1
|
Batten SR, Bang D, Kopell BH, Davis AN, Heflin M, Fu Q, Perl O, Ziafat K, Hashemi A, Saez I, Barbosa LS, Twomey T, Lohrenz T, White JP, Dayan P, Charney AW, Figee M, Mayberg HS, Kishida KT, Gu X, Montague PR. Dopamine and serotonin in human substantia nigra track social context and value signals during economic exchange. Nat Hum Behav 2024; 8:718-728. [PMID: 38409356 PMCID: PMC11045309 DOI: 10.1038/s41562-024-01831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/16/2024] [Indexed: 02/28/2024]
Abstract
Dopamine and serotonin are hypothesized to guide social behaviours. In humans, however, we have not yet been able to study neuromodulator dynamics as social interaction unfolds. Here, we obtained subsecond estimates of dopamine and serotonin from human substantia nigra pars reticulata during the ultimatum game. Participants, who were patients with Parkinson's disease undergoing awake brain surgery, had to accept or reject monetary offers of varying fairness from human and computer players. They rejected more offers in the human than the computer condition, an effect of social context associated with higher overall levels of dopamine but not serotonin. Regardless of the social context, relative changes in dopamine tracked trial-by-trial changes in offer value-akin to reward prediction errors-whereas serotonin tracked the current offer value. These results show that dopamine and serotonin fluctuations in one of the basal ganglia's main output structures reflect distinct social context and value signals.
Collapse
Affiliation(s)
- Seth R Batten
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA.
| | - Dan Bang
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA.
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark.
- Wellcome Centre for Human Neuroimaging, University College London, London, UK.
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Brian H Kopell
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Neuromodulation, Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arianna N Davis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Heflin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qixiu Fu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ofer Perl
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kimia Ziafat
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice Hashemi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ignacio Saez
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leonardo S Barbosa
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
| | - Thomas Twomey
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
| | - Terry Lohrenz
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
| | - Jason P White
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
| | - Peter Dayan
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- University of Tübingen, Tübingen, Germany
| | - Alexander W Charney
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martijn Figee
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Neuromodulation, Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Neuromodulation, Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kenneth T Kishida
- Department of Translational Neuroscience, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Xiaosi Gu
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Computational Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - P Read Montague
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA.
- Wellcome Centre for Human Neuroimaging, University College London, London, UK.
- Department of Physics, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
2
|
Liang E, Chen Y, Yan Y, Wang S, Yuan J, Yu T. Role of the substantia nigra pars reticulata in sleep-wakefulness: A review of research progress. Sleep Med 2024; 113:284-292. [PMID: 38071927 DOI: 10.1016/j.sleep.2023.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024]
Abstract
Sleep is a complex physiological process that includes two main stages: non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep. During mammalian sleep, especially REM sleep, skeletal muscles are suppressed to varying degrees, and corresponding movements are inhibited. The synchronous occurrence of sleep and motor inhibition suggests they may share the same neural circuits. Recently, the substantia nigra pars reticulata (SNr) has attracted attention for its potential dual role in regulating sleep-wake cycles and movement. In this review, the SNr's role is surveyed by examining existing research reports regarding its involvement in sleep-wake regulation and motor control. By focusing on the SNr, the goal is to shed light on its dual role intricacies and stimulate further inquiry into potential interactions between sleep and movement regulation, thus aiming to explore sleep-wake regulatory mechanisms and offer novel directions for subsequent scientific investigation.
Collapse
Affiliation(s)
- Enpeng Liang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, 563000, China; Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, 563000, China; Department of Pain Medicine, The First Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Ya Chen
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, 563000, China; Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, 563000, China
| | - Yan Yan
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, 563000, China; Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, 563000, China
| | - Siwei Wang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Zunyi Medical University, 563000, Zunyi, China
| | - Jie Yuan
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, 563000, China; Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, 563000, China; Department of Pain Medicine, The First Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China; Department of Anesthesiology, The First Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, 563000, China; Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
3
|
Abstract
Striosomes form neurochemically specialized compartments of the striatum embedded in a large matrix made up of modules called matrisomes. Striosome-matrix architecture is multiplexed with the canonical direct-indirect organization of the striatum. Striosomal functions remain to be fully clarified, but key information is emerging. First, striosomes powerfully innervate nigral dopamine-containing neurons and can completely shut down their activity, with a following rebound excitation. Second, striosomes receive limbic and cognition-related corticostriatal afferents and are dynamically modulated in relation to value-based actions. Third, striosomes are spatially interspersed among matrisomes and interneurons and are influenced by local and global neuromodulatory and oscillatory activities. Fourth, striosomes tune engagement and the motivation to perform reinforcement learning, to manifest stereotypical behaviors, and to navigate valence conflicts and valence discriminations. We suggest that, at an algorithmic level, striosomes could serve as distributed scaffolds to provide formats of the striatal computations generated through development and refined through learning. We propose that striosomes affect subjective states. By transforming corticothalamic and other inputs to the functional formats of the striatum, they could implement state transitions in nigro-striato-nigral circuits to affect bodily and cognitive actions according to internal motives whose functions are compromised in neuropsychiatric conditions.
Collapse
Affiliation(s)
- Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Ayano Matsushima
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
4
|
Pautrat A, Al Tannir R, Pernet-Gallay K, Soutrenon R, Vendramini E, Sinniger V, Overton PG, David O, Coizet V. Altered parabrachial nucleus nociceptive processing may underlie central pain in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:78. [PMID: 37236965 DOI: 10.1038/s41531-023-00516-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The presence of central neuropathic pain in Parkinson's disease suggests that the brain circuits that allow us to process pain could be dysfunctional in the disorder. However, there is to date no clear pathophysiological mechanism to explain these symptoms. In this work, we present evidence that the dysfunction of the subthalamic nucleus and/or substantia nigra pars reticulata may impact nociceptive processing in the parabrachial nucleus (PBN), a low level primary nociceptive structure in the brainstem, and induce a cellular and molecular neuro-adaptation in this structure. In rat models of Parkinson's disease with a partial dopaminergic lesion in the substantia nigra compacta, we found that the substantia nigra reticulata showed enhanced nociceptive responses. Such responses were less impacted in the subthalamic nucleus. A total dopaminergic lesion produced an increase in the nociceptive responses as well as an increase of the firing rate in both structures. In the PBN, inhibited nociceptive responses and increased expression of GABAA receptors were found following a total dopaminergic lesion. However, neuro-adaptations at the level of dendritic spine density and post-synaptic density were found in both dopaminergic lesion groups. These results suggest that the molecular changes within the PBN following a larger dopaminergic lesion, such as increased GABAA expression, is a key mechanism to produce nociceptive processing impairment, whilst other changes may protect function after smaller dopaminergic lesions. We also propose that these neuro-adaptations follow increased inhibitory tone from the substantia nigra pars reticulata and may represent the mechanism generating central neuropathic pain in Parkinson's disease.
Collapse
Affiliation(s)
- Arnaud Pautrat
- Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Racha Al Tannir
- Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Karin Pernet-Gallay
- Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Rémi Soutrenon
- Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Estelle Vendramini
- Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Valérie Sinniger
- Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Paul G Overton
- Department of Psychology, University of Sheffield, Sheffield, UK
| | - Olivier David
- Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille, 13005, France
| | - Véronique Coizet
- Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France.
| |
Collapse
|
5
|
Modulation of nigral dopamine signaling mitigates parkinsonian signs of aging: evidence from intervention with calorie restriction or inhibition of dopamine uptake. GeroScience 2023; 45:45-63. [PMID: 35635679 PMCID: PMC9886753 DOI: 10.1007/s11357-022-00583-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/29/2022] [Indexed: 02/03/2023] Open
Abstract
Identifying neurobiological mechanisms of aging-related parkinsonism, and lifestyle interventions that mitigate them, remain critical knowledge gaps. No aging study, from rodent to human, has reported loss of any dopamine (DA) signaling marker near the magnitude associated with onset of parkinsonian signs in Parkinson's disease (PD). However, in substantia nigra (SN), similar loss of DA signaling markers in PD or aging coincide with parkinsonian signs. Alleviation of these parkinsonian signs may be possible by interventions such as calorie restriction (CR), which augment DA signaling markers like tyrosine hydroxylase (TH) expression in the SN, but not striatum. Here, we interrogated respective contributions of nigral and striatal DA mechanisms to aging-related parkinsonian signs in aging (18 months old) rats in two studies: by the imposition of CR for 6 months, and inhibition of DA uptake within the SN or striatum by cannula-directed infusion of nomifensine. Parkinsonian signs were mitigated within 12 weeks after CR and maintained until 24 months old, commensurate with increased D1 receptor expression in the SN alone, and increased GDNF family receptor, GFR-α1, in the striatum, suggesting increased GDNF signaling. Nomifensine infusion into the SN or striatum selectively increased extracellular DA. However, only nigral infusion increased locomotor activity. These results indicate mechanisms that increase components of DA signaling in the SN alone mitigate parkinsonian signs in aging, and are modifiable by interventions, like CR, to offset parkinsonian signs, even at advanced age. Moreover, these results give evidence that changes in nigral DA signaling may modulate some parameters of locomotor activity autonomously from striatal DA signaling.
Collapse
|
6
|
Brandi E, Torres-Garcia L, Svanbergsson A, Haikal C, Liu D, Li W, Li JY. Brain region-specific microglial and astrocytic activation in response to systemic lipopolysaccharides exposure. Front Aging Neurosci 2022; 14:910988. [PMID: 36092814 PMCID: PMC9459169 DOI: 10.3389/fnagi.2022.910988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
Microglia cells are the macrophage population within the central nervous system, which acts as the first line of the immune defense. These cells present a high level of heterogeneity among different brain regions regarding morphology, cell density, transcriptomes, and expression of different inflammatory mediators. This region-specific heterogeneity may lead to different neuroinflammatory responses, influencing the regional involvement in several neurodegenerative diseases. In this study, we aimed to evaluate microglial response in 16 brain regions. We compared different aspects of the microglial response, such as the extension of their morphological changes, sensitivity, and ability to convert an acute inflammatory response to a chronic one. Then, we investigated the synaptic alterations followed by acute and chronic inflammation in substantia nigra. Moreover, we estimated the effect of partial ablation of fractalkine CX3C receptor 1 (CX3CR1) on microglial response. In the end, we briefly investigated astrocytic heterogeneity and activation. To evaluate microglial response in different brain regions and under the same stimulus, we induced a systemic inflammatory reaction through a single intraperitoneal (i.p.) injection of lipopolysaccharides (LPS). We performed our study using C57BL6 and CX3CR1+/GFP mice to investigate microglial response in different regions and the impact of CX3CR1 partial ablation. We conducted a topographic study quantifying microglia alterations in 16 brain regions through immunohistochemical examination and computational image analysis. Assessing Iba1-immunopositive profiles and the density of the microglia cells, we have observed significant differences in region-specific responses of microglia populations in all parameters considered. Our results underline the peculiar microglial inflammation in the substantia nigra pars reticulata (SNpr). Here and in concomitance with the acute inflammatory response, we observed a transient decrease of dopaminergic dendrites and an alteration of the striato-nigral projections. Additionally, we found a significant decrease in microglia response and the absence of chronic inflammation in CX3CR1+/GFP mice compared to the wild-type ones, suggesting the CX3C axis as a possible pharmacological target against neuroinflammation induced by an increase of systemic tumor necrosis factor-alpha (TNFα) or/and LPS. Finally, we investigated astrocytic heterogeneity in this model. We observed different distribution and morphology of GFAP-positive astrocytes, a heterogeneous response under inflammatory conditions, and a decrease in their activation in CX3CR1 partially ablated mice compared with C57BL6 mice. Altogether, our data confirm that microglia and astrocytes heterogeneity lead to a region-specific inflammatory response in presence of a systemic TNFα or/and LPS treatment.
Collapse
Affiliation(s)
- Edoardo Brandi
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Laura Torres-Garcia
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Alexander Svanbergsson
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Caroline Haikal
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Di Liu
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Wen Li
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Jia-Yi Li
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Health Sciences Institute, China Medical University, Shenyang, China
- *Correspondence: Jia-Yi Li, ,
| |
Collapse
|
7
|
Lai YY, Kodama T, Hsieh KC, Nguyen D, Siegel JM. Substantia nigra pars reticulata-mediated sleep and motor activity regulation. Sleep 2021; 44:5893883. [PMID: 32808987 DOI: 10.1093/sleep/zsaa151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/01/2020] [Indexed: 12/20/2022] Open
Abstract
STUDY OBJECTIVES The substantia nigra pars reticulata (SNR) is a major output nucleus of the basal ganglia. Animal studies have shown that lesions of the SNR cause hyposomnia and motor hyperactivity, indicating that the SNR may play a role in the control of sleep and motor activity. METHODS Eight 8- to 10-week-old adult male Sprague-Dawley rats were used. After 3 days of baseline polysomnographic recording, dialysates were collected from the lateral SNR across natural sleep-wake states. Muscimol and bicuculline were microinfused into the lateral SNR. RESULTS We found that GABA release in the lateral SNR is negatively correlated with slow wave sleep (SWS; R = -0.266, p < 0.01, n = 240) and positively correlated with waking (R = 0.265, p < 0.01, n = 240) in rats. Microinfusion of muscimol into the lateral SNR decreased sleep time and sleep quality, as well as eliciting motor hyperactivity in wake and increased periodic leg movement in SWS, while bicuculline infused into the lateral SNR increased sleep and decreased motor activity in SWS in rats. Muscimol infusion skewed the distribution of inter-movement intervals, with most between 10 and 20 s, while a flat distribution of intervals between 10 and 90 s was seen in baseline conditions. CONCLUSIONS Activation of the lateral SNR is important for inducing sleep and inhibiting motor activity prior to and during sleep, and thus to the maintenance of sleep. Abnormal function of the lateral SNR may cause hyposomnia and motor hyperactivity in quiet wake and in sleep.
Collapse
Affiliation(s)
- Yuan-Yang Lai
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA.,VA Greater Los Angeles HealthCare System, North Hills, CA.,Greater Los Angeles Veterans Research and Education Foundation, Los Angeles, CA
| | - Tohru Kodama
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA.,Physiological Psychology Lab, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kung-Chiao Hsieh
- VA Greater Los Angeles HealthCare System, North Hills, CA.,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Darian Nguyen
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Jerome M Siegel
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA.,VA Greater Los Angeles HealthCare System, North Hills, CA
| |
Collapse
|
8
|
Yee AG, Forbes B, Cheung PY, Martini A, Burrell MH, Freestone PS, Lipski J. Action potential and calcium dependence of tonic somatodendritic dopamine release in the Substantia Nigra pars compacta. J Neurochem 2018; 148:462-479. [PMID: 30203851 DOI: 10.1111/jnc.14587] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/09/2018] [Accepted: 09/04/2018] [Indexed: 12/31/2022]
Abstract
Despite the importance of somatodendritic dopamine (DA) release in the Substantia Nigra pars compacta (SNc), its mechanism remains poorly understood. Using a novel approach combining fast-scan controlled-adsorption voltammetry (FSCAV) and single-unit electrophysiology, we have investigated the mechanism of somatodendritic release by directly correlating basal (non-stimulated) extracellular DA concentration ([DA]out ), with pharmacologically-induced changes of firing of nigral dopaminergic neurons in rat brain slices. FSCAV measurements indicated that basal [DA]out in the SNc was 40.7 ± 2.0 nM (at 34 ± 0.5°C), which was enhanced by amphetamine, cocaine, and L-DOPA, and reduced by VMAT2 inhibitor, Ro4-1284. Complete inhibition of firing by TTX decreased basal [DA]out , but this reduction was smaller than the effect of D2 receptor agonist, quinpirole. Despite similar effects on neuronal firing, the larger decrease in [DA]out evoked by quinpirole was attributed to cell membrane hyperpolarization and greater reduction in cytosolic free Ca2+ ([Ca2+ ]in ). Decreasing extracellular Ca2+ also reduced basal [DA]out , despite increasing firing frequency. Furthermore, inhibiting L-type Ca2+ channels decreased basal [DA]out , although specific Cav 1.3 channel inhibition did not affect firing rate. Inhibition of sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase (SERCA) also decreased [DA]out , demonstrating the importance of intracellular Ca2+ stores for somatodendritic release. Finally, in vivo FSCAV measurements showed that basal [DA]out in the SNc was 79.8 ± 10.9 nM in urethane-anesthetized rats, which was enhanced by amphetamine. Overall, our findings indicate that although tonic somatodendritic DA release is largely independent of action potentials, basal [DA]out is strongly regulated by voltage-dependent Ca2+ influx and release of intracellular Ca2+ . OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Andrew G Yee
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Blaze Forbes
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Pang-Ying Cheung
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | | | - Mark H Burrell
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Peter S Freestone
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Janusz Lipski
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Salvatore MF, McInnis TR, Cantu MA, Apple DM, Pruett BS. Tyrosine Hydroxylase Inhibition in Substantia Nigra Decreases Movement Frequency. Mol Neurobiol 2018; 56:2728-2740. [PMID: 30056575 DOI: 10.1007/s12035-018-1256-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
Reduced movement frequency or physical activity (bradykinesia) occurs with high prevalence in the elderly. However, loss of striatal tyrosine hydroxylase (TH) in aging humans, non-human primates, or rodents does not reach the ~ 80% loss threshold associated with bradykinesia onset in Parkinson's disease. Moderate striatal dopamine (DA) loss, either following TH inhibition or decreased TH expression, may not affect movement frequency. In contrast, moderate DA or TH loss in the substantia nigra (SN), as occurs in aging, is of similar magnitude (~ 40%) to nigral TH loss at bradykinesia onset in Parkinson's disease. In aged rats, increased TH expression and DA in SN alone increases movement frequency, suggesting aging-related TH and DA loss in the SN contributes to aging-related bradykinesia or decreased physical activity. To test this hypothesis, the SN was targeted with bilateral guide cannula in young (6 months old) rats, in a within-subjects design, to evaluate the impact of nigral TH inhibition on movement frequency and speed. The TH inhibitor, α-methyl-p-tyrosine (AMPT) reduced nigral DA (~ 40%) 45-150 min following infusion, without affecting DA in striatum, nucleus accumbens, or adjacent ventral tegmental area. Locomotor activity in the open-field was recorded up to 3 h following nigral saline or AMPT infusion in each test subject. During the period of nigra-specific DA reduction, movement frequency, but not movement speed, was significantly decreased. These results indicate that DA or TH loss in the SN, as observed in aging, contributes as a central mechanism of reduced movement frequency.
Collapse
Affiliation(s)
- Michael F Salvatore
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA.
| | - Tamara R McInnis
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Mark A Cantu
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Deana M Apple
- Department of Cell Systems and Anatomy, Barshop Institute for Aging and Longevity Studies, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Brandon S Pruett
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, 02912, USA.,Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| |
Collapse
|
10
|
Salvatore MF, Terrebonne J, Cantu MA, McInnis TR, Venable K, Kelley P, Kasanga EA, Latimer B, Owens CL, Pruett BS, Yu Y, Luedtke R, Forster MJ, Sumien N, Ingram DK. Dissociation of Striatal Dopamine and Tyrosine Hydroxylase Expression from Aging-Related Motor Decline: Evidence from Calorie Restriction Intervention. J Gerontol A Biol Sci Med Sci 2017. [PMID: 28637176 DOI: 10.1093/gerona/glx119] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The escalating increase in retirees living beyond their eighth decade brings increased prevalence of aging-related impairments, including locomotor impairment (Parkinsonism) that may affect ~50% of those reaching age 80, but has no confirmed neurobiological mechanism. Lifestyle strategies that attenuate motor decline, and its allied mechanisms, must be identified. Aging studies report little to moderate loss of striatal dopamine (DA) or tyrosine hydroxylase (TH) in nigrostriatal terminals, in contrast to ~70%-80% loss associated with bradykinesia onset in Parkinson's disease. These studies evaluated the effect of ~6 months 30% calorie restriction (CR) on nigrostriatal DA regulation and aging-related locomotor decline initiated at 12 months of age in Brown-Norway Fischer F1 hybrid rats. The aging-related decline in locomotor activity was prevented by CR. However, striatal DA or TH expression was decreased in the CR group, but increased in substantia nigra versus the ad libitum group or 12-month-old cohort. In a 4- to 6-month-old cohort, pharmacological TH inhibition reduced striatal DA ~30%, comparable with decreases reported in aged rats and the CR group, without affecting locomotor activity. The dissociation of moderate striatal DA reduction from locomotor activity seen in both studies suggests that aging-related decreases in striatal DA are dissociated from locomotor decline.
Collapse
Affiliation(s)
- Michael F Salvatore
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth
| | | | - Mark A Cantu
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth
| | - Tamara R McInnis
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth
| | - Katy Venable
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Parker Kelley
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Ella A Kasanga
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth
| | - Brian Latimer
- Louisiana State University Health Sciences Center-Shreveport
| | | | | | - Yongmei Yu
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Robert Luedtke
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth
| | - Michael J Forster
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth
| | - Nathalie Sumien
- Institute for Healthy Aging and Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth
| | - Donald K Ingram
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| |
Collapse
|
11
|
Blesa J, Trigo-Damas I, Dileone M, Del Rey NLG, Hernandez LF, Obeso JA. Compensatory mechanisms in Parkinson's disease: Circuits adaptations and role in disease modification. Exp Neurol 2017; 298:148-161. [PMID: 28987461 DOI: 10.1016/j.expneurol.2017.10.002] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022]
Abstract
The motor features of Parkinson's disease (PD) are well known to manifest only when striatal dopaminergic deficit reaches 60-70%. Thus, PD has a long pre-symptomatic and pre-motor evolution during which compensatory mechanisms take place to delay the clinical onset of disabling manifestations. Classic compensatory mechanisms have been attributed to changes and adjustments in the nigro-striatal system, such as increased neuronal activity in the substantia nigra pars compacta and enhanced dopamine synthesis and release in the striatum. However, it is not so clear currently that such changes occur early enough to account for the pre-symptomatic period. Other possible mechanisms relate to changes in basal ganglia and motor cortical circuits including the cerebellum. However, data from early PD patients are difficult to obtain as most studies have been carried out once the diagnosis and treatments have been established. Likewise, putative compensatory mechanisms taking place throughout disease evolution are nearly impossible to distinguish by themselves. Here, we review the evidence for the role of the best known and other possible compensatory mechanisms in PD. We also discuss the possibility that, although beneficial in practical terms, compensation could also play a deleterious role in disease progression.
Collapse
Affiliation(s)
- Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.
| | - Inés Trigo-Damas
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Michele Dileone
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Natalia Lopez-Gonzalez Del Rey
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Ledia F Hernandez
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - José A Obeso
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, Spain; Biomedical Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain.
| |
Collapse
|
12
|
Tekko T, Lakspere T, Allikalt A, End J, Kõlvart KR, Jagomäe T, Terasmaa A, Philips MA, Visnapuu T, Väärtnõu F, Gilbert SF, Rinken A, Vasar E, Lilleväli K. Wfs1 is expressed in dopaminoceptive regions of the amniote brain and modulates levels of D1-like receptors. PLoS One 2017; 12:e0172825. [PMID: 28267787 PMCID: PMC5436468 DOI: 10.1371/journal.pone.0172825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/10/2017] [Indexed: 11/27/2022] Open
Abstract
During amniote evolution, the construction of the forebrain has diverged across
different lineages, and accompanying the structural changes, functional
diversification of the homologous brain regions has occurred. This can be
assessed by studying the expression patterns of marker genes that are relevant
in particular functional circuits. In all vertebrates, the dopaminergic system
is responsible for the behavioral responses to environmental stimuli. Here we
show that the brain regions that receive dopaminergic input through dopamine
receptor D1 are relatively conserved, but with some important
variations between three evolutionarily distant vertebrate lines–house mouse
(Mus musculus), domestic chick (Gallus gallus
domesticus) / common quail (Coturnix coturnix) and
red-eared slider turtle (Trachemys scripta). Moreover, we find
that in almost all instances, those brain regions expressing D1-like dopamine
receptor genes also express Wfs1. Wfs1 has been studied
primarily in the pancreas, where it regulates the endoplasmic reticulum (ER)
stress response, cellular Ca2+ homeostasis, and insulin production
and secretion. Using radioligand binding assays in wild type and
Wfs1-/- mouse brains, we show that the number of
binding sites of D1-like dopamine receptors is increased in the hippocampus of
the mutant mice. We propose that the functional link between Wfs1 and D1-like
dopamine receptors is evolutionarily conserved and plays an important role in
adjusting behavioral reactions to environmental stimuli.
Collapse
Affiliation(s)
- Triin Tekko
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
| | - Triin Lakspere
- Department of Developmental Biology, Institute of Molecular and Cell
Biology, University of Tartu, Tartu, Estonia
| | - Anni Allikalt
- Institute of Chemistry, University of Tartu, Tartu,
Estonia
| | - Jaanus End
- Department of Developmental Biology, Institute of Molecular and Cell
Biology, University of Tartu, Tartu, Estonia
| | | | - Toomas Jagomäe
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
| | - Anton Terasmaa
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
| | - Tanel Visnapuu
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
| | - Fred Väärtnõu
- Department of Developmental Biology, Institute of Molecular and Cell
Biology, University of Tartu, Tartu, Estonia
| | - Scott F. Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
of America
| | - Ago Rinken
- Institute of Chemistry, University of Tartu, Tartu,
Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational
Medicine, University of Tartu, Tartu, Estonia
- Centre of Excellence in Genomics and Translational Medicine, University
of Tartu, Tartu, Estonia
- * E-mail:
| |
Collapse
|
13
|
Sasajima H, Miyazono S, Noguchi T, Kashiwayanagi M. Intranasal Administration of Rotenone to Mice Induces Dopaminergic Neurite Degeneration of Dopaminergic Neurons in the Substantia Nigra. Biol Pharm Bull 2017; 40:108-112. [PMID: 28049942 DOI: 10.1248/bpb.b16-00654] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure to environmental neurotoxins is suspected to be a risk factor for sporadic progressive neurodegenerative diseases. Parkinson's disease has been associated with exposure to the pesticide rotenone, a mitochondrial respiration inhibitor. We previously reported that intranasal administration of rotenone in mice induced dopaminergic (DA) neurodegeneration in the olfactory bulb (OB) and reduced olfactory functions. In the present study, we investigated the DA neurons in the brains of mice that were administered rotenone intranasally for an extended period. We found that the olfactory function of mice was attenuated by rotenone administration. Electrophysiological analysis of the mitral cells, which are output neurons in the OB, revealed that the inhibitory input into the mitral cells was retarded. In the immunohistochemical analysis, neurite degeneration of DA neurons in the substantia nigra was observed in rotenone-administered mice, indicating that rotenone progressively initiated the degeneration of cerebral DA neurons via the nasal route.
Collapse
Affiliation(s)
- Hitoshi Sasajima
- Department of Physiology, Division of Sensory Physiology, Asahikawa Medical University
| | | | | | | |
Collapse
|
14
|
The substantia nigra and ventral tegmental dopaminergic neurons from development to degeneration. J Chem Neuroanat 2016; 76:98-107. [PMID: 26859066 DOI: 10.1016/j.jchemneu.2016.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 01/25/2016] [Accepted: 02/03/2016] [Indexed: 12/20/2022]
Abstract
The pathology of Parkinson's disease (PD) is characterised by the loss of neurons in the substantia nigra parcompacta (A9), which results in the insufficient release of dopamine, and the appearance of motor symptoms. Not all neurons in the A9 subregions degenerate in PD, and the dopaminergic (DA) neurons located in the neighboring ventral tegmental area (A10) are relatively resistant to PD pathogenesis. An increasing number of quantitative studies using human tissue samples of these brain regions have revealed important biological differences. In this review, we first describe current knowledge on the multi-segmental neuromere origin of these DA neurons. We then compare the continued transcription factor and protein expression profile and morphological differences distinguishing subregions within the A9 substantia nigra, and between A9 and A10 DA neurons. We conclude that the expression of three types of factors and proteins contributes to the diversity observed in these DA neurons and potentially to their differential vulnerability to PD. In particular, the specific axonal structure of A9 neurons and the way A9 neurons maintain their DA usage makes them easily exposed to energy deficits, calcium overload and oxidative stress, all contributing to their decreased survival in PD. We highlight knowledge gaps in our understanding of the cellular biomarkers for and their different functions in DA neurons, knowledge which may assist to identify underpinning disease mechansims that could be targeted for the treatment of any subregional dysfunction and loss of these DA neurons.
Collapse
|
15
|
Walker QD, Johnson ML, Van Swearingen AED, Arrant AE, Caster JM, Kuhn CM. Individual differences in psychostimulant responses of female rats are associated with ovarian hormones and dopamine neuroanatomy. Neuropharmacology 2012; 62:2267-77. [PMID: 22342988 DOI: 10.1016/j.neuropharm.2012.01.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 10/14/2022]
Abstract
Ovarian hormones modulate the pharmacological effects of psychostimulants and may enhance vulnerability to drug addiction. Female rats have more midbrain dopamine neurons than males and greater dopamine uptake and release rates. Cocaine stimulates motor behavior and dopamine efflux more in female than male rats, but the mediating mechanisms are unknown. This study investigated individual differences in anatomic, neurochemical, and behavioral measures in female rats to understand how ovarian hormones affect the relatedness of these endpoints. Ovarian hormone effects were assessed by comparing individual responses in ovariectomized (OVX) and sham adult female rats. Locomotion was determined before and following 10mg/kg cocaine. Electrically-stimulated dopamine efflux was assessed using fast cyclic voltammetry in vivo. Dopamine neuron number and density in substantia nigra (SN) and ventral tegmental area (VTA) were determined in the same animals using tyrosine-hydroxylase immunohistochemistry and unbiased stereology. Locomotor behavior and dopamine efflux did not differ at baseline but were greater in sham than OVX following cocaine. Cocaine increased dopamine release rates in both groups but uptake inhibition (K(m)) was greater in sham than OVX. Dopamine neuron number and density in SN and VTA were greater in shams. Sham females with the largest uterine weights exhibited the highest density of dopamine neurons in the SN, and the most cocaine-stimulated behavior and dopamine efflux. Ovariectomy eliminated these relationships. We postulate that SN density could link ovarian hormones and high-psychostimulant responses in females. Similar mechanisms may be involved in individual differences in the addiction vulnerability of women.
Collapse
Affiliation(s)
- Q David Walker
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Mela F, Marti M, Bido S, Cenci MA, Morari M. In vivo evidence for a differential contribution of striatal and nigral D1 and D2 receptors to l-DOPA induced dyskinesia and the accompanying surge of nigral amino acid levels. Neurobiol Dis 2012; 45:573-82. [DOI: 10.1016/j.nbd.2011.09.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/14/2011] [Accepted: 09/29/2011] [Indexed: 10/17/2022] Open
|
17
|
Abstract
Amphetamines are psychostimulant drugs with high abuse potential. Acute and chronic doses of amphetamines affect dopamine (DA) neurotransmission in the basal ganglia. The basal ganglia are a group of subcortical nuclei that are anatomically positioned to integrate cognitive, motor and sensorimotor inputs from the cortex. Amphetamines can differentially alter the functioning of specific BG circuits to produce neurochemical changes that affect cognition, movement, and drug seeking behavior through their effects on DA neurotransmission. This review focuses on how alterations in dopaminergic neurotransmission within distinct basal ganglia pathways can modify their functional output to predict and explain the acute and long term behavioral consequences of amphetamine exposure.
Collapse
|
18
|
Horner KA, Gilbert YE, Cline SD. Widespread increases in malondialdehyde immunoreactivity in dopamine-rich and dopamine-poor regions of rat brain following multiple, high doses of methamphetamine. Front Syst Neurosci 2011; 5:27. [PMID: 21602916 PMCID: PMC3093137 DOI: 10.3389/fnsys.2011.00027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 04/27/2011] [Indexed: 11/13/2022] Open
Abstract
Treatment with multiple high doses of methamphetamine (METH) can induce oxidative damage, including dopamine (DA)-mediated reactive oxygen species (ROS) formation, which may contribute to the neurotoxic damage of monoamine neurons and long-term depletion of DA in the caudate putamen (CPu) and substantia nigra pars compacta (SNpc). Malondialdehyde (MDA), a product of lipid peroxidation by ROS, is commonly used as a marker of oxidative damage and treatment with multiple high doses of METH increases MDA reactivity in the CPu of humans and experimental animals. Recent data indicate that MDA itself may contribute to the destruction of DA neurons, as MDA causes the accumulation of toxic intermediates of DA metabolism via its chemical modification of the enzymes necessary for the breakdown of DA. However, it has been shown that in human METH abusers there is also increased MDA reactivity in the frontal cortex, which receives relatively fewer DA afferents than the CPu. These data suggest that METH may induce neuronal damage regardless of the regional density of DA or origin of DA input. The goal of the current study was to examine the modification of proteins by MDA in the DA-rich nigrostriatal and mesoaccumbal systems, as well as the less DA-dense cortex and hippocampus following a neurotoxic regimen of METH treatment. Animals were treated with METH (10 mg/kg) every 2 h for 6 h, sacrificed 1 week later, and examined using immunocytochemistry for changes in MDA-adducted proteins. Multiple, high doses of METH significantly increased MDA immunoreactivity (MDA-ir) in the CPu, SNpc, cortex, and hippocampus. Multiple METH administration also increased MDA-ir in the ventral tegmental area and nucleus accumbens. Our data indicate that multiple METH treatment can induce persistent and widespread neuronal damage that may not necessarily be limited to the nigrostriatal DA system.
Collapse
Affiliation(s)
- Kristen A. Horner
- Division of Basic Medical Sciences, Mercer University School of MedicineMacon, GA, USA
| | - Yamiece E. Gilbert
- Division of Basic Medical Sciences, Mercer University School of MedicineMacon, GA, USA
- Master of Public Health Program, Department of Community Medicine, Mercer University School of MedicineMacon, GA, USA
| | - Susan D. Cline
- Division of Basic Medical Sciences, Mercer University School of MedicineMacon, GA, USA
| |
Collapse
|
19
|
Rommelfanger KS, Wichmann T. Extrastriatal dopaminergic circuits of the Basal Ganglia. Front Neuroanat 2010; 4:139. [PMID: 21103009 PMCID: PMC2987554 DOI: 10.3389/fnana.2010.00139] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 09/23/2010] [Indexed: 11/20/2022] Open
Abstract
The basal ganglia are comprised of the striatum, the external and internal segment of the globus pallidus (GPe and GPi, respectively), the subthalamic nucleus (STN), and the substantia nigra pars compacta and reticulata (SNc and SNr, respectively). Dopamine has long been identified as an important modulator of basal ganglia function in the striatum, and disturbances of striatal dopaminergic transmission have been implicated in diseases such as Parkinson's disease (PD), addiction and attention deficit hyperactivity disorder. However, recent evidence suggests that dopamine may also modulate basal ganglia function at sites outside of the striatum, and that changes in dopaminergic transmission at these sites may contribute to the symptoms of PD and other neuropsychiatric disorders. This review summarizes the current knowledge of the anatomy, functional effects and behavioral consequences of the dopaminergic innervation to the GPe, GPi, STN, and SNr. Further insights into the dopaminergic modulation of basal ganglia function at extrastriatal sites may provide us with opportunities to develop new and more specific strategies for treating disorders of basal ganglia dysfunction.
Collapse
|
20
|
Kliem MA, Pare JF, Khan ZU, Wichmann T, Smith Y. Ultrastructural localization and function of dopamine D1-like receptors in the substantia nigra pars reticulata and the internal segment of the globus pallidus of parkinsonian monkeys. Eur J Neurosci 2010; 31:836-51. [PMID: 20374284 DOI: 10.1111/j.1460-9568.2010.07109.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The motor symptoms of Parkinson's disease (PD) are commonly attributed to striatal dopamine loss, but reduced dopamine innervation of basal ganglia output nuclei, the internal globus pallidus (GPi) and the substantia nigra pars reticulata (SNr) may also contribute to symptoms and signs of PD. Both structures express dopamine D1 and D5 receptors under normal conditions, and we have recently demonstrated that their local activation reduces neuronal discharge rates and enhances bursts and oscillatory activity in both nuclei of normal monkeys [M.A. Kliem et al. (2007)J. Neurophysiol., 89, 1489-1500]. Here, we determined the ultrastructural localization and function of D1-like receptors in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated parkinsonian monkeys. In both normal and MPTP-treated monkeys, most of the D1 and D5 receptor immunoreactivity was associated with unmyelinated axons, but we also found significant postsynaptic D5 receptor immunostaining in dendrites of GPi and SNr neurons. A significant proportion of axonal D1 immunostaining was bound to the plasma membrane in both normal and MPTP-treated monkeys. Local microinjections of the D1/D5 receptor agonist SKF82958 significantly reduced discharge rates in GPi and SNr neurons, while they increased burst firing and oscillatory activity in the 3-15-Hz band in SNr, but not in GPi, of parkinsonian monkeys. Together with our recent findings from normal monkeys, these data provide evidence that functional D1/D5 receptors are expressed in GPi and SNr in both normal and parkinsonian states, and that their activation by endogenous dopamine (under normal conditions) or dopamine receptor agonists (in parkinsonism) may regulate basal ganglia outflow.
Collapse
Affiliation(s)
- Michele A Kliem
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
21
|
Opazo F, Schulz JB, Falkenburger BH. PKC links Gq-coupled receptors to DAT-mediated dopamine release. J Neurochem 2010; 114:587-96. [DOI: 10.1111/j.1471-4159.2010.06788.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Abstract
Substantia nigra pars reticulata (SNr) is a key basal ganglia output nucleus critical for movement control. Its GABA-containing projection neurons intermingle with nigral dopamine (DA) neuron dendrites. Here we show that SNr GABA neurons coexpress dopamine D(1) and D(5) receptor mRNAs and also mRNA for TRPC3 channels. Dopamine induced an inward current in these neurons and increased their firing frequency. These effects were mimicked by D(1)-like agonists, blocked by a D(1)-like antagonist. D(1)-like receptor blockade reduced SNr GABA neuron firing frequency and increased their firing irregularity. These D(1)-like effects were absent in D(1) or D(5) receptor knock-out mice and inhibited by intracellularly applied D(1) or D(5) receptor antibody. These D(1)-like effects were also inhibited when the tonically active TRPC3 channels were inhibited by intracellularly applied TRPC3 channel antibody. Furthermore, stimulation of DA neurons induced a direct inward current in SNr GABA neurons that was sensitive to D(1)-like blockade. Manipulation of DA neuron activity and DA release and inhibition of dopamine reuptake affected SNr GABA neuron activity in a D(1)-like receptor-dependent manner. Together, our findings indicate that dendritically released dopamine tonically excites SNr GABA neurons via D(1)-D(5) receptor coactivation that enhances constitutively active TRPC3 channels, forming an ultra-short substantia nigra pars compacta --> SNr dopamine pathway that regulates the firing intensity and pattern of these basal ganglia output neurons.
Collapse
|
23
|
Comparative Ultrastructural Analysis of D1 and D5 Dopamine Receptor Distribution in the Substantia Nigra and Globus Pallidus of Monkeys. ADVANCES IN BEHAVIORAL BIOLOGY 2009; 58:239-253. [PMID: 19750130 PMCID: PMC2742379 DOI: 10.1007/978-1-4419-0340-2_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Dopamine acts through the D1-like (D1, D5) and D2-like (D2, D3, D4) receptor families. Various studies have shown a preponderance of presynaptic dopamine D1 receptors on axons and terminals in the internal globus pallidus (GPi) and substantia nigra reticulata (SNr), but little is known about D5 receptors distribution in these brain regions. In order to further characterize the potential targets whereby dopamine could mediate its effects in basal ganglia output nuclei, we undertook a comparative electron microscopic analysis of D1 and D5 receptors immunoreactivity in the GPi and SNr of rhesus monkeys. At the light microscopic level, D1 receptor labeling was confined to small punctate elements, while D5 receptor immunoreactivity was predominantly expressed in cellular and dendritic processes throughout the SNr and GPi. At the electron microscopic level, 90% of D1 receptor labeling was found in unmyelinated axons or putative GABAergic terminals in both basal ganglia output nuclei. In contrast, D5 receptor labeling showed a different pattern of distribution. Although the majority (65-75%) of D5 receptor immunoreactivity was also found in unmyelinated axons and terminals in GPi and SNr, significant D5 receptor immunolabeling was also located in dendritic and glial processes. Immunogold studies showed that about 50% of D1 receptor immunoreactivity in axons was bound to the plasma membrane providing functional sites for D1 receptor-mediated effects on transmitter release in GPi and SNr. These findings provide evidence for the existence of extrastriatal pre- and post-synaptic targets through which dopamine and drugs acting at D1-like receptors may regulate basal ganglia outflow and possibly exert some of their anti-parkinsonian effects.
Collapse
|
24
|
Smith Y, Villalba R. Striatal and extrastriatal dopamine in the basal ganglia: an overview of its anatomical organization in normal and Parkinsonian brains. Mov Disord 2009; 23 Suppl 3:S534-47. [PMID: 18781680 DOI: 10.1002/mds.22027] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Degeneration of the nigrostriatal dopaminergic system is the characteristic neuropathological feature of Parkinson's disease and therapy is primarily based on a dopamine replacement strategy. Dopamine has long been recognized to be a key neuromodulator of basal ganglia function, essential for normal motor activity. The recent years have witnessed significant advances in our knowledge of dopamine function in the basal ganglia. Although the striatum remains the main functional target of dopamine, it is now appreciated that there is dopaminergic innervation of the pallidum, subthalamic nucleus, and substantia nigra. A new dopaminergic- thalamic system has also been uncovered, setting the stage for a direct dopamine action on thalamocortical activity. The differential distribution of D1 and D2 receptors on neurons in the direct and indirect striato-pallidal pathways has been re-emphasized, and cholinergic interneurons are recognized as an intermediary mediator of dopamine-mediated communication between the two pathways. The importance and specificity of dopamine in regulating morphological changes in striatal projection neurons provides further evidence for the complex and multifarious mechanisms through which dopamine mediates its functional effects in the basal ganglia. In this review, the role of basal ganglia dopamine and its functional relevance in normal and pathological conditions will be discussed.
Collapse
Affiliation(s)
- Yoland Smith
- Yerkes National Primate Research Center and Department of Neurology, Emory University, Atlanta, Georgia, USA.
| | | |
Collapse
|
25
|
Joshua M, Adler A, Rosin B, Vaadia E, Bergman H. Encoding of probabilistic rewarding and aversive events by pallidal and nigral neurons. J Neurophysiol 2008; 101:758-72. [PMID: 19052110 DOI: 10.1152/jn.90764.2008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have rarely tested whether the activity of high-frequency discharge (HFD) neurons of the basal ganglia (BG) is modulated by expectation, delivery, and omission of aversive events. Therefore the full value domain encoded by the BG network is still unknown. We studied the activity of HFD neurons of the globus pallidus external segment (GPe, n=310), internal segment (GPi, n=149), and substantia nigra pars reticulata (SNr, n=145) in two monkeys during a classical conditioning task with cues predicting the probability of food, neutral, or airpuff outcomes. The responses of BG HFD neurons were long-lasting and diverse with coincident increases and decreases in discharge rate. The population responses to reward-related events were larger than the responses to aversive and neutral-related events. The latter responses were similar, except for the responses to actual airpuff delivery. The fraction of responding cells was larger for reward-related events, with better discrimination between rewarding and aversive trials in the responses with an increase rather than a decrease in discharge rate. GPe and GPi single units were more strongly modulated and better reflected the probability of reward- than aversive-related events. SNr neurons were less biased toward the encoding of the rewarding events, especially during the outcome epoch. Finally, the latency of SNr responses to all predictive cues was shorter than the latency of pallidal responses. These results suggest preferential activation of the BG HFD neurons by rewarding compared with aversive events.
Collapse
Affiliation(s)
- Mati Joshua
- Department of Physiology, The Hebrew University-Hadassah Medical School, POB 12272, Jerusalem 91120, Israel.
| | | | | | | | | |
Collapse
|
26
|
Herr NR, Kile BM, Carelli RM, Wightman RM. Electroosmotic flow and its contribution to iontophoretic delivery. Anal Chem 2008; 80:8635-41. [PMID: 18947198 DOI: 10.1021/ac801547a] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Iontophoresis is the movement of charged molecules in solution under applied current using pulled multibarrel glass capillaries drawn to a sharp tip. The technique is generally nonquantitative, and to address this, we have characterized the ejection of charged and neutral species using carbon-fiber electrodes attached to iontophoretic barrels. Our results show that observed ejections are due to the sum of iontophoretic and electroosmotic forces. With the use of the neutral, electroactive molecule 2-(4-nitrophenoxy) ethanol (NPE), which is only transported by electroosmotic flow (EOF), a positive correlation between the amount ejected and the diameter of each barrel's tip was found. In addition, using various charged and neutral electroactive compounds we found that, when each compound is paired with the EOF marker, the percentage of the ejection due to EOF remains constant. This percentage varies for each pair of compounds, and the differences in mobility are positively correlated to differences in electrophoretic mobility. Overall, the results show that capillary electrophoresis (CE) can be used to predict the percentage of ejection that will be due to EOF. With this information, quantitative iontophoresis is possible for electrochemically inactive drugs by using NPE as a marker for EOF.
Collapse
Affiliation(s)
- Natalie R Herr
- Department of Chemistry and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA
| | | | | | | |
Collapse
|
27
|
Brain temperature responses to salient stimuli persist during dopamine receptor blockade despite a blockade of locomotor responses. Pharmacol Biochem Behav 2008; 91:233-42. [PMID: 18727935 DOI: 10.1016/j.pbb.2008.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 08/01/2008] [Accepted: 08/04/2008] [Indexed: 11/23/2022]
Abstract
We examined how an acute dopamine (DA) receptor blockade affects locomotor and brain (nucleus accumbens or NAcc), muscle and skin temperature responses to three arousing stimuli (procedure of sc injection, tail-pinch and social interaction with another male rat) and intravenous cocaine (1 mg/kg). DA receptor blockade was induced by mixture of D1- (SCH23390) and D-2 selective (eticlopride) DA antagonists at 0.2 mg/kg doses. Each arousing stimulus and cocaine caused locomotor activation, prolonged increase in NAcc and muscle temperature (0.6-1.0 degrees C for 20-50 min) and transient skin hypothermia (-0.6 degrees C for 1-3 min) in drug-naive conditions. DA receptor blockade strongly decreased basal locomotor activity, but moderately increased brain, muscle and skin temperatures. Therefore, selective interruption of DA transmission does not inhibit the brain, making it more metabolically active and warmer despite skin vasodilatation and the enhanced heat loss to the body and the external environment. DA antagonists strongly decreased locomotor responses to all stimuli and cocaine, had no effects on acute skin vasoconstriction, but differentially affected stimuli- and drug-induced changes in NAcc and muscle temperatures. While brain and muscle temperatures induced by cocaine were fully blocked and both temperatures slightly decreased, temperature increases induced by tail-pinch and social interaction, despite a significant attenuation, persisted during DA receptor blockade. These data are discussed to define the role of the DA system in regulating the central activation processes and behavioral responsiveness to natural arousing and drug stimuli.
Collapse
|
28
|
Abstract
Information flow through neurones was historically considered to be linear, with dendrites receiving information from incoming synaptic terminals, the soma processing the information and the axon carrying it to the terminal that synapses upon another cell or end organ. However, recent studies have shown that dendrites can release transmitters themselves, and thereby communicate with neighbouring structures, whether these are adjacent neurones or incoming synapses. Due to their anatomical features, the magnocellular vasopressin and oxytocin containing neurones of the hypothalamic supraoptic and paraventricular nuclei and the dopamine neurones of the substantia nigra have revealed important aspects of dendritic function including mechanisms of dendritic transmitter release.
Collapse
Affiliation(s)
- F Bergquist
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
29
|
Role of ventral medial prefrontal cortex in incubation of cocaine craving. Neuropharmacology 2008; 56 Suppl 1:177-85. [PMID: 18565549 DOI: 10.1016/j.neuropharm.2008.04.022] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 04/14/2008] [Accepted: 04/18/2008] [Indexed: 11/21/2022]
Abstract
Cue-induced drug-seeking in rodents progressively increases after withdrawal from cocaine, suggesting that cue-induced cocaine craving incubates over time. Here, we explored the role of the medial prefrontal cortex (mPFC, a brain area previously implicated in cue-induced cocaine seeking) in this incubation. We trained rats to self-administer cocaine for 10days (6h/day, infusions were paired with a tone-light cue), and then assessed after 1 or 30 withdrawal days the effect of exposure to cocaine cues on lever presses in extinction tests. We found that cue-induced cocaine-seeking in the extinction tests was higher after 30 withdrawal days than after 1day. The time-dependent increases in extinction responding were associated with large (ventral mPFC) or modest (dorsal mPFC) increases in ERK phosphorylation (a measure of ERK activity and an index of neuronal activation). After 30 withdrawal days, ventral but not dorsal injections of muscimol+baclofen (GABAa+GABAb receptor agonists that inhibit neuronal activity) decreased extinction responding. After 1 withdrawal day, ventral but not dorsal mPFC injections of bicuculline+saclofen (GABAa+GABAb receptor antagonists that increase neuronal activity) strongly increased extinction responding. Finally, muscimol+baclofen had minimal effect on extinction responding after 1day, and in cocaine-experienced rats, ventral mPFC injections of muscimol+baclofen or bicuculline+saclofen had no effect on lever presses for an oral sucrose solution. The present results indicate that ventral mPFC neuronal activity plays an important role in the incubation of cocaine craving.
Collapse
|
30
|
Kliem MA, Maidment NT, Ackerson LC, Chen S, Smith Y, Wichmann T. Activation of nigral and pallidal dopamine D1-like receptors modulates basal ganglia outflow in monkeys. J Neurophysiol 2007; 98:1489-500. [PMID: 17634344 DOI: 10.1152/jn.00171.2007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Studies of the effects of dopamine in the basal ganglia have focused on the striatum, whereas the functions of dopamine released in the internal pallidal segment (GPi) or in the substantia nigra pars reticulata (SNr) have received less attention. Anatomic and biochemical investigations have demonstrated the presence of dopamine D1-like receptors (D1LRs) in GPi and SNr, which are primarily located on axons and axon terminals of the GABAergic striatopallidal and striatonigral afferents. Our experiments assessed the effects of D1LR ligands in GPi and SNr on local gamma-aminobutyric acid (GABA) levels and neuronal activity in these nuclei in rhesus monkeys. Microinjections of the D1LR receptor agonist SKF82958 into GPi and SNr significantly reduced discharge rates in GPi and SNr, whereas injections of the D1LR antagonist SCH23390 increased firing in the majority of GPi neurons. D1LR activation also increased bursting and oscillations in neuronal discharge in the 3- to 15-Hz band in both structures, whereas D1LR blockade had the opposite effects in GPi. Microdialysis measurements of GABA concentrations in GPi and SNr showed that the D1LR agonist increased the level of the transmitter. Both findings are compatible with the hypothesis that D1LR activation leads to GABA release from striatopallidal or striatonigral afferents, which may secondarily reduce firing of basal ganglia output neurons. The antagonist experiments suggest that a dopaminergic "tone" exists in GPi. Our results support the finding that D1LR activation may have powerful effects on GPi and SNr neurons and may mediate some of the effects of dopamine replacement therapies in Parkinson's disease.
Collapse
Affiliation(s)
- Michele A Kliem
- Yerkes National Primate Center, Emory University, School of Medicine, 954 Gatewood Road, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
31
|
Brown PL, Bae D, Kiyatkin EA. Relationships between locomotor activation and alterations in brain temperature during selective blockade and stimulation of dopamine transmission. Neuroscience 2006; 145:335-43. [PMID: 17196751 PMCID: PMC1850994 DOI: 10.1016/j.neuroscience.2006.11.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 11/14/2006] [Accepted: 11/14/2006] [Indexed: 12/27/2022]
Abstract
It is well known that the dopamine (DA) system plays an essential role in the organization and regulation of brain activational processes. Various environmental stimuli that induce locomotor activation also increase DA transmission, while DA antagonists decrease spontaneous locomotion. Our previous work supports close relationships between locomotor activation and brain and body temperature increases induced by salient environmental challenges or occurring during motivated behavior. While this correlation was also true for psychomotor stimulant drugs such as methamphetamine and MDMA, more complex relationships or even inverted correlations were found for other drugs that are known to increase DA transmission (i.e. heroin and cocaine). In the present study we examined brain, muscle and skin temperatures together with conventional locomotion during selective interruption of DA transmission induced by a mixture of D1 and D2 antagonists (SCH-23390 and eticlopride at 0.2 mg/kg, s.c.) and its selective activation by apomorphine (APO; 0.05 and 0.25 mg/kg, i.v.) in rats. While full DA receptor blockade decreased spontaneous locomotion, it significantly increased brain, muscle and skin temperatures, suggesting metabolic brain activation under conditions of vasodilatation (or weakening of normal vascular tone). In contrast, APO strongly decreased skin temperature but tended to decrease brain and muscle temperatures despite strong hyperlocomotion and stereotypy. The brain temperature response to APO was strongly dependent on basal brain temperature, with hypothermia at high basal temperatures and weak hyperthermia at low temperatures. While supporting the role of DA in locomotor activation, these data suggest more complex relationships between drug-induced alterations in DA transmission, behavioral activation and metabolic brain activation.
Collapse
Affiliation(s)
| | | | - Eugene A. Kiyatkin
- * Correspondence should be addressed to: Dr. Eugene A. Kiyatkin at the above address; phone: (410) 550 5551; fax: (410) 550-5553; e-mail:
| |
Collapse
|