1
|
Anjum A, Yazid MD, Daud MF, Idris J, Ng AMH, Naicker AS, Rashidah Ismail OH, Athi Kumar RK, Lokanathan Y. NeuroAiD TM-II (MLC901) Promoted Neurogenesis by Activating the PI3K/AKT/GSK-3β Signaling Pathway in Rat Spinal Cord Injury Models. Biomedicines 2024; 12:1920. [PMID: 39200383 PMCID: PMC11352105 DOI: 10.3390/biomedicines12081920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/02/2024] Open
Abstract
Traumatic damage to the spinal cord (SCI) frequently leads to irreversible neurological deficits, which may be related to apoptotic neurodegeneration in nerve tissue. The MLC901 treatment possesses neuroprotective and neuroregenerative activity. This study aimed to explore the regenerative potential of MLC901 and the molecular mechanisms promoting neurogenesis and functional recovery after SCI in rats. A calibrated forceps compression injury for 15 s was used to induce SCI in rats, followed by an examination of the impacts of MLC901 on functional recovery. The Basso, Beattie, and Bresnahan (BBB) scores were utilized to assess neuronal functional recovery; H&E and immunohistochemistry (IHC) staining were also used to observe pathological changes in the lesion area. Somatosensory Evoked Potentials (SEPs) were measured using the Nicolet® Viking Quest™ apparatus. Additionally, we employed the Western blot assay to identify PI3K/AKT/GSK-3β pathway-related proteins and to assess the levels of GAP-43 and GFAP through immunohistochemistry staining. The study findings revealed that MLC901 improved hind-limb motor function recovery, alleviating the pathological damage induced by SCI. Moreover, MLC901 significantly enhanced locomotor activity, SEPs waveform, latency, amplitude, and nerve conduction velocity. The treatment also promoted GAP-43 expression and reduced reactive astrocytes (GFAP). MLC901 treatment activated p-AKT reduced p-GSK-3β expression levels and showed a normalized ratio (fold changes) relative to β-tubulin. Specifically, p-AKT exhibited a 4-fold increase, while p-GSK-3β showed a 2-fold decrease in T rats compared to UT rats. In conclusion, these results suggest that the treatment mitigates pathological tissue damage and effectively improves neural functional recovery following SCI, primarily by alleviating apoptosis and promoting neurogenesis. The underlying molecular mechanism of this treatment mainly involves the activation of the PI3K/AKT/GSK-3β pathway.
Collapse
Affiliation(s)
- Anam Anjum
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.); (M.D.Y.); (A.M.H.N.)
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Muhammad Dain Yazid
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.); (M.D.Y.); (A.M.H.N.)
| | - Muhammad Fauzi Daud
- Institute of Medical Science Technology, Universiti Kuala Lumpur Malaysia, Kajang 43000, Malaysia; (M.F.D.); (J.I.)
| | - Jalilah Idris
- Institute of Medical Science Technology, Universiti Kuala Lumpur Malaysia, Kajang 43000, Malaysia; (M.F.D.); (J.I.)
| | - Angela Min Hwei Ng
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.); (M.D.Y.); (A.M.H.N.)
| | - Amaramalar Selvi Naicker
- Department of Orthopaedics & Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Ohnmar Htwe Rashidah Ismail
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Sultan Zainal Abidin (UniSZA), Kuala Terengganu 21300, Malaysia;
| | - Ramesh Kumar Athi Kumar
- Department of Surgery, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (A.A.); (M.D.Y.); (A.M.H.N.)
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
2
|
Rotondo R, Proietti S, Perluigi M, Padua E, Stocchi F, Fini M, Stocchi V, Volpe D, De Pandis MF. Physical activity and neurotrophic factors as potential drivers of neuroplasticity in Parkinson's Disease: A systematic review and meta-analysis. Ageing Res Rev 2023; 92:102089. [PMID: 37844764 DOI: 10.1016/j.arr.2023.102089] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder, characterized by motor and non-motor symptoms, that still lacks of a disease-modifying treatment. Consistent evidence proved the benefits of physical therapy on motor and non-motor symptoms in PD patients, leading the scientific community to propose physical activity as disease-modifying therapy for PD and suggesting the involvement of neurotrophic factors (NFs) as key mediators of neuroplasticity. However, the lack of standardized exercise training and methodological flaws of clinical trials have limited the evidence demonstrating the exercise-induced changes in serum and plasma neurotrophic factors concentration. A systematic search, covering 20 years of research in this field and including randomized and non-randomized controlled trials (RCTs and non-RCTs), which reported changes in serum and plasma NFs after a specific intervention, were reviewed. Pooled effect sizes (p-ESs) and 95% confidence intervals (95%CIs) were calculated using a random effects model with R software. A total of 18 articles, of which exercise programs of interventions were codified in terms of type, intensity and duration adopting a standardisation methodology, were included in the systematic review. Six papers, describing the effect of different training programs on BDNF and IGF-1 levels, were included and independently analysed in two meta-analyses. Quantitative analysis for BDNF indicated a statistically significant improvement in serum concentration of PD patients (MD: 5.99 ng/mL; 95%IC: 0.15 -11.83; I2 = 77%) performing physical activity compared with control conditions in RCTs. Preliminary evidence supported the hypothesis that a moderate intensity aerobic exercise (MIAE) would be necessary to induce the changes in NFs. However, sensitivity analysis of meta-analysis and the few studies included in subgroup analysis did not support these results. Alongside, meta-analysis followed by sensitivity analysis revealed a potential change in serum IGF-1 (MD: 33.47 ng/mL; 95%IC: 8.09-58.85) in PD patients performing physical activity with respect controls in RCT studies. Considering the limited evidence to support or refute the increase in NFs levels in PD patients performing physical activity, there is a need to develop a rigorous controlled randomized trial, with standardization for loading intensity of physical activity, greater sample size, and a correct stratification of PD patients to establish a well-defined correlation between physical activity and NFs levels.
Collapse
Affiliation(s)
| | - Stefania Proietti
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Roma, Rome, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome
| | - Elvira Padua
- Department of Human Science and Promotion of Quality of Life, San Raffaele Rome Telematic University, Italy
| | - Fabrizio Stocchi
- Department of Human Science and Promotion of Quality of Life, San Raffaele Rome Telematic University, Italy; IRCCS San Raffaele Roma, Rome, Italy
| | | | - Vilberto Stocchi
- Department of Human Science and Promotion of Quality of Life, San Raffaele Rome Telematic University, Italy
| | - Daniele Volpe
- Fresco Parkinson Center Villa Margherita S. Stefano Riabilitazione, Vicenza, Italy
| | - Maria Francesca De Pandis
- San Raffaele Cassino, Cassino, Italy; Department of Human Science and Promotion of Quality of Life, San Raffaele Rome Telematic University, Italy.
| |
Collapse
|
3
|
Griffin JM, Hingorani Jai Prakash S, Bockemühl T, Benner JM, Schaffran B, Moreno-Manzano V, Büschges A, Bradke F. Rehabilitation enhances epothilone-induced locomotor recovery after spinal cord injury. Brain Commun 2023; 5:fcad005. [PMID: 36744011 PMCID: PMC9893225 DOI: 10.1093/braincomms/fcad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/21/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Microtubule stabilization through epothilones is a promising preclinical therapy for functional recovery following spinal cord injury that stimulates axon regeneration, reduces growth-inhibitory molecule deposition and promotes functional improvements. Rehabilitation therapy is the only clinically validated approach to promote functional improvements following spinal cord injury. However, whether microtubule stabilization can augment the beneficial effects of rehabilitation therapy or act in concert with it to further promote repair remains unknown. Here, we investigated the pharmacokinetic, histological and functional efficacies of epothilone D, epothilone B and ixabepilone alone or in combination with rehabilitation following a moderate contusive spinal cord injury. Pharmacokinetic analysis revealed that ixabepilone only weakly crossed the blood-brain barrier and was subsequently excluded from further investigations. In contrast, epothilones B and D rapidly distributed to CNS compartments displaying similar profiles after either subcutaneous or intraperitoneal injections. Following injury and subcutaneous administration of epothilone B or D, rats were subjected to 7 weeks of sequential bipedal and quadrupedal training. For all outcome measures, epothilone B was efficacious compared with epothilone D. Specifically, epothilone B decreased fibrotic scaring which was associated with a retention of fibronectin localized to perivascular cells in sections distal to the lesion. This corresponded to a decreased number of cells present within the intralesional space, resulting in less axons within the lesion. Instead, epothilone B increased serotonergic fibre regeneration and vesicular glutamate transporter 1 expression caudal to the lesion, which was not affected by rehabilitation. Multiparametric behavioural analyses consisting of open-field locomotor scoring, horizontal ladder, catwalk gait analysis and hindlimb kinematics revealed that rehabilitation and epothilone B both improved several aspects of locomotion. Specifically, rehabilitation improved open-field locomotor and ladder scores, as well as improving the gait parameters of limb coupling, limb support, stride length and limb speed; epothilone B improved these same gait parameters but also hindlimb kinematic profiles. Functional improvements by epothilone B and rehabilitation acted complementarily on gait parameters leading to an enhanced recovery in the combination group. As a result, principal component analysis of gait showed the greatest improvement in the epothilone B plus rehabilitation group. Thus, these results support the combination of epothilone B with rehabilitation in a clinical setting.
Collapse
Affiliation(s)
- Jarred M Griffin
- Correspondence may also be addressed to: Jarred Griffin The German Center for Neurodegenerative Diseases (DZNE) Venusberg-Campus 1/99, Bonn 53127, Germany E-mail:
| | - Sonia Hingorani Jai Prakash
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia 46012, Spain
| | - Till Bockemühl
- Department of Animal Physiology, Institute of Zoology, University of Cologne, Cologne 50674, Germany
| | - Jessica M Benner
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Barbara Schaffran
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia 46012, Spain
| | - Ansgar Büschges
- Department of Animal Physiology, Institute of Zoology, University of Cologne, Cologne 50674, Germany
| | - Frank Bradke
- Correspondence to: Frank Bradke The German Center for Neurodegenerative Diseases (DZNE) Venusberg-Campus 1/99, Bonn 53127, Germany E-mail:
| |
Collapse
|
4
|
Gouveia D, Cardoso A, Carvalho C, Almeida A, Gamboa Ó, Ferreira A, Martins Â. Approach to Small Animal Neurorehabilitation by Locomotor Training: An Update. Animals (Basel) 2022; 12:ani12243582. [PMID: 36552502 PMCID: PMC9774773 DOI: 10.3390/ani12243582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Neurorehabilitation has a wide range of therapies to achieve neural regeneration, reorganization, and repair (e.g., axon regeneration, remyelination, and restoration of spinal circuits and networks) to achieve ambulation for dogs and cats, especially for grade 1 (modified Frankel scale) with signs of spinal shock or grade 0 (deep pain negative), similar to humans classified with ASIA A lesions. This review aims to explain what locomotor training is, its importance, its feasibility within a clinical setting, and some possible protocols for motor recovery, achieving ambulation with coordinated and modulated movements. In addition, it cites some of the primary key points that must be present in the daily lives of veterinarians or rehabilitation nurses. These can be the guidelines to improve this exciting exercise necessary to achieve ambulation with quality of life. However, more research is essential in the future years.
Collapse
Affiliation(s)
- Débora Gouveia
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
- Correspondence:
| | - Ana Cardoso
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
| | - Carla Carvalho
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
| | - António Almeida
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| | - António Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
- CIISA—Centro Interdisciplinar-Investigaçāo em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universi dade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| | - Ângela Martins
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setubal, Portugal
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| |
Collapse
|
5
|
Mesquida-Veny F, Martínez-Torres S, Del Río JA, Hervera A. Genetic control of neuronal activity enhances axonal growth only on permissive substrates. Mol Med 2022; 28:97. [PMID: 35978278 PMCID: PMC9387030 DOI: 10.1186/s10020-022-00524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/03/2022] [Indexed: 11/19/2022] Open
Abstract
Background Neural tissue has limited regenerative ability. To cope with that, in recent years a diverse set of novel tools has been used to tailor neurostimulation therapies and promote functional regeneration after axonal injuries. Method In this report, we explore cell-specific methods to modulate neuronal activity, including opto- and chemogenetics to assess the effect of specific neuronal stimulation in the promotion of axonal regeneration after injury. Results Opto- and chemogenetic stimulations of neuronal activity elicited increased in vitro neurite outgrowth in both sensory and cortical neurons, as well as in vivo regeneration in the sciatic nerve, but not after spinal cord injury. Mechanistically, inhibitory substrates such as chondroitin sulfate proteoglycans block the activity induced increase in axonal growth. Conclusions We found that genetic modulations of neuronal activity on both dorsal root ganglia and corticospinal motor neurons increase their axonal growth capacity but only on permissive environments. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00524-2.
Collapse
Affiliation(s)
- Francina Mesquida-Veny
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Sara Martínez-Torres
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain.,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.,Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Arnau Hervera
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain. .,Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain. .,Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain. .,Institute of Neuroscience, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
6
|
Fang H, Rossano S, Wang X, Nabulsi N, Kelley B, Fowles K, Ropchan J, Strittmatter SM, Carson RE, Huang Y. Translational PET Imaging of Spinal Cord Injury with the Serotonin Transporter Tracer [ 11C]AFM. Mol Imaging Biol 2022; 24:560-569. [PMID: 35020138 PMCID: PMC9550197 DOI: 10.1007/s11307-021-01698-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE The descending raphespinal serotonin (5-HT) system contributes to neural activities required for locomotion. The presynaptic serotonin transporter (SERT) is a marker of 5-HT innervation. In this study, we explored the use of PET imaging with the SERT radioligand [11C]AFM as a biomarker of 5-HT axon damage after spinal cord injury (SCI) in a rodent model and its translation to imaging SCI in humans. PROCEDURES PET imaging with [11C]AFM was performed in healthy rats under baseline and citalopram blocking conditions and a mid-thoracic transection rat model of SCI. The lumbar-to-cervical activity (L/C) ratio was calculated for the healthy and SCI animals to assess SERT binding decrease after SCI. Finally, translation of [11C]AFM PET was attempted to explore its potential to image SCI in humans. RESULTS Intense uptake in the brain and intact spinal cord was observed at 30-60 min post-injection of [11C]AFM in healthy rats. About 65% of [11C]AFM uptake in the spinal cord was blocked by citalopram. In the SCI rat model, the cervical uptake of [11C]AFM was similar to that in healthy rats, but the lumbar uptake was dramatically reduced, resulting in about half the L/C ratio in SCI rats compared to healthy rats. In contrast, [11C]AFM uptake in the human spinal cord showed no obvious decrease after treatment with citalopram. In the human subjects with SCI, decreases in [11C]AFM uptake were also not obvious in the section of spinal cord caudal to the injury point. CONCLUSION [11C]AFM PET imaging of SERT provides a useful preclinical method to non-invasively visualize the rodent spinal cord and detect SERT changes in SCI rodent models. However, there appears to be little detectable specific binding signal for [11C]AFM in the human spinal cord. An SERT tracer with higher affinity and lower non-specific binding signal is needed to image the spinal cord in humans and to assess the axonal status in SCI patients.
Collapse
Affiliation(s)
- Hanyi Fang
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Samantha Rossano
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Xingxing Wang
- Cellular Neuroscience, Neurodegeneration, and Repair Program, and Departments of Neurology and Neurobiology, Yale School of Medicine, New Haven, CT, USA
| | - Nabeel Nabulsi
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Brian Kelley
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Krista Fowles
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Jim Ropchan
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Stephen M Strittmatter
- Cellular Neuroscience, Neurodegeneration, and Repair Program, and Departments of Neurology and Neurobiology, Yale School of Medicine, New Haven, CT, USA
| | - Richard E Carson
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Yiyun Huang
- PET Center, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
7
|
Deng L, Sui T, Wang DV, Hou S, Cao X, Peng K, Xu Z, Xu X. Locomotor Exercise Enhances Supraspinal Control of Lower-Urinary-Tract Activity to Improve Micturition Function after Contusive Spinal-Cord Injury. Cells 2022; 11:cells11091398. [PMID: 35563703 PMCID: PMC9104392 DOI: 10.3390/cells11091398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
The recovery of lower-urinary-tract activity is a top priority for patients with spinal-cord injury. Historically, locomotor training improved micturition function in both patients with spinal cord injury and animal models. We explore whether training augments such as the supraspinal control of the external urethral sphincter results in enhanced coordination in detrusor-sphincter activity. We implemented a clinically relevant contusive spinal-cord injury at the 12th thoracic level in rats and administered forced wheel running exercise for 11 weeks. Awake rats then underwent bladder cystometrogram and sphincter electromyography recordings to examine the micturition reflex. Subsequently, pseudorabies-virus-encoding red fluorescent protein was injected into the sphincter to trans-synaptically trace the supraspinal innervation of Onuf's motoneurons. Training in the injury group reduced the occurrence of bladder nonvoiding contractions, decreased the voiding threshold and peak intravesical pressure, and shortened the latency of sphincter bursting during voiding, leading to enhanced voiding efficiency. Histological analysis demonstrated that the training increased the extent of spared spinal-cord tissue around the epicenter of lesions. Compared to the group of injury without exercise, training elicited denser 5-hydroxytryptamine-positive axon terminals in the vicinity of Onuf's motoneurons in the cord; more pseudorabies virus-labeled or c-fos expressing neurons were detected in the brainstem, suggesting the enhanced supraspinal control of sphincter activity. Thus, locomotor training promotes tissue sparing and axon innervation of spinal motoneurons to improve voiding function following contusive spinal-cord injury.
Collapse
Affiliation(s)
- Lingxiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.S.); (K.P.); (Z.X.)
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: (L.D.); (X.X.); Tel.: +1-317-278-1030 (L.D.); +1-317-274-1036 (X.X.)
| | - Tao Sui
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.S.); (K.P.); (Z.X.)
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China;
| | - Dong V. Wang
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (D.V.W.); (S.H.)
| | - Shaoping Hou
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; (D.V.W.); (S.H.)
| | - Xiaojian Cao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China;
| | - Kaiwen Peng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.S.); (K.P.); (Z.X.)
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zaocheng Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.S.); (K.P.); (Z.X.)
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiaoming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.S.); (K.P.); (Z.X.)
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: (L.D.); (X.X.); Tel.: +1-317-278-1030 (L.D.); +1-317-274-1036 (X.X.)
| |
Collapse
|
8
|
Martins Â, Gouveia D, Cardoso A, Carvalho C, Coelho T, Silva C, Viegas I, Gamboa Ó, Ferreira A. A Controlled Clinical Study of Intensive Neurorehabilitation in Post-Surgical Dogs with Severe Acute Intervertebral Disc Extrusion. Animals (Basel) 2021; 11:ani11113034. [PMID: 34827767 PMCID: PMC8614363 DOI: 10.3390/ani11113034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary This study explores the potential intensive neurorehabilitation plasticity effects in post-surgical paraplegic dogs with severe acute intervertebral disc extrusion aiming to achieve ambulatory status. The intensive neurorehabilitation protocol translated in 99.4% (167/168) of recovery in deep pain perception-positive dogs and 58.5% (55/94) in deep pain perception-negative dogs. There was 37.3% (22/59) spinal reflex locomotion, obtained within a maximum period of 3 months. Thus, intensive neurorehabilitation may be a useful approach for this population of dogs, avoiding future euthanasia and promoting an estimated time window of 3 months to recover. Abstract This retrospective controlled clinical study aimed to verify if intensive neurorehabilitation (INR) could improve ambulation faster than spontaneous recovery or conventional physiotherapy and provide a possible therapeutic approach in post-surgical paraplegic deep pain perception-positive (DPP+) (with absent/decreased flexor reflex) and DPP-negative (DDP−) dogs, with acute intervertebral disc extrusion. A large cohort of T10-L3 Spinal Cord Injury (SCI) dogs (n = 367) were divided into a study group (SG) (n = 262) and a control group (CG) (n = 105). The SG was based on prospective clinical cases, and the CG was created by retrospective medical records. All SG dogs performed an INR protocol by the hospitalization regime based on locomotor training, electrical stimulation, and, for DPP−, a combination with pharmacological management. All were monitored throughout the process, and measuring the outcome for DPP+ was performed by OFS and, for the DPP−, by the new Functional Neurorehabilitation Scale (FNRS-DPP−). In the SG, DPP+ dogs had an ambulation rate of 99.4% (n = 167) and, in DPP−, of 58.5% (n = 55). Moreover, in DPP+, there was a strong statistically significant difference between groups regarding ambulation (p < 0.001). The same significant difference was verified in the DPP– dogs (p = 0.007). Furthermore, a tendency toward a significant statistical difference (p = 0.058) regarding DPP recovery was demonstrated between groups. Of the 59 dogs that did not recover DPP, 22 dogs achieved spinal reflex locomotion (SRL), 37.2% within a maximum of 3 months. The progressive myelomalacia cases were 14.9% (14/94). Therefore, although it is difficult to assess the contribution of INR for recovery, the results suggested that ambulation success may be improved, mainly regarding time.
Collapse
Affiliation(s)
- Ângela Martins
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1300-477 Lisboa, Portugal
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (T.C.); (C.S.); (I.V.)
- CIISA—Centro Interdisciplinar-Investigação em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal;
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1300-477 Lisboa, Portugal
- Correspondence:
| | - Débora Gouveia
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (T.C.); (C.S.); (I.V.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1300-477 Lisboa, Portugal
| | - Ana Cardoso
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (T.C.); (C.S.); (I.V.)
| | - Carla Carvalho
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (T.C.); (C.S.); (I.V.)
| | - Tiago Coelho
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (T.C.); (C.S.); (I.V.)
| | - Cátia Silva
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (T.C.); (C.S.); (I.V.)
| | - Inês Viegas
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (T.C.); (C.S.); (I.V.)
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal;
| | - António Ferreira
- CIISA—Centro Interdisciplinar-Investigação em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal;
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal;
| |
Collapse
|
9
|
Martins Â, Gouveia D, Cardoso A, Carvalho C, Silva C, Coelho T, Gamboa Ó, Ferreira A. Functional Neurorehabilitation in Dogs with an Incomplete Recovery 3 Months following Intervertebral Disc Surgery: A Case Series. Animals (Basel) 2021; 11:ani11082442. [PMID: 34438900 PMCID: PMC8388785 DOI: 10.3390/ani11082442] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary A non-invasive neurorehabilitation multimodal protocol (NRMP) may be applicable to chronic T3-L3 dogs 3 months after undergoing surgery for acute Intervertebral Disc Disease (IVDD) Hansen type I; this protocol has been shown to be safe, feasible, and potentially effective at improving ambulation in both open field score (OFS) 0 and OFS 1 dogs. The specific sample population criteria limit the number of dogs included, mainly due to owners withdrawing over time. Thus, the present case series study aimed to demonstrate that an NRMP could contribute to a functional treatment possibly based on synaptic and anatomic reorganization of the spinal cord. Abstract This case series study aimed to evaluate the safety, feasibility, and positive outcome of the neurorehabilitation multimodal protocol (NRMP) in 16 chronic post-surgical IVDD Hansen type I dogs, with OFS 0/DPP− (n = 9) and OFS 1/DPP+ (n = 7). All were enrolled in the NRMP for a maximum of 90 days and were clinically discharged after achieving ambulation. The NRMP was based on locomotor training, functional electrical stimulation, transcutaneous electrical spinal cord stimulation, and 4-aminopyridine (4-AP) pharmacological management. In the Deep Pain Perception (DPP)+ dogs, 100% recovered ambulation within a mean period of 47 days, reaching OFS ≥11, which suggests that a longer period of time is needed for recovery. At follow-up, all dogs presented a positive evolution with voluntary micturition. Of the DPP− dogs admitted, all achieved a flexion/extension locomotor pattern within 30 days, and after starting the 4-AP, two dogs were discharged at outcome day 45, with 78% obtaining Spinal Reflex Locomotion (SRL) and automatic micturition within a mean period of 62 days. At follow-up, all dogs maintained their neurological status. After the NRMP, ambulatory status was achieved in 88% (14/16) of dogs, without concurrent events. Thus, an NRMP may be an important therapeutic option to reduce the need for euthanasia in the clinical setting.
Collapse
Affiliation(s)
- Ângela Martins
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1300-477 Lisboa, Portugal
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (C.S.); (T.C.)
- CIISA—Centro Interdisciplinar-Investigação em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal;
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1300-477 Lisboa, Portugal
- Correspondence:
| | - Débora Gouveia
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (C.S.); (T.C.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1300-477 Lisboa, Portugal
| | - Ana Cardoso
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (C.S.); (T.C.)
| | - Carla Carvalho
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (C.S.); (T.C.)
| | - Cátia Silva
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (C.S.); (T.C.)
| | - Tiago Coelho
- Animal Rehabilitation Center, Arrábida Veterinary Hospital, Azeitão, 2925-583 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (C.S.); (T.C.)
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal;
| | - António Ferreira
- CIISA—Centro Interdisciplinar-Investigação em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal;
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal;
| |
Collapse
|
10
|
Tanji C, Hashimoto M, Furuya T, Saito J, Miyamoto T, Koda M. Sigma 1 receptor agonist cutamesine promotes plasticity of serotonergic boutons in lumbar enlargement in spinal cord injured rats. Neurosci Lett 2021; 759:135971. [PMID: 34023415 DOI: 10.1016/j.neulet.2021.135971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/11/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022]
Abstract
Cutamesine, a sigma-1 receptor agonist, functions in both neuroprotection and neurite outgrowth. We assessed the therapeutic effects of cutamesine in a rodent spinal cord injury (SCI) model to demonstrate pre-clinical proof-of-concept. First of all, in order to determine optimal cutamesine dose, cutamesine was administered to normal rats and BDNF protein levels in the lumbar spinal cord were assessed by Western blot. Next, for the SCI model, spinal cords of adult female Sprague-Dawley rats were contused using an Infinite Horizon Impactor. Two weeks post-injury, rats were randomly assigned to receive daily subcutaneous injections of either cutamesine (3.0 mg/kg/day) or saline (as a control) for another two weeks. Immunohistochemistry for BDNF and 5-HT was assessed at four and twelve weeks post-injury in the lumbar spinal cord. Locomotor function was assessed weekly using the BBB locomotor scale until twelve weeks after SCI and CatWalk XT 10.5 gait analysis was conducted at twelve weeks after SCI. In normal rats, cutamesine treatment (3.0 mg/kg/day) significantly up-regulated BDNF expression in the lumbar spinal cord. In SCI rats, cutamesine treatment (3.0 mg/kg/day) significantly increased the fluorescence intensity of neuronal BDNF and serotonin boutons in the injured spinal cord compared to saline. However, cutamesine treatment did not promote significant locomotor recovery. Recent work indicates that cutamesine treatment alone did not promote locomotor recovery in spite of immunohistological changes. Future work will explore the influence of combining cutamesine with other treatment promoting plasticity (e.g. rehabilitative training) in SCI rats.
Collapse
Affiliation(s)
- Chihiro Tanji
- Department of Rehabilitation Therapy, Chiba Rehabilitation Center, Chiba, Japan
| | | | - Takeo Furuya
- Department of Orthopedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | - Takuya Miyamoto
- Department of Orthopedic Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masao Koda
- Department of Orthopedic Surgery, University of Tsukuba, Ibaraki, Japan.
| |
Collapse
|
11
|
Treadmill training based on the overload principle promotes locomotor recovery in a mouse model of chronic spinal cord injury. Exp Neurol 2021; 345:113834. [PMID: 34370998 DOI: 10.1016/j.expneurol.2021.113834] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 11/21/2022]
Abstract
Rehabilitative treatment, including treadmill training, is considered an important strategy for restoring motor function after spinal cord injury (SCI). However, many unexplained problems persist regarding the appropriate rehabilitative method and the mechanism underlying the beneficial effects of rehabilitation. Moreover, only a few preclinical studies have been performed on rehabilitative interventions for chronic SCI, although most patients have chronic injuries. In fact, several preclinical studies reported that rehabilitative training was less effective when applied during the chronic phase than when applied sooner. While numerous studies have examined the effects of treadmill training during the subacute phase, the training conditions vary considerably among preclinical reports. Therefore, establishing a standard training protocol is essential for achieving beneficial rehabilitation effects at the chronic stage. Since the difficulty of applying an appropriate training load hinders training at constant speeds, it is important to adjust the training intensity in accordance with the exercise tolerance of an individual animal to provide further functional recovery benefits. Here, we created a novel quadrupedal treadmill training protocol based on the overload principle for mice with incomplete thoracic SCI. We subjected SCI model mice to rehabilitative training according to the protocol for two consecutive weeks starting at 42 days after injury. We examined the treadmill speeds at which the mice were able to run based on the severity of paresis and investigated the impact of the protocol on functional recovery. Assessment of running speed changes during the treadmill training period revealed faster treadmill speeds for mice with mild paresis than for those with severe paresis. The training parameters, including the speed and distance traveled, were positively correlated with the changes in motor function. These results suggest that the most suitable running speed during treadmill training differs according to the level of motor dysfunction and that running longer distances has a positive impact on motor functional recovery. Based on this established protocol, we compared functional and histological results between the chronic SCI groups with and without rehabilitation. The gait analyses showed significantly better functional improvement in the rehabilitation group than in the nonrehabilitation group. Histological analyses revealed that the BDNF- and VGLUT1-positive areas of lumbar enlargement were significantly increased in the rehabilitation group. These findings implied that rehabilitation promoted not only motor performance but also motor control, including forelimb-hindlimb coordination, even in chronic SCI, resulting in functional improvement by treadmill training alone. Therefore, rehabilitative training based on the overload principle appears to be one of the appropriate treatment options for incomplete thoracic SCI, and evidence of its efficacy exists in actual clinical settings.
Collapse
|
12
|
Martins Â, Gouveia D, Cardoso A, Viegas I, Gamboa Ó, Ferreira A. A Comparison Between Body Weight-Supported Treadmill Training and Conventional Over-Ground Training in Dogs With Incomplete Spinal Cord Injury. Front Vet Sci 2021; 8:597949. [PMID: 34277746 PMCID: PMC8280520 DOI: 10.3389/fvets.2021.597949] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
In human medicine there was no evidence registered of a significant difference in recovery between body weight-supported treadmill training (BWSTT) and conventional over-ground (COGI). There isn't any similar study in veterinary medicine. Thus, this study aimed to compare the locomotor recovery obtained in incomplete SCI (T11–L3 Hansen type I) post-surgical dogs following BWSTT or COGI protocols, describing their evolution during 7 weeks in regard to OFS classifications. At admission, dogs were blindly randomized in two groups but all were subjected to the same protocol (underwater treadmill training) for the first 2 weeks. After, they were divided in the BWSTT group (n = 10) and the COGI group (n = 10) for the next 2 weeks, where they performed different training. In both groups locomotor training was accompanied by functional electrical stimulation (FES) protocols. Results reported statistically significant differences between all OFS evaluations time-points (p < 0.001) and between the two groups (p < 0.001). In particular with focus on T1 to T3 a two-way repeated measures ANOVA was performed and similar results were obtained (p = 0.007). Functional recovery was achieved in 90% (17/19) of all dogs and 100% recovered bladder function. The BWSTT group showed 100% (10/10) recovery within a mean time of 4.6 weeks, while the COGI group had 78% (7/9) within 6.1 weeks. Therefore, BWSTT leads to a faster recovery with a better outcome in general.
Collapse
Affiliation(s)
- Ângela Martins
- Arrábida Veterinary Hospital-Animal Rehabilitation Center, Azeitão, Portugal.,Faculty of Veterinary Medicine, Lusófona University, Lisboa, Portugal.,CIISA-Centro Interdisciplinar de Investigação em Saúde Animal-Faculty of Veterinary Medicine, Lisboa, Portugal
| | - Débora Gouveia
- Arrábida Veterinary Hospital-Animal Rehabilitation Center, Azeitão, Portugal
| | - Ana Cardoso
- Arrábida Veterinary Hospital-Animal Rehabilitation Center, Azeitão, Portugal
| | - Inês Viegas
- Arrábida Veterinary Hospital-Animal Rehabilitation Center, Azeitão, Portugal
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, Lisboa, Portugal
| | - António Ferreira
- CIISA-Centro Interdisciplinar de Investigação em Saúde Animal-Faculty of Veterinary Medicine, Lisboa, Portugal.,Faculty of Veterinary Medicine, University of Lisbon, Lisboa, Portugal
| |
Collapse
|
13
|
Bilchak JN, Caron G, Côté MP. Exercise-Induced Plasticity in Signaling Pathways Involved in Motor Recovery after Spinal Cord Injury. Int J Mol Sci 2021; 22:ijms22094858. [PMID: 34064332 PMCID: PMC8124911 DOI: 10.3390/ijms22094858] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) leads to numerous chronic and debilitating functional deficits that greatly affect quality of life. While many pharmacological interventions have been explored, the current unsurpassed therapy for most SCI sequalae is exercise. Exercise has an expansive influence on peripheral health and function, and by activating the relevant neural pathways, exercise also ameliorates numerous disorders of the central nervous system (CNS). While the exact mechanisms by which this occurs are still being delineated, major strides have been made in the past decade to understand the molecular underpinnings of this essential treatment. Exercise rapidly and prominently affects dendritic sprouting, synaptic connections, neurotransmitter production and regulation, and ionic homeostasis, with recent literature implicating an exercise-induced increase in neurotrophins as the cornerstone that binds many of these effects together. The field encompasses vast complexity, and as the data accumulate, disentangling these molecular pathways and how they interact will facilitate the optimization of intervention strategies and improve quality of life for individuals affected by SCI. This review describes the known molecular effects of exercise and how they alter the CNS to pacify the injury environment, increase neuronal survival and regeneration, restore normal neural excitability, create new functional circuits, and ultimately improve motor function following SCI.
Collapse
|
14
|
Effects of voluntary and forced exercises on motor function recovery in intracerebral hemorrhage rats. Neuroreport 2021; 31:189-196. [PMID: 31895749 DOI: 10.1097/wnr.0000000000001396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Motor paralysis is a severe consequence of intracerebral hemorrhage (ICH) that reduces patient quality of life. Rehabilitation is beneficial for stroke patients. However, functional recovery depends on the exercise type, and which factors are effective during rehabilitation are unknown. We aimed to clarify the effect of voluntary and forced exercises for functional recovery in ICH rats. Male Sprague-Dawley rats were divided into three groups: forced treadmill running (F-Ex.), voluntary wheel cage running (V-Ex.) and no exercise (Non-Ex.). The effects of the two exercises on motor recovery were analyzed by determining the motor deficit score and using the beam walking test. Stress and motivation status after rehabilitation were determined by corticosterone concentrations (ELISA) and immunoreactivity of ΔFosB (immunohistochemistry) in the nucleus accumbens, respectively. Significantly enhanced motor functional recovery was observed in the two trained groups compared with that in the Non-Ex. group. Of note, recovery in the V-Ex. group was greater than that in the F-Ex. group. To investigate the motivation and stress related to the exercises, the expression of ΔFosB in the nucleus accumbens and corticosterone concentration were compared after rehabilitation. In the V-Ex. group, there was a significant increase of ΔFosB, and in the F-Ex. Group, there was a high concentration of corticosterone. These data suggest that the effect of training for motor recovery was enhanced by motivation and reduced by stress.
Collapse
|
15
|
Zheng Y, Mao YR, Yuan TF, Xu DS, Cheng LM. Multimodal treatment for spinal cord injury: a sword of neuroregeneration upon neuromodulation. Neural Regen Res 2020; 15:1437-1450. [PMID: 31997803 PMCID: PMC7059565 DOI: 10.4103/1673-5374.274332] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 04/28/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
Spinal cord injury is linked to the interruption of neural pathways, which results in irreversible neural dysfunction. Neural repair and neuroregeneration are critical goals and issues for rehabilitation in spinal cord injury, which require neural stem cell repair and multimodal neuromodulation techniques involving personalized rehabilitation strategies. Besides the involvement of endogenous stem cells in neurogenesis and neural repair, exogenous neural stem cell transplantation is an emerging effective method for repairing and replacing damaged tissues in central nervous system diseases. However, to ensure that endogenous or exogenous neural stem cells truly participate in neural repair following spinal cord injury, appropriate interventional measures (e.g., neuromodulation) should be adopted. Neuromodulation techniques, such as noninvasive magnetic stimulation and electrical stimulation, have been safely applied in many neuropsychiatric diseases. There is increasing evidence to suggest that neuromagnetic/electrical modulation promotes neuroregeneration and neural repair by affecting signaling in the nervous system; namely, by exciting, inhibiting, or regulating neuronal and neural network activities to improve motor function and motor learning following spinal cord injury. Several studies have indicated that fine motor skill rehabilitation training makes use of residual nerve fibers for collateral growth, encourages the formation of new synaptic connections to promote neural plasticity, and improves motor function recovery in patients with spinal cord injury. With the development of biomaterial technology and biomechanical engineering, several emerging treatments have been developed, such as robots, brain-computer interfaces, and nanomaterials. These treatments have the potential to help millions of patients suffering from motor dysfunction caused by spinal cord injury. However, large-scale clinical trials need to be conducted to validate their efficacy. This review evaluated the efficacy of neural stem cells and magnetic or electrical stimulation combined with rehabilitation training and intelligent therapies for spinal cord injury according to existing evidence, to build up a multimodal treatment strategy of spinal cord injury to enhance nerve repair and regeneration.
Collapse
Affiliation(s)
- Ya Zheng
- Rehabilitation Section, Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Ye-Ran Mao
- Rehabilitation Section, Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Dong-Sheng Xu
- Rehabilitation Section, Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education of the People's Republic of China, Tongji University, Shanghai, China
| | - Li-Ming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education of the People's Republic of China, Tongji University, Shanghai, China
- Spine Surgery Division of Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Griffin JM, Bradke F. Therapeutic repair for spinal cord injury: combinatory approaches to address a multifaceted problem. EMBO Mol Med 2020; 12:e11505. [PMID: 32090481 PMCID: PMC7059014 DOI: 10.15252/emmm.201911505] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/07/2020] [Accepted: 01/31/2020] [Indexed: 12/21/2022] Open
Abstract
The recent years saw the advent of promising preclinical strategies that combat the devastating effects of a spinal cord injury (SCI) that are progressing towards clinical trials. However, individually, these treatments produce only modest levels of recovery in animal models of SCI that could hamper their implementation into therapeutic strategies in spinal cord injured humans. Combinational strategies have demonstrated greater beneficial outcomes than their individual components alone by addressing multiple aspects of SCI pathology. Clinical trial designs in the future will eventually also need to align with this notion. The scenario will become increasingly complex as this happens and conversations between basic researchers and clinicians are required to ensure accurate study designs and functional readouts.
Collapse
Affiliation(s)
- Jarred M Griffin
- Laboratory for Axonal Growth and Regeneration, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Frank Bradke
- Laboratory for Axonal Growth and Regeneration, German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
17
|
Griffin JM, Fackelmeier B, Clemett CA, Fong DM, Mouravlev A, Young D, O'Carroll SJ. Astrocyte-selective AAV-ADAMTS4 gene therapy combined with hindlimb rehabilitation promotes functional recovery after spinal cord injury. Exp Neurol 2020; 327:113232. [PMID: 32044329 DOI: 10.1016/j.expneurol.2020.113232] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 01/06/2023]
Abstract
Chondroitin sulphate proteoglycans (CSPGs) are inhibitors to axon regeneration and plasticity. A disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS4) is a human enzyme that catalyses the proteolysis of CSPG protein cores. Infusion of ADAMTS4 into the damaged spinal cord was previously shown to improve functional recovery SCI, however, this therapy is limited in its enzyme form. Adeno-associated viral (AAV) vector gene therapy has emerged as the vector of choice for safe, robust and long-term transgene expression in the central nervous system. Here, an AAV expression cassette containing ADAMTS4 under the control of the astrocytic GfaABC1D promoter was packaged into an AAV5 vector. Sustained expression of ADAMTS4 was achieved in vitro and in vivo leading to degradation of CSPGs. Compared to a contusion only group, AAV-ADAMTS4 resulted in significantly decreased lesion size, increased sprouting of hindlimb corticospinal tract axons, increased serotonergic fiber density caudal to a contusive spinal cord injury. Hindlimb-specific exercise rehabilitation was used to drive neuroplasticity towards improving functional connections. The combination of hindlimb rehabilitation with AAV-ADAMTS4 led to functional recovery after SCI compared to a contusion only group. Thus, long-term degradation of CSPGs through AAV-ADAMTS4 gene therapy in a combinational approach with rehabilitation represents a candidate for further preclinical development.
Collapse
Affiliation(s)
- Jarred M Griffin
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 85 Park Road, Grafton, New Zealand; Centre for Brain Research, University of Auckland, Auckland, 85 Park Road, Grafton, New Zealand.
| | - Barbara Fackelmeier
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 85 Park Road, Grafton, New Zealand; Centre for Brain Research, University of Auckland, Auckland, 85 Park Road, Grafton, New Zealand.
| | - Connor A Clemett
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 85 Park Road, Grafton, New Zealand; Centre for Brain Research, University of Auckland, Auckland, 85 Park Road, Grafton, New Zealand.
| | - Dahna M Fong
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 85 Park Road, Grafton, New Zealand; Centre for Brain Research, University of Auckland, Auckland, 85 Park Road, Grafton, New Zealand.
| | - Alexandre Mouravlev
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 85 Park Road, Grafton, New Zealand; Centre for Brain Research, University of Auckland, Auckland, 85 Park Road, Grafton, New Zealand.
| | - Deborah Young
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 85 Park Road, Grafton, New Zealand; Centre for Brain Research, University of Auckland, Auckland, 85 Park Road, Grafton, New Zealand.
| | - Simon J O'Carroll
- Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 85 Park Road, Grafton, New Zealand; Centre for Brain Research, University of Auckland, Auckland, 85 Park Road, Grafton, New Zealand.
| |
Collapse
|
18
|
Mayr KA, Young L, Molina LA, Tran MA, Whelan PJ. An economical solution to record and control wheel-running for group-housed mice. J Neurosci Methods 2019; 331:108482. [PMID: 31733283 DOI: 10.1016/j.jneumeth.2019.108482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/18/2019] [Accepted: 10/26/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND The effects of exercise on brain function are widely known; however, there is a need for inexpensive, practical solutions for monitoring and metering the activity of multiple mice. NEW METHOD A contoured running wheel that has a built-in radio-frequency identification (RFID) receiver to monitor the activity of several mice in a single cage is presented. This system is scalable , the interface is easy to use, and the wheel can be dynamically locked so that each group-housed mouse receives a set exercise regimen. RESULTS We were able to reliably monitor three mice that were group-housed. We were able to reliably meter the amount of exercise performed by the mice using the servo-controlled lock. COMPARISON WITH EXISTING METHODS Current methods allow a wheel to be locked when a set distance is reached. However, an issue with this method is that the set distance includes the cumulative activity of all mice in the cage so one mouse could contribute a disproportionate amount to the total distance. Our solution ensures that the wheel is locked when an individual mouse reaches the target distance, but remains unlocked for individuals that have not reached the programmed distance. CONCLUSIONS The dynamic locking wheel (DynaLok) is designed to allow a researcher to provide individually designed exercise plans for multi-housed mice; therefore, users are able to house mice conventionally rather than in individual cages. DynaLok reduces animal housing costs, allows for new experimental exercise regimens to be developed, and is scalable and cost-effective.
Collapse
Affiliation(s)
- Kyle A Mayr
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Neuroscience, University of Calgary, Calgary, AB, Canada; Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Leanne Young
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Leonardo A Molina
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Michelle A Tran
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Patrick J Whelan
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
19
|
Dickson RG, Lall VK, Ichiyama RM. Enhancing plasticity in spinal sensorimotor circuits following injuries to facilitate recovery of motor control. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Loy K, Bareyre FM. Rehabilitation following spinal cord injury: how animal models can help our understanding of exercise-induced neuroplasticity. Neural Regen Res 2019; 14:405-412. [PMID: 30539806 PMCID: PMC6334617 DOI: 10.4103/1673-5374.245951] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Spinal cord injury is a devastating condition that is followed by long and often unsuccessful recovery after trauma. The state of the art approach to manage paralysis and concomitant impairments is rehabilitation, which is the only strategy that has proven to be effective and beneficial for the patients over the last decades. How rehabilitation influences the remodeling of spinal axonal connections in patients is important to understand, in order to better target these changes and define the optimal timing and onset of training. While clinically the answers to these questions remain difficult to obtain, rodent models of rehabilitation like bicycling, treadmill training, swimming, enriched environments or wheel running that mimic clinical rehabilitation can be helpful to reveal the axonal changes underlying motor recovery. This review will focus on the different animal models of spinal cord injury rehabilitation and the underlying changes in neuronal networks that are improved by exercise and rehabilitation.
Collapse
Affiliation(s)
- Kristina Loy
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians Universität München, Munich, Germany
| | - Florence M Bareyre
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians Universität München; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
21
|
Yu P, Zhang W, Liu Y, Sheng C, So KF, Zhou L, Zhu H. The effects and potential mechanisms of locomotor training on improvements of functional recovery after spinal cord injury. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 147:199-217. [DOI: 10.1016/bs.irn.2019.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Loy K, Schmalz A, Hoche T, Jacobi A, Kreutzfeldt M, Merkler D, Bareyre FM. Enhanced Voluntary Exercise Improves Functional Recovery following Spinal Cord Injury by Impacting the Local Neuroglial Injury Response and Supporting the Rewiring of Supraspinal Circuits. J Neurotrauma 2018; 35:2904-2915. [PMID: 29943672 DOI: 10.1089/neu.2017.5544] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Recent reports suggest that rehabilitation measures that increase physical activity of patients can improve functional outcome after incomplete spinal cord injuries (iSCI). To investigate the structural basis of exercise-induced recovery, we examined local and remote consequences of voluntary wheel training in spinal cord injured female mice. In particular, we explored how enhanced voluntary exercise influences the neuronal and glial response at the lesion site as well as the rewiring of supraspinal tracts after iSCI. We chose voluntary exercise initiated by providing mice with free access to running wheels over "forced overuse" paradigms because the latter, at least in some cases, can lead to worsening of functional outcomes after SCI. Our results show that mice extensively use their running wheels not only before but also after injury reaching their pre-lesion exercise levels within five days after injury. Enhanced voluntary exercise improved their overall and skilled motor function after injury. In addition, exercising mice started to recover earlier and reached better sustained performance levels. These improvements in motor performance are accompanied by early changes of axonal and glial response at the lesion site and persistent enhancements of the rewiring of supraspinal connections that resulted in a strengthening of both indirect and direct inputs to lumbar motoneurons.
Collapse
Affiliation(s)
- Kristina Loy
- 1 Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany.,2 Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,3 Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universitaet Munich, Planegg-Martinsried, Germany
| | - Anja Schmalz
- 1 Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany.,2 Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Tobias Hoche
- 1 Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany.,2 Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Anne Jacobi
- 1 Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany.,2 Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Mario Kreutzfeldt
- 4 Departement of Pathology et Immunology, CMU, University of Geneva, Rue Michel-Servet, Geneva, Switzerland
| | - Doron Merkler
- 4 Departement of Pathology et Immunology, CMU, University of Geneva, Rue Michel-Servet, Geneva, Switzerland
| | - Florence M Bareyre
- 1 Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany.,2 Biomedical Center Munich (BMC), Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,5 Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
23
|
Tai LW, Yeung SC, Cheung CW. Enriched Environment and Effects on Neuropathic Pain: Experimental Findings and Mechanisms. Pain Pract 2018; 18:1068-1082. [PMID: 29722923 DOI: 10.1111/papr.12706] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/04/2018] [Accepted: 04/22/2018] [Indexed: 12/16/2022]
Abstract
Neuropathic pain inflicts tremendous biopsychosocial suffering for patients worldwide. However, safe and effective treatment of neuropathic pain is a prominent unmet clinical need. Environmental enrichment (EE) is an emerging cost-effective nonpharmacological approach to alleviate neuropathic pain and complement rehabilitation care. We present here a review of preclinical studies in ascertaining the efficacy of EE for neuropathic pain. Their proposed mechanisms, including the suppression of ascending nociceptive signaling to the brain, enhancement of the descending inhibitory system, and neuroprotection of the peripheral and central nervous systems, may collectively reduce pain perception and improve somatic and emotional functioning in neuropathic pain. The current evidence offers critical insights for future preclinical research and the translational application of EE in clinical pain management.
Collapse
Affiliation(s)
- Lydia Wai Tai
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, Special Administrative Region, China.,Department of Anaesthesiology, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Sung Ching Yeung
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, Special Administrative Region, China.,Department of Anaesthesiology, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Chi Wai Cheung
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, The University of Hong Kong, Hong Kong, Special Administrative Region, China.,Department of Anaesthesiology, The University of Hong Kong, Hong Kong, Special Administrative Region, China.,Research Centre of Heart, Brain, Hormone & Healthy Aging, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| |
Collapse
|
24
|
Is more always better? How different 'doses' of exercise after incomplete spinal cord injury affects the membrane properties of deep dorsal horn interneurons. Exp Neurol 2017; 300:201-211. [PMID: 29146456 DOI: 10.1016/j.expneurol.2017.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/22/2017] [Accepted: 11/12/2017] [Indexed: 01/12/2023]
Abstract
Interneurons in the deep dorsal horn (DDH) of the spinal cord process somatosensory input, and form an important link between upper and lower motoneurons to subsequently shape motor output. Exercise training after SCI is known to improve functional motor recovery, but little is known about the mechanisms within spinal cord neurons that underlie these improvements. Here we investigate how the properties of DDH interneurons are affected by spinal cord injury (SCI) alone, and SCI in combination with different 'doses' of treadmill exercise training (3, 6, and 9wks). In an adult mouse hemisection model of SCI we used whole-cell patch-clamp electrophysiology to record intrinsic, AP firing and gain modulation properties from DDH interneurons in a horizontal spinal cord slice preparation. We find that neurons within two segments of the injury, both ipsi- and contralateral to the hemisection, are similarly affected by SCI and SCI plus exercise. The passive intrinsic membrane properties input resistance (Rin) and rheobase are sensitive to the effects of recovery time and exercise training after SCI thus altering DDH interneuron excitability. Conversely, select active membrane properties are largely unaffected by either SCI or exercise training. SCI itself causes a mismatch in the expression of voltage-gated subthreshold currents and AP discharge firing type. Over time after SCI, and especially with exercise training (9wks), this mismatched expression is exacerbated. Lastly, amplification properties (i.e. gain of frequency-current relationship) of DDH interneurons are altered by SCI alone and recover spontaneously with no clear effect of exercise training. These results suggest a larger 'dose' of exercise training (9wks) has a strong and selective effect on specific membrane properties, and on the output of interneurons in the vicinity of a SCI. These electrophysiological data provide new insights into the plasticity of DDH interneurons and the mechanisms by which exercise therapy after SCI can improve recovery.
Collapse
|
25
|
Leech KA, Kim HE, Hornby TG. Strategies to augment volitional and reflex function may improve locomotor capacity following incomplete spinal cord injury. J Neurophysiol 2017; 119:894-903. [PMID: 29093168 DOI: 10.1152/jn.00051.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Many studies highlight the remarkable plasticity demonstrated by spinal circuits following an incomplete spinal cord injury (SCI). Such plasticity can contribute to improvements in volitional motor recovery, such as walking function, although similar mechanisms underlying this recovery may also contribute to the manifestation of exaggerated responses to afferent input, or spastic behaviors. Rehabilitation interventions directed toward augmenting spinal excitability have shown some initial success in improving locomotor function. However, the potential effects of these strategies on involuntary motor behaviors may be of concern. In this article, we provide a brief review of the mechanisms underlying recovery of volitional function and exaggerated reflexes, and the potential overlap between these changes. We then highlight findings from studies that explore changes in spinal excitability during volitional movement in controlled conditions, as well as altered kinematic and behavioral performance during functional tasks. The initial focus will be directed toward recovery of reflex and volitional behaviors following incomplete SCI, followed by recent work elucidating neurophysiological mechanisms underlying patterns of static and dynamic muscle activation following chronic incomplete SCI during primarily single-joint movements. We will then transition to studies of locomotor function and the role of altered spinal integration following incomplete SCI, including enhanced excitability of specific spinal circuits with physical and pharmacological interventions that can modulate locomotor output. The effects of previous and newly developed strategies will need to focus on changes in both volitional function and involuntary spastic reflexes for the successful translation of effective therapies to the clinical setting.
Collapse
Affiliation(s)
- Kristan A Leech
- Department of Neuroscience, Johns Hopkins University , Baltimore, Maryland
| | - Hyosub E Kim
- Department of Psychology, University of California at Berkeley , Berkeley, California
| | | |
Collapse
|
26
|
Chen K, Marsh BC, Cowan M, Al'Joboori YD, Gigout S, Smith CC, Messenger N, Gamper N, Schwab ME, Ichiyama RM. Sequential therapy of anti-Nogo-A antibody treatment and treadmill training leads to cumulative improvements after spinal cord injury in rats. Exp Neurol 2017; 292:135-144. [DOI: 10.1016/j.expneurol.2017.03.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 11/16/2022]
|
27
|
Liu ZH, Yip PK, Priestley JV, Michael-Titus AT. A Single Dose of Docosahexaenoic Acid Increases the Functional Recovery Promoted by Rehabilitation after Cervical Spinal Cord Injury in the Rat. J Neurotrauma 2017; 34:1766-1777. [PMID: 27881040 DOI: 10.1089/neu.2016.4556] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Task-specific rehabilitation has been shown to promote functional recovery after acute spinal cord injury (SCI). Recently, the omega-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA), has been shown to promote neuroplasticity after SCI. Here, we investigated whether the combination of a single bolus of DHA with rehabilitation can enhance the effect of DHA or rehabilitation therapy in adult injured spinal cord. We found enhanced functional improvement with DHA in combination with rehabilitation compared with either treatment alone in a rat cervical lateral hemisection SCI model. This behavioral improvement correlated with a significant sprouting of uninjured corticospinal and serotonergic fibers. We also observed that the greatest increase in the synaptic vesicle protein, synaptophysin, and the synaptic active zone protein, Bassoon, occurred in animals that received both DHA and rehabilitation. In summary, the functional, anatomical, and synaptic plasticity induced by task-specific rehabilitation can be further enhanced by DHA treatment. This study shows the potential beneficial effects of DHA combined with rehabilitation for the treatment of patients with SCI.
Collapse
Affiliation(s)
- Zhou-Hao Liu
- 1 Queen Mary University of London , Barts and The London School of Medicine and Dentistry, Blizard Institute, London, United Kingdom .,2 Chang Gung Medical College and University , Chang Gung Memorial Hospital, Department of Neurosurgery, Linkou, Taiwan
| | - Ping K Yip
- 1 Queen Mary University of London , Barts and The London School of Medicine and Dentistry, Blizard Institute, London, United Kingdom
| | - John V Priestley
- 1 Queen Mary University of London , Barts and The London School of Medicine and Dentistry, Blizard Institute, London, United Kingdom
| | - Adina T Michael-Titus
- 1 Queen Mary University of London , Barts and The London School of Medicine and Dentistry, Blizard Institute, London, United Kingdom
| |
Collapse
|
28
|
Côté MP, Murray M, Lemay MA. Rehabilitation Strategies after Spinal Cord Injury: Inquiry into the Mechanisms of Success and Failure. J Neurotrauma 2016; 34:1841-1857. [PMID: 27762657 DOI: 10.1089/neu.2016.4577] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Body-weight supported locomotor training (BWST) promotes recovery of load-bearing stepping in lower mammals, but its efficacy in individuals with a spinal cord injury (SCI) is limited and highly dependent on injury severity. While animal models with complete spinal transections recover stepping with step-training, motor complete SCI individuals do not, despite similarly intensive training. In this review, we examine the significant differences between humans and animal models that may explain this discrepancy in the results obtained with BWST. We also summarize the known effects of SCI and locomotor training on the muscular, motoneuronal, interneuronal, and supraspinal systems in human and non-human models of SCI and address the potential causes for failure to translate to the clinic. The evidence points to a deficiency in neuronal activation as the mechanism of failure, rather than muscular insufficiency. While motoneuronal and interneuronal systems cannot be directly probed in humans, the changes brought upon by step-training in SCI animal models suggest a beneficial re-organization of the systems' responsiveness to descending and afferent feedback that support locomotor recovery. The literature on partial lesions in humans and animal models clearly demonstrate a greater dependency on supraspinal input to the lumbar cord in humans than in non-human mammals for locomotion. Recent results with epidural stimulation that activates the lumbar interneuronal networks and/or increases the overall excitability of the locomotor centers suggest that these centers are much more dependent on the supraspinal tonic drive in humans. Sensory feedback shapes the locomotor output in animal models but does not appear to be sufficient to drive it in humans.
Collapse
Affiliation(s)
- Marie-Pascale Côté
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Marion Murray
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Michel A Lemay
- 2 Department of Bioengineering, Temple University , Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Functional Recovery from Neural Stem/Progenitor Cell Transplantation Combined with Treadmill Training in Mice with Chronic Spinal Cord Injury. Sci Rep 2016; 6:30898. [PMID: 27485458 PMCID: PMC4971501 DOI: 10.1038/srep30898] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/10/2016] [Indexed: 12/17/2022] Open
Abstract
Most studies targeting chronic spinal cord injury (SCI) have concluded that neural stem/progenitor cell (NS/PC) transplantation exerts only a subclinical recovery; this in contrast to its remarkable effect on acute and subacute SCI. To determine whether the addition of rehabilitative intervention enhances the effect of NS/PC transplantation for chronic SCI, we used thoracic SCI mouse models to compare manifestations secondary to both transplantation and treadmill training, and the two therapies combined, with a control group. Significant locomotor recovery in comparison with the control group was only achieved in the combined therapy group. Further investigation revealed that NS/PC transplantation improved spinal conductivity and central pattern generator activity, and that treadmill training promoted the appropriate inhibitory motor control. The combined therapy enhanced these independent effects of each single therapy, and facilitated neuronal differentiation of transplanted cells and maturation of central pattern generator activity synergistically. Our data suggest that rehabilitative treatment represents a therapeutic option for locomotor recovery after NS/PC transplantation, even in chronic SCI.
Collapse
|
30
|
Abstract
Physical exercise produces many beneficial responses in the brain, which affect
cognitive function, blood flow, neurogenesis and resistance to injury. However,
the exact mechanisms whereby exercise produces an induction in the brain are not
well understood. A significant consequence is the induction of growth factors,
such as Brain-derived Neurotrophic Factor (BDNF). Cognitive decline that occurs
with aging, as well as progression of neurodegenerative diseases, are strongly
correlated with decreases in BDNF. In this article, we discuss the properties of
neurotrophins and the mechanisms that can account for the ability of exercise to
promote brain plasticity through BDNF.
Collapse
Affiliation(s)
- Sama F Sleiman
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Moses V Chao
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, Physiology & Neuroscience and Psychiatry, New York University Langone Medical Center, New York, NY, USA
| |
Collapse
|
31
|
Alvarez-Mejia L, Morales J, Cruz GJ, Olayo MG, Olayo R, Díaz-Ruíz A, Ríos C, Mondragón-Lozano R, Sánchez-Torres S, Morales-Guadarrama A, Fabela-Sánchez O, Salgado-Ceballos H. Functional recovery in spinal cord injured rats using polypyrrole/iodine implants and treadmill training. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:209. [PMID: 26169188 DOI: 10.1007/s10856-015-5541-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/03/2015] [Indexed: 06/04/2023]
Abstract
Currently, there is no universally accepted treatment for traumatic spinal cord injury (TSCI), a pathology that can cause paraplegia or quadriplegia. Due to the complexity of TSCI, more than one therapeutic strategy may be necessary to regain lost functions. Therefore, the present study proposes the use of implants of mesoparticles (MPs) of polypyrrole/iodine (PPy/I) synthesized by plasma for neuroprotection promotion and functional recovery in combination with treadmill training (TT) for neuroplasticity promotion and maintenance of muscle tone. PPy/I films were synthesized by plasma and pulverized to obtain MPs. Rats with a TSCI produced by the NYU impactor were divided into four groups: Vehicle (saline solution); MPs (PPy/I implant); Vehicle-TT (saline solution + TT); and MPs-TT (PPy/I implant + TT). The vehicle or MPs (30 μL) were injected into the lesion site 48 h after a TSCI. Four days later, TT was carried out 5 days a week for 2 months. Functional recovery was evaluated weekly using the BBB motor scale for 9 weeks and tissue protection using histological and morphometric analysis thereafter. Although the MPs of PPy/I increased nerve tissue preservation (P = 0.03) and promoted functional recovery (P = 0.015), combination with TT did not produce better neuroprotection, but significantly improved functional results (P = 0.000) when comparing with the vehicle group. So, use these therapeutic strategies by separately could stimulate specific mechanisms of neuroprotection and neuroregeneration, but when using together they could mainly potentiate different mechanisms of neuronal plasticity in the preserved spinal cord tissue after a TSCI and produce a significant functional recovery. The implant of mesoparticles of polypyrrole/iodine into the injured spinal cord displayed good integration into the nervous tissue without a response of rejection, as well as an increased in the amount of preserved tissue and a better functional recovery than the group without transplant after a traumatic spinal cord injury by contusion in rats. The relevance of the present results is that polypyrrole/iodine implants were synthesized by plasma instead by conventional chemical or electrochemical methods. Synthesis by plasma modifies physicochemical properties of polypyrrole/iodine implants, which can be responsible of the histological response and functional results. Furthermore, no additional molecules or trophic factors or cells were added to the implant for obtain such results. Even more, when the implant was used together with physical rehabilitation, better functional recovery was obtained than that observed when these strategies were used by separately.
Collapse
Affiliation(s)
- Laura Alvarez-Mejia
- Department of Electric Engineering, Universidad Autónoma Metropolitana Iztapalapa, Apdo. Postal 55-534, CP 09340, Mexico, DF, Mexico
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ghosh M, Pearse DD. The role of the serotonergic system in locomotor recovery after spinal cord injury. Front Neural Circuits 2015; 8:151. [PMID: 25709569 PMCID: PMC4321350 DOI: 10.3389/fncir.2014.00151] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/28/2014] [Indexed: 11/30/2022] Open
Abstract
Serotonin (5-HT), a monoamine neurotransmitter synthesized in various populations of brainstem neurons, plays an important role in modulating the activity of spinal networks involved in vertebrate locomotion. Following spinal cord injury (SCI) there is a disruption of descending serotonergic projections to spinal motor areas, which results in a subsequent depletion in 5-HT, the dysregulation of 5-HT transporters as well as the elevated expression, super-sensitivity and/or constitutive auto-activation of specific 5-HT receptors. These changes in the serotonergic system can produce varying degrees of locomotor dysfunction through to paralysis. To date, various approaches targeting the different components of the serotonergic system have been employed to restore limb coordination and improve locomotor function in experimental models of SCI. These strategies have included pharmacological modulation of serotonergic receptors, through the administration of specific 5-HT receptor agonists, or by elevating the 5-HT precursor 5-hydroxytryptophan, which produces a global activation of all classes of 5-HT receptors. Stimulation of these receptors leads to the activation of the locomotor central pattern generator (CPG) below the site of injury to facilitate or improve the quality and frequency of movements, particularly when used in concert with the activation of other monoaminergic systems or coupled with electrical stimulation. Another approach has been to employ cell therapeutics to replace the loss of descending serotonergic input to the CPG, either through transplanted fetal brainstem 5-HT neurons at the site of injury that can supply 5-HT to below the level of the lesion or by other cell types to provide a substrate at the injury site for encouraging serotonergic axon regrowth across the lesion to the caudal spinal cord for restoring locomotion.
Collapse
Affiliation(s)
- Mousumi Ghosh
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, FL, USA ; Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine Miami, FL, USA ; Department of Neurological Surgery, University of Miami Miller School of Medicine Miami, FL, USA ; The Neuroscience Program, University of Miami Miller School of Medicine Miami, FL, USA ; The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine Miami, FL, USA
| |
Collapse
|
33
|
Rank MM, Flynn JR, Battistuzzo CR, Galea MP, Callister R, Callister RJ. Functional changes in deep dorsal horn interneurons following spinal cord injury are enhanced with different durations of exercise training. J Physiol 2014; 593:331-45. [PMID: 25556804 DOI: 10.1113/jphysiol.2014.282640] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/23/2014] [Indexed: 12/12/2022] Open
Abstract
KEY POINTS Exercise training after spinal cord injury (SCI) enhances collateral sprouting from axons near the injury and is thought to promote intraspinal circuit reorganisation that effectively bridges the SCI. The effects of exercise training, and its duration, on interneurons in these de novo intraspinal circuits are poorly understood. In an adult mouse hemisection model of SCI, we used whole-cell patch-clamp electrophysiology to examine changes in the intrinsic and synaptic properties of deep dorsal horn interneurons in the vicinity of a SCI in response to the injury, and after 3 and 6 weeks of treadmill exercise training. SCI alone exerted powerful effects on the intrinsic and synaptic properties of interneurons near the lesion. Importantly, synaptic activity, both local and descending, was preferentially enhanced by exercise training, suggesting that exercise promotes synaptic plasticity in spinal cord interneurons that are ideally placed to form new intraspinal circuits after SCI. Following incomplete spinal cord injury (SCI), collaterals sprout from intact and injured axons in the vicinity of the lesion. These sprouts are thought to form new synaptic contacts that effectively bypass the lesion epicentre and contribute to improved functional recovery. Such anatomical changes are known to be enhanced by exercise training; however, the mechanisms underlying exercise-mediated plasticity are poorly understood. Specifically, we do not know how SCI alone or SCI combined with exercise alters the intrinsic and synaptic properties of interneurons in the vicinity of a SCI. Here we use a hemisection model of incomplete SCI in adult mice and whole-cell patch-clamp recording in a horizontal spinal cord slice preparation to examine the functional properties of deep dorsal horn (DDH) interneurons located in the vicinity of a SCI following 3 or 6 weeks of treadmill exercise training. We examined the functional properties of local and descending excitatory synaptic connections by recording spontaneous excitatory postsynaptic currents (sEPSCs) and responses to dorsal column stimulation, respectively. We find that SCI in untrained animals exerts powerful effects on intrinsic, and especially, synaptic properties of DDH interneurons. Plasticity in intrinsic properties was most prominent at 3 weeks post SCI, whereas synaptic plasticity was greatest at 6 weeks post injury. Exercise training did not markedly affect intrinsic membrane properties; however, local and descending excitatory synaptic drive were enhanced by 3 and 6 weeks of training. These results suggest exercise promotes synaptic plasticity in spinal cord interneurons that are ideally placed to form new intraspinal circuits after SCI.
Collapse
Affiliation(s)
- M M Rank
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, NSW, Australia
| | | | | | | | | | | |
Collapse
|
34
|
Popovich PG, Tovar CA, Lemeshow S, Yin Q, Jakeman LB. Independent evaluation of the anatomical and behavioral effects of Taxol in rat models of spinal cord injury. Exp Neurol 2014; 261:97-108. [PMID: 24999028 PMCID: PMC4194241 DOI: 10.1016/j.expneurol.2014.06.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/22/2014] [Accepted: 06/24/2014] [Indexed: 12/31/2022]
Abstract
The goal of the current manuscript was to replicate published data that show intrathecal infusions of Taxol® (paclitaxel), an anti-neoplastic microtubule stabilizing agent, reduce fibrogliotic scarring caused by a dorsal spinal hemisection (DHx) injury and increase functional recovery and growth of serotonergic axons after moderate spinal contusion injury. These experiments were completed as part of an NIH-NINDS contract entitled "Facilities of Research Excellence in Spinal Cord Injury (FORE-SCI) - Replication". Here, data are presented that confirm the anti-scarring effects of Taxol after DHx injury; however, Taxol did not confer neuroprotection or promote serotonergic axon growth nor did it improve functional recovery in a model of moderate spinal contusion injury. Thus, only partial replication was achieved. Possible explanations for disparate results in our studies and published data are discussed.
Collapse
Affiliation(s)
- Phillip G Popovich
- Center for Brain and Spinal Cord Repair, USA; Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| | - C Amy Tovar
- Center for Brain and Spinal Cord Repair, USA; Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Stanley Lemeshow
- Division of Biostatistics, The Ohio State University, College of Public Health, Columbus, OH, USA
| | - Qin Yin
- Center for Brain and Spinal Cord Repair, USA; Department of Physiology and Cell Biology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Lyn B Jakeman
- Center for Brain and Spinal Cord Repair, USA; Department of Physiology and Cell Biology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
35
|
Angeli CA, Edgerton VR, Gerasimenko YP, Harkema SJ. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. ACTA ACUST UNITED AC 2014; 137:1394-409. [PMID: 24713270 DOI: 10.1093/brain/awu038] [Citation(s) in RCA: 476] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Previously, we reported that one individual who had a motor complete, but sensory incomplete spinal cord injury regained voluntary movement after 7 months of epidural stimulation and stand training. We presumed that the residual sensory pathways were critical in this recovery. However, we now report in three more individuals voluntary movement occurred with epidural stimulation immediately after implant even in two who were diagnosed with a motor and sensory complete lesion. We demonstrate that neuromodulating the spinal circuitry with epidural stimulation, enables completely paralysed individuals to process conceptual, auditory and visual input to regain relatively fine voluntary control of paralysed muscles. We show that neuromodulation of the sub-threshold motor state of excitability of the lumbosacral spinal networks was the key to recovery of intentional movement in four of four individuals diagnosed as having complete paralysis of the legs. We have uncovered a fundamentally new intervention strategy that can dramatically affect recovery of voluntary movement in individuals with complete paralysis even years after injury.
Collapse
Affiliation(s)
- Claudia A Angeli
- 1 Frazier Rehab Institute, Kentucky One Health, Louisville, KY, USA
| | | | | | | |
Collapse
|
36
|
Ward PJ, Herrity AN, Smith RR, Willhite A, Harrison BJ, Petruska JC, Harkema SJ, Hubscher CH. Novel multi-system functional gains via task specific training in spinal cord injured male rats. J Neurotrauma 2014; 31:819-33. [PMID: 24294909 DOI: 10.1089/neu.2013.3082] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Locomotor training (LT) after spinal cord injury (SCI) is a rehabilitative therapy used to enhance locomotor recovery. There is evidence, primarily anecdotal, also associating LT with improvements in bladder function and reduction in some types of SCI-related pain. In the present study, we determined if a step training paradigm could improve outcome measures of locomotion, bladder function, and pain/allodynia. After a T10 contusive SCI trained animals (adult male Wistar rats), trained animals began quadrupedal step training beginning 2 weeks post-SCI for 1 h/day. End of study experiments (3 months of training) revealed significant changes in limb kinematics, gait, and hindlimb flexor-extensor bursting patterns relative to non-trained controls. Importantly, micturition function, evaluated with terminal transvesical cystometry, was significantly improved in the step trained group (increased voiding efficiency, intercontraction interval, and contraction amplitude). Because both SCI and LT affect neurotrophin signaling, and neurotrophins are involved with post-SCI plasticity in micturition pathways, we measured bladder neurotrophin mRNA. Training regulated the expression of nerve growth factor (NGF) but not BDNF or NT3. Bladder NGF mRNA levels were inversely related to bladder function in the trained group. Monitoring of overground locomotion and neuropathic pain throughout the study revealed significant improvements, beginning after 3 weeks of training, which in both cases remained consistent for the study duration. These novel findings, improving non-locomotor in addition to locomotor functions, demonstrate that step training post-SCI could contribute to multiple quality of life gains, targeting patient-centered high priority deficits.
Collapse
Affiliation(s)
- Patricia J Ward
- 1 Department of Anatomical Sciences and Neurobiology, University of Louisville , Louisville, Kentucky
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Starkey ML, Bleul C, Kasper H, Mosberger AC, Zörner B, Giger S, Gullo M, Buschmann F, Schwab ME. High-Impact, Self-Motivated Training Within an Enriched Environment With Single Animal Tracking Dose-Dependently Promotes Motor Skill Acquisition and Functional Recovery. Neurorehabil Neural Repair 2014; 28:594-605. [PMID: 24519022 DOI: 10.1177/1545968314520721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Functional recovery following central nervous system injuries is strongly influenced by rehabilitative training. In the clinical setting, the intensity of training and the level of motivation for a particular task are known to play important roles. With increasing neuroscience studies investigating the effects of training and rehabilitation, it is important to understand how the amount and type of training of individuals influences outcome. However, little is known about the influence of spontaneous "self-training" during daily life as it is often uncontrolled, not recorded, and mostly disregarded. Here, we investigated the effects of the intensity of self-training on motor skill acquisition in normal, intact rats and on the recovery of functional motor behavior following spinal cord injury in adult rats. We used a custom-designed small animal tracking system, "RatTrack," to continuously record the activity of multiple rats, simultaneously in a complex Natural Habitat-enriched environment. Naïve, adult rats performed high-intensity, self-motivated motor training, which resulted in them out-performing rats that were conventionally housed and trained on skilled movement tasks, for example, skilled prehension (grasping) and ladder walking. Following spinal cord injury the amount of self-training was correlated with improved functional recovery. These data suggest that high-impact, self-motivated training leads to superior skill acquisition and functional recovery than conventional training paradigms. These findings have important implications for the design of animal studies investigating rehabilitation and for the planning of human rehabilitation programs.
Collapse
Affiliation(s)
- Michelle L Starkey
- Brain Research Institute, University of Zurich, Zurich, Switzerland ETH Zurich, Zurich, Switzerland
| | - Christiane Bleul
- Brain Research Institute, University of Zurich, Zurich, Switzerland ETH Zurich, Zurich, Switzerland
| | - Hansjörg Kasper
- Brain Research Institute, University of Zurich, Zurich, Switzerland ETH Zurich, Zurich, Switzerland
| | - Alice C Mosberger
- Brain Research Institute, University of Zurich, Zurich, Switzerland ETH Zurich, Zurich, Switzerland
| | - Björn Zörner
- Brain Research Institute, University of Zurich, Zurich, Switzerland ETH Zurich, Zurich, Switzerland
| | - Stefan Giger
- Brain Research Institute, University of Zurich, Zurich, Switzerland ETH Zurich, Zurich, Switzerland
| | - Miriam Gullo
- Brain Research Institute, University of Zurich, Zurich, Switzerland ETH Zurich, Zurich, Switzerland
| | | | - Martin E Schwab
- Brain Research Institute, University of Zurich, Zurich, Switzerland ETH Zurich, Zurich, Switzerland
| |
Collapse
|
38
|
Flynn JR, Dunn LR, Galea MP, Callister R, Callister RJ, Rank MM. Exercise training after spinal cord injury selectively alters synaptic properties in neurons in adult mouse spinal cord. J Neurotrauma 2013; 30:891-6. [PMID: 23320512 DOI: 10.1089/neu.2012.2714] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Following spinal cord injury (SCI), anatomical changes such as axonal sprouting occur within weeks in the vicinity of the injury. Exercise training enhances axon sprouting; however, the exact mechanisms that mediate exercised-induced plasticity are unknown. We studied the effects of exercise training after SCI on the intrinsic and synaptic properties of spinal neurons in the immediate vicinity (<2 segments) of the SCI. Male mice (C57BL/6, 9-10 weeks old) received a spinal hemisection (T10) and after 1 week of recovery, they were randomized to trained (treadmill exercise for 3 weeks) and untrained (no exercise) groups. After 3 weeks, mice were killed and horizontal spinal cord slices (T6-L1, 250 μm thick) were prepared for visually guided whole cell patch clamp recording. Intrinsic properties, including resting membrane potential, input resistance, rheobase current, action potential (AP) threshold and after-hyperpolarization (AHP) amplitude were similar in neurons from trained and untrained mice (n=67 and 70 neurons, respectively). Neurons could be grouped into four categories based on their AP discharge during depolarizing current injection; the proportions of tonic firing, initial bursting, single spiking, and delayed firing neurons were similar in trained and untrained mice. The properties of spontaneous excitatory synaptic currents (sEPSCs) did not differ in trained and untrained animals. In contrast, evoked excitatory synaptic currents recorded after dorsal column stimulation were markedly increased in trained animals (peak amplitude 78.9±17.5 vs. 42.2±6.8 pA; charge 1054±376 vs. 348±75 pA·ms). These data suggest that 3 weeks of treadmill exercise does not affect the intrinsic properties of spinal neurons after SCI; however, excitatory synaptic drive from dorsal column pathways, such as the corticospinal tract, is enhanced.
Collapse
Affiliation(s)
- Jamie R Flynn
- School of Biomedical Sciences and Pharmacy, University of Newcastle, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
39
|
Kuypers NJ, James KT, Enzmann GU, Magnuson DSK, Whittemore SR. Functional consequences of ethidium bromide demyelination of the mouse ventral spinal cord. Exp Neurol 2013; 247:615-22. [PMID: 23466931 DOI: 10.1016/j.expneurol.2013.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/19/2013] [Accepted: 02/25/2013] [Indexed: 02/08/2023]
Abstract
Ethidium bromide (EB) has been extensively used in the rat as a model of spinal cord demyelination. However, this lesion has not been addressed in the adult mouse, a model with unlimited genetic potential. Here we characterize behavioral function, inflammation, myelin status and axonal viability following bilateral injection of 0.20 mg/mL ethidium bromide or saline into the ventral white matter (VWM) of female C57Bl/6 mice. EB-induced VWM demyelination significantly reduced spared VWM and Basso Mouse Scale (BMS) scores persisting out to 2 months. Chronic hindlimb dysfunction was accompanied by a persistent inflammatory response (demonstrated by CD45(+) immunofluorescence) and axonal loss (demonstrated by NF-M immunofluorescence and electron microscopy; EM). These cellular responses differ from the rat where inflammation resolves by 3-4 weeks and axon loss is minimal following EB demyelination. As these data suggest that EB-injection in the mouse spinal cord is a non-remyelinating lesion, we sought to ask whether wheel running could promote recovery by enhancing plasticity of local lumbar circuitry independent of remyelination. This did not occur as BMS and Treadscan assessment revealed no significant effect of wheel running on recovery. However, this study defines the importance of descending ventral motor pathways to locomotor function in the mouse as VWM loss results in a chronic hindlimb deficit.
Collapse
Affiliation(s)
- Nicholas J Kuypers
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | |
Collapse
|
40
|
Joseph MS, Ying Z, Zhuang Y, Zhong H, Wu A, Bhatia HS, Cruz R, Tillakaratne NJK, Roy RR, Edgerton VR, Gomez-Pinilla F. Effects of diet and/or exercise in enhancing spinal cord sensorimotor learning. PLoS One 2012; 7:e41288. [PMID: 22911773 PMCID: PMC3401098 DOI: 10.1371/journal.pone.0041288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/19/2012] [Indexed: 11/19/2022] Open
Abstract
Given that the spinal cord is capable of learning sensorimotor tasks and that dietary interventions can influence learning involving supraspinal centers, we asked whether the presence of omega-3 fatty acid docosahexaenoic acid (DHA) and the curry spice curcumin (Cur) by themselves or in combination with voluntary exercise could affect spinal cord learning in adult spinal mice. Using an instrumental learning paradigm to assess spinal learning we observed that mice fed a diet containing DHA/Cur performed better in the spinal learning paradigm than mice fed a diet deficient in DHA/Cur. The enhanced performance was accompanied by increases in the mRNA levels of molecular markers of learning, i.e., BDNF, CREB, CaMKII, and syntaxin 3. Concurrent exposure to exercise was complementary to the dietary treatment effects on spinal learning. The diet containing DHA/Cur resulted in higher levels of DHA and lower levels of omega-6 fatty acid arachidonic acid (AA) in the spinal cord than the diet deficient in DHA/Cur. The level of spinal learning was inversely related to the ratio of AA:DHA. These results emphasize the capacity of select dietary factors and exercise to foster spinal cord learning. Given the non-invasiveness and safety of the modulation of diet and exercise, these interventions should be considered in light of their potential to enhance relearning of sensorimotor tasks during rehabilitative training paradigms after a spinal cord injury.
Collapse
Affiliation(s)
- M. Selvan Joseph
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Zhe Ying
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yumei Zhuang
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, United States of America
| | - Hui Zhong
- Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Aiguo Wu
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Harsharan S. Bhatia
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Rusvelda Cruz
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Niranjala J. K. Tillakaratne
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
- Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Roland R. Roy
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
- Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - V. Reggie Edgerton
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Neurobiology, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, United States of America
- Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, United States of America
- UCLA Brain Injury Research Center, University of California Los Angeles, Los Angeles, California, United States of America
- Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
41
|
Battistuzzo CR, Callister RJ, Callister R, Galea MP. A systematic review of exercise training to promote locomotor recovery in animal models of spinal cord injury. J Neurotrauma 2012; 29:1600-13. [PMID: 22401139 DOI: 10.1089/neu.2011.2199] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In the early 1980s experiments on spinalized cats showed that exercise training on the treadmill could enhance locomotor recovery after spinal cord injury (SCI). In this review, we summarize the evidence for the effectiveness of exercise training aimed at promoting locomotor recovery in animal models of SCI. We performed a systematic search of the literature using Medline, Web of Science, and Embase. Of the 362 studies screened, 41 were included. The adult female rat was the most widely used animal model. The majority of studies (73%) reported that exercise training had a positive effect on some aspect of locomotor recovery. Studies employing a complete SCI were less likely to have positive outcomes. For incomplete SCI models, contusion was the most frequently employed method of lesion induction, and the degree of recovery depended on injury severity. Positive outcomes were associated with training regimens that involved partial weight-bearing activity, commenced within a critical period of 1-2 weeks after SCI, and maintained training for at least 8 weeks. Considerable heterogeneity in training paradigms and methods used to assess or quantify recovery was observed. A 13-item checklist was developed and employed to assess the quality of reporting and study design; only 15% of the studies had high methodological quality. We recommend that future studies include control groups, randomize animals to groups, conduct blinded assessments, report the extent of the SCI lesion, and report sample size calculations. A small battery of objective assessment methods including assessment of over-ground stepping should also be developed and routinely employed. This would allow future meta-analyses of the effectiveness of exercise interventions on locomotor recovery.
Collapse
Affiliation(s)
- Camila R Battistuzzo
- Department of Physiotherapy, Melbourne School of Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
42
|
Koopmans GC, Deumens R, Honig WM, Hamers FP, Mey J, van Kleef M, Joosten EA. Functional Recovery, Serotonergic Sprouting, and Endogenous Progenitor Fates in Response to Delayed Environmental Enrichment after Spinal Cord Injury. J Neurotrauma 2012; 29:514-27. [DOI: 10.1089/neu.2011.1949] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Guido C. Koopmans
- Department of Anesthesiology, Maastricht University Medical Center, Maastricht, The Netherlands
- Algiax Pharmaceuticals GmbH, Erkrath, Germany
| | - Ronald Deumens
- Department of Anesthesiology, Maastricht University Medical Center, Maastricht, The Netherlands
- Institute for Neuropathology, RWTH Aachen University Medical Faculty, Aachen, Germany
- EURON Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Wiel M.M. Honig
- Department of Anesthesiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Jörg Mey
- Institute of Biology II, RWTH Aachen University, Aachen, Germany
- Hospital Nacional de Parapléjicos, Toledo, Spain
- EURON Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Maarten van Kleef
- Department of Anesthesiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Elbert A. Joosten
- Department of Anesthesiology, Maastricht University Medical Center, Maastricht, The Netherlands
- EURON Graduate School of Neuroscience, Maastricht, The Netherlands
| |
Collapse
|
43
|
McDonald JW, Sadowsky CL, Stampas A. The changing field of rehabilitation: optimizing spontaneous regeneration and functional recovery. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:317-336. [PMID: 23098722 DOI: 10.1016/b978-0-444-52137-8.00020-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
For neurorehabilitation of patients with spinal cord injury (SCI), the traditional emphasis on social adaptation is being expanded to include strategies that promote plasticity and regeneration in the central nervous system. Such strategies are needed to optimize recovery of neurological function. For example, the known dependence of most cellular processes on physical activity has led to the novel concept that activity is important in neural repair. This hypothesis has given rise to activity-based restoration therapies (ABRT), which aim to optimize neural activity in the damaged spinal cord, particularly below the injury level. Here, we review the basic science and clinical evidence supporting the lifelong use of ABRT for recovery from spinal cord injury. We define and describe ABRT, and discuss its components, its clinical applications, its relationship to medical management of spinal cord injury, and the potential influences of medications on recovery. We also discuss the health benefits of ABRT under physiological and pathological conditions. We stress that lifelong ABRT is required to optimize return of function and to allow patients to benefit from any "cures" that will be discovered.
Collapse
Affiliation(s)
- John W McDonald
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | |
Collapse
|
44
|
Ueno M, Yamashita T. Strategies for regenerating injured axons after spinal cord injury - insights from brain development. Biologics 2011; 2:253-64. [PMID: 19707358 PMCID: PMC2721354 DOI: 10.2147/btt.s2715] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Axonal regeneration does not occur easily after an adult central nervous system (CNS) injury. Various attempts have partially succeeded in promoting axonal regeneration after the spinal cord injury (SCI). Interestingly, several recent therapeutic concepts have emerged from or been tightly linked to the researches on brain development. In a developing brain, remarkable and dynamic axonal elongation and sprouting occur even after the injury; this finding is essential to the development of a therapy for SCI. In this review, we overview the revealed mechanism of axonal tract formation and plasticity in the developing brain and compare the differences between a developing brain and a lesion site in an adult brain. One of the differences is that mature glial cells participate in the repair process in the case of adult injuries. Interestingly, these cells express inhibitory molecules that impede axonal regeneration such as myelin-associated proteins and the repulsive guidance molecules found originally in the developing brain for navigating axons to specific routes. Some reports have clearly elucidated that any treatment designed to suppress these inhibitory cues is beneficial for promoting regeneration and plasticity after an injury. Thus, understanding the developmental process will provide us with an important clue for designing therapeutic strategies for recovery from SCI.
Collapse
Affiliation(s)
- Masaki Ueno
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | | |
Collapse
|
45
|
Starkey ML, Schwab ME. Anti-Nogo-A and training: can one plus one equal three? Exp Neurol 2011; 235:53-61. [PMID: 21530508 DOI: 10.1016/j.expneurol.2011.04.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 03/15/2011] [Accepted: 04/07/2011] [Indexed: 12/14/2022]
Abstract
Following spinal cord injury (SCI) the adult central nervous system (CNS) has a limited but substantial capacity for repair and plastic reorganisation. The degree of reorganisation is determined by a number of factors such as the extent and location of the lesion, the remaining circuit activity within the CNS and the age at injury. However, even in the best cases this spontaneous reorganisation does not lead to full recovery of the affected behaviour but instead often results in a functionally successful but compensatory strategy. Current SCI research focuses on enhancing fibre tract (re-)growth and recovery processes. Two currently promising approaches are the neutralisation of CNS growth inhibitory factors, and rehabilitative training of remaining networks. Independently, both approaches can lead to substantial functional recovery and anatomical reorganisation. In this review we focus on Nogo-A, a neurite growth inhibitory protein present in the adult CNS, and its role in regenerative and plastic growth following SCI. We then discuss the efforts of rehabilitative training and the potential combination of the two therapies.
Collapse
Affiliation(s)
- Michelle L Starkey
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| | | |
Collapse
|
46
|
Ilha J, Centenaro LA, Broetto Cunha N, de Souza DF, Jaeger M, do Nascimento PS, Kolling J, Ben J, Marcuzzo S, Wyse ATS, Gottfried C, Achaval M. The Beneficial Effects of Treadmill Step Training on Activity-Dependent Synaptic and Cellular Plasticity Markers After Complete Spinal Cord Injury. Neurochem Res 2011; 36:1046-55. [DOI: 10.1007/s11064-011-0446-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2011] [Indexed: 01/15/2023]
|
47
|
Movement rehabilitation after spinal cord injuries: Emerging concepts and future directions. Brain Res Bull 2011; 84:327-36. [DOI: 10.1016/j.brainresbull.2010.07.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 06/25/2010] [Accepted: 07/20/2010] [Indexed: 01/24/2023]
|
48
|
Exercise therapy and recovery after SCI: evidence that shows early intervention improves recovery of function. Spinal Cord 2011; 49:623-8. [PMID: 21242998 DOI: 10.1038/sc.2010.167] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
STUDY DESIGN This was designed as an experimental study. OBJECTIVES Locomotor training is one of the most effective strategies currently available for facilitating recovery of function after an incomplete spinal cord injury (SCI). However, there is still controversy regarding the timing of treatment initiation for maximal recovery benefits. To address this issue, the present study compares the effects of exercise initiated in the acute and secondary phase of SCI. SETTING Texas A&M University, College Station, TX, USA. METHODS Rats received a moderate spinal contusion injury and began an exercise program 1 (D1-EX) or 8 days (D8-EX) later. They were individually placed into transparent exercise balls for 60 min per day, for 14 consecutive days. Control rats were placed in exercise balls that were rendered immobile. Motor and sensory recovery was assessed for 28 days after injury. RESULTS The D1-EX rats recovered significantly more locomotor function (BBB scale) than controls and D8-EX rats. Moreover, analyses revealed that rats in the D8-EX group had significantly lower tactile reactivity thresholds compared with control and D1-EX rats, and symptoms of allodynia were not reversed by exercise. Rats in the D8-EX group also had significantly larger areas of damage across spinal sections caudal to the injury center compared with the D1-EX group. CONCLUSION These results indicate that implementing an exercise regimen in the acute phase of SCI maximizes the potential for recovery of function.
Collapse
|
49
|
Sharp KG, Flanagan LA, Yee KM, Steward O. A re-assessment of a combinatorial treatment involving Schwann cell transplants and elevation of cyclic AMP on recovery of motor function following thoracic spinal cord injury in rats. Exp Neurol 2010; 233:625-44. [PMID: 21195070 DOI: 10.1016/j.expneurol.2010.12.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/17/2010] [Accepted: 12/22/2010] [Indexed: 11/29/2022]
Abstract
This study was undertaken as part of the NIH "Facilities of Research-Spinal Cord Injury" project to support independent replication of published studies. Here, we repeated a study reporting that a combinatorial treatment with transplants of Schwann cells, systemic delivery of Rolipram to enhance cyclic AMP levels, and intra-spinal injections of dibutyryl cyclic AMP enhanced locomotor recovery in rats after contusion injuries at the thoracic level. We compared the following experimental groups: 1) rats that received Schwann cell transplants, systemic Rolipram, and injections of db-cyclic AMP (the combined treatment group that showed the greatest improvement in function); 2) rats that received Schwann cell transplants only and implantation of empty pumps as control; 3) rats that received Rolipram only and implantation of empty pumps as control, and 4) control rats that received no treatment other than the injection of DMEM into the spinal cord and implantation of empty pumps. The principal findings reported in Pearse et al. were not replicated in that the combined treatment group did not exhibit greater recovery on any of the measures, although the group that received Schwann cells only did exhibit enhanced recovery on several of the outcome measures. The failure of the combined treatment may be due in part to less successful engraftment of Schwann cells in our study vs. Pearse et al. Issues relating to failures to replicate, especially when effect size is small, are discussed.
Collapse
Affiliation(s)
- Kelli G Sharp
- Reeve-Irvine Research Center, University of California at Irvine School of Medicine, Irvine, CA 92697-4265, USA
| | | | | | | |
Collapse
|
50
|
Smith RR, Brown EH, Shum-Siu A, Whelan A, Burke DA, Benton RL, Magnuson DSK. Swim training initiated acutely after spinal cord injury is ineffective and induces extravasation in and around the epicenter. J Neurotrauma 2010; 26:1017-27. [PMID: 19331515 DOI: 10.1089/neu.2008-0829] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Activity-based rehabilitation is a promising strategy for improving functional recovery following spinal cord injury (SCI). While results from both clinical and animal studies have shown that a variety of approaches can be effective, debate still exists regarding the optimal post-injury period to apply rehabilitation. We recently demonstrated that rats with moderately severe thoracic contusive SCI can be re-trained to swim when training is initiated 2 weeks after injury and that swim training had no effect on the recovery of overground locomotion. We concluded that swim training is a task-specific model of post-SCI activity-based rehabilitation. In the present study, we ask if re-training initiated acutely is more or less effective than when initiated at 2 weeks post-injury. Using the Louisville Swim Scale, an 18-point swimming assessment, supplemented by kinematic assessment of hindlimb movement during swimming, we report that acute re-training is less effective than training initiated at 2 weeks. Using the bioluminescent protein luciferase as a blood-borne macromolecular marker, we also show a significant increase in extravasation in and around the site of SCI following only 8 min of swimming at 3 days post-injury. Taken together, these results suggest that acute re-training in a rat model of SCI may compromise rehabilitation efforts via mechanisms that may involve one or more secondary injury cascades, including acute spinal microvascular dysfunction.
Collapse
Affiliation(s)
- Rebecca R Smith
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | |
Collapse
|