1
|
Kashchenko SA, Eranova AA, Chuguy EV. [Glymphatic dysfunction and sleep disorders: indirect effects on Alzheimer's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:7-12. [PMID: 38676671 DOI: 10.17116/jnevro20241240417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Modern research raises the question of the potentially significant role of glymphatic dysfunction in the development of neurodegeneration and pathological aging. The exact molecular mechanisms are not yet fully understood, but there is ample evidence of a link between sleep deprivation and decreased clearance of β-amyloid and other neurotoxin proteins that are associated with the development of neurodegenerative diseases, particularly Alzheimer's disease. The review analyzes current scientific information in this area of research, describes the latest scientific discoveries of the features of the glymphatic system, and also illustrates studies of markers that presumably indicate a deterioration in the glymphatic system. The relationship between sleep deprivation and pathophysiological mechanisms associated with neurodegenerative diseases is considered, and potential targets that can be used to treat or delay the development of these disorders are noted.
Collapse
Affiliation(s)
- S A Kashchenko
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A A Eranova
- Rostov State Medical University, Rostov-on-Don, Russia
| | - E V Chuguy
- Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
2
|
Roliz AH, Kothare S. The Relationship Between Sleep, Epilepsy, and Development: a Review. Curr Neurol Neurosci Rep 2023; 23:469-477. [PMID: 37458984 DOI: 10.1007/s11910-023-01284-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW To review the relationship between sleep, neurodevelopment, and epilepsy and potential underlying physiological mechanisms. RECENT FINDINGS Recent studies have advanced our understanding of the role of sleep in early brain development and epilepsy. Epileptogenesis has been proposed to occur when there is a failure of normal adaptive processes of synaptic and homeostatic plasticity. This sleep-dependent transformation may explain the cognitive impairment seen in epilepsy, especially when occurring early in life. The glymphatic system, a recently discovered waste clearance system of the central nervous system, has been described as a potential mechanism underlying the relationship between sleep and seizures and may account for the common association between sleep deprivation and increased seizure risk. Epilepsy and associated sleep disturbances can critically affect brain development and neurocognition. Here we highlight recent findings on this topic and emphasize the importance of screening for sleep concerns in people with epilepsy.
Collapse
Affiliation(s)
- Annie H Roliz
- Division of Child Neurology, Department of Pediatrics, Cohen Children's Medical Center, 2001 Marcus Ave, Suite W290, New Hyde Park, NY, 11042, USA
| | - Sanjeev Kothare
- Division of Child Neurology, Department of Pediatrics, Cohen Children's Medical Center, 2001 Marcus Ave, Suite W290, New Hyde Park, NY, 11042, USA.
| |
Collapse
|
3
|
Chen P, Ban W, Wang W, You Y, Yang Z. The Devastating Effects of Sleep Deprivation on Memory: Lessons from Rodent Models. Clocks Sleep 2023; 5:276-294. [PMID: 37218868 DOI: 10.3390/clockssleep5020022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
In this narrative review article, we discuss the role of sleep deprivation (SD) in memory processing in rodent models. Numerous studies have examined the effects of SD on memory, with the majority showing that sleep disorders negatively affect memory. Currently, a consensus has not been established on which damage mechanism is the most appropriate. This critical issue in the neuroscience of sleep remains largely unknown. This review article aims to elucidate the mechanisms that underlie the damaging effects of SD on memory. It also proposes a scientific solution that might explain some findings. We have chosen to summarize literature that is both representative and comprehensive, as well as innovative in its approach. We examined the effects of SD on memory, including synaptic plasticity, neuritis, oxidative stress, and neurotransmitters. Results provide valuable insights into the mechanisms by which SD impairs memory function.
Collapse
Affiliation(s)
- Pinqiu Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Weikang Ban
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Wenyan Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yuyang You
- School of Automation, Beijing Institute of Technology, Beijing 100081, China
| | - Zhihong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
4
|
Wright CJ, Milosavljevic S, Pocivavsek A. The stress of losing sleep: Sex-specific neurobiological outcomes. Neurobiol Stress 2023; 24:100543. [PMID: 37252645 PMCID: PMC10209346 DOI: 10.1016/j.ynstr.2023.100543] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/20/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023] Open
Abstract
Sleep is a vital and evolutionarily conserved process, critical to daily functioning and homeostatic balance. Losing sleep is inherently stressful and leads to numerous detrimental physiological outcomes. Despite sleep disturbances affecting everyone, women and female rodents are often excluded or underrepresented in clinical and pre-clinical studies. Advancing our understanding of the role of biological sex in the responses to sleep loss stands to greatly improve our ability to understand and treat health consequences of insufficient sleep. As such, this review discusses sex differences in response to sleep deprivation, with a focus on the sympathetic nervous system stress response and activation of the hypothalamic-pituitary-adrenal (HPA) axis. We review sex differences in several stress-related consequences of sleep loss, including inflammation, learning and memory deficits, and mood related changes. Focusing on women's health, we discuss the effects of sleep deprivation during the peripartum period. In closing, we present neurobiological mechanisms, including the contribution of sex hormones, orexins, circadian timing systems, and astrocytic neuromodulation, that may underlie potential sex differences in sleep deprivation responses.
Collapse
Affiliation(s)
- Courtney J. Wright
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Snezana Milosavljevic
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Ana Pocivavsek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
5
|
Functional roles of REM sleep. Neurosci Res 2022; 189:44-53. [PMID: 36572254 DOI: 10.1016/j.neures.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Rapid eye movement (REM) sleep is an enigmatic and intriguing sleep state. REM sleep differs from non-REM sleep by its characteristic brain activity and from wakefulness by a reduced anti-gravity muscle tone. In addition to these key traits, diverse physiological phenomena appear across the whole body during REM sleep. However, it remains unclear whether these phenomena are the causes or the consequences of REM sleep. Experimental approaches using humans and animal models have gradually revealed the functional roles of REM sleep. Extensive efforts have been made to interpret the characteristic brain activity in the context of memory functions. Numerous physical and psychological functions of REM sleep have also been proposed. Moreover, REM sleep has been implicated in aspects of brain development. Here, we review the variety of functional roles of REM sleep, mainly as revealed by animal models. In addition, we discuss controversies regarding the functional roles of REM sleep.
Collapse
|
6
|
Qin H, Fu L, Jian T, Jin W, Liang M, Li J, Chen Q, Yang X, Du H, Liao X, Zhang K, Wang R, Liang S, Yao J, Hu B, Ren S, Zhang C, Wang Y, Hu Z, Jia H, Konnerth A, Chen X. REM sleep-active hypothalamic neurons may contribute to hippocampal social-memory consolidation. Neuron 2022; 110:4000-4014.e6. [PMID: 36272414 DOI: 10.1016/j.neuron.2022.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/29/2022] [Accepted: 09/02/2022] [Indexed: 11/05/2022]
Abstract
The hippocampal CA2 region plays a key role in social memory. The encoding of such memory involves afferent activity from the hypothalamic supramammillary nucleus (SuM) to CA2. However, the neuronal circuits required for consolidation of freshly encoded social memory remain unknown. Here, we used circuit-specific optical and single-cell electrophysiological recordings in mice to explore the role of sleep in social memory consolidation and its underlying circuit mechanism. We found that SuM neurons projecting to CA2 were highly active during rapid-eye-movement (REM) sleep but not during non-REM sleep or quiet wakefulness. REM-sleep-selective optogenetic silencing of these neurons impaired social memory. By contrast, the silencing of another group of REM sleep-active SuM neurons that projects to the dentate gyrus had no effect on social memory. Therefore, we provide causal evidence that the REM sleep-active hypothalamic neurons that project to CA2 are specifically required for the consolidation of social memory.
Collapse
Affiliation(s)
- Han Qin
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China; Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China.
| | - Ling Fu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Key Laboratory for Biomedical Photonics of Ministry of Education, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tingliang Jian
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenjun Jin
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Mengru Liang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China; Department of Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jin Li
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Qianwei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Xinyu Yang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Haoran Du
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Rui Wang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Shanshan Liang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Jiwei Yao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Bo Hu
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Shuancheng Ren
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Chunqing Zhang
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Yanjiang Wang
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Zhian Hu
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400038, China
| | - Hongbo Jia
- Advanced Institute for Brain and Intelligence, Guangxi University, Nanning 530004, China; Institute of Neuroscience and the Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany; Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Arthur Konnerth
- Advanced Institute for Brain and Intelligence, Guangxi University, Nanning 530004, China; Institute of Neuroscience and the Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing 400064, China.
| |
Collapse
|
7
|
Zhao Y, Zhang H, Zhang Y, Fang Z, Xu C. Rapid Eye Movement Sleep Deprivation Enhances Adenosine Receptor Activation and the CREB1/YAP1/c-Myc Axis to Alleviate Depressive-like Behaviors in Rats. ACS Chem Neurosci 2022; 13:2298-2308. [PMID: 35838172 DOI: 10.1021/acschemneuro.2c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
As neuromodulators, adenosine and its receptors are mediators of sleep-wake regulation. A putative correlation between CREB1 and depression has been predicted in our bioinformatics analyses, and its expression was also predicted to be upregulated in response to sleep deprivation. Therefore, this study aims to elaborate the A1 and A2A adenosine receptors and CREB1-associated mechanism underlying the antidepressant effect of rapid eye movement sleep deprivation (REMSD) in rats with chronic unpredictable mild stress (CUMS)-induced depressive-like behaviors. The modeled rats were injected with adenosine A1 receptor antagonist DPCPX or adenosine A2A receptor antagonist ZM241385 to assess the role of adenosine receptors in depression. In addition, ectopic expression and depletion experiments of CREB1 and YAP1 were also conducted in vivo and in vitro. It was found that REMSD alleviated depressive-like behaviors in CUMS rats, as shown by increased spontaneous activity, sucrose consumption and percentage, and shortened escape latency and immobility duration. Meanwhile, A1 or A2A adenosine receptor antagonists negated the antidepressant effect of REMSD. REMSD enhanced adenosine receptor activation and promoted the phosphorylation of CREB1, thus increasing the expression of CREB1. In addition, the overexpression of CREB1 activated the YAP1/c-Myc axis and consequently alleviated depressive-like behaviors. Collectively, our results provide new mechanistic insights for an understanding of the antidepressant effect of REMSD, which is associated with the activation of adenosine receptors and the CREB1/YAP1/c-Myc axis.
Collapse
Affiliation(s)
- Yinglin Zhao
- Department of Psychosomatic Medicine, Shantou University Mental Health Center, Shantou 515041, P. R. China
| | - Handi Zhang
- Biological Psychiatry Laboratory, Shantou University Mental Health Center, Shantou 515041, P. R. China
| | - Yinnan Zhang
- Rehabilitation Division, Shantou University Mental Health Center, Shantou 515041, P. R. China
| | - Zeman Fang
- Biological Psychiatry Laboratory, Shantou University Mental Health Center, Shantou 515041, P. R. China
| | - Chongtao Xu
- Shantou University Mental Health Center, Shantou 515041, Guangdong, P. R. China
| |
Collapse
|
8
|
Abstract
Sleep homeostasis is a complex neurobiologic phenomenon involving a number of molecular pathways, neurotransmitter release, synaptic activity, and factors modulating neural networks. Sleep plasticity allows for homeostatic optimization of neural networks and the replay-based consolidation of specific circuits, especially important for cognition, behavior, and information processing. Furthermore, research is currently moving from an essentially brain-focused to a more comprehensive view involving other systems, such as the immune system, hormonal status, and metabolic pathways. When dysfunctional, these systems contribute to sleep loss and fragmentation as well as to sleep need. In this chapter, the implications of neural plasticity and sleep homeostasis for the diagnosis and treatment of some major sleep disorders, such as insomnia and sleep deprivation, obstructive sleep apnea syndrome, restless legs syndrome, REM sleep behavior disorder, and narcolepsy are discussed in detail with their therapeutical implications. This chapter highlights that sleep is necessary for the maintenance of an optimal brain function and is sensitive to both genetic background and environmental enrichment. Even in pathologic conditions, sleep acts as a resilient plastic state that consolidates prior information and prioritizes network activity for efficient brain functioning.
Collapse
|
9
|
Vaseghi S, Arjmandi-Rad S, Eskandari M, Ebrahimnejad M, Kholghi G, Zarrindast MR. Modulating role of serotonergic signaling in sleep and memory. Pharmacol Rep 2021; 74:1-26. [PMID: 34743316 DOI: 10.1007/s43440-021-00339-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/02/2023]
Abstract
Serotonin is an important neurotransmitter with various receptors and wide-range effects on physiological processes and cognitive functions including sleep, learning, and memory. In this review study, we aimed to discuss the role of serotonergic receptors in modulating sleep-wake cycle, and learning and memory function. Furthermore, we mentioned to sleep deprivation, its effects on memory function, and the potential interaction with serotonin. Although there are thousands of research articles focusing on the relationship between sleep and serotonin; however, the pattern of serotonergic function in sleep deprivation is inconsistent and it seems that serotonin has not a certain role in the effects of sleep deprivation on memory function. Also, we found that the injection type of serotonergic agents (systemic or local), the doses of these drugs (dose-dependent effects), and up- or down-regulation of serotonergic receptors during training with various memory tasks are important issues that can be involved in the effects of serotonergic signaling on sleep-wake cycle, memory function, and sleep deprivation-induced memory impairments. This comprehensive review was conducted in the PubMed, Scopus, and ScienceDirect databases in June and July 2021, by searching keywords sleep, sleep deprivation, memory, and serotonin.
Collapse
Affiliation(s)
- Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| | - Shirin Arjmandi-Rad
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Maliheh Eskandari
- Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahshid Ebrahimnejad
- Department of Physiology, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Kim SM, Zhang S, Park J, Sung HJ, Tran TDT, Chung C, Han IO. REM Sleep Deprivation Impairs Learning and Memory by Decreasing Brain O-GlcNAc Cycling in Mouse. Neurotherapeutics 2021; 18:2504-2517. [PMID: 34312767 PMCID: PMC8804064 DOI: 10.1007/s13311-021-01094-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 12/17/2022] Open
Abstract
Rapid eye movement (REM) sleep is implicated learning and memory (L/M) functions and hippocampal long-term potentiation (LTP). Here, we demonstrate that REM sleep deprivation (REMSD)-induced impairment of contextual fear memory in mouse is linked to a reduction in hexosamine biosynthetic pathway (HBP)/O-GlcNAc flux in mouse brain. In mice exposed to REMSD, O-GlcNAcylation, and O-GlcNAc transferase (OGT) were downregulated while O-GlcNAcase was upregulated compared to control mouse brain. Foot shock fear conditioning (FC) induced activation of protein kinase A (PKA) and cAMP response element binding protein (CREB), which were significantly inhibited in brains of the REMSD group. Intriguingly, REMSD-induced defects in L/M functions and FC-induced PKA/CREB activation were restored upon increasing O-GlcNAc cycling with glucosamine (GlcN) or Thiamet G. Furthermore, Thiamet G restored the REMSD-induced decrease in dendritic spine density. Suppression of O-GlcNAcylation by the glutamine fructose-6-phosphate amidotransferase (GFAT) inhibitor, 6-diazo-5-oxo-L-norleucine (DON), or OGT inhibitor, OSMI-1, impaired memory function, and inhibited FC-induced PKA/CREB activation. DON additionally reduced the amplitude of baseline field excitatory postsynaptic potential (fEPSP) and magnitude of long-term potentiation (LTP) in normal mouse hippocampal slices. To our knowledge, this is the first study to provide comprehensive evidence of dynamic O-GlcNAcylation changes during the L/M process in mice and defects in this pathway in the brain of REM sleep-deprived mice. Our collective results highlight HBP/O-GlcNAc cycling as a novel molecular link between sleep and cognitive function.
Collapse
Affiliation(s)
- Sang-Min Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, Korea
| | - Seungjae Zhang
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Jiwon Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, Korea
| | - Hyun Jae Sung
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, Korea
| | - Thuy-Duong Thi Tran
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, Korea.
| |
Collapse
|
11
|
Vaseghi S, Arjmandi-Rad S, Kholghi G, Nasehi M. Inconsistent effects of sleep deprivation on memory function. EXCLI JOURNAL 2021; 20:1011-1027. [PMID: 34267613 PMCID: PMC8278215 DOI: 10.17179/excli2021-3764] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022]
Abstract
In this review article, we aimed to discuss the role of sleep deprivation (SD) in learning and memory processing in basic and clinical studies. There are numerous studies investigating the effect of SD on memory, while most of these studies have shown the impairment effect of SD. However, some of these studies have reported conflicting results, indicating that SD does not impair memory performance or even improves it. So far, no study has discussed or compared the conflicting results of SD on learning and memory. Thus, this important issue in the neuroscience of sleep remains unknown. The main goal of this review article is to compare the similar mechanisms between the impairment and the improvement effects of SD on learning and memory, probably leading to a scientific solution that justifies these conflicting results. We focused on the inconsistent effects of SD on some mechanisms involved in learning and memory, and tried to discuss the inconsistent effects of SD on learning and memory.
Collapse
Affiliation(s)
- Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Shirin Arjmandi-Rad
- Institute for Cognitive & Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Gita Kholghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
12
|
Looti Bashiyan M, Nasehi M, Vaseghi S, Khalifeh S. Investigating the effect of crocin on memory deficits induced by total sleep deprivation (TSD) with respect to the BDNF, TrkB and ERK levels in the hippocampus of male Wistar rats. J Psychopharmacol 2021; 35:744-754. [PMID: 33899577 DOI: 10.1177/02698811211000762] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Sleep deprivation (SD) induces cognitive impairments such as memory deficit. Brain-derived neurotrophic factor (BDNF) is considered as the most critical neurotrophin in the central nervous system that is involved in sleep and memory. The main receptor of BDNF, tropomyosin receptor kinase B (TrkB), is dramatically expressed in the hippocampus. Also, extracellular signal-regulated kinase (ERK) has a significant role in memory function. Crocin is a carotenoid chemical compound and the active component of the flower Crocus sativus L. (saffron) that improves memory function and increases the level of BDNF, TrkB and ERK. AIMS In this research, we aimed to investigate the effect of total SD (TSD, 24 h) and crocin on memory performance, and BDNF, TrkB and ERK hippocampal levels. METHODS Passive avoidance memory was assessed using step-through, and working memory was measured using Y-maze tasks. The level of proteins in both hemispheres of the hippocampus was evaluated using Western blotting. Crocin was injected intraperitoneally at doses of 1, 5 and 15 mg/kg. RESULTS Twenty-four-hour TSD impaired both types of memories and decreased the level of all proteins in both hemispheres of the hippocampus. Crocin at all doses restored TSD-induced memory deficits. Crocin (15 mg/kg) reversed the effect of TSD on levels of all proteins. CONCLUSIONS The adverse effect of TSD on the level of proteins in the hippocampus may disrupt synaptic plasticity and transmission, which induces memory impairment. Additionally, the restoration effect of crocin on the decrease in protein levels may be involved in its improvement effect on memory performance.
Collapse
Affiliation(s)
- Malihe Looti Bashiyan
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Solmaz Khalifeh
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
13
|
Sahin L, Cevik OS, Cevik K, Guven C, Taskin E, Kocahan S. Mild regular treadmill exercise ameliorated the detrimental effects of acute sleep deprivation on spatial memory. Brain Res 2021; 1759:147367. [PMID: 33582122 DOI: 10.1016/j.brainres.2021.147367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 01/06/2023]
Abstract
Vulnerable areas like the hippocampus are sensitive to insults such as sleep deprivation (SD); they are also susceptible to environmental enrichment. Much evidence is accumulating that chronic sleep deprivation causes alterations in the hippocampus that responsible for spatial memory. However, there is conflicting about the differences between acute and chronic SD results. The purpose of this study was to determine the protective effects of mild treadmill exercise on acute SD rats. Four groups were created as control, exercise, sleep deprivation, exercise + sleep deprivation. Multiple platforms method was used to induce REM sleep deprivation (RD) for 48 h. The exercise was applied fivedaysperweekforfour weeks(5 × 4). For the first and second weeks, the length of the exercise was 15 min in two sessions (5 min interval) followed by 15 min in three, 15 min in four sessions. Morris water maze (MWM) was used as a spatial memory test. Gene level was determined by using the qPCR technique. Malondialdehyde (MDA) content in the hippocampus was measured as an extent of peroxidative damage to lipids by using the ELISA method. 48 h RD impaired long-term spatial memory significantly. Mild, regular treadmill exercise ameliorated the detrimental effects of acute sleep deprivation on memory. There was no significant difference in MDA between groups. Hippocampal gene expression did not show any changes in all groups. Lack of correlation between memory impairment and levels of genes in the hippocampus is likely to be related to the differences in behavioral and genetic mechanisms.
Collapse
Affiliation(s)
- Leyla Sahin
- Mersin University, Faculty of Medicine, Physiology, Mersin, Turkey.
| | - Ozge Selin Cevik
- Mersin University, Faculty of Medicine, Physiology, Mersin, Turkey
| | - Kenan Cevik
- Mersin University, Faculty of Medicine, Medical Biology, Mersin, Turkey
| | - Celal Guven
- Ömer Halis Demir University, Faculty of Medicine, Physiology, Niğde, Turkey
| | - Eylem Taskin
- Ömer Halis Demir University, Faculty of Medicine, Physiology, Niğde, Turkey
| | - Sayad Kocahan
- Adıyaman University, Faculty of Medicine, Physiology, Adıyaman, Turkey
| |
Collapse
|
14
|
Norozpour Y, Nasehi M, Sabouri-Khanghah V, Nami M, Vaseghi S, Zarrindast MR. The effect of alpha-2 adrenergic receptors on memory retention deficit induced by rapid eye movement sleep deprivation. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 23:1571-1575. [PMID: 33489031 PMCID: PMC7811809 DOI: 10.22038/ijbms.2020.44891.10468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Objective(s): Evidence shows that sleep deprivation (SD) disrupts the formation of hippocampus-related memories. Moreover, α2 adrenergic receptors that are wildly expressed in the CA1 hippocampal region have a significant role in modulating both sleep and memory formation. In the present research, we wanted to investigate the effect of stimulation and blockage of CA1 α2 adrenergic receptors by clonidine (an agonist of α2 adrenergic receptor) and yohimbine (an antagonist of α2 adrenergic receptor), respectively, on memory retention impairment induced by REM SD (RSD) in rats. Materials and Methods: Multiple platform apparatus were used to induce RSD, and the passive avoidance task was used to assess memory consolidation. Clonidine and yohimbine were injected intra-CA1. Results: The results showed that RSD (for 24 and 36, but not 12 hr) decreased memory retention, with no effect on locomotion. Post-training intra-CA1 infusion of a subthreshold dose of yohimbine (0.001 μg/rat) did not alter, while clonidine (0.1 μg/rat) restored memory retention impairment induced by RSD (24 and 36 hr). Also, none of the interventions did not influence locomotor activity. Conclusion: Our data strongly showed that CA1 α2 adrenergic receptors have a critical role in RSD-induced memory retention impairment.
Collapse
Affiliation(s)
- Yaser Norozpour
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Vahid Sabouri-Khanghah
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mohammad Nami
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Salar Vaseghi
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Sleep Deprivation and Neurological Disorders. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5764017. [PMID: 33381558 PMCID: PMC7755475 DOI: 10.1155/2020/5764017] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022]
Abstract
Sleep plays an important role in maintaining neuronal circuitry, signalling and helps maintain overall health and wellbeing. Sleep deprivation (SD) disturbs the circadian physiology and exerts a negative impact on brain and behavioural functions. SD impairs the cellular clearance of misfolded neurotoxin proteins like α-synuclein, amyloid-β, and tau which are involved in major neurodegenerative diseases like Alzheimer's disease and Parkinson's disease. In addition, SD is also shown to affect the glymphatic system, a glial-dependent metabolic waste clearance pathway, causing accumulation of misfolded faulty proteins in synaptic compartments resulting in cognitive decline. Also, SD affects the immunological and redox system resulting in neuroinflammation and oxidative stress. Hence, it is important to understand the molecular and biochemical alterations that are the causative factors leading to these pathophysiological effects on the neuronal system. This review is an attempt in this direction. It provides up-to-date information on the alterations in the key processes, pathways, and proteins that are negatively affected by SD and become reasons for neurological disorders over a prolonged period of time, if left unattended.
Collapse
|
16
|
Does acupuncture response increase with the increasing dosage: A preclinical study investigating rats with sleep deprivation. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2020. [DOI: 10.1016/j.wjam.2020.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
REM sleep promotes experience-dependent dendritic spine elimination in the mouse cortex. Nat Commun 2020; 11:4819. [PMID: 32968048 PMCID: PMC7511313 DOI: 10.1038/s41467-020-18592-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 08/26/2020] [Indexed: 01/10/2023] Open
Abstract
In many parts of the nervous system, experience-dependent refinement of neuronal circuits predominantly involves synapse elimination. The role of sleep in this process remains unknown. We investigated the role of sleep in experience-dependent dendritic spine elimination of layer 5 pyramidal neurons in the visual (V1) and frontal association cortex (FrA) of 1-month-old mice. We found that monocular deprivation (MD) or auditory-cued fear conditioning (FC) caused rapid spine elimination in V1 or FrA, respectively. MD- or FC-induced spine elimination was significantly reduced after total sleep or REM sleep deprivation. Total sleep or REM sleep deprivation also prevented MD- and FC-induced reduction of neuronal activity in response to visual or conditioned auditory stimuli. Furthermore, dendritic calcium spikes increased substantially during REM sleep, and the blockade of these calcium spikes prevented MD- and FC-induced spine elimination. These findings reveal an important role of REM sleep in experience-dependent synapse elimination and neuronal activity reduction. Sleep plays an important role in learning and memory. Here the authors show that experience dependent elimination of spines is attenuated by REM sleep deprivation.
Collapse
|
18
|
Rezaie M, Nasehi M, Vaseghi S, Mohammadi-Mahdiabadi-Hasani MH, Zarrindast MR, Nasiri Khalili MA. The protective effect of alpha lipoic acid (ALA) on social interaction memory, but not passive avoidance in sleep-deprived rats. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:2081-2091. [PMID: 32583046 DOI: 10.1007/s00210-020-01916-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/02/2020] [Indexed: 12/14/2022]
Abstract
Sleep is involved in maintaining energy, regulating heat, and recovering tissues. Furthermore, proper cognitive functions need sufficient sleep. Many studies have revealed the impairment effect of sleep deprivation (SD) on cognitive functions including learning and memory. Alpha lipoic acid (ALA) is a potent free radical scavenger, biological antioxidant, and neuroprotective agent. Furthermore, ALA improves learning and memory performance, decreases oxidative stress, and enhances antioxidant biomarkers. In this study, we aimed to investigate the effect of ALA on social interaction and passive avoidance memories in sleep-deprived rats. Total sleep deprivation (TSD) apparatus was used to induce SD (for 24 h). Three-chamber paradigm test and shuttle box apparatus were used to evaluate social interaction and passive avoidance memory, respectively. Rats' locomotor apparatus was used to assess locomotion. ALA was administered intraperitoneally at doses of 17 and 35 mg/kg for 3 consecutive days. The results showed SD impaired both types of memories. ALA at the dose of 35 mg/kg restored social interaction memory in sleep-deprived rats; while, at the dose of 17 mg/kg attenuated impairment effect of SD. Moreover, ALA at the dose of 35 mg/kg impaired passive avoidance memory in sham-SD rats and at both doses did not rescue passive avoidance memory in sleep-deprived rats. In conclusion, ALA showed impairment effect on passive avoidance memory, while improved social interaction memory in sleep-deprived rats.
Collapse
Affiliation(s)
- Maede Rezaie
- Department of Bioscience and Biotechnology, Malek Ashtar University of Technology, P.O. Box: 13145-784, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Nasiri Khalili
- Department of Bioscience and Biotechnology, Malek Ashtar University of Technology, P.O. Box: 13145-784, Tehran, Iran.
| |
Collapse
|
19
|
Almaspour MB, Nasehi M, Khalifeh S, Zarrindast MR. The effect of fish oil on social interaction memory in total sleep-deprived rats with respect to the hippocampal level of stathmin, TFEB, synaptophysin and LAMP-1 proteins. Prostaglandins Leukot Essent Fatty Acids 2020; 157:102097. [PMID: 32388317 DOI: 10.1016/j.plefa.2020.102097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/23/2020] [Accepted: 03/23/2020] [Indexed: 12/31/2022]
Abstract
Fish oil (FO) is one of the richest natural sources of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). DHA is essential for brain functions and EPA has been approved for brain health. On the other hand, stathmin, TFEB, synaptophysin and LAMP-1 proteins are involved in synaptic plasticity, lysosome biogenesis and synaptic vesicles biogenesis. In this study, we aimed to investigate the effect of FO on social interaction memory in sleep-deprived rats with respect to level of stathmin, TFEB, synaptophysin and LAMP-1 in the hippocampus of rats. All rats received FO through oral gavage at the doses of 0.5, 0.75 and 1 mg/kg. The water box was used to induce total sleep deprivation (TSD) and the three-chamber paradigm test was used to assess social behavior. Hippocampal level of proteins was assessed using Western blot. The results showed, FO impaired social memory at the dose of 1 mg/kg in normal and sham groups. SD impaired social memory and FO did not restore this effect. Furthermore, FO at the dose of 0.75 mg/kg decreased social affiliation and social memory in all groups of normal rats, compared with related saline groups, and at the dose of 1 mg/kg impaired social memory for stranger 2 compared with saline group. In sham groups, FO at the dose of 1 mg/kg impaired social memory for stranger 2 compared with saline group. SD decreased hippocampal level of all proteins (except stathmin), and FO (1 mg/kg) restored these effects. In conclusion, FO negatively affects social interaction memory in rats.
Collapse
Affiliation(s)
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, P.O. Box: 13145-784, Iran.
| | - Solmaz Khalifeh
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, P.O. Box: 13145-784, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Javad-Moosavi BZ, Nasehi M, Vaseghi S, Jamaldini SH, Zarrindast MR. Activation and Inactivation of Nicotinic Receptnors in the Dorsal Hippocampal Region Restored Negative Effects of Total (TSD) and REM Sleep Deprivation (RSD) on Memory Acquisition, Locomotor Activity and Pain Perception. Neuroscience 2020; 433:200-211. [PMID: 32200080 DOI: 10.1016/j.neuroscience.2020.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Sleep deprivation (SD) is a common issue in today's society. Sleep is essential for proper cognitive functions, including learning and memory. Furthermore, sleep disorders can alter pain information processing. Meanwhile, hippocampal nicotinic receptors have a role in modulating pain and memory. The goal of this study is to investigate the effect of dorsal hippocampal (CA1) nicotinic receptors on behavioral changes induced by Total (TSD) and REM Sleep Deprivation (RSD). A modified water box and multi-platform apparatus were used to induce TSD and RSD, respectively. To investigate the interaction between nicotinic receptors and hippocampus-dependent memory, nicotinic receptor agonist (nicotine) or antagonist (mecamylamine) was injected into the CA1 region. The results showed, nicotine at the doses of 0.001 and 0.1 µg/rat and mecamylamine at the doses of 0.01 and 0.1 µg/rat decreased memory acquisition, while both at the doses of 0.01 and 0.1 µg/rat enhanced locomotor activity. Additionally, all doses used for both drugs did not alter pain perception. Also, 24 h TSD or RSD attenuated memory acquisition with no effect on locomotor activity and only TSD induced an analgesic effect. Intra-CA1 administration of subthreshold dose of nicotine (0.0001 µg/rat) and mecamylamine (0.001 µg/rat) did not alter memory acquisition, pain perception and locomotor activity in sham of TSD/RSD rats. Both drugs reversed all behavioral changes induced by TSD. Furthermore, both drugs reversed the effect of RSD on memory acquisition, while only mecamylamine reversed the effect of RSD on locomotor activity. In conclusion, CA1 nicotinic receptors play a significant role in TSD/RSD-induced behavioral changes.
Collapse
Affiliation(s)
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed Hamid Jamaldini
- Department of Genetic, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| |
Collapse
|
21
|
Eydipour Z, Nasehi M, Vaseghi S, Jamaldini SH, Zarrindast MR. The role of 5-HT4 serotonin receptors in the CA1 hippocampal region on memory acquisition impairment induced by total (TSD) and REM sleep deprivation (RSD). Physiol Behav 2019; 215:112788. [PMID: 31863855 DOI: 10.1016/j.physbeh.2019.112788] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/06/2019] [Accepted: 12/18/2019] [Indexed: 01/20/2023]
Abstract
Sleep is a circadian rhythm that is modulated by endogenous circadian clock located in the suprachiasmatic nucleus (SCN). Sleep modulates memory acquisition and promotes memory consolidation. Studies have shown that sleep deprivation (SD) impairs different types of memory including passive avoidance. Furthermore, the hippocampus plays a significant role in modulating passive avoidance memory. On the other hand, 5-HT4 receptors are expressed in the hippocampus and involved in learning and memory processes. In this study, we aimed to investigate the role of CA1 hippocampal 5-HT4 receptors in memory acquisition impairment induced by total sleep deprivation (TSD: 24 h) and REM sleep deprivation (RSD: 24 h). The water box apparatus was used to induce TSD, while multi-platform apparatus was applied to induce RSD. Passive avoidance memory test was also used to evaluate memory acquisition. The results showed that, intra-CA1 pre-training injection of RS67333 (5-HT4 agonist) and RS23597 (5-HT4 antagonist) at the doses of 0.01 and 0.1 µg/rat decreased memory acquisition, but did not alter pain perception and locomotor activity. Furthermore, TSD and RSD decreased memory acquisition; however, only TSD decreased locomotor activity and induced analgesic effect. The sub-threshold doses of RS67333 and RS23597, 0.001 and 0.0001 µg/rat, respectively, reversed the effect of TSD on memory acquisition and locomotor activity. In addition, only RS23597 reversed TSD-induced analgesia. In RSD condition, the subthreshold dose of RS23597 improved RSD-induced memory acquisition deficit. In conclusion, CA1 hippocampal 5-HT4 receptors play an important role in TSD/RSD-induced cognitive alterations.
Collapse
Affiliation(s)
- Zainab Eydipour
- Department of Biology, Damghan Branch, Islamic Azad University, Semnan, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed Hamid Jamaldini
- Department of Genetic, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Short-term REM deprivation does not affect acquisition or reversal of a spatial learning task. Behav Processes 2019; 169:103985. [PMID: 31678636 DOI: 10.1016/j.beproc.2019.103985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/13/2019] [Accepted: 10/14/2019] [Indexed: 01/31/2023]
Abstract
Although there is a general belief that rapid eye movement sleep (REM) is essential for spatial memory tasks such as the Morris water maze (MWM), there is conflicting evidence for this assertion. This study investigated the effects of short-term REM deprivation on acquisition and reversal of the MWM by varying the timing of REM deprivation and the degree of task acquisition in three separate experiments. There was no evidence for a detrimental effect of REM deprivation on acquisition, retention, or reversal in the MWM. These data add to a growing body of evidence that although REM is important for certain types of learning and memory, spatial memory, as assessed by the MWM, is not among them.
Collapse
|
23
|
Effects of CDP-choline administration on learning and memory in REM sleep-deprived rats. Physiol Behav 2019; 213:112703. [PMID: 31654682 DOI: 10.1016/j.physbeh.2019.112703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 02/08/2023]
Abstract
Cytidine 5-diphosphocholine (CDP-choline) administration has been shown to improve learning and memory deficits in different models of brain disorders. In this study, effects of CDP-choline on the well known negative effects of Rapid Eye Movements (REM) sleep deprivation on learning and memory were investigated. Sleep deprivation was induced by placing adult male Wistar albino rats on 6.5 cm diameter platforms individually for 96 h according to flower pot method. Learning and memory performances were evaluated using Morris Water Maze (MWM) test during the same period of time. Saline or CDP-choline (100 µmol/kg, 300 µmol/kg or 600 µmol/kg) was administered intraperitoneally 30 min prior to the onset of MWM experiments. On completion of behavioral tests, rats were decapitated and hippocampi were assayed for total and phosphorylated Ca2+/calmodulin-dependent protein kinase II (tCaMKII and pCaMKII, respectively) and total antioxidant capacity. We observed that while REM sleep deprivation had no effect on learning, it diminished the memory function, which was associated with decreased levels of pCaMKII and total antioxidant capacity in the hippocampus. CDP-choline treatment blocked the impairment in memory function of sleep-deprived rats and, increased pCaMKII levels and total antioxidant capacity. These data suggest that CDP-choline reduces REM sleep deprivation-induced impairment in memory, at least in part, by counteracting the disturbances in biochemical and molecular biological parameters.
Collapse
|
24
|
Disrupted Resting-State Functional Connectivity in Hippocampal Subregions After Sleep Deprivation. Neuroscience 2019; 398:37-54. [DOI: 10.1016/j.neuroscience.2018.11.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/04/2023]
|
25
|
Abstract
Sleep is a highly conserved phenomenon in endotherms, and therefore it must serve at least one basic function across this wide range of species. What that function is remains one of the biggest mysteries in neurobiology. By using the word neurobiology, we do not mean to exclude possible non-neural functions of sleep, but it is difficult to imagine why the brain must be taken offline if the basic function of sleep did not involve the nervous system. In this chapter we discuss several current hypotheses about sleep function. We divide these hypotheses into two categories: ones that propose higher-order cognitive functions and ones that focus on housekeeping or restorative processes. We also pose four aspects of sleep that any successful functional hypothesis has to account for: why do the properties of sleep change across the life span? Why and how is sleep homeostatically regulated? Why must the brain be taken offline to accomplish the proposed function? And, why are there two radically different stages of sleep?The higher-order cognitive function hypotheses we discuss are essential mechanisms of learning and memory and synaptic plasticity. These are not mutually exclusive hypotheses. Each focuses on specific mechanistic aspects of sleep, and higher-order cognitive processes are likely to involve components of all of these mechanisms. The restorative hypotheses are maintenance of brain energy metabolism, macromolecular biosynthesis, and removal of metabolic waste. Although these three hypotheses seem more different than those related to higher cognitive function, they may each contribute important components to a basic sleep function. Any sleep function will involve specific gene expression and macromolecular biosynthesis, and as we explain there may be important connections between brain energy metabolism and the need to remove metabolic wastes.A deeper understanding of sleep functions in endotherms will enable us to answer whether or not rest behaviors in species other than endotherms are homologous with mammalian and avian sleep. Currently comparisons across the animal kingdom depend on superficial and phenomenological features of rest states and sleep, but investigations of sleep functions would provide more insight into the evolutionary relationships between EEG-defined sleep in endotherms and rest states in ectotherms.
Collapse
Affiliation(s)
- Marcos G Frank
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University Spokane, Spokane, WA, USA
| | - H Craig Heller
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
26
|
Nasehi M, Mosavi-Nezhad SM, Khakpai F, Zarrindast MR. The role of omega-3 on modulation of cognitive deficiency induced by REM sleep deprivation in rats. Behav Brain Res 2018; 351:152-160. [DOI: 10.1016/j.bbr.2018.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/01/2018] [Accepted: 06/01/2018] [Indexed: 01/01/2023]
|
27
|
Alkadhi KA. Neuroprotective Effects of Nicotine on Hippocampal Long-Term Potentiation in Brain Disorders. J Pharmacol Exp Ther 2018; 366:498-508. [DOI: 10.1124/jpet.118.247841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
28
|
Renouard L, Bridi MCD, Coleman T, Arckens L, Frank MG. Anatomical correlates of rapid eye movement sleep-dependent plasticity in the developing cortex. Sleep 2018; 41:5042994. [PMID: 31796959 DOI: 10.1093/sleep/zsy124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/10/2018] [Indexed: 11/13/2022] Open
Abstract
Rapid eye movement (REM) sleep is expressed at its highest levels during early life when the brain is rapidly developing. This suggests that REM sleep may play important roles in brain maturation and developmental plasticity. We investigated this possibility by examining the role of REM sleep in the regulation of plasticity-related proteins known to govern synaptic plasticity in vitro and in vivo. We combined immunohistochemistry with a classic model of experience-dependent plasticity in the developing brain known to be consolidated during sleep. We found that after the developing visual cortex is triggered to remodel, it is reactivated during REM sleep (as measured by FOS+ and ARC+ cells). This is accompanied by expression of several proteins implicated in synaptic long-term potentiation (PSD95 and phosphorylated (p), mTOR, cofilin, and CREB) across the different cortical layers. These changes did not occur in animals deprived of REM sleep, but were preserved in control animals that were instead awakened in non- (N) REM sleep. Collectively, these findings support a role for REM sleep in developmental brain plasticity.
Collapse
Affiliation(s)
- Leslie Renouard
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA
| | - Michelle C D Bridi
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD
| | - Tammi Coleman
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Marcos G Frank
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA
| |
Collapse
|
29
|
Cho J, Sypniewski KA, Arai S, Yamada K, Ogawa S, Pavlides C. Fear memory consolidation in sleep requires protein kinase A. Learn Mem 2018; 25:241-246. [PMID: 29661836 PMCID: PMC5903399 DOI: 10.1101/lm.046458.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/05/2018] [Indexed: 01/30/2023]
Abstract
It is well established that protein kinase A (PKA) is involved in hippocampal dependent memory consolidation. Sleep is also known to play an important role in this process. However, whether sleep-dependent memory consolidation involves PKA activation has not been clearly determined. Using behavioral observation, animals were categorized into sleep and awake groups. We show that intrahippocampal injections of the PKA inhibitor Rp-cAMPs in post-contextual fear conditioning sleep produced a suppression of long-term fear memory, while injections of Rp-cAMPs during an awake state, at a similar time point, had no effect. In contrast, injections of the PKA activator Sp-cAMPs in awake state, rescued sleep deprivation-induced memory impairments. These results suggest that following learning, PKA activation specifically in sleep is required for the consolidation of long-term memory.
Collapse
Affiliation(s)
- Jiyeon Cho
- Faculty of Human Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | | | - Shoko Arai
- Faculty of Human Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Kazuo Yamada
- Faculty of Human Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Sonoko Ogawa
- Faculty of Human Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
| | - Constantine Pavlides
- Faculty of Human Sciences, University of Tsukuba, Ibaraki 305-8577, Japan
- The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
30
|
Frolinger T, Smith C, Cobo CF, Sims S, Brathwaite J, de Boer S, Huang J, Pasinetti GM. Dietary polyphenols promote resilience against sleep deprivation-induced cognitive impairment by activating protein translation. FASEB J 2018; 32:5390-5404. [PMID: 29702026 DOI: 10.1096/fj.201800030r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Previous evidence has suggested that dietary supplementation with a bioactive dietary polyphenol preparation (BDPP) rescues impairment of hippocampus-dependent memory in a mouse model of sleep deprivation (SD). In the current study, we extend our previous evidence and demonstrate that a mechanism by which dietary BDPP protects against SD-mediated cognitive impairment is via mechanisms that involve phosphorylation of the mammalian target of rapamycin complex 1 and its direct downstream targets, including the eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) and the ribosomal protein S6 kinase β-1 (p70S6K). In additional mechanistic studies in vitro, we identified the brain bioavailable phenolic metabolites derived from the metabolism of dietary BDPP that are responsible for the attenuation of SD-mediated memory impairments. On the basis of high-throughput bioavailability studies of brain bioavailable metabolites after dietary BDPP treatment, we found that select polyphenol metabolites [ e.g., cyanidin-3'- O-glucoside and 3-(3'-hydroxyphenyl) propionic acid] were able to rescue mTOR and p70S6K phosphorylation in primary cortico-hippocampal neuronal cultures, as well as rescue 4E-BP1 phosphorylation in response to treatment with 4EGI-1, a specific inhibitor of eIF4E-eIF4G interaction. Our findings reveal a previously unknown role for dietary polyphenols in the rescue of SD-mediated memory impairments via mechanisms involving the promotion of protein translation.-Frolinger, T., Smith, C., Cobo, C. F., Sims, S., Brathwaite, J., de Boer, S., Huang, J., Pasinetti, G. M. Dietary polyphenols promote resilience against sleep deprivation-induced cognitive impairment by activating protein translation.
Collapse
Affiliation(s)
- Tal Frolinger
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chad Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carmen Freire Cobo
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Steven Sims
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Justin Brathwaite
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sterre de Boer
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,VUMC School of Medical Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jing Huang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,State University of New York at Stony Brook, Stony Brook, New York, USA
| | - Giulio M Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA
| |
Collapse
|
31
|
Murkar ALA, De Koninck J. Consolidative mechanisms of emotional processing in REM sleep and PTSD. Sleep Med Rev 2018; 41:173-184. [PMID: 29628334 DOI: 10.1016/j.smrv.2018.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 02/19/2018] [Accepted: 03/05/2018] [Indexed: 12/30/2022]
Abstract
Research suggests sleep plays a role in the consolidation of recently acquired memories for long-term storage. rapid eye movement (REM) sleep has been shown to play a complex role in emotional-memory processing, and may be involved in subsequent waking-day emotional reactivity and amygdala responsivity. Interaction of the hippocampus and basolateral amygdala with the medial-prefrontal cortex is associated with sleep-dependent learning and emotional memory processing. REM is also implicated in post-traumatic stress disorder (PTSD), which is characterized by sleep disturbance, heightened reactivity to fearful stimuli, and nightmares. Many suffers of PTSD also exhibit dampened medial-prefrontal cortex activity. However, the effects of PTSD-related brain changes on REM-dependent consolidation or the notion of 'over-consolidation' (strengthening of memory traces to such a degree that they become resistant to extinction) have been minimally explored. Here, we posit that (in addition to sleep architecture changes) the memory functions of REM must also be altered in PTSD. We propose a model of REM-dependent consolidation of learned fear in PTSD and examine how PTSD-related brain changes might interact with fear learning. We argue that reduced efficacy of inhibitory medial-prefrontal pathways may lead to maladaptive processing of traumatic memories in the early stages of consolidation after trauma.
Collapse
Affiliation(s)
- Anthony L A Murkar
- School of Psychology, University of Ottawa, Canada; The Royal's Institute of Mental Health Research affiliated with the University of Ottawa, Canada.
| | - Joseph De Koninck
- School of Psychology, University of Ottawa, Canada; The Royal's Institute of Mental Health Research affiliated with the University of Ottawa, Canada.
| |
Collapse
|
32
|
Vecsey CG, Huang T, Abel T. Sleep deprivation impairs synaptic tagging in mouse hippocampal slices. Neurobiol Learn Mem 2018; 154:136-140. [PMID: 29551603 DOI: 10.1016/j.nlm.2018.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/07/2018] [Accepted: 03/14/2018] [Indexed: 11/17/2022]
Abstract
Metaplasticity refers to the ability of experience to alter synaptic plasticity, or modulate the strength of neuronal connections. Sleep deprivation has been shown to have a negative impact on synaptic plasticity, but it is unknown whether sleep deprivation also influences processes of metaplasticity. Therefore, we tested whether 5 h of total sleep deprivation (SD) in mice would impair hippocampal synaptic tagging and capture (STC), a form of heterosynaptic metaplasticity in which combining strong stimulation in one synaptic input with weak stimulation at another input allows the weak input to induce long-lasting synaptic strengthening. STC in stratum radiatum of area CA1 occurred normally in control mice, but was impaired following SD. After SD, potentiation at the weakly stimulated synapses decayed back to baseline within 2 h. Thus, sleep deprivation disrupts a prominent form of metaplasticity in which two independent inputs interact to generate long-lasting LTP.
Collapse
Affiliation(s)
- Christopher G Vecsey
- Neuroscience Program, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, United States; Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Ted Huang
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, United States; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
33
|
Javad-Moosavi BZ, Vaezi G, Nasehi M, Haeri-Rouhani SA, Zarrindast MR. Critical role of CA1 muscarinic receptors on memory acquisition deficit induced by total (TSD) and REM sleep deprivation (RSD). Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:128-135. [PMID: 28571775 DOI: 10.1016/j.pnpbp.2017.05.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 05/12/2017] [Accepted: 05/29/2017] [Indexed: 12/29/2022]
Abstract
AIM Despite different theories regarding sleep physiological function, an overall census indicates that sleep is useful for neural plasticity which eventually strengthens cognition and brain performance. Different studies show that sleep deprivation (SD) leads to impaired learning and hippocampus dependent memory. According to some studies, cholinergic system plays an important role in sleep (particularly REM sleep), learning, memory, and its retrieval. So this study has been designed to investigate the effect of CA1 Cholinergic Muscarinic Receptors on memory acquisition deficit induced by total sleep deprivation (TSD) and REM sleep deprivation (RSD). METHOD A modified water box (locomotor activity may be provide a limiting factor in this method of SD) or multiple platforms were used for induction of TSD or RSD, respectively. Inhibitory passive avoidance apparatus has been used to determine the effects of SD and its changes by physostigmine (as cholinesterase inhibitor) or scopolamine (muscarinic receptor antagonist) on memory formation. Because locomotor activity and pain perception induce critical roles in passive avoidance memory formation, we also measured these factors by open field and hot-plate instruments, respectively. RESULTS The results showed that TSD and RSD for 24 hours impaired memory formation but they did not alter locomotor activity. TSD also induced analgesia effect, but RSD did not alter it. Intra-CA1 injection of physostigmine (0.0001μg/rat) and scopolamine (0.01μg/rat) did not alter memory acquisition in the sham-TSD or sham-RSD, by themselves. Moreover, intra-CA1 injection of sub-threshold dose of physostigmine (0.0001μg/rat) and scopolamine (0.01μg/rat) could restore the memory acquisition deficit induced by RSD, while scopolamine could restore TSD-induced amnesia. Both drugs reversed analgesia induced by TSD. None of previous interventions altered locomotor activity. CONCLUSION According to this study, CA1 cholinergic muscarinic receptors play an important role in amnesia induced by both TSD and RSD. However further studies are needed for showing cellular and molecular mechanisms of surprising result of similar pharmacological effects using compounds with opposite profiles.
Collapse
Affiliation(s)
| | - Gholamhassan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Semnan, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| | - Seyed-Ali Haeri-Rouhani
- Department of Animal Biology, School of Biology, University College of Science, University of Tehran, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran; Medical Genomics Research Center, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Puentes-Mestril C, Aton SJ. Linking Network Activity to Synaptic Plasticity during Sleep: Hypotheses and Recent Data. Front Neural Circuits 2017; 11:61. [PMID: 28932187 PMCID: PMC5592216 DOI: 10.3389/fncir.2017.00061] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/23/2017] [Indexed: 12/22/2022] Open
Abstract
Research findings over the past two decades have supported a link between sleep states and synaptic plasticity. Numerous mechanistic hypotheses have been put forth to explain this relationship. For example, multiple studies have shown structural alterations to synapses (including changes in synaptic volume, spine density, and receptor composition) indicative of synaptic weakening after a period of sleep. Direct measures of neuronal activity and synaptic strength support the idea that a period of sleep can reduce synaptic strength. This has led to the synaptic homeostasis hypothesis (SHY), which asserts that during slow wave sleep, synapses are downscaled throughout the brain to counteract net strengthening of network synapses during waking experience (e.g., during learning). However, neither the cellular mechanisms mediating these synaptic changes, nor the sleep-dependent activity changes driving those cellular events are well-defined. Here we discuss potential cellular and network dynamic mechanisms which could underlie reductions in synaptic strength during sleep. We also discuss recent findings demonstrating circuit-specific synaptic strengthening (rather than weakening) during sleep. Based on these data, we explore the hypothetical role of sleep-associated network activity patterns in driving synaptic strengthening. We propose an alternative to SHY—namely that depending on experience during prior wake, a variety of plasticity mechanisms may operate in the brain during sleep. We conclude that either synaptic strengthening or synaptic weakening can occur across sleep, depending on changes to specific neural circuits (such as gene expression and protein translation) induced by experiences in wake. Clarifying the mechanisms underlying these different forms of sleep-dependent plasticity will significantly advance our understanding of how sleep benefits various cognitive functions.
Collapse
Affiliation(s)
- Carlos Puentes-Mestril
- Neuroscience Graduate Program, Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn Arbor, MI, United States
| | - Sara J Aton
- Neuroscience Graduate Program, Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn Arbor, MI, United States
| |
Collapse
|
35
|
Abd Rashid N, Hapidin H, Abdullah H, Ismail Z, Long I. Nicotine-prevented learning and memory impairment in REM sleep-deprived rat is modulated by DREAM protein in the hippocampus. Brain Behav 2017. [PMID: 28638710 PMCID: PMC5474708 DOI: 10.1002/brb3.704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION REM sleep deprivation is associated with impairment in learning and memory, and nicotine treatment has been shown to attenuate this effect. Recent studies have demonstrated the importance of DREAM protein in learning and memory processes. This study investigates the association of DREAM protein in REM sleep-deprived rats hippocampus upon nicotine treatment. METHODS Male Sprague Dawley rats were subjected to normal condition, REM sleep deprivation and control wide platform condition for 72 hr. During this procedure, saline or nicotine (1 mg/kg) was given subcutaneously twice a day. Then, Morris water maze (MWM) test was used to assess learning and memory performance of the rats. The rats were sacrificed and the brain was harvested for immunohistochemistry and Western blot analysis. RESULTS MWM test found that REM sleep deprivation significantly impaired learning and memory performance without defect in locomotor function associated with a significant increase in hippocampus DREAM protein expression in CA1, CA2, CA3, and DG regions and the mean relative level of DREAM protein compared to other experimental groups. Treatment with acute nicotine significantly prevented these effects and decreased expression of DREAM protein in all the hippocampus regions but only slightly reduce the mean relative level of DREAM protein. CONCLUSION This study suggests that changes in DREAM protein expression in CA1, CA2, CA3, and DG regions of rat's hippocampus and mean relative level of DREAM protein may involve in the mechanism of nicotine treatment-prevented REM sleep deprivation-induced learning and memory impairment in rats.
Collapse
Affiliation(s)
- Norlinda Abd Rashid
- BRAINetwork Centre for Neurocognitive Sciences School of Health Sciences University Sains Malaysia Kubang Kerian Kelantan Malaysia
| | - Hermizi Hapidin
- School of Health Sciences University Sains Malaysia Kubang Kerian Kelantan Malaysia
| | - Hasmah Abdullah
- School of Health Sciences University Sains Malaysia Kubang Kerian Kelantan Malaysia
| | - Zalina Ismail
- BRAINetwork Centre for Neurocognitive Sciences School of Health Sciences University Sains Malaysia Kubang Kerian Kelantan Malaysia
| | - Idris Long
- BRAINetwork Centre for Neurocognitive Sciences School of Health Sciences University Sains Malaysia Kubang Kerian Kelantan Malaysia
| |
Collapse
|
36
|
Mizuseki K, Miyawaki H. Hippocampal information processing across sleep/wake cycles. Neurosci Res 2017; 118:30-47. [DOI: 10.1016/j.neures.2017.04.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/11/2017] [Accepted: 03/27/2017] [Indexed: 01/24/2023]
|
37
|
Zhang K, Li YJ, Feng D, Zhang P, Wang YT, Li X, Liu SB, Wu YM, Zhao MG. Imbalance between TNFα and progranulin contributes to memory impairment and anxiety in sleep-deprived mice. Sci Rep 2017; 7:43594. [PMID: 28300056 PMCID: PMC5353617 DOI: 10.1038/srep43594] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
Abstract
Sleep disorder is becoming a widespread problem in current society, and is associated with impaired cognition and emotional disorders. Progranulin (PGRN), also known as granulin epithelin precursor, promotes neurite outgrowth and cell survival, and is encoded by the GRN gene. It is a tumor necrosis factor α receptor (TNFR) ligand which is implicated in many central nervous system diseases. However, the role PGRN in sleep disorder remains unclear. In the present study, we found that sleep deprivation (S-DEP) impaired the memory and produced thigmotaxis/anxiety-like behaviors in mice. S-DEP increased the levels of TNFα but decreased PGRN levels in the hippocampus. The intracerebroventricular (ICV) injection of PGRN or intraperitoneal injection of TNFα synthesis blocker thalidomide (25 mg/kg), prevented the memory impairment and anxiety behaviors induced by S-DEP. PGRN treatment also restored dendritic spine density in the hippocampus CA1 region and neurogenesis in hippocampus dentate gyrus (DG). These results indicate that an imbalance between TNFα and PGRN contributes to memory impairment and thigmotaxis/anxiety caused by sleep deprivation.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.,Precision Pharmacy &Drug Development Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yu-Jiao Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Dan Feng
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.,Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Peng Zhang
- Department of Neurobiology, Capital Medical University, Beijing, 100069, China
| | - Ya-Tao Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiang Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Ming-Gao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.,Precision Pharmacy &Drug Development Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| |
Collapse
|
38
|
Simor A, Györffy BA, Gulyássy P, Völgyi K, Tóth V, Todorov MI, Kis V, Borhegyi Z, Szabó Z, Janáky T, Drahos L, Juhász G, Kékesi KA. The short- and long-term proteomic effects of sleep deprivation on the cortical and thalamic synapses. Mol Cell Neurosci 2017; 79:64-80. [PMID: 28087334 DOI: 10.1016/j.mcn.2017.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 12/07/2016] [Accepted: 01/06/2017] [Indexed: 12/25/2022] Open
Abstract
Acute total sleep deprivation (SD) impairs memory consolidation, attention, working memory and perception. Structural, electrophysiological and molecular experimental approaches provided evidences for the involvement of sleep in synaptic functions. Despite the wide scientific interest on the effects of sleep on the synapse, there is a lack of systematic investigation of sleep-related changes in the synaptic proteome. We isolated parietal cortical and thalamic synaptosomes of rats after 8h of total SD by gentle handling and 16h after the end of deprivation to investigate the short- and longer-term effects of SD on the synaptic proteome, respectively. The SD efficiency was verified by electrophysiology. Protein abundance alterations of the synaptosomes were analyzed by fluorescent two-dimensional differential gel electrophoresis and by tandem mass spectrometry. As several altered proteins were found to be involved in synaptic strength regulation, our data can support the synaptic homeostasis hypothesis function of sleep and highlight the long-term influence of SD after the recovery sleep period, mostly on cortical synapses. Furthermore, the large-scale and brain area-specific protein network change in the synapses may support both ideas of sleep-related synaptogenesis and molecular maintenance and reorganization in normal rat brain.
Collapse
Affiliation(s)
- Attila Simor
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Balázs András Györffy
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; MTA-ELTE NAP B Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Péter Gulyássy
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; MTA-TTK NAP B MS Neuroproteomics Research Group, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - Katalin Völgyi
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest H-1117, Hungary
| | - Vilmos Tóth
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; MTA-TTK NAP B MS Neuroproteomics Research Group, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - Mihail Ivilinov Todorov
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Viktor Kis
- Department of Anatomy, Cell and Developmental Biology, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Zsolt Borhegyi
- MTA-ELTE-NAP B Opto-Neuropharmacology Group, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest H-1117, Hungary
| | - Zoltán Szabó
- Institute of Medical Chemistry, University of Szeged, Szeged H-6720, Hungary
| | - Tamás Janáky
- Institute of Medical Chemistry, University of Szeged, Szeged H-6720, Hungary
| | - László Drahos
- MTA-TTK NAP B MS Neuroproteomics Research Group, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - Gábor Juhász
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; MTA-TTK NAP B MS Neuroproteomics Research Group, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - Katalin Adrienna Kékesi
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest H-1117, Hungary.
| |
Collapse
|
39
|
Guo L, Guo Z, Luo X, Liang R, Yang S, Ren H, Wang G, Zhen X. Phosphodiesterase 10A inhibition attenuates sleep deprivation-induced deficits in long-term fear memory. Neurosci Lett 2016; 635:44-50. [PMID: 27743798 DOI: 10.1016/j.neulet.2016.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/20/2016] [Accepted: 10/10/2016] [Indexed: 12/28/2022]
Abstract
Sleep, particularly rapid eye movement (REM) sleep, is implicated in the consolidation of emotional memories. In the present study, we investigated the protective effects of a phosphodiesterase 10A (PDE10A) inhibitor MP-10 on deficits in long-term fear memory induced by REM sleep deprivation (REM-SD). REM-SD caused deficits in long-term fear memory, however, MP-10 administration ameliorated the deleterious effects of REM-SD on long term fear memory. Brain-derived neurotropic factor (BDNF) and phosphorylated cAMP response element-binding protein (pCREB) were altered in specific brain regions associated with learning and memory in REM-SD rats. Accordingly, REM-SD caused a significant decrease of pCREB in hippocampus and striatum and a significant decrease of BDNF in the hippocampus, striatum and amygdala, however, MP-10 reversed the effects of REM-SD in a dose-dependent manner. Our findings suggest that REM-SD disrupts the consolidation of long-term fear memory and that administration of MP-10 protects the REM-SD-induced deficits in fear memory, which may be due to the MP-10-induced expression of BDNF in the hippocampus, striatum and amygdala, and phosphorylation of CREB in the hippocampus and striatum.
Collapse
Affiliation(s)
- Lengqiu Guo
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China; College of Pharmaceutical Sciences, Suzhou Health College, 28 Kehua Road, Suzhou, Jiangsu 215009, China
| | - Zhuangli Guo
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road,Qingdao, Shandong 266003, China
| | - Xiaoqing Luo
- College of Pharmaceutical Sciences, Suzhou Health College, 28 Kehua Road, Suzhou, Jiangsu 215009, China
| | - Rui Liang
- College of Pharmaceutical Sciences, Suzhou Health College, 28 Kehua Road, Suzhou, Jiangsu 215009, China
| | - Shui Yang
- College of Pharmaceutical Sciences, Suzhou Health College, 28 Kehua Road, Suzhou, Jiangsu 215009, China
| | - Haigang Ren
- College of Pharmaceutical Sciences, Suzhou Health College, 28 Kehua Road, Suzhou, Jiangsu 215009, China
| | - Guanghui Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
40
|
Onaolapo OJ, Onaolapo AY, Akanmu MA, Olayiwola G. Caffeine/sleep-deprivation interaction in mice produces complex memory effects. Ann Neurosci 2015; 22:139-49. [PMID: 26130922 PMCID: PMC4481547 DOI: 10.5214/ans.0972.7531.220304] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/23/2015] [Accepted: 02/12/2015] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Sleep deprivation negatively impacts memory, causing deficits in memory processes. Of interest is any agent that can offset such deficits. Mice were given varying doses of caffeine for 14 days and then deprived of sleep for 6 hours by the 'gentle handling' method. Memory was assessed using the Novel Object Recognition Test and Y maze alternation. PURPOSE The study was designed to ascertain the impact of varying doses of caffeine combined with total sleep-deprivation on spatial and non spatial memory in mice. METHODS Adult Swiss Webster mice of both sexes were assigned to six groups viz., vehicle (distilled water), or one of five selected doses of caffeine (10, 20, 40, 80 and 120 mg/kg) for 14 days via the oral route. Open field novel object recognition test and Y maze spatial working memory tests were carried out on day 14. Results were analysed using multi-factorial ANOVA followed by Tukey HSD test and expressed as mean ± S.E.M, with p values less than 0.05 were considered statistically significant. RESULTS Novel object recognition tests (NOR) revealed that pre-training and pre-test sleep deprivation and caffeine combination impaired non spatial and spatial memory in male and female mice. CONCLUSION The study shows the complex interactions with memory that may arise when total sleep deprivation is superimposed on caffeine administration.
Collapse
Affiliation(s)
- Olakunle J Onaolapo
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Oshogbo, Osun State, Nigeria
| | - Adejoke Y Onaolapo
- Department of Human Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Moses A Akanmu
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile- Ife, Osun State, Nigeria
| | - Gbola Olayiwola
- Department of Clinical Pharmacy and Pharmacy Administration, Faculty of Pharmacy, Obafemi Awolowo University, Ile- Ife, Osun State, Nigeria
| |
Collapse
|
41
|
Pace-Schott EF, Germain A, Milad MR. Sleep and REM sleep disturbance in the pathophysiology of PTSD: the role of extinction memory. BIOLOGY OF MOOD & ANXIETY DISORDERS 2015; 5:3. [PMID: 26034578 PMCID: PMC4450835 DOI: 10.1186/s13587-015-0018-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/12/2015] [Indexed: 01/04/2023]
Abstract
Post-traumatic stress disorder (PTSD) is accompanied by disturbed sleep and an impaired ability to learn and remember extinction of conditioned fear. Following a traumatic event, the full spectrum of PTSD symptoms typically requires several months to develop. During this time, sleep disturbances such as insomnia, nightmares, and fragmented rapid eye movement sleep predict later development of PTSD symptoms. Only a minority of individuals exposed to trauma go on to develop PTSD. We hypothesize that sleep disturbance resulting from an acute trauma, or predating the traumatic experience, may contribute to the etiology of PTSD. Because symptoms can worsen over time, we suggest that continued sleep disturbances can also maintain and exacerbate PTSD. Sleep disturbance may result in failure of extinction memory to persist and generalize, and we suggest that this constitutes one, non-exclusive mechanism by which poor sleep contributes to the development and perpetuation of PTSD. Also reviewed are neuroendocrine systems that show abnormalities in PTSD, and in which stress responses and sleep disturbance potentially produce synergistic effects that interfere with extinction learning and memory. Preliminary evidence that insomnia alone can disrupt sleep-dependent emotional processes including consolidation of extinction memory is also discussed. We suggest that optimizing sleep quality following trauma, and even strategically timing sleep to strengthen extinction memories therapeutically instantiated during exposure therapy, may allow sleep itself to be recruited in the treatment of PTSD and other trauma and stress-related disorders.
Collapse
Affiliation(s)
- Edward F. Pace-Schott
- />Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital—East, CNY 149 13th Street Room 2624, Charlestown, MA 02129 USA
| | - Anne Germain
- />Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA USA
| | - Mohammed R. Milad
- />Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital—East, CNY 149 13th Street Room 2624, Charlestown, MA 02129 USA
| |
Collapse
|
42
|
Kreutzmann JC, Havekes R, Abel T, Meerlo P. Sleep deprivation and hippocampal vulnerability: changes in neuronal plasticity, neurogenesis and cognitive function. Neuroscience 2015; 309:173-90. [PMID: 25937398 DOI: 10.1016/j.neuroscience.2015.04.053] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/31/2015] [Accepted: 04/21/2015] [Indexed: 01/19/2023]
Abstract
Despite the ongoing fundamental controversy about the physiological function of sleep, there is general consensus that sleep benefits neuronal plasticity, which ultimately supports brain function and cognition. In agreement with this are numerous studies showing that sleep deprivation (SD) results in learning and memory impairments. Interestingly, such impairments appear to occur particularly when these learning and memory processes require the hippocampus, suggesting that this brain region may be particularly sensitive to the consequences of sleep loss. Although the molecular mechanisms underlying sleep and memory formation remain to be investigated, available evidence suggests that SD may impair hippocampal neuronal plasticity and memory processes by attenuating intracellular cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling which may lead to alterations in cAMP response element binding protein (CREB)-mediated gene transcription, neurotrophic signaling, and glutamate receptor expression. When restricted sleep becomes a chronic condition, it causes a reduction of hippocampal cell proliferation and neurogenesis, which may eventually lead to a reduction in hippocampal volume. Ultimately, by impairing hippocampal plasticity and function, chronically restricted and disrupted sleep contributes to cognitive disorders and psychiatric diseases.
Collapse
Affiliation(s)
- J C Kreutzmann
- Center for Behavior and Neurosciences, University of Groningen, The Netherlands; Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - R Havekes
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - T Abel
- Department of Biology, University of Pennsylvania, Philadelphia, United States
| | - P Meerlo
- Center for Behavior and Neurosciences, University of Groningen, The Netherlands.
| |
Collapse
|
43
|
Zagaar MA, Dao AT, Alhaider IA, Alkadhi KA. Prevention by Regular Exercise of Acute Sleep Deprivation-Induced Impairment of Late Phase LTP and Related Signaling Molecules in the Dentate Gyrus. Mol Neurobiol 2015; 53:2900-2910. [PMID: 25902862 DOI: 10.1007/s12035-015-9176-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/13/2015] [Indexed: 01/12/2023]
Abstract
The dentate gyrus (DG) and CA1 regions of the hippocampus are intimately related physically and functionally, yet they react differently to insults. The purpose of this study was to determine the protective effects of regular treadmill exercise on late phase long-term potentiation (L-LTP) and its signaling cascade in the DG region of the hippocampus of rapid eye movement (REM) sleep-deprived rats. Adult Wistar rats ran on treadmills for 4 weeks then were acutely sleep deprived for 24 h using the modified multiple platform method. After sleep deprivation, the rats were anesthetized and L-LTP was induced in the DG region. Extracellular field potentials from the DG were recorded in vivo, and levels of L-LTP-related signaling proteins were assessed both before and after L-LTP expression using immunoblot analysis. Sleep deprivation reduced the basal levels of phosphorylated cAMP response element-binding protein (P-CREB) as well as other upstream modulators including calcium/calmodulin kinase IV (CaMKIV) and brain-derived neurotrophic factor (BDNF) in the DG of the hippocampus. Regular exercise prevented impairment of the basal levels of P-CREB and total CREB as well as those of CaMKIV in sleep-deprived animals. Furthermore, regular exercise prevented sleep deprivation-induced inhibition of L-LTP and post-L-LTP downregulation of P-CREB and BDNF levels in the DG. The current findings show that our exercise regimen prevents sleep deprivation-induced deficits in L-LTP as well as the basal and poststimulation levels of key signaling molecules.
Collapse
Affiliation(s)
- Munder A Zagaar
- Departmentof Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - An T Dao
- Departmentof Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Ibrahim A Alhaider
- College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Karim A Alkadhi
- Departmentof Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA.
| |
Collapse
|
44
|
Pace-Schott EF, Germain A, Milad MR. Effects of sleep on memory for conditioned fear and fear extinction. Psychol Bull 2015; 141:835-57. [PMID: 25894546 DOI: 10.1037/bul0000014] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Learning and memory for extinction of conditioned fear is a basic mammalian mechanism for regulating negative emotion. Sleep promotes both the consolidation of memory and the regulation of emotion. Sleep can influence consolidation and modification of memories associated with both fear and its extinction. After brief overviews of the behavior and neural circuitry associated with fear conditioning, extinction learning, and extinction memory in the rodent and human, interactions of sleep with these processes will be examined. Animal and human studies suggest that sleep can serve to consolidate both fear and extinction memory. In humans, sleep also promotes generalization of extinction memory. Time-of-day effects on extinction learning and generalization are also seen. Rapid eye movement (REM) may be a sleep stage of particular importance for the consolidation of both fear and extinction memory as evidenced by selective REM deprivation experiments. REM sleep is accompanied by selective activation of the same limbic structures implicated in the learning and memory of fear and extinction. Preliminary evidence also suggests extinction learning can take place during slow wave sleep. Study of low-level processes such as conditioning, extinction, and habituation may allow sleep effects on emotional memory to be identified and inform study of sleep's effects on more complex, emotionally salient declarative memories. Anxiety disorders are marked by impairments of both sleep and extinction memory. Improving sleep quality may ameliorate anxiety disorders by strengthening naturally acquired extinction. Strategically timed sleep may be used to enhance treatment of anxiety by strengthening therapeutic extinction learned via exposure therapy. (PsycINFO Database Record
Collapse
Affiliation(s)
- Edward F Pace-Schott
- Department of Psychiatry, Harvard Medical School and Massachusetts General Hospital
| | - Anne Germain
- Department of Psychiatry, University of Pittsburgh
| | | |
Collapse
|
45
|
Ravassard P, Hamieh AM, Joseph MA, Fraize N, Libourel PA, Lebarillier L, Arthaud S, Meissirel C, Touret M, Malleret G, Salin PA. REM Sleep-Dependent Bidirectional Regulation of Hippocampal-Based Emotional Memory and LTP. Cereb Cortex 2015; 26:1488-1500. [DOI: 10.1093/cercor/bhu310] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Abstract
Sleep is hypothesized to play an integral role in brain plasticity. This has traditionally been investigated using behavioral assays. In the last 10-15 years, studies combining sleep measurements with in vitro and in vivo models of synaptic plasticity have provided exciting new insights into how sleep alters synaptic strength. In addition, new theories have been proposed that integrate older ideas about sleep function and recent discoveries in the field of synaptic plasticity. There remain, however, important challenges and unanswered questions. For example, sleep does not appear to have a single effect on synaptic strength. An unbiased review of the literature indicates that the effects of sleep vary widely depending on ontogenetic stage, the type of waking experience (or stimulation protocols) that precede sleep and the type of neuronal synapse under examination. In this review, I discuss these key findings in the context of current theories that posit different roles for sleep in synaptic plasticity.
Collapse
Affiliation(s)
- Marcos G Frank
- Department of Neuroscience, School of Medicine, University of Pennsylvania, 215 Stemmler Hall, 35th and Hamilton Walk, Philadelphia, PA, 19104-6074, USA,
| |
Collapse
|
47
|
Acosta-Peña E, Camacho-Abrego I, Melgarejo-Gutiérrez M, Flores G, Drucker-Colín R, García-García F. Sleep deprivation induces differential morphological changes in the hippocampus and prefrontal cortex in young and old rats. Synapse 2014; 69:15-25. [PMID: 25179486 DOI: 10.1002/syn.21779] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/17/2014] [Accepted: 08/18/2014] [Indexed: 11/11/2022]
Abstract
Sleep is a fundamental state necessary for maintenance of physical and neurological homeostasis throughout life. Several studies regarding the functions of sleep have been focused on effects of sleep deprivation on synaptic plasticity at a molecular and electrophysiological level, and only a few studies have studied sleep function from a structural perspective. Moreover, during normal aging, sleep architecture displays some changes that could affect normal development in the elderly. In this study, using a Golgi-Cox staining followed by Sholl analysis, we evaluate the effects of 24 h of total sleep deprivation on neuronal morphology of pyramidal neurons from Layer III of the prefrontal cortex (PFC) and the dorsal hippocampal CA1 region from male Wistar rats at two different ages (3 and 22 months). We found no differences in total dendritic length and branching length in both analyzed regions after sleep deprivation. Spine density was reduced in the CA1 of young-adults, and interestingly, sleep deprivation increased spine density in PFC of aged animals. Taken together, our results show that 24 h of total sleep deprivation have different effects on synaptic plasticity and could play a beneficial role in cognition during aging.
Collapse
Affiliation(s)
- Eva Acosta-Peña
- Department of Biomedicine, Health Sciences Institute, Veracruzana University, Luis Castelazo-Ayala s/n, Industrial-Animas, Xalapa, Veracruz, 91190, México
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Despite the ubiquity of sleep across phylogeny, its function remains elusive. In this review, we consider one compelling candidate: brain plasticity associated with memory processing. Focusing largely on hippocampus-dependent memory in rodents and humans, we describe molecular, cellular, network, whole-brain and behavioral evidence establishing a role for sleep both in preparation for initial memory encoding, and in the subsequent offline consolidation of memory. Sleep and sleep deprivation bidirectionally alter molecular signaling pathways that regulate synaptic strength and control plasticity-related gene transcription and protein translation. At the cellular level, sleep deprivation impairs cellular excitability necessary for inducing synaptic potentiation and accelerates the decay of long-lasting forms of synaptic plasticity. In contrast, rapid eye movement (REM) and non-rapid eye movement (NREM) sleep enhance previously induced synaptic potentiation, although synaptic de-potentiation during sleep has also been observed. Beyond single cell dynamics, large-scale cell ensembles express coordinated replay of prior learning-related firing patterns during subsequent NREM sleep. At the whole-brain level, somewhat analogous learning-associated hippocampal (re)activation during NREM sleep has been reported in humans. Moreover, the same cortical NREM oscillations associated with replay in rodents also promote human hippocampal memory consolidation, and this process can be manipulated using exogenous reactivation cues during sleep. Mirroring molecular findings in rodents, specific NREM sleep oscillations before encoding refresh human hippocampal learning capacity, while deprivation of sleep conversely impairs subsequent hippocampal activity and associated encoding. Together, these cross-descriptive level findings demonstrate that the unique neurobiology of sleep exerts powerful effects on molecular, cellular and network mechanisms of plasticity that govern both initial learning and subsequent long-term memory consolidation.
Collapse
|
49
|
Grønli J, Soulé J, Bramham CR. Sleep and protein synthesis-dependent synaptic plasticity: impacts of sleep loss and stress. Front Behav Neurosci 2014; 7:224. [PMID: 24478645 PMCID: PMC3896837 DOI: 10.3389/fnbeh.2013.00224] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 12/23/2013] [Indexed: 01/08/2023] Open
Abstract
Sleep has been ascribed a critical role in cognitive functioning. Several lines of evidence implicate sleep in the consolidation of synaptic plasticity and long-term memory. Stress disrupts sleep while impairing synaptic plasticity and cognitive performance. Here, we discuss evidence linking sleep to mechanisms of protein synthesis-dependent synaptic plasticity and synaptic scaling. We then consider how disruption of sleep by acute and chronic stress may impair these mechanisms and degrade sleep function.
Collapse
Affiliation(s)
- Janne Grønli
- Department of Biological and Medical Psychology, University of Bergen Bergen, Norway ; Norwegian Competence Center for Sleep Disorders, Haukeland University Hospital Bergen, Norway
| | - Jonathan Soulé
- Department of Biological and Medical Psychology, University of Bergen Bergen, Norway
| | - Clive R Bramham
- Department of Biomedicine and KG Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| |
Collapse
|
50
|
Prince TM, Wimmer M, Choi J, Havekes R, Aton S, Abel T. Sleep deprivation during a specific 3-hour time window post-training impairs hippocampal synaptic plasticity and memory. Neurobiol Learn Mem 2013; 109:122-30. [PMID: 24380868 DOI: 10.1016/j.nlm.2013.11.021] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/22/2013] [Accepted: 11/21/2013] [Indexed: 01/17/2023]
Abstract
Sleep deprivation disrupts hippocampal function and plasticity. In particular, long-term memory consolidation is impaired by sleep deprivation, suggesting that a specific critical period exists following learning during which sleep is necessary. To elucidate the impact of sleep deprivation on long-term memory consolidation and synaptic plasticity, long-term memory was assessed when mice were sleep deprived following training in the hippocampus-dependent object place recognition task. We found that 3h of sleep deprivation significantly impaired memory when deprivation began 1h after training. In contrast, 3 h of deprivation beginning immediately post-training did not impair spatial memory. Furthermore, a 3-h sleep deprivation beginning 1h after training impaired hippocampal long-term potentiation (LTP), whereas sleep deprivation immediately after training did not affect LTP. Together, our findings define a specific 3-h critical period, extending from 1 to 4h after training, during which sleep deprivation impairs hippocampal function.
Collapse
Affiliation(s)
- Toni-Moi Prince
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mathieu Wimmer
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer Choi
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robbert Havekes
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sara Aton
- Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|