (rVRGs) in the medulla over physiologically active connections. No other neurons are labeled in the acute C2Hx model at the level of the phrenic nuclei or in the medulla. However, with a recovery period of at least 7weeks (chronic C2Hx), the pattern of WGA-Alexa 488 labeling is notably changed. In addition to the bilateral PN and rVRG labeling, the chronic C2Hx model reveals fluorescence in the ipsilateral ventral and dorsal spinocerebellar tracts, and the ipsilateral reticulospinal tract. Furthermore, interneurons are labeled bilaterally in laminae VII and VIII of the spinal cord as well as neurons in the motor nuclei bilaterally of the intercostal and forelimb muscles. Moreover, in the chronic C2Hx model, there is bilateral labeling of additional medullary centers including raphe, hypoglossal, spinal trigeminal, parvicellular reticular, gigantocellular reticular, and intermediate reticular nuclei. The selective WGA-Alexa 488 labeling of additional locations in the chronic C2Hx model is presumably due to a hyperactive state of the synaptic pathways and nuclei previously shown to connect with the respiratory centers in a non-injured model. The present study suggests that hyperactivity not only occurs in neuronal centers and pathways caudal to spinal cord injury, but in supraspinal centers as well. The significance of such injury-induced plasticity is that hyperactivity may be a mechanism to re-establish lost function by compensatory routes which were initially physiologically inactive.
Collapse
|
18
|
Mameli O, Stanzani S, Russo A, Pellitteri R, Manca P, De Riu PL, Caria MA. Involvement of trigeminal mesencephalic nucleus in kinetic encoding of whisker movements. Brain Res Bull 2014; 102:37-45. [PMID: 24518654 DOI: 10.1016/j.brainresbull.2014.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/22/2014] [Accepted: 01/31/2014] [Indexed: 01/02/2023]
Abstract
In previous experiments performed on anaesthetised rats, we demonstrated that whisking neurons responsive to spontaneous movement of the macrovibrissae are located within the trigeminal mesencephalic nucleus (Me5) and that retrograde tracers injected into the mystacial pad of the rat muzzle extensively labelled a number of Me5 neurons. In order to evaluate the electrophysiological characteristics of the Me5-whisker pad neural connection, the present study analysed the Me5 neurons responses to artificial whisking induced by electrical stimulation of the peripheral stump of the facial nerve. Furthermore, an anterograde tracer was injected into the Me5 to identify and localise the peripheral terminals of these neurons in the mystacial structures. The electrophysiological data demonstrated that artificial whisking induced Me5 evoked potentials as well as single and multiunit Me5 neurons responses consistent with a direct connection. Furthermore, the neuroanatomical findings showed that the peripheral terminals of the Me5 stained neurons established direct connections with the upper part of the macrovibrissae, at the conical body level, with fibres spiralling around the circumference of the vibrissae shaft. As for the functional role of this sensory innervation, we speculated that the Me5 neurons are possibly involved in encoding and relaying proprioceptive information related to vibrissae movements to other CNS structures.
Collapse
Affiliation(s)
- Ombretta Mameli
- Department of Clinical and Experimental Medicine, Human Physiology, School of Medicine, Sassari University, viale San Pietro 8, 07100 Sassari, Italy.
| | - Stefania Stanzani
- Department of Biomedical Sciences, Physiology Division, Catania University, 95125 Catania, Italy
| | - Antonella Russo
- Department of Biomedical Sciences, Physiology Division, Catania University, 95125 Catania, Italy
| | - Rosalia Pellitteri
- Institute of Neurological Sciences, National Research Council, Section of Catania, 95125 Catania, Italy
| | - Paolo Manca
- Department of Clinical and Experimental Medicine, Human Physiology, School of Medicine, Sassari University, viale San Pietro 8, 07100 Sassari, Italy
| | - Pier Luigi De Riu
- Department of Clinical and Experimental Medicine, Human Physiology, School of Medicine, Sassari University, viale San Pietro 8, 07100 Sassari, Italy
| | - Marcello Alessandro Caria
- Department of Clinical and Experimental Medicine, Human Physiology, School of Medicine, Sassari University, viale San Pietro 8, 07100 Sassari, Italy
| |
Collapse
|
19
|
Ramirez JM, Garcia AJ, Anderson TM, Koschnitzky JE, Peng YJ, Kumar GK, Prabhakar NR. Central and peripheral factors contributing to obstructive sleep apneas. Respir Physiol Neurobiol 2013; 189:344-53. [PMID: 23770311 DOI: 10.1016/j.resp.2013.06.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/03/2013] [Accepted: 06/05/2013] [Indexed: 11/30/2022]
Abstract
Apnea, the cessation of breathing, is a common physiological and pathophysiological phenomenon. Among the different forms of apnea, obstructive sleep apnea (OSA) is clinically the most prominent manifestation. OSA is characterized by repetitive airway occlusions that are typically associated with peripheral airway obstructions. However, it would be an oversimplification to conclude that OSA is caused by peripheral obstructions. OSA is the result of a dynamic interplay between chemo- and mechanosensory reflexes, neuromodulation, behavioral state and the differential activation of the central respiratory network and its motor outputs. This interplay has numerous neuronal and cardiovascular consequences that are initially adaptive but in the long-term become major contributors to morbidity and mortality. Not only OSA, but also central apneas (CA) have multiple, and partly overlapping mechanisms. In OSA and CA the underlying mechanisms are neither "exclusively peripheral" nor "exclusively central" in origin. This review discusses the complex interplay of peripheral and central nervous components that characterizes the cessation of breathing.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Department of Neurological Surgery and Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
New directions for understanding neural control in swallowing: the potential and promise of motor learning. Dysphagia 2012. [PMID: 23192633 DOI: 10.1007/s00455-012-9432-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oropharyngeal swallowing is a complex sensorimotor phenomenon that has had decades of research dedicated to understanding it more thoroughly. However, the underlying neural mechanisms responsible for normal and disordered swallowing remain very vague. We consider this gap in knowledge the result of swallowing research that has been broad (identifying phenomena) but not deep (identifying what controls the phenomena). The goals of this review are to address the complexity of motor control of oropharyngeal swallowing and to review the principles of motor learning based on limb movements as a model system. We compare this literature on limb motor learning to what is known about oropharyngeal function as a first step toward suggesting the use of motor learning principles in swallowing research.
Collapse
|
21
|
Zhang J, Luo P, Ro JY, Xiong H. Jaw muscle spindle afferents coordinate multiple orofacial motoneurons via common premotor neurons in rats: an electrophysiological and anatomical study. Brain Res 2012; 1489:37-47. [PMID: 23085474 DOI: 10.1016/j.brainres.2012.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/28/2012] [Accepted: 10/09/2012] [Indexed: 10/27/2022]
Abstract
Jaw muscle spindle afferents (JMSA) in the mesencephalic trigeminal nucleus (Vme) project to the parvocellular reticular nucleus (PCRt) and dorsomedial spinal trigeminal nucleus (dm-Vsp). A number of premotor neurons that project to the trigeminal motor nucleus (Vmo), facial nucleus (VII) and hypoglossal nucleus (XII) are also located in the PCRt and dm-Vsp. In this study, we examined whether these premotor neurons serve as common relay pool for relaying JMSA to multiple orofacial motoneurons. JMSA inputs to the PCRt and dm-Vsp neurons were verified by recording extracellular responses to electrical stimulation of the caudal Vme or masseter nerve, mechanical stimulation of jaw muscles and jaw opening. After recording, biocytin in recording electrode was inotophorized into recording sites. Biocytin-Iabeled fibers traveled to the Vmo, VII, XII, and the nucleus ambiguus (Amb). Labeled boutons were seen in close apposition with Nissl-stained motoneurons in the Vmo, VII, XII and Amb. In addition, an anterograde tracer (biotinylated dextran amine) was iontophorized into the caudal Vme, and a retrograde tracer (Cholera toxin B subunit) was delivered into either the VII or Xll to identify VII and XII premotor neurons that receive JMSA input. Contacts between labeled Vme neuronal boutons and premotor neurons were observed in the PCRt and adjacent dm-Vsp. Confocal microscopic observations confirmed close contacts between Vme boutons and VII and XII premotor neurons. This study provides evidence that JMSA may coordinate activities of multiple orofacial motor nuclei, including Vmo, VII, XII and Amb in the brainstem via a common premotor neuron pool.
Collapse
Affiliation(s)
- Jingdong Zhang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | | | | | | |
Collapse
|
22
|
De Cicco V. Cerebro-afferent vessel and pupillary basal diameter variation induced by stomatognathic trigeminal proprioception: a case report. J Med Case Rep 2012; 6:275. [PMID: 22943461 PMCID: PMC3477066 DOI: 10.1186/1752-1947-6-275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 03/07/2012] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION A patient affected by asymmetric hemodynamics of cerebro-afferent vessels underwent duplex color scanner investigations in occlusal proprioceptive un- and rebalance conditions. Pupillometric video-oculographic examinations were performed in order to spot connected trigeminal proprioceptive motor patterns able to interfere on sympathetic autonomic activity. The aim of this case report is to verify if involuntary jaw closing during swallowing, executed in unbalance and rebalance myoelectric activity, would be able to modify cerebral hemodynamics. CASE PRESENTATION A 56-year-old Caucasian Italian woman affected by asymmetric blood flow of cerebro-afferent vessels underwent an electromyographic investigation of her occlusal muscles in order to assess their occlusal functional balance. The extreme asymmetry of myoelectric activity in dental occlusion evidenced by electromyographic values suggested the rebalancing of the functions of occlusal muscles through concurrent transcutaneous stimulation of the trigeminal nerve supra- and submandibular motor branches. The above-mentioned method allowed the detection of a symmetric craniomandibular muscular relation that can be kept constant through the use of a cusp bite modeled on the inferior dental arch: called orthotic-syntropic bite for its peculiar use of electrostimulation. A few days later, the patient underwent a duplex color scanner investigation and pupillometric video-oculographic examinations in occlusal unbalance and rebalance conditions. CONCLUSIONS A comparative data analysis showed that an unbalanced dental occlusal function may represent an interferential pattern on cerebral hemodynamics velocity and pupillometric evaluations have proved useful both in the analysis of locus coeruleus functional modalities and as a diagnostic tool in the assessment of pathologies involving locus coeruleus and autonomic systems. The inclusion of myoelectric masseter examinations can be useful in patients with asymmetric hemodynamics of cerebro-afferent vessels and dental occlusal proprioceptive rebalance can integrate the complex therapy of patients with increased chronic sympathetic activity.
Collapse
Affiliation(s)
- Vincenzo De Cicco
- Department of Oral Science, University "G, d'Annunzio", via dei Vestini 31, Chieti, 66100, Italy.
| |
Collapse
|
23
|
Central syntropic effects elicited by trigeminal proprioceptive equilibrium in Alzheimer's disease: a case report. J Med Case Rep 2012; 6:161. [PMID: 22734831 PMCID: PMC3411437 DOI: 10.1186/1752-1947-6-161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 06/26/2012] [Indexed: 11/13/2022] Open
Abstract
Introduction The presented patient, affected by Alzheimer’s disease, underwent neuropsychological evaluation and functional magnetic resonance imaging investigation under occlusal proprioceptive un-balance and re-balance conditions. Saccadic and pupillometric video-oculographic examinations were performed in order to detect connected trigeminal proprioceptive motor patterns able to interfere with reticular formation cerebellum functions linked to visual and procedural processes prematurely altered in Alzheimer’s disease. Case presentation A 66-year-old Caucasian man, affected by Alzheimer’s disease and with a neuropsychological evaluation issued by the Alzheimer’s Evaluation Unit, underwent an electromyographic investigation of the masseter muscles in order to assess their functional balance. The patient showed a bilateral lack of all inferior molars. The extreme myoelectric asymmetry in dental occlusion suggested the rebalancing of masseter muscular functions through concurrent transcutaneous stimulation of the trigeminal nerve supramandibular and submandibular motor branches. The above-mentioned method allows detection of symmetric craniomandibular muscular relation that can be kept constant through the use of a cusp bite modeled on the inferior dental arch, called orthotic-syntropic bite. A few days later, the patient underwent a new neuropsychological investigation, together with a functional magnetic resonance imaging study, and saccadic, pupillometric video-oculographic examinations in occlusal un-balance and re-balance conditions. Conclusions Comparative data analysis has shown that a re-balanced occlusal condition can improve a patient’s cognitive-attentive functions. Moreover, the saccadic and pupillometric video-oculographic investigations have proven useful both in analyzing reticulo-cerebellar subcortical systems, prematurely altered in Alzheimer’s disease, and in implementing neurological evaluations.
Collapse
|
24
|
Regulation of Orofacial Movement: Amino Acid Mechanisms and Mutant Models. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011. [DOI: 10.1016/b978-0-12-385198-7.00003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
25
|
Ultrastructural Basis for Craniofacial Sensory Processing in The Brainstem. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011. [DOI: 10.1016/b978-0-12-385198-7.00005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
26
|
Mameli O, Stanzani S, Mulliri G, Pellitteri R, Caria MA, Russo A, De Riu P. Role of the trigeminal mesencephalic nucleus in rat whisker pad proprioception. Behav Brain Funct 2010; 6:69. [PMID: 21078134 PMCID: PMC2993642 DOI: 10.1186/1744-9081-6-69] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 11/15/2010] [Indexed: 11/23/2022] Open
Abstract
Background Trigeminal proprioception related to rodent macrovibrissae movements is believed to involve skin receptors on the whisker pad because pad muscles operate without muscle spindles. This study was aimed to investigate in rats whether the trigeminal mesencephalic nucleus (TMnu), which provides proprioceptive feedback for chewing muscles, may be also involved in whisker pad proprioception. Methods Two retrograde tracers, Dil and True Blue Chloride, were injected into the mystacial pad and the masseter muscle on the same side of deeply anesthetized rats to label the respective projecting sensory neurons. This double-labeling technique was used to assess the co-innervation of both structures by the trigeminal mesencephalic nucleus (TMnu). In a separate group of anesthetized animals, the spontaneous electrical activities of TMnu neurons were analyzed by extracellular recordings during spontaneous movements of the macrovibrissae. Mesencephalic neurons (TMne) were previously identified by their responses to masseter muscle stretching. Changes in TMne spontaneous electrical activities, analyzed under baseline conditions and during whisking movements, were statistically evaluated using Student's t-test for paired observations. Results Neuroanatomical experiments revealed different subpopulations of trigeminal mesencephalic neurons: i) those innervating the neuromuscular spindles of the masseter muscle, ii) those innervating the mystacial pad, and iii) those innervating both structures. Extracellular recordings made during spontaneous movements of the macrovibrisae showed that whisking neurons similar to those observed in the trigeminal ganglion were located in the TMnu. These neurons had different patterns of activation, which were dependent on the type of spontaneous macrovibrissae movement. In particular, their spiking activity tonically increased during fan-like movements of the vibrissae and showed phasic bursting during rhythmic whisking. Furthermore, the same neurons may also respond to masseter muscle stretch. Conclusions results strongly support the hypothesis that the TMnu also contains first-order neurons specialized for relaying spatial information related to whisker movement and location to trigeminal-cortical pathways. In fact, the TMnu projects to second-order trigeminal neurons, thus allowing the rat brain to deduce higher-order information regarding executed movements of the vibrissae by combining touch information carried by trigeminal ganglion neurons with proprioceptive information carried by mesencephalic neurons.
Collapse
Affiliation(s)
- Ombretta Mameli
- Department of Neuroscience, Human Physiology Division, University of Sassari, viale San Pietro 43/B, 07100 Sassari, Italy.
| | | | | | | | | | | | | |
Collapse
|
27
|
Tomiyama K, Song L, Kobayashi M, Kinsella A, Kanematsu T, Hirata M, Koshikawa N, Waddington JL. Orofacial movements in phospholipase C-related catalytically inactive protein-1/2 double knockout mice: Effect of the GABAergic agent diazepam and the D(1) dopamine receptor agonist SKF 83959. Synapse 2010; 64:714-20. [PMID: 20340178 DOI: 10.1002/syn.20798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Orofacial movements are regulated by D(1)-like dopamine receptors interacting with additional mechanisms. Phospholipase C-related catalytically inactive protein (PRIP) regulates cell surface expression of GABA(A) receptors containing a gamma2 subunit. Mutant mice with double knockout of PRIP-1 and PRIP-2 were used to investigate aspects of GABAergic regulation of orofacial movements and interactions with D(1) mechanisms. Vertical jaw movements, tongue protrusions and movements of the head and vibrissae were reduced in PRIP-1/2 double knockouts. The GABA(A)ergic agent diazepam reduced movements of the head and vibrissae; these effects were unaltered in PRIP-1/2 double knockouts. The D(1)-like agonist SKF 83959 induced vertical jaw movements, incisor chattering, and movements of the head and vibrissae that were unaltered in PRIP-1/2 double knockouts. However, SKF 83959-induced tongue protrusions were reduced in PRIP-1/2 double knockouts. PRIP-mediated regulation of GABA(A)ergic receptor mechanisms influences topographically distinct aspects of orofacial movement and interacts with D(1) receptor systems.
Collapse
Affiliation(s)
- Katsunori Tomiyama
- Advanced Research Institute for the Sciences and Humanities, Nihon University, Tokyo 102, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Mandal R, Anderson CW. Anatomical organization of brainstem circuits mediating feeding motor programs in the marine toad, Bufo marinus. Brain Res 2009; 1298:99-110. [PMID: 19703424 DOI: 10.1016/j.brainres.2009.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/06/2009] [Accepted: 08/06/2009] [Indexed: 11/29/2022]
Abstract
The goal of our research has been to investigate the neuronal integration that coordinates feeding movements in the marine toad (genus Bufo). Using injections of fluorescein dextran amines, combined with activity-dependent uptake of sulforhodamine 101, peripheral hypoglossal and trigeminal nerves involved with tongue and jaw movements were labeled. We identified the rostrocaudal distribution of hypoglossal and trigeminal motor nuclei, and their sensory projections. We also identified the extent of neuronal networks for the medial reticular formation, the raphe nucleus, the glossopharyngeal nuclei, and the Purkinje cell layer of the cerebellum. The sensory fibers of the hypoglossal and trigeminal nerves were found projecting to the Purkinje cell layer of the cerebellum and the trigeminal motor nuclei. The activity-dependent sulforhodamine 101 uptake after the trigeminal and hypoglossal nerves stimulation labeled the bilateral hypoglossal motor nuclei, the trigeminal motor nuclei, the medial reticular formation nuclei, the raphe nuclei, the glossopharyngeal nuclei, and the Purkinje cell layer of the cerebellum, suggesting that all these neurons have the potential to be the components of feeding pathways. Taken together, these data are important for understanding the neuronal integration of extremely rapid jaw-tongue coordination during feeding in the marine toad.
Collapse
Affiliation(s)
- Rakesh Mandal
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209-8007, USA.
| | | |
Collapse
|
29
|
Tsujimura T, Kondo M, Kitagawa J, Tsuboi Y, Saito K, Tohara H, Ueda K, Sessle BJ, Iwata K. Involvement of ERK phosphorylation in brainstem neurons in modulation of swallowing reflex in rats. J Physiol 2009; 587:805-17. [PMID: 19124539 DOI: 10.1113/jphysiol.2008.165324] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In order to evaluate the neuronal mechanisms underlying functional abnormalities of swallowing in orofacial pain patients, this study investigated the effects of noxious orofacial stimulation on the swallowing reflex, phosphorylated extracellular signal-regulated kinase (pERK) and gamma-aminobutyric acid (GABA) immunohistochemical features in brainstem neurons, and also analysed the effects of brainstem lesioning and of microinjection of GABA receptor agonist or antagonist into the nucleus tractus solitarii (NTS) on the swallowing reflex in anaesthetized rats. The swallowing reflex elicited by topical administration of distilled water to the pharyngolaryngeal region was inhibited after capsaicin injection into the facial (whisker pad) skin or lingual muscle. The capsaicin-induced inhibitory effect on the swallowing reflex was itself depressed after the intrathecal administration of MAPK kinase (MEK) inhibitor. No change in the capsaicin-induced inhibitory effect was observed after trigeminal spinal subnucleus caudalis lesioning, but the inhibitory effect was diminished by paratrigeminal nucleus (Pa5) lesioning. Many pERK-like immunoreactive neurons in the NTS showed GABA immunoreactivity. The local microinjection of the GABA(A) receptor agonist muscimol into the NTS produced a significant reduction in swallowing reflex, and the capsaicin-induced depression of the swallowing reflex was abolished by microinjection of the GABA(A) receptor antagonist bicuculline into the NTS. The present findings suggest that facial skin-NTS, lingual muscle-NTS and lingual muscle-Pa5-NTS pathways are involved in the modulation of swallowing reflex by facial and lingual pain, respectively, and that the activation of GABAergic NTS neurons is involved in the inhibition of the swallowing reflex following noxious stimulation of facial and intraoral structures.
Collapse
Affiliation(s)
- Takanori Tsujimura
- Department of Dysphagia Rehabilitation, Nihon University School of Dentistry, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sebe JY, Berger AJ. Inspiratory-phase short time scale synchrony in the brainstem slice is generated downstream of the pre-Bötzinger complex. Neuroscience 2008; 153:1390-401. [PMID: 18455877 DOI: 10.1016/j.neuroscience.2008.02.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 01/28/2008] [Accepted: 02/06/2008] [Indexed: 10/22/2022]
Abstract
Respiratory neurons are synchronized on a long time scale to generate inspiratory and expiratory-phase activities that are critical for respiration. Long time scale synchrony within the respiratory network occurs on a time scale of more than hundreds of milliseconds to seconds. During inspiration, neurons are synchronized on a short time scale to produce synchronous oscillations, which shape the pattern of inspiratory motor output. This latter form of synchrony within the respiratory network spans a shorter time range of tens of milliseconds. In the neonatal mouse rhythmically active medullary slice preparation, we recorded bilateral inspiratory activity from hypoglossal (XII) rootlets to study where in the slice synchronous oscillations are generated. Based on previous work that proposed the origin of these oscillations, we tested the pre-Bötzinger complex (PreBötC) and the XII motor nucleus. Unilateral excitation of the PreBötC, via local application of a perfusate containing high K(+), increased mean inspiratory burst frequency bilaterally (296+/-66%; n=10, P<0.01), but had no effect on the relative power of oscillations. In contrast, unilateral excitation of the XII nucleus increased both mean peak integrated activity bilaterally (ipsilateral: 41+/-10%, P<0.01; contralateral: 17+/-7%; P<0.05, n=10) and oscillation power in the ipsilateral (50+/-17%, n=7, P<0.05), but not in the contralateral rootlet. Cross-correlation analysis of control inspiratory activity recorded from the left and right XII rootlets produced cross-correlation histograms with significant peaks centered around a time lag of zero and showed no subsidiary harmonic peaks. Coherence analysis of left and right XII rootlet recordings demonstrated that oscillations are only weakly coherent. Together, the findings from local application experiments and cross-correlation and coherence analyses indicate that short time scale synchronous oscillations recorded in the slice are likely generated in or immediately upstream of the XII motor nucleus.
Collapse
Affiliation(s)
- J Y Sebe
- Graduate Program in Neurobiology and Behavior, Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA.
| | | |
Collapse
|
31
|
Kang BJ, Chang DA, Mackay DD, West GH, Moreira TS, Takakura AC, Gwilt JM, Guyenet PG, Stornetta RL. Central nervous system distribution of the transcription factor Phox2b in the adult rat. J Comp Neurol 2007; 503:627-41. [PMID: 17559094 DOI: 10.1002/cne.21409] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phox2b is required for development of the peripheral autonomic nervous system and a subset of cranial nerves and lower brainstem nuclei. Phox2b mutations in man cause diffuse autonomic dysfunction and deficits in the automatic control of breathing. Here we study the distribution of Phox2b in the adult rat hindbrain to determine whether this protein is selectively expressed by neurons involved in respiratory and autonomic control. In the medulla oblongata, Phox2b-immunoreactive nuclei were present in the dorsal vagal complex, intermediate reticular nucleus, dorsomedial spinal trigeminal nucleus, nucleus ambiguus, catecholaminergic neurons, and retrotrapezoid nucleus (RTN). Phox2b was expressed by both central excitatory relays of the sympathetic baroreflex (nucleus of the solitary tract and C1 neurons) but not by the inhibitory relay of this reflex. Phox2b was absent from the ventral respiratory column (VRC) caudal to RTN and rare within the parabrachial nuclei. In the pons, Phox2b was confined to cholinergic efferent neurons (salivary, vestibulocochlear) and noncholinergic peritrigeminal neurons. Rostral to the pons, Phox2b was detected only in the oculomotor complex. In adult rats, Phox2b is neither a comprehensive nor a selective marker of hindbrain autonomic pathways. This marker identifies a subset of hindbrain neurons that control orofacial movements (dorsomedial spinal trigeminal nucleus, pontine peritrigeminal neurons), balance and auditory function (vestibulocochlear efferents), the eyes, and both divisions of the autonomic efferent system. Phox2b is virtually absent from the respiratory rhythm and pattern generator (VRC and dorsolateral pons) but is highly expressed by neurons involved in the chemical drive and reflex regulation of this oscillator.
Collapse
Affiliation(s)
- B J Kang
- Department of Anesthesiology, Dankook University College of Medicine, Chonan City, 330-714 Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|