1
|
Kayyal H, Chandran SK, Yiannakas A, Gould N, Khamaisy M, Rosenblum K. Insula to mPFC reciprocal connectivity differentially underlies novel taste neophobic response and learning in mice. eLife 2021; 10:66686. [PMID: 34219650 PMCID: PMC8282338 DOI: 10.7554/elife.66686] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
To survive in an ever-changing environment, animals must detect and learn salient information. The anterior insular cortex (aIC) and medial prefrontal cortex (mPFC) are heavily implicated in salience and novelty processing, and specifically, the processing of taste sensory information. Here, we examined the role of aIC-mPFC reciprocal connectivity in novel taste neophobia and memory formation, in mice. Using pERK and neuronal intrinsic properties as markers for neuronal activation, and retrograde AAV (rAAV) constructs for connectivity, we demonstrate a correlation between aIC-mPFC activity and novel taste experience. Furthermore, by expressing inhibitory chemogenetic receptors in these projections, we show that aIC-to-mPFC activity is necessary for both taste neophobia and its attenuation. However, activity within mPFC-to-aIC projections is essential only for the neophobic reaction but not for the learning process. These results provide an insight into the cortical circuitry needed to detect, react to- and learn salient stimuli, a process critically involved in psychiatric disorders.
Collapse
Affiliation(s)
- Haneen Kayyal
- Sagol Department of Neuroscience, University of Haifa, Mount Carmel, Israel
| | | | - Adonis Yiannakas
- Sagol Department of Neuroscience, University of Haifa, Mount Carmel, Israel
| | - Nathaniel Gould
- Sagol Department of Neuroscience, University of Haifa, Mount Carmel, Israel
| | - Mohammad Khamaisy
- Sagol Department of Neuroscience, University of Haifa, Mount Carmel, Israel
| | - Kobi Rosenblum
- Sagol Department of Neuroscience, University of Haifa, Mount Carmel, Israel.,Center for Gene Manipulation in the Brain, University of Haifa, Mount Carmel, Israel
| |
Collapse
|
2
|
Activity of Insula to Basolateral Amygdala Projecting Neurons is Necessary and Sufficient for Taste Valence Representation. J Neurosci 2019; 39:9369-9382. [PMID: 31597726 DOI: 10.1523/jneurosci.0752-19.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Conditioned taste aversion (CTA) is an associative learning paradigm, wherein consumption of an appetitive tastant (e.g., saccharin) is paired to the administration of a malaise-inducing agent, such as intraperitoneal injection of LiCl. Aversive taste learning and retrieval require neuronal activity within the anterior insula (aIC) and the basolateral amygdala (BLA). Here, we labeled neurons of the aIC projecting to the BLA in adult male mice using a retro-AAV construct and assessed their necessity in aversive and appetitive taste learning. By restricting the expression of chemogenetic receptors in aIC-to-BLA neurons, we demonstrate that activity within the aIC-to-BLA projection is necessary for both aversive taste memory acquisition and retrieval, but not for its maintenance, nor its extinction. Moreover, inhibition of the projection did not affect incidental taste learning per se, but effectively suppressed aversive taste memory retrieval when applied either during or before the encoding of the unconditioned stimulus for CTA (i.e., malaise). Remarkably, activation of the projection after novel taste consumption, without experiencing any internal discomfort, was sufficient to form an artificial aversive taste memory, resulting in strong aversive behavior upon retrieval. Our results indicate that aIC-to-BLA projecting neurons are an essential component in the ability of the brain to associate taste sensory stimuli with body states of negative valence and guide the expression of valence-specific behavior upon taste memory retrieval.SIGNIFICANCE STATEMENT In the present study we subjected mice to the conditioned taste aversion paradigm, where animals learn to associate novel taste with malaise (i.e., assign it negative valence). We show that activation of neurons in the anterior insular cortex (aIC) that project into the basolateral amygdala (BLA) in response to conditioned taste aversion is necessary to form a memory for a taste of negative valence. Moreover, artificial activation of this pathway (without any feeling of pain) after the sampling of a taste can also lead to such associative memory. Thus, activation of aIC-to-BLA projecting neurons is necessary and sufficient to form and retrieve aversive taste memory.
Collapse
|
3
|
Yiannakas A, Rosenblum K. The Insula and Taste Learning. Front Mol Neurosci 2017; 10:335. [PMID: 29163022 PMCID: PMC5676397 DOI: 10.3389/fnmol.2017.00335] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/03/2017] [Indexed: 12/29/2022] Open
Abstract
The sense of taste is a key component of the sensory machinery, enabling the evaluation of both the safety as well as forming associations regarding the nutritional value of ingestible substances. Indicative of the salience of the modality, taste conditioning can be achieved in rodents upon a single pairing of a tastant with a chemical stimulus inducing malaise. This robust associative learning paradigm has been heavily linked with activity within the insular cortex (IC), among other regions, such as the amygdala and medial prefrontal cortex. A number of studies have demonstrated taste memory formation to be dependent on protein synthesis at the IC and to correlate with the induction of signaling cascades involved in synaptic plasticity. Taste learning has been shown to require the differential involvement of dopaminergic GABAergic, glutamatergic, muscarinic neurotransmission across an extended taste learning circuit. The subsequent activation of downstream protein kinases (ERK, CaMKII), transcription factors (CREB, Elk-1) and immediate early genes (c-fos, Arc), has been implicated in the regulation of the different phases of taste learning. This review discusses the relevant neurotransmission, molecular signaling pathways and genetic markers involved in novel and aversive taste learning, with a particular focus on the IC. Imaging and other studies in humans have implicated the IC in the pathophysiology of a number of cognitive disorders. We conclude that the IC participates in circuit-wide computations that modulate the interception and encoding of sensory information, as well as the formation of subjective internal representations that control the expression of motivated behaviors.
Collapse
Affiliation(s)
- Adonis Yiannakas
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
| | - Kobi Rosenblum
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
4
|
Yamanaka M, Matsuura T, Pan H, Zhuo M. Calcium-stimulated adenylyl cyclase subtype 1 (AC1) contributes to LTP in the insular cortex of adult mice. Heliyon 2017; 3:e00338. [PMID: 28721398 PMCID: PMC5498404 DOI: 10.1016/j.heliyon.2017.e00338] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/11/2017] [Accepted: 06/22/2017] [Indexed: 12/27/2022] Open
Abstract
Long-term potentiation (LTP) of synaptic transmission in the central nervous system is a key form of cortical plasticity. The insular cortex (IC) is known to play important roles in pain perception, aversive memory and mood disorders. LTP has been recently reported in the IC, however, the signaling pathway for IC LTP remains unknown. Here, we investigated the synaptic mechanism of IC LTP. We found that IC LTP induced by the pairing protocol was N-methyl-D-aspartate receptors (NMDARs) dependent, and expressed postsynaptically, since paired-pulse ratio (PPR) was not affected. Postsynaptic calcium is important for the induction of post-LTP, since the postsynaptic application of BAPTA completely blocked the induction of LTP. Calcium-activated adenylyl cyclase subtype 1 (AC1) is required for potentiation. By contrast, AC8 is not required. Inhibition of Ca2+ permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (CP-AMPARs) or protein kinase M zeta (PKMζ) reduced the expression of LTP. Our results suggest that calcium-stimulated AC1, but not AC8, can be a trigger of the induction and maintenance of LTP in the IC.
Collapse
Affiliation(s)
- Manabu Yamanaka
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.,Department of Orthopaedic Surgery, Wakayama Medical University, Wakayama, 641-8509, Japan
| | - Takanori Matsuura
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Haili Pan
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
5
|
Zhuo M. Contribution of synaptic plasticity in the insular cortex to chronic pain. Neuroscience 2016; 338:220-229. [PMID: 27530697 DOI: 10.1016/j.neuroscience.2016.08.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 12/20/2022]
Abstract
Animal and human studies have consistently demonstrated that cortical regions are important for pain perception and pain-related emotional changes. Studies of the anterior cingulate cortex (ACC) have shown that adult cortical synapses can be modified after peripheral injuries, and long-term changes at synaptic level may contribute to long-lasting suffering in patients. It also explains why chronic pain is resistant to conventional analgesics that act by inhibiting synaptic transmission. Insular cortex (IC), another critical cortical area, is found to be highly plastic and can undergo long-term potentiation (LTP) after injury. Inhibiting IC LTP reduces behavioral sensitization caused by injury. LTP of glutamatergic transmission in pain related cortical areas serves as a key mechanism for chronic pain.
Collapse
Affiliation(s)
- Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; Centre for the Study of Pain, University of Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
6
|
Rosenberg T, Elkobi A, Dieterich DC, Rosenblum K. NMDAR-dependent proteasome activity in the gustatory cortex is necessary for conditioned taste aversion. Neurobiol Learn Mem 2016; 130:7-16. [PMID: 26785229 DOI: 10.1016/j.nlm.2016.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/06/2016] [Accepted: 01/09/2016] [Indexed: 11/15/2022]
Abstract
Taste information is processed in different brain structures in the mammalian brain, including the gustatory cortex (GC), which resides within the insular cortex. N-methyl-d-aspartate receptor (NMDAR) activity in the GC is necessary for the acquisition of conditioned taste aversion (CTA) but not positive novel taste learning. Previous studies have shown that taste memory consolidation requires intact protein synthesis in the GC. In addition, the direct involvement of translation initiation and elongation factors was documented in the GC during taste learning. However, protein expression is defined by protein synthesis, degradation, and localization. Protein degradation is critical for the consolidation and reconsolidation of other forms of learning, such as fear learning and addiction behavior, but its role in cortical-dependent learning is not clear. Here, we show for the first time that proteasome activity is specifically increased in the GC 4h following experiencing of a novel taste. This increase in proteasome activity was abolished by local administration to the GC of the NMDA antagonist, APV, as well as a CaMKII inhibitor, at the time of acquisition. In addition, local application of lactacystin, a proteasome inhibitor, resulted in impaired CTA, but not novel taste learning. These results suggest that NMDAR-dependent proteasome activity in the GC participates in the association process between novel taste experience and negative visceral sensation.
Collapse
Affiliation(s)
- Tali Rosenberg
- Sagol Dept. of Neurobiology, University of Haifa, Haifa 3498838, Israel
| | - Alina Elkobi
- Sagol Dept. of Neurobiology, University of Haifa, Haifa 3498838, Israel
| | - Daniela C Dieterich
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, Magdeburg 39120, Germany
| | - Kobi Rosenblum
- Sagol Dept. of Neurobiology, University of Haifa, Haifa 3498838, Israel; Center for Gene Manipulation in the Brain, University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
7
|
Adaikkan C, Rosenblum K. A molecular mechanism underlying gustatory memory trace for an association in the insular cortex. eLife 2015; 4:e07582. [PMID: 26452094 PMCID: PMC4703067 DOI: 10.7554/elife.07582] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/08/2015] [Indexed: 12/17/2022] Open
Abstract
Events separated in time are associatively learned in trace conditioning, recruiting more neuronal circuits and molecular mechanisms than in delay conditioning. However, it remains unknown whether a given sensory memory trace is being maintained as a unitary item to associate. Here, we used conditioned taste aversion learning in the rat model, wherein animals associate a novel taste with visceral nausea, and demonstrate that there are two parallel memory traces of a novel taste: a short-duration robust trace, lasting approximately 3 hr, and a parallel long-duration weak one, lasting up to 8 hr, and dependent on the strong trace for its formation. Moreover, only the early robust trace is maintained by a NMDAR-dependent CaMKII- AMPAR pathway in the insular cortex. These findings suggest that a memory trace undergoes rapid modifications, and that the mechanisms underlying trace associative learning differ when items in the memory are experienced at different time points.
Collapse
Affiliation(s)
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
8
|
Pulido-Salgado M, Vidal-Taboada JM, Saura J. C/EBPβ and C/EBPδ transcription factors: Basic biology and roles in the CNS. Prog Neurobiol 2015; 132:1-33. [PMID: 26143335 DOI: 10.1016/j.pneurobio.2015.06.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/08/2015] [Accepted: 06/16/2015] [Indexed: 02/01/2023]
Abstract
CCAAT/enhancer binding protein (C/EBP) β and C/EBPδ are transcription factors of the basic-leucine zipper class which share phylogenetic, structural and functional features. In this review we first describe in depth their basic molecular biology which includes fascinating aspects such as the regulated use of alternative initiation codons in the C/EBPβ mRNA. The physical interactions with multiple transcription factors which greatly opens the number of potentially regulated genes or the presence of at least five different types of post-translational modifications are also remarkable molecular mechanisms that modulate C/EBPβ and C/EBPδ function. In the second part, we review the present knowledge on the localization, expression changes and physiological roles of C/EBPβ and C/EBPδ in neurons, astrocytes and microglia. We conclude that C/EBPβ and C/EBPδ share two unique features related to their role in the CNS: whereas in neurons they participate in memory formation and synaptic plasticity, in glial cells they regulate the pro-inflammatory program. Because of their role in neuroinflammation, C/EBPβ and C/EBPδ in microglia are potential targets for treatment of neurodegenerative disorders. Any strategy to reduce C/EBPβ and C/EBPδ activity in neuroinflammation needs to take into account its potential side-effects in neurons. Therefore, cell-specific treatments will be required for the successful application of this strategy.
Collapse
Affiliation(s)
- Marta Pulido-Salgado
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain
| | - Jose M Vidal-Taboada
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain
| | - Josep Saura
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain.
| |
Collapse
|
9
|
4-Hydroxybenzyl methyl ether improves learning and memory in mice via the activation of dopamine D1 receptor signaling. Neurobiol Learn Mem 2015; 121:30-8. [DOI: 10.1016/j.nlm.2015.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 12/17/2022]
|
10
|
Differential contribution of hippocampal subfields to components of associative taste learning. J Neurosci 2014; 34:11007-15. [PMID: 25122900 DOI: 10.1523/jneurosci.0956-14.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The ability to associate the consumption of a taste with its positive or negative consequences is fundamental to survival and influences the behavior of species ranging from invertebrate to human. As a result, for both research and clinical reasons, there has been a great effort to understand the neuronal circuits, as well as the cellular and molecular mechanisms, underlying taste learning. From a neuroanatomical perspective, the contributions of the cortex and amygdala are well documented; however, the literature is riddled with conflicting results regarding the role of the hippocampus in different facets of taste learning. Here, we use conditional genetics in mice to block NMDA receptor-dependent plasticity individually in each of the three major hippocampal subfields, CA1, CA3, and the dentate gyrus, via deletion of the NR1 subunit. Across the CA1, CA3, and dentate gyrus NR1 knock-out lines, we uncover a pattern of differential deficits that establish the dispensability of hippocampal plasticity in incidental taste learning, the requirement of CA1 plasticity for associative taste learning, and a specific requirement for plasticity in the dentate gyrus when there is a long temporal gap between the taste and its outcome. Together, these data establish that the hippocampus is involved in associative taste learning and suggest an episodic component to this type of memory.
Collapse
|
11
|
Ounallah-Saad H, Sharma V, Edry E, Rosenblum K. Genetic or pharmacological reduction of PERK enhances cortical-dependent taste learning. J Neurosci 2014; 34:14624-32. [PMID: 25355215 PMCID: PMC6608429 DOI: 10.1523/jneurosci.2117-14.2014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 09/10/2014] [Accepted: 09/12/2014] [Indexed: 01/21/2023] Open
Abstract
Protein translation initiation is controlled by levels of eIF2α phosphorylation (p-eIF2α) on Ser51. In addition, increased p-eIF2α levels impair long-term synaptic plasticity and memory consolidation, whereas decreased levels enhance them. Levels of p-eIF2α are determined by four kinases, of which protein kinase RNA-activated (PKR), PKR-like endoplastic reticulum kinase (PERK), and general control nonderepressible 2 are extensively expressed in the mammalian mature brain. Following identification of PERK as the major kinase to determine basal levels of p-eIF2α in primary neuronal cultures, we tested its function as a physiological constraint of memory consolidation in the cortex, the brain structure suggested to store, at least in part, long-term memories in the mammalian brain. To that aim, insular cortex (IC)-dependent positive and negative forms of taste learning were used. Genetic reduction of PERK expression was accomplished by local microinfusion of a lentivirus harboring PERK Short hairpin RNA, and pharmacological inhibition was achieved by local microinfusion of a PERK-specific inhibitor (GSK2606414) to the rat IC. Both genetic reduction of PERK expression and pharmacological inhibition of its activity reduced p-eIF2α levels and enhanced novel taste learning and conditioned taste aversion, but not memory retrieval. Moreover, enhanced extinction was observed together with enhanced associative memory, suggesting increased cortical-dependent behavioral plasticity. The results suggest that, by phosphorylating eIF2α, PERK functions in the cortex as a physiological constraint of memory consolidation, and its downregulation serves as cognitive enhancement.
Collapse
Affiliation(s)
| | | | - Efrat Edry
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa 3498838, Israel
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, Center for Gene Manipulation in the Brain, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
12
|
Involvement of translation and transcription processes into neurophysiological mechanisms of long-term memory reconsolidation. Bull Exp Biol Med 2014; 154:584-7. [PMID: 23658873 DOI: 10.1007/s10517-013-2004-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We studied the involvement of translation and transcription processes into behavioral and neuronal mechanisms of reconsolidation of the long-term memory of the conditioned taste aversion in edible snails. Injection of cycloheximide (an inhibitor of protein synthesis) to the snails in 48 h after training combined with subsequent reminder and presentation of the conditional stimulus resulted in the development of persistent amnesia and depression of the responses of the defensive behavior command neurons LPl1 and RPl1 to the conditional stimulus. Injection of mRNA synthesis inhibitors actinomycin D or DRB (5,6-dichloro-1-β-D-ribofuranosylbenzimidasole) in 48 h after conditioning with subsequent reminding procedure produced no effects on memory retention and on the responses of the command neurons to the conditional stimulus. The study suggests that the proteins translated from previously synthesized and stored mRNA were involved in the mechanisms of reconsolidation of the memory responsible for conditioned taste aversion.
Collapse
|
13
|
Shi Z, Chen L, Li S, Chen S, Sun X, Sun L, Li Y, Zeng J, He Y, Liu X. Chronic scopolamine-injection-induced cognitive deficit on reward-directed instrumental learning in rat is associated with CREB signaling activity in the cerebral cortex and dorsal hippocampus. Psychopharmacology (Berl) 2013; 230:245-60. [PMID: 23722831 DOI: 10.1007/s00213-013-3149-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 05/12/2013] [Indexed: 12/19/2022]
Abstract
RATIONALE Scopolamine, a nonselective muscarinic receptor antagonist, has been used in experimental animal models of dementia. It has been demonstrated to disrupt performances in a battery of behavioral tests. However, no attempt has been made to determine how scopolamine-treated animals would respond to a series of reward-directed instrumental learning (RDIL) tasks. OBJECTIVES The present study was designed to investigate the effects of chronic intraperitoneal injection of scopolamine in Wistar rats on RDIL, as well as on the expression of memory-related molecules in the dorsal hippocampus (DH) and cerebral cortex (CCx). METHODS The effects of the pretraining injection of scopolamine on the acquisition of instrumental response (experiment 1) were first investigated. Then, the effects of post-training manipulation on the maintenance of instrumental response and the responses to changes in contingency degradation and signal discrimination were assessed (experiment 2). Finally, the expression of cyclic AMP response element-binding protein (CREB), phosphorylated CREB, and brain-derived neurotrophic factor in the DH and CCx were examined using Western blotting and enzyme-linked immunosorbent assay. RESULTS The acquisition of instrumental conditioning is more vulnerable than its maintenance. The 3.0-mg/kg dose of scopolamine rendered rats unable to make adaptive changes in facing contingency degradation and correct responses in signal discrimination tasks. Furthermore, CREB signaling was inactivated by pretraining scopolamine treatment in both the DH and CCx. Nevertheless, this pathway was selectively suppressed by post-training treatment only in the CCx during memory reconsolidation. CONCLUSIONS The results suggest that scopolamine-induced cognitive deficits on RDIL are related to the distinguishing alteration of CREB signaling in the DH and CCx.
Collapse
Affiliation(s)
- Zhe Shi
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Malianwa North Road No. 151, Beijing, 100193, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
The role of eEF2 pathway in learning and synaptic plasticity. Neurobiol Learn Mem 2013; 105:100-6. [DOI: 10.1016/j.nlm.2013.04.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 11/19/2022]
|
15
|
Abstract
Biochemical, electrophysiological, and imaging studies suggest that the anterior part of the insular cortex (IC) serves as primary taste cortex, whereas fMRI studies in human propose that the anterior IC is also involved in processing of general novelty or saliency information. Here, we compared activity regulated cytoskeleton associated protein (Arc)/Arg3.1 protein levels in the rat IC following administration of familiar versus novel tastes. Surprisingly, there was no correlation between novel taste and Arc/Arg3.1 levels when measured as the sum of both left and right insular cortices. However, when left and right IC were examined separately, Arc/Arg3.1 level was lateralized following novel taste learning. Moreover, Arc/Arg3.1 lateralization was inversely correlated with taste familiarity, whereas the high lateralization of Arc/Arg3.1 expression observed following novel taste learning is reduced proportionally to the increment in taste familiarity. In addition, unilateral inhibition of protein synthesis in the IC had asymmetrical effect on memory, inducing strong memory impairment similarly to bilateral inhibition or memory preservation, indicating that hemispheric lateralization is central for processing taste saliency information. These results provide indications, at the gene level of expression, for the role of IC lateralization in processing novel taste information and for the asymmetrical contribution of protein synthesis in each hemisphere during memory consolidation.
Collapse
|
16
|
Molecular signatures and mechanisms of long-lasting memory consolidation and storage. Neurobiol Learn Mem 2013; 106:40-7. [PMID: 23831672 DOI: 10.1016/j.nlm.2013.06.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 12/27/2022]
Abstract
A body of evidence emerged in the last decade regarding late posttraining memory processing. Most of this new information comes from aversively motivated learning tasks that mainly depend on hippocampus, amygdala and insular cortex, and points to the involvement of long-lasting changes in gene expression and protein synthesis in late stages of memory consolidation and storage. Here, we describe recent advances in this field and discuss how recurrent rounds of macromolecular synthesis and its regulation might impact long-term memory storage.
Collapse
|
17
|
Slouzkey I, Rosenblum K, Maroun M. Memory of conditioned taste aversion is erased by inhibition of PI3K in the insular cortex. Neuropsychopharmacology 2013; 38:1143-53. [PMID: 23385661 PMCID: PMC3656365 DOI: 10.1038/npp.2013.20] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/23/2012] [Accepted: 01/02/2013] [Indexed: 11/08/2022]
Abstract
The conditioned taste aversion (CTA) paradigm, in which association between a novel taste and visceral malaise is formed, gives a unique experimental setting to examine the mechanisms underlying memory acquisition and extinction processes. AKT is a main kinase of the phosphoinositide 3-kinase cascade (PI3K) and has been implicated in long-term memory. We have recently reported that blockade of PI3K in the basolateral amygdala (BLA) before retrieval of fear memory was associated with long-term reduction in fear responses, suggesting a possible role of PI3K inhibition in fear erasure. In this study, we aimed to elucidate whether PI3K has a similar role in the insular cortex (IC), which has a crucial role in CTA acquisition, consolidation, maintenance, and extinction. To that end, we (1) monitored AKT phosphorylation in the IC following CTA acquisition and extinction and (2) inhibited PI3K by local microinjection of the PI3K inhibitor LY294002 at different stages of CTA acquisition and extinction. Our results show that while AKT phosphorylation is increased following CTA learning, it is decreased following CTA extinction. Inhibition of AKT phosphorylation in the IC before or after the first CTA retrieval test resulted in reduction in the aversion index. This reduction in aversion is due to the erasure of the original CTA trace memory, as re-application of the unconditioned stimulus (lithium chloride) did not induce the recovery of aversion in LY294002-treated animals. Our present data add new evidence to suggest that PI3K is engaged in consolidation of aversive memories, as its inhibition is associated with erasure of CTA memory.
Collapse
Affiliation(s)
- Ilana Slouzkey
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Mouna Maroun
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
18
|
Liu MG, Kang SJ, Shi TY, Koga K, Zhang MM, Collingridge GL, Kaang BK, Zhuo M. Long-term potentiation of synaptic transmission in the adult mouse insular cortex: multielectrode array recordings. J Neurophysiol 2013; 110:505-21. [PMID: 23636718 DOI: 10.1152/jn.01104.2012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The insular cortex (IC) is widely believed to be an important forebrain structure involved in cognitive and sensory processes such as memory and pain. However, little work has been performed at the cellular level to investigate the synaptic basis of IC-related brain functions. To bridge the gap, the present study was designed to characterize the basic synaptic mechanisms for insular long-term potentiation (LTP). Using a 64-channel recording system, we found that an enduring form of late-phase LTP (L-LTP) could be reliably recorded for at least 3 h in different layers of IC slices after theta burst stimulation. The induction of insular LTP is protein synthesis dependent and requires activation of both GluN2A and GluN2B subunits of the NMDA receptor, L-type voltage-gated calcium channels, and metabotropic glutamate receptor 1. The paired-pulse facilitation ratio was unaffected by insular L-LTP induction, and expression of insular L-LTP required the recruitment of postsynaptic calcium-permeable AMPA receptors. Our results provide the first in vitro report of long-term multichannel recordings of L-LTP in the IC in adult mice and suggest its potential important roles in insula-related memory and chronic pain.
Collapse
Affiliation(s)
- Ming-Gang Liu
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Blocking the eIF2α kinase (PKR) enhances positive and negative forms of cortex-dependent taste memory. J Neurosci 2013; 33:2517-25. [PMID: 23392680 DOI: 10.1523/jneurosci.2322-12.2013] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Age-associated memory deterioration (and the decline in ability to acquire new information) is one of the major diseases of our era. Cognitive enhancement can be achieved by using psycho-stimulants, such as caffeine or nicotine, but very little is known about drugs that can enhance the consolidation phase of memories in the cortex, the brain structure considered to store, at least partially, long-term memories. We used cortex-dependent taste-learning paradigms to test the hypothesis that pharmacological manipulation of the translation initiation eIF2α, which plays a role in hippocampus-dependent memory, can enhance positive or negative forms of taste memories. We found that dephosphorylation (Ser51) of eIF2α, specifically in the cortex, is both correlated with and necessary for normal memory consolidation. To reduce eIF2α phosphorylation and improve memory consolidation, we pharmacologically inhibited one of the eIF2α kinases, PKR, which is known to be involved in brain aging and Alzheimer's disease. Systemic or local microinjection of PKR inhibitor to the gustatory cortex enhanced both positive and negative forms of taste memory in rats and mice. Our results provide clear evidence that PKR plays a major role in cortex-dependent memory consolidation and, therefore, that pharmacological inhibition of PKR is a potential target for drugs to enhance cognition.
Collapse
|
20
|
Shigemune Y, Tsukiura T, Kambara T, Kawashima R. Remembering with gains and losses: effects of monetary reward and punishment on successful encoding activation of source memories. Cereb Cortex 2013; 24:1319-31. [PMID: 23314939 PMCID: PMC3977621 DOI: 10.1093/cercor/bhs415] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The motivation of getting rewards or avoiding punishments reinforces learning behaviors. Although the neural mechanisms underlying the effect of rewards on episodic memory have been demonstrated, there is little evidence of the effect of punishments on this memory. Our functional magnetic resonance imaging (fMRI) study investigated the effects of monetary rewards and punishments on activation during the encoding of source memories. During encoding, participants memorized words (item) and locations of presented words (source) under 3 conditions (Reward, Punishment, and Control). During retrieval, participants retrieved item and source memories of the words and were rewarded or penalized according to their performance. Source memories encoded with rewards or punishments were remembered better than those without such encoding. fMRI data demonstrated that the ventral tegmental area and substantia nigra and nucleus accumbens activations reflected both the processes of reward and punishment, whereas insular activation increased as a linear function of punishment. Activation in the hippocampus and parahippocampal cortex predicted subsequent retrieval success of source memories. Additionally, correlations between these reward/punishment-related regions and the hippocampus were significant. The successful encoding of source memories could be enhanced by punishments and rewards, and interactions between reward/punishment-related regions and memory-related regions could contribute to memory enhancement by reward and/or punishment.
Collapse
|
21
|
Gal-Ben-Ari S, Kenney JW, Ounalla-Saad H, Taha E, David O, Levitan D, Gildish I, Panja D, Pai B, Wibrand K, Simpson TI, Proud CG, Bramham CR, Armstrong JD, Rosenblum K. Consolidation and translation regulation. Learn Mem 2012; 19:410-22. [PMID: 22904372 PMCID: PMC3418764 DOI: 10.1101/lm.026849.112] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
mRNA translation, or protein synthesis, is a major component of the transformation of the genetic code into any cellular activity. This complicated, multistep process is divided into three phases: initiation, elongation, and termination. Initiation is the step at which the ribosome is recruited to the mRNA, and is regarded as the major rate-limiting step in translation, while elongation consists of the elongation of the polypeptide chain; both steps are frequent targets for regulation, which is defined as a change in the rate of translation of an mRNA per unit time. In the normal brain, control of translation is a key mechanism for regulation of memory and synaptic plasticity consolidation, i.e., the off-line processing of acquired information. These regulation processes may differ between different brain structures or neuronal populations. Moreover, dysregulation of translation leads to pathological brain function such as memory impairment. Both normal and abnormal function of the translation machinery is believed to lead to translational up-regulation or down-regulation of a subset of mRNAs. However, the identification of these newly synthesized proteins and determination of the rates of protein synthesis or degradation taking place in different neuronal types and compartments at different time points in the brain demand new proteomic methods and system biology approaches. Here, we discuss in detail the relationship between translation regulation and memory or synaptic plasticity consolidation while focusing on a model of cortical-dependent taste learning task and hippocampal-dependent plasticity. In addition, we describe a novel systems biology perspective to better describe consolidation.
Collapse
Affiliation(s)
- Shunit Gal-Ben-Ari
- Sagol Department of Neurobiology, University of Haifa, Haifa 31905, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Adaikkan C, Rosenblum K. The role of protein phosphorylation in the gustatory cortex and amygdala during taste learning. Exp Neurobiol 2012; 21:37-51. [PMID: 22792024 PMCID: PMC3381211 DOI: 10.5607/en.2012.21.2.37] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 02/17/2012] [Indexed: 01/22/2023] Open
Abstract
Protein phosphorylation and dephosphorylation form a major post-translation mechanism that enables a given cell to respond to ever-changing internal and external environments. Neurons, similarly to any other cells, use protein phosphorylation/dephosphorylation to maintain an internal homeostasis, but they also use it for updating the state of synaptic and intrinsic properties, following activation by neurotransmitters and growth factors. In the present review we focus on the roles of several families of kinases, phosphatases, and other synaptic-plasticity-related proteins, which activate membrane receptors and various intracellular signals to promote transcription, translation and protein degradation, and to regulate the appropriate cellular proteomes required for taste memory acquisition, consolidation and maintenance. Attention is especially focused on the protein phosphorylation state in two forebrain areas that are necessary for taste-memory learning and retrieval: the insular cortex and the amygdala. The various temporal phases of taste learning require the activation of appropriate waves of biochemical signals. These include: extracellular signal regulated kinase I and II (ERKI/II) signal transduction pathways; Ca(2+)-dependent pathways; tyrosine kinase/phosphatase-dependent pathways; brain-derived neurotrophicfactor (BDNF)-dependent pathways; cAMP-responsive element bindingprotein (CREB); and translation-regulation factors, such as initiation and elongation factors, and the mammalian target of rapamycin (mTOR). Interestingly, coding of hedonic and aversive taste information in the forebrain requires activation of different signal transduction pathways.
Collapse
|
23
|
Solntseva S, Nikitin V. Conditioned food aversion reconsolidation in snails is impaired by translation inhibitors but not by transcription inhibitors. Brain Res 2012; 1467:42-7. [PMID: 22683361 DOI: 10.1016/j.brainres.2012.05.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/25/2012] [Accepted: 05/29/2012] [Indexed: 12/19/2022]
Abstract
Memory is destabilized during retrieval-induced reconsolidation and can therefore be disrupted or modified. In the present study, we examined the role of translation and transcription processes in long-term food aversion memory reconsolidation in the snail Helix lucorum. The administration of the protein synthesis inhibitor anisomycin followed by a reminding procedure (presentation of the conditioned stimulus) led to the development of amnesia that persist for 2 weeks or longer. Administration of the mRNA synthesis inhibitors actinomycin D, α-amanitin, or DRB (5,6-dichloro-1-β-D-ribofuranosylbenzimidasole) followed by a reminding procedure did not affect memory retrieval. Our present findings indicate that proteins synthesized from preexisting mRNA that is transcribed during learning and stored in a silent state may be involved in the mechanisms of conditioned food aversion reconsolidation.
Collapse
Affiliation(s)
- Svetlana Solntseva
- Laboratory of Functional Neurochemistry, P. K. Anokhin Institute of Normal Physiology, Russian Academy of Medical Sciences, Mokhovaya str. 11/4, 125009 Moscow, Russian Federation
| | | |
Collapse
|
24
|
Gal-Ben-Ari S, Rosenblum K. Molecular mechanisms underlying memory consolidation of taste information in the cortex. Front Behav Neurosci 2012; 5:87. [PMID: 22319481 PMCID: PMC3251832 DOI: 10.3389/fnbeh.2011.00087] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 12/12/2011] [Indexed: 12/22/2022] Open
Abstract
The senses of taste and odor are both chemical senses. However, whereas an organism can detect an odor at a relatively long distance from its source, taste serves as the ultimate proximate gatekeeper of food intake: it helps in avoiding poisons and consuming beneficial substances. The automatic reaction to a given taste has been developed during evolution and is well adapted to conditions that may occur with high probability during the lifetime of an organism. However, in addition to this automatic reaction, animals can learn and remember tastes, together with their positive or negative values, with high precision and in light of minimal experience. This ability of mammalians to learn and remember tastes has been studied extensively in rodents through application of reasonably simple and well defined behavioral paradigms. The learning process follows a temporal continuum similar to those of other memories: acquisition, consolidation, retrieval, relearning, and reconsolidation. Moreover, inhibiting protein synthesis in the gustatory cortex (GC) specifically affects the consolidation phase of taste memory, i.e., the transformation of short- to long-term memory, in keeping with the general biochemical definition of memory consolidation. This review aims to present a general background of taste learning, and to focus on recent findings regarding the molecular mechanisms underlying taste–memory consolidation in the GC. Specifically, the roles of neurotransmitters, neuromodulators, immediate early genes, and translation regulation are addressed.
Collapse
|
25
|
Kwon B, Houpt TA. Mitogen-activated protein kinase in the amygdala plays a critical role in lithium chloride-induced taste aversion learning. Neurobiol Learn Mem 2012; 97:132-9. [PMID: 22085719 PMCID: PMC3532514 DOI: 10.1016/j.nlm.2011.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/20/2011] [Accepted: 10/31/2011] [Indexed: 11/28/2022]
Abstract
The intracellular mitogen-activated protein kinase (MAPK) pathway in the brain is necessary for the formation of a variety of memories including conditioned taste aversion (CTA) learning. However, the functional role of MAPK activation in the amygdala during lithium chloride (LiCl)-induced CTA learning has not been established. In the present study, we investigated if local microinjection of SL327, a MAPK kinase inhibitor, into the rat amygdala could alleviate LiCl-induced CTA learning. Our results revealed that acute administration of a high dose of LiCl (0.15M, 12 ml/kg, i.p.) rapidly increased the level of phosphorylated MAPK (pMAPK)-positive cells in the central nucleus of the amygdala (CeA) and nucleus of the solitary tract (NTS) of rats as measured by immunohistochemistry. Local microinjection of SL327 (1 μg/0.5 μl/hemisphere) into the CeA 10 min before LiCl administration decreased both the strength of LiCl-induced CTA paired with 0.125% saccharin and the level of LiCl-induced pMAPK-positive cells in the CeA, but not in the NTS. Our data suggest that the intracellular signaling cascade of the MAPK pathway in the CeA plays a critical role in the processing of visceral information induced by LiCl for CTA learning.
Collapse
Affiliation(s)
- Bumsup Kwon
- Department of Biological Science, Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4295, USA
| | | |
Collapse
|
26
|
Edry E, Lamprecht R, Wagner S, Rosenblum K. Virally mediated gene manipulation in the adult CNS. Front Mol Neurosci 2011; 4:57. [PMID: 22207836 PMCID: PMC3245970 DOI: 10.3389/fnmol.2011.00057] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 12/15/2011] [Indexed: 12/02/2022] Open
Abstract
Understanding how the CNS functions poses one of the greatest challenges in modern life science and medicine. Studying the brain is especially challenging because of its complexity, the heterogeneity of its cellular composition, and the substantial changes it undergoes throughout its life-span. The complexity of adult brain neural networks results also from the diversity of properties and functions of neuronal cells, governed, inter alia, by temporally and spatially differential expression of proteins in mammalian brain cell populations. Hence, research into the biology of CNS activity and its implications to human and animal behavior must use novel scientific tools. One source of such tools is the field of molecular genetics—recently utilized more and more frequently in neuroscience research. Transgenic approaches in general, and gene targeting in rodents have become fundamental tools for elucidating gene function in the CNS. Although spectacular progress has been achieved over recent decades by using these approaches, it is important to note that they face a number of restrictions. One of the main challenges is presented by the temporal and spatial regulation of introduced genetic manipulations. Viral vectors provide an alternative approach to temporally regulated, localized delivery of genetic modifications into neurons. In this review we describe available technologies for gene transfer into the adult mammalian CNS that use both viral and non-viral tools. We discuss viral vectors frequently used in neuroscience, with emphasis on lentiviral vector (LV) systems. We consider adverse effects of LVs, and the use of LVs for temporally and spatially controllable manipulations. Especially, we highlight the significance of viral vector-mediated genetic manipulations in studying learning and memory processes, and how they may be effectively used to separate out the various phases of learning: acquisition, consolidation, retrieval, and maintenance.
Collapse
Affiliation(s)
- Efrat Edry
- Department of Neurobiology and Ethology, Center for Gene Manipulation in the Brain (CGMB), University of Haifa Haifa, Israel
| | | | | | | |
Collapse
|
27
|
Morin JP, Quiroz C, Mendoza-Viveros L, Ramirez-Amaya V, Bermudez-Rattoni F. Familiar taste induces higher dendritic levels of activity-regulated cytoskeleton-associated protein in the insular cortex than a novel one. Learn Mem 2011; 18:610-6. [PMID: 21921210 DOI: 10.1101/lm.2323411] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The immediate early gene (IEG) Arc is known to play an important role in synaptic plasticity; its protein is locally translated in the dendrites where it has been involved in several types of plasticity mechanisms. Because of its tight coupling with neuronal activity, Arc has been widely used as a tool to tag behaviorally activated networks. However, studies examining the modulation of Arc expression during and after learning have yielded somewhat contradictory results. Although some have reported that higher levels of Arc were induced by initial acquisition of a task rather than by reinstating a learned behavior, others have failed to observe such habituation of Arc transcription. Moreover, most of these studies have focused on the mRNA and, surprisingly, relatively little is known about how learning can affect Arc protein expression levels. Here we used taste recognition memory and examined Arc protein expression in the insular cortex of rats at distinct times during taste memory formation. Interestingly, we found that more Arc protein was induced by a familiar rather than by a novel taste. Moreover, this increase was inhibited by post-trial intrahippocampal anisomycin injections, a treatment known to inhibit safe-taste memory consolidation. In addition, confocal microscopy analysis of immunofluorescence stained tissue revealed that the proportion of IC neurons expressing Arc was the same in animals exposed to novel and familiar taste, but Arc immunoreactivity in dendrites was dramatically higher in rats exposed to the familiar taste. These results provide novel insights on how experience affects cortical plasticity.
Collapse
Affiliation(s)
- Jean-Pascal Morin
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF, México
| | | | | | | | | |
Collapse
|
28
|
Janner DDR, Jacob MHVM, Jahn MP, Kucharski LCR, Ribeiro MFM. Dehydroepiandrosterone effects on Akt signaling modulation in central nervous system of young and aged healthy rats. J Steroid Biochem Mol Biol 2010; 122:142-8. [PMID: 20691781 DOI: 10.1016/j.jsbmb.2010.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 07/27/2010] [Accepted: 07/27/2010] [Indexed: 01/26/2023]
Abstract
Dehydroepiandrosterone (DHEA) is a steroid synthesized in adrenal cortex as well as in the nervous system. DHEA effects on central nervous system (CNS) have been associated with several brain functions such as marked neurotrophic and neuroprotective activity. DHEA plasma concentration decreases steadily with aging and studies have reported an inverse correlation between levels of DHEA and neurological diseases age-associated. Nonetheless, its mechanisms of action are not yet fully understood. Akt signaling pathway is one protein kinase which has been related to be DHEA modulated. The goal of this study was to investigate whether short-term (6 or 24h) or chronic (5 weeks) DHEA treatment modulates Akt in CNS of adult (3 months) and aged (18 and 24 months) healthy rats. Hypothalamus and hippocampus homogenates were prepared to quantify total-Akt and phosphorylated Akt at Ser(473) (pAkt). The results here presented have shown that acute (50mg/kg) and chronic (10mg/kg) DHEA injections modulate total and pAkt levels. This effect was dose and time-dependent as well as age and tissue-dependent. In addition, the age variable also intervenes on total and pAkt levels expression independently of DHEA treatment.
Collapse
Affiliation(s)
- Daiane da Rocha Janner
- Laboratório de Interação Neuro-Humoral, Departamento de Fisiologia, Instituto de ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio grande do Sul, Brazil. daia
| | | | | | | | | |
Collapse
|
29
|
Persistence of long-term memory storage: new insights into its molecular signatures in the hippocampus and related structures. Neurotox Res 2010; 18:377-85. [PMID: 20151243 DOI: 10.1007/s12640-010-9155-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/19/2010] [Accepted: 01/19/2010] [Indexed: 12/21/2022]
Abstract
Although much is known about long-term memory (LTM) consolidation, what puts the "long" in LTM is the exclusive feature of persisting over time. However, until recently the molecular mechanisms underneath memory persistence had never been properly studied. In rats, the protein translation inhibitor anisomycin impaired memory persistence when injected into the dorsal hippocampus 12 h after inhibitory avoidance (IA) training without affecting memory formation. Here, we also show learning-induced changes in hippocampal c-Fos, Homer 1a, Akt, CamKIIα, and ERK2 levels around 18-24 h after IA training. Thus, memory persistence is associated with a late phase of plasticity-related protein synthesis in the hippocampus.
Collapse
|
30
|
Languille S, Davis S, Richer P, Alcacer C, Laroche S, Hars B. Extracellular signal-regulated kinase activation is required for consolidation and reconsolidation of memory at an early stage of ontogenesis. Eur J Neurosci 2009; 30:1923-30. [DOI: 10.1111/j.1460-9568.2009.06971.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Belelovsky K, Kaphzan H, Elkobi A, Rosenblum K. Biphasic activation of the mTOR pathway in the gustatory cortex is correlated with and necessary for taste learning. J Neurosci 2009; 29:7424-31. [PMID: 19515910 PMCID: PMC6665417 DOI: 10.1523/jneurosci.3809-08.2009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 11/12/2008] [Accepted: 01/09/2009] [Indexed: 11/21/2022] Open
Abstract
Different forms of memories and synaptic plasticity require synthesis of new proteins at the time of acquisition or immediately after. We are interested in the role of translation regulation in the cortex, the brain structure assumed to store long-term memories. The mammalian target of rapamycin, mTOR (also known as FRAP and RAFT-1), is part of a key signal transduction mechanism known to regulate translation of specific subset of mRNAs and to affect learning and synaptic plasticity. We report here that novel taste learning induces two waves of mTOR activation in the gustatory cortex. Interestingly, the first wave can be identified both in synaptoneurosomal and cellular fractions, whereas the second wave is detected in the cellular fraction but not in the synaptic one. Inhibition of mTOR, specifically in the gustatory cortex, has two effects. First, biochemically, it modulates several known downstream proteins that control translation and reduces the expression of postsynaptic density-95 in vivo. Second, behaviorally, it attenuates long-term taste memory. The results suggest that the mTOR pathway in the cortex modulates both translation factor activity and protein expression, to enable normal taste memory consolidation.
Collapse
Affiliation(s)
- Katya Belelovsky
- Department of Neurobiology and Ethology, Faculty for Science, University of Haifa, Haifa 30905, Israel
| | - Hanoch Kaphzan
- Department of Neurobiology and Ethology, Faculty for Science, University of Haifa, Haifa 30905, Israel
| | - Alina Elkobi
- Department of Neurobiology and Ethology, Faculty for Science, University of Haifa, Haifa 30905, Israel
| | - Kobi Rosenblum
- Department of Neurobiology and Ethology, Faculty for Science, University of Haifa, Haifa 30905, Israel
| |
Collapse
|
32
|
De la Cruz V, Rodriguez-Ortiz CJ, Balderas I, Bermudez-Rattoni F. Medial temporal lobe structures participate differentially in consolidation of safe and aversive taste memories. Eur J Neurosci 2009; 28:1377-81. [PMID: 18973564 DOI: 10.1111/j.1460-9568.2008.06432.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Taste memories are amongst the most important kinds of memories, as adequate identification of safe and toxic edibles will determine the subject's survival. Despite the well-established role that the medial temporal lobe plays in consolidation of memory, specific contributions of the different regions of the temporal lobe to taste memory consolidation remain unknown. In the present report, we assessed the participation of perirhinal cortex (Ph), dorsal hippocampus (Hipp), basolateral (BLA) and central nuclei of the amygdala (CeA) in safe and aversive taste memories by means of local infusions of the protein synthesis inhibitor anisomycin in the rat. The results showed that protein synthesis in the CeA, but not BLA, is required to stabilize taste aversion memory. Surprisingly, the Ph and Hipp seem to be essential to consolidate safe taste memory. These data suggest that different networks within the temporal lobe are recruited to consolidate memory depending on the consequences associated with tastes.
Collapse
Affiliation(s)
- Vanesa De la Cruz
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CP 04510, México DF, México
| | | | | | | |
Collapse
|
33
|
Merhav M, Rosenblum K. Facilitation of taste memory acquisition by experiencing previous novel taste is protein-synthesis dependent. Learn Mem 2008; 15:501-7. [PMID: 18626094 DOI: 10.1101/lm.986008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Very little is known about the biological and molecular mechanisms that determine the effect of previous experience on implicit learning tasks. In the present study, we first defined weak and strong taste inputs according to measurements in the behavioral paradigm known as latent inhibition of conditioned taste aversion. We then demonstrated that a strong novel taste input facilitated acquisition of the memory of subsequent weak taste input in inverse correlation with the time interval between the inputs. However, not only was a strong taste input unable to rescue an immediately subsequent strong taste input when the gustatory cortex was under the influence of the protein-synthesis inhibitor, anisomycin, but the effect of the interaction was to reduce the variation among individual taste memories. Taken together, these results demonstrate that taste memory facilitation, induced by previously experiencing a different unimodal taste input, depended on time, novelty, and directionality. Moreover, the results imply that learning is enhanced on the level of acquisition but not of molecular consolidation.
Collapse
Affiliation(s)
- Maayan Merhav
- Department of Neurobiology and Ethology, Faculty for Science, Haifa University, Haifa 30905, Israel
| | | |
Collapse
|
34
|
Levitan D, Lyons LC, Perelman A, Green CL, Motro B, Eskin A, Susswein AJ. Training with inedible food in Aplysia causes expression of C/EBP in the buccal but not cerebral ganglion. Learn Mem 2008; 15:412-6. [PMID: 18509115 DOI: 10.1101/lm.970408] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Training with inedible food in Aplysia increased expression of the transcription factor C/EBP in the buccal ganglia, which primarily have a motor function, but not in the cerebral or pleural ganglia. C/EBP mRNA increased immediately after training, as well as 1-2 h later. The increased expression of C/EBP protein lagged the increase in mRNA. Stimulating the lips and inducing feeding responses do not lead to long-term memory and did not cause increased C/EBP expression. Blocking polyADP-ribosylation, a process necessary for long-term memory after training, did not affect the increased C/EBP mRNA expression in the buccal ganglia.
Collapse
Affiliation(s)
- David Levitan
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 52900, Israel
| | | | | | | | | | | | | |
Collapse
|
35
|
Differences in response to food stimuli in a rat model of obesity: in-vivo assessment of brain glucose metabolism. Int J Obes (Lond) 2008; 32:1171-9. [PMID: 18475275 DOI: 10.1038/ijo.2008.50] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Food intake is regulated by factors that modulate caloric requirements as well as food's reinforcing properties. In this study, we measured brain glucose utilization to an olfactory stimulus (bacon scent), and we examined the role of food restriction and genetic predisposition to obesity on such brain metabolic activity. METHODS Zucker obese (Ob) and lean (Le) rats were divided into four groups: (1) Ob ad-libitum fed, (2) Ob food restricted (70% of ad libitum), (3) Le ad-libitum fed and (4) Le food restricted. Rats were scanned using micro-positron emission tomography and 2-[(18)F]-fluoro-2-deoxy-D-glucose under two conditions: (1) baseline scan (no stimulation) and (2) challenge scan (food stimulation, FS). RESULTS FS resulted in deactivation of the right and left hippocampus. Ob rats showed greater changes with FS than Le rats (deactivation of hippocampus and activation of the medial thalamus) and Ob but not Le animals deactivated the frontal cortex and activated the superior colliculus. Access to food resulted in an opposite pattern of metabolic changes to the food stimuli in olfactory nucleus (deactivated in unrestricted and activated in restricted) and in right insular/parietal cortex (activated in unrestricted and deactivated in restricted). In addition, restricted but not unrestricted animals activated the medial thalamus. CONCLUSIONS The greater changes in the Ob rats suggest that leptin modulates the regional brain responses to a familiar food stimulus. Similarly, the differences in the pattern of responses with food restriction suggest that FS is influenced by access to food conditions. The main changes with FS occurred in the hippocampus, a region involved in memory, the insular cortex, a region involved with interoception (perception of internal sensations), the medial thalamus (region involved in alertness) and in regions involved with sensory perception (olfactory bulb, olfactory nucleus, occipital cortex, superior colliculus and parietal cortex), which corroborates their relevance in the perception of food.
Collapse
|
36
|
Bekinschtein P, Cammarota M, Katche C, Slipczuk L, Rossato JI, Goldin A, Izquierdo I, Medina JH. BDNF is essential to promote persistence of long-term memory storage. Proc Natl Acad Sci U S A 2008; 105:2711-6. [PMID: 18263738 PMCID: PMC2268201 DOI: 10.1073/pnas.0711863105] [Citation(s) in RCA: 488] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Indexed: 12/26/2022] Open
Abstract
Persistence is a characteristic attribute of long-term memories (LTMs). However, little is known about the molecular mechanisms that mediate this process. We recently showed that persistence of LTM requires a late protein synthesis- and BDNF-dependent phase in the hippocampus. Here, we show that intrahippocampal delivery of BDNF reverses the deficit in memory persistence caused by inhibition of hippocampal protein synthesis. Importantly, we demonstrate that BDNF induces memory persistence by itself, transforming a nonlasting LTM trace into a persistent one in an ERK-dependent manner. Thus, BDNF is not only necessary, but sufficient to induce a late postacquisition phase in the hippocampus essential for persistence of LTM storage.
Collapse
Affiliation(s)
| | - Martín Cammarota
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifical Catholic University of Rio Grande do Sul, RS 90610-1121 Porto Alegre, Brazil
| | | | | | - Janine I. Rossato
- Centro de Memória, Instituto de Pesquisas Biomédicas, Pontifical Catholic University of Rio Grande do Sul, RS 90610-1121 Porto Alegre, Brazil
| | | | - Ivan Izquierdo
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; and
| | - Jorge H. Medina
- *Instituto de Biología Celular y Neurociencias and
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; and
| |
Collapse
|
37
|
Do memories consolidate to persist or do they persist to consolidate? Behav Brain Res 2008; 192:61-9. [PMID: 18374993 DOI: 10.1016/j.bbr.2008.02.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 02/06/2008] [Accepted: 02/07/2008] [Indexed: 12/15/2022]
Abstract
Memories are believed to be initially and temporarily stored in the hippocampus and later transferred to the cortex for persistent storage during a process named system consolidation. Alternatively, the cortex may also have a crucial role in the initial steps of memory formation and the hippocampus may not be disengaged from memory processing as early as it has been originally proposed. Here we review earlier and recent studies and hypotheses that address the nature of long-term memory storage.
Collapse
|
38
|
Shema R, Sacktor TC, Dudai Y. Rapid erasure of long-term memory associations in the cortex by an inhibitor of PKM zeta. Science 2007; 317:951-3. [PMID: 17702943 DOI: 10.1126/science.1144334] [Citation(s) in RCA: 276] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Little is known about the neuronal mechanisms that subserve long-term memory persistence in the brain. The components of the remodeled synaptic machinery, and how they sustain the new synaptic or cellwide configuration over time, are yet to be elucidated. In the rat cortex, long-term associative memories vanished rapidly after local application of an inhibitor of the protein kinase C isoform, protein kinase M zeta (PKMzeta). The effect was observed for at least several weeks after encoding and may be irreversible. In the neocortex, which is assumed to be the repository of multiple types of long-term memory, persistence of memory is thus dependent on ongoing activity of a protein kinase long after that memory is considered to have consolidated into a long-term stable form.
Collapse
Affiliation(s)
- Reut Shema
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
39
|
Meiri N. 14-3-3ε Expression is induced during the critical period of thermal control establishment. Dev Neurobiol 2007; 68:62-72. [DOI: 10.1002/dneu.20571] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Banko JL, Merhav M, Stern E, Sonenberg N, Rosenblum K, Klann E. Behavioral alterations in mice lacking the translation repressor 4E-BP2. Neurobiol Learn Mem 2006; 87:248-56. [PMID: 17029989 DOI: 10.1016/j.nlm.2006.08.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 08/25/2006] [Accepted: 08/26/2006] [Indexed: 10/24/2022]
Abstract
The requirement for de novo protein synthesis during multiple forms of learning, memory and behavior is well-established; however, we are only beginning to uncover the regulatory mechanisms that govern this process. In order to determine how translation initiation is regulated during neuroplasticity we engineered mutant C57Bl/6J mice that lack the translation repressor eukaryotic initiation factor 4E-binding protein 2 (4E-BP2) and have previously demonstrated that 4E-BP2 plays a critical role in hippocampus-dependent synaptic plasticity and memory. Herein, we examined the 4E-BP2 knockout mice in a battery of paradigms to address motor activity and motor skill learning, anxiety and social dominance behaviors, working memory and conditioned taste aversion. We found that the 4E-BP2 knockout mice demonstrated altered activity in the rotating rod test, light/dark exploration test, spontaneous alternation T-maze and conditioned taste aversion test. The information gained from these studies builds a solid foundation for future studies on the specific role of 4E-BP2 in various types of behavior, and for a broader, more detailed examination of the mechanisms of translational control in the brain.
Collapse
Affiliation(s)
- Jessica L Banko
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|