1
|
Kiyokawa Y, Ootaki M, Kambe Y, Tanaka KD, Kimura G, Tanikawa T, Takeuchi Y. Approach/Avoidance Behavior to Novel Objects is Correlated with the Serotonergic and Dopaminergic Systems in the Brown Rat (Rattus norvegicus). Neuroscience 2024; 549:110-120. [PMID: 38723837 DOI: 10.1016/j.neuroscience.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
The brown rat (Rattus norvegicus) is known to show three types of behavioral responses to novel objects. Whereas some rats are indifferent to novel objects, neophobic and neophilic rats show avoidance and approach behavior, respectively. Here, we compared the dopaminergic, serotonergic, and noradrenergic systems immunohistochemically among these rats. Trapped wild rats and laboratory rats were first individually exposed to the novel objects in their home cage. Wild rats were divided into neophobic and indifferent rats depending on their behavioral responses. Similarly, laboratory rats were divided into neophilic and indifferent rats. Consistent with the behavioral differences, in the paraventricular nucleus of the hypothalamus, Fos expression in corticotropin-releasing hormone-containing neurons was higher in the neophobic rats than in the indifferent rats. In the anterior basal amygdala, the neophobic rats showed higher Fos expression than the indifferent rats. In the posterior basal amygdala, the neophobic and neophilic rats showed lower and higher Fos expressions than the indifferent rats, respectively. When we compared the neuromodulatory systems, in the dorsal raphe, the number of serotonergic neurons and Fos expression in serotonergic neurons increased linearly from neophobic to indifferent to neophilic rats. In the ventral tegmental area, Fos expression in dopaminergic neurons was higher in the neophilic rats than in the indifferent rats. These results demonstrate that approach/avoidance behavior to novel objects is correlated with the serotonergic and dopaminergic systems in the brown rat. We propose that the serotonergic system suppresses avoidance behavior while the dopaminergic system enhances approach behavior to novel objects.
Collapse
Affiliation(s)
- Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Masato Ootaki
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoshikazu Kambe
- Technical Research Laboratory, Ikari Shodoku Co. Ltd, 1-12-3 Akanehama, Narashino-shi, Chiba 275-0024, Japan
| | - Kazuyuki D Tanaka
- Technical Research Laboratory, Ikari Shodoku Co. Ltd, 1-12-3 Akanehama, Narashino-shi, Chiba 275-0024, Japan
| | - Goro Kimura
- Technical Research Laboratory, Ikari Shodoku Co. Ltd, 1-12-3 Akanehama, Narashino-shi, Chiba 275-0024, Japan
| | - Tsutomu Tanikawa
- Technical Research Laboratory, Ikari Shodoku Co. Ltd, 1-12-3 Akanehama, Narashino-shi, Chiba 275-0024, Japan
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
2
|
Yamasaki T, Kiyokawa Y, Munetomo A, Takeuchi Y. Naloxone increases conditioned fear responses during social buffering in male rats. Eur J Neurosci 2024; 59:3256-3272. [PMID: 38644789 DOI: 10.1111/ejn.16343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Social buffering is the phenomenon in which the presence of an affiliative conspecific mitigates stress responses. We previously demonstrated that social buffering completely ameliorates conditioned fear responses in rats. However, the neuromodulators involved in social buffering are poorly understood. Given that opioids, dopamine, oxytocin and vasopressin play an important role in affiliative behaviour, here, we assessed the effects of the most well-known antagonists, naloxone (opioid receptor antagonist), haloperidol (dopamine D2 receptor antagonist), atosiban (oxytocin receptor antagonist) and SR49059 (vasopressin V1a receptor antagonist), on social buffering. In Experiment 1, fear-conditioned male subjects were intraperitoneally administered one of the four antagonists 25 min prior to exposure to a conditioned stimulus with an unfamiliar non-conditioned rat. Naloxone, but not the other three antagonists, increased freezing and decreased walking and investigation as compared with saline administration. In Experiment 2, identical naloxone administration did not affect locomotor activity, anxiety-like behaviour or freezing in an open-field test. In Experiment 3, after confirming that the same naloxone administration again increased conditioned fear responses, as done in Experiment 1, we measured Fos expression in 16 brain regions. Compared with saline, naloxone increased Fos expression in the paraventricular nucleus of the hypothalamus and decreased Fos expression in the nucleus accumbens shell, anterior cingulate cortex and insular cortex and tended to decrease Fos expression in the nucleus accumbens core. Based on these results, we suggest that naloxone blocks social buffering of conditioned fear responses in male rats.
Collapse
Affiliation(s)
- Takumi Yamasaki
- Laboratory of Veterinary Ethology, The University of Tokyo, Tokyo, Japan
| | - Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, Tokyo, Japan
| | - Arisa Munetomo
- Laboratory of Veterinary Ethology, The University of Tokyo, Tokyo, Japan
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Farias CP, Leite AKO, Schmidt BE, de Carvalho Myskiw J, Wyse ATS. The 5-HT2A, 5-HT5A, and 5-HT6 serotonergic receptors in the medial prefrontal cortex behave differently in extinction learning: Does social support play a role? Behav Brain Res 2024; 463:114922. [PMID: 38408524 DOI: 10.1016/j.bbr.2024.114922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Studies on the social modulation of fear have revealed that in social species, individuals in a distressed state show better recovery from aversive experiences when accompanied - referred to as social buffering. However, the underlying mechanisms remain unknown, hindering the understanding of such an approach. Our previous data showed that the presence of a conspecific during the extinction task inhibited the retrieval of fear memory without affecting the extinction memory in the retention test. Here, we investigate the role of serotonergic receptors (5-HTRs), specifically 5-HT2A, 5-HT5A, and 5-HT6 in the medial prefrontal cortex (mPFC), In the retention of extinction after the extinction task, in the absence or presence of social support. Extinction training was conducted on 60-day-old male Wistar rats either alone or with a conspecific (a familiar cagemate, non-fearful). The antagonists for these receptors were administered directly into the mPFC immediately after the extinction training. The results indicate that blocking 5-HT5A (SB-699551-10 μg/side) and 5-HT6 (SB-271046A - 10 μg/side) receptors in the mPFC impairs the consolidation of CFC in the social support group. Interestingly, blocking 5-HT2A receptors (R65777 - 4 μg/side) in the mPFC led to impaired CFC specifically in the group undergoing extinction training alone. These findings contribute to a better understanding of brain mechanisms and neuromodulation associated with social support during an extinction protocol. They are consistent with previously published research, suggesting that the extinction of contextual fear conditioning with social support involves distinct neuromodulatory processes compared to when extinction training is conducted alone.
Collapse
Affiliation(s)
- Clarissa Penha Farias
- Graduate Program in Translational Neuroscience, PGNET, National Institute of Translational Neuroscience, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Neuroprotection and Neurometabolic Diseases Laboratory (Wyse´s Lab), Brazil
| | - Ana Karla Oliveira Leite
- Graduate Program in Translational Neuroscience, PGNET, National Institute of Translational Neuroscience, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Neuroprotection and Neurometabolic Diseases Laboratory (Wyse´s Lab), Brazil
| | - Bianca Estefani Schmidt
- Graduate Program in Translational Neuroscience, PGNET, National Institute of Translational Neuroscience, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Neuroprotection and Neurometabolic Diseases Laboratory (Wyse´s Lab), Brazil
| | - Jociane de Carvalho Myskiw
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Brazil
| | - Angela T S Wyse
- Graduate Program in Translational Neuroscience, PGNET, National Institute of Translational Neuroscience, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil; Neuroprotection and Neurometabolic Diseases Laboratory (Wyse´s Lab), Brazil; Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Cox SS, Brown BJ, Wood SK, Brown SJ, Kearns AM, Reichel CM. Neuronal, affective, and sensory correlates of targeted helping behavior in male and female Sprague Dawley rats. Front Behav Neurosci 2024; 18:1384578. [PMID: 38660390 PMCID: PMC11041374 DOI: 10.3389/fnbeh.2024.1384578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/29/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Empathic behaviors are driven by the ability to understand the emotional states of others along with the motivation to improve it. Evidence points towards forms of empathy, like targeted helping, in many species including rats. There are several variables that may modulate targeted helping, including sex, sensory modalities, and activity of multiple neural substrates. Methods Using a model of social contact-independent targeted helping, we first tested whether sex differences exist in helping behavior. Next, we explored sex differences in sensory and affective signaling, including direct visualization and an analysis of ultrasonic vocalizations made between animal pairs. Finally, we examined the neural activity in males and females of multiple regions of interest across time. Here, we aim to examine any behavioral differences in our lab's social contact independent targeted helping task between males and females. Results and Discussion These findings are the first to intimate that, like other prosocial behaviors, males and females may exhibit similar social-independent targeted helping behavior, but the underlying sensory communication in males and females may differ. In addition, this is the first set of experiments that explore the neural correlates of social-independent targeted helping in both males and females. These results lay the groundwork for future studies to explore the similarities and differences that drive targeted helping in both sexes.
Collapse
Affiliation(s)
- Stewart S. Cox
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
| | | | | | | | | | - Carmela M. Reichel
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
5
|
Yu D, Bao L, Yin B. Emotional contagion in rodents: A comprehensive exploration of mechanisms and multimodal perspectives. Behav Processes 2024; 216:105008. [PMID: 38373472 DOI: 10.1016/j.beproc.2024.105008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/26/2023] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Emotional contagion, a fundamental aspect of empathy, is an automatic and unconscious process in which individuals mimic and synchronize with the emotions of others. Extensively studied in rodents, this phenomenon is mediated through a range of sensory pathways, each contributing distinct insights. The olfactory pathway, marked by two types of pheromones modulated by oxytocin, plays a crucial role in transmitting emotional states. The auditory pathway, involving both squeaks and specific ultrasonic vocalizations, correlates with various emotional states and is essential for expression and communication in rodents. The visual pathway, though less relied upon, encompasses observational motions and facial expressions. The tactile pathway, a more recent focus, underscores the significance of physical interactions such as allogrooming and socio-affective touch in modulating emotional states. This comprehensive review not only highlights plausible neural mechanisms but also poses key questions for future research. It underscores the complexity of multimodal integration in emotional contagion, offering valuable insights for human psychology, neuroscience, animal welfare, and the burgeoning field of animal-human-AI interactions, thereby contributing to the development of a more empathetic intelligent future.
Collapse
Affiliation(s)
- Delin Yu
- School of Psychology, Fujian Normal University, Fuzhou, Fujian 350117, China; Key Laboratory for Learning and Behavioral Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Lili Bao
- School of Psychology, Fujian Normal University, Fuzhou, Fujian 350117, China; Key Laboratory for Learning and Behavioral Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Bin Yin
- School of Psychology, Fujian Normal University, Fuzhou, Fujian 350117, China; Key Laboratory for Learning and Behavioral Sciences, Fujian Normal University, Fuzhou, Fujian 350117, China.
| |
Collapse
|
6
|
Hornstein E, Leschak CJ, Parrish MH, Byrne-Haltom KE, Fanselow MS, Craske MG, Eisenberger NI. Social support and fear-inhibition: an examination of underlying neural mechanisms. Soc Cogn Affect Neurosci 2024; 19:nsae002. [PMID: 38217103 PMCID: PMC10868130 DOI: 10.1093/scan/nsae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 12/06/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024] Open
Abstract
Recent work has demonstrated that reminders of those we are closest to have a unique combination of effects on fear learning and represent a new category of fear inhibitors, termed prepared fear suppressors. Notably, social-support-figure images have been shown to resist becoming associated with fear, suppress conditional-fear-responding and lead to long-term fear reduction. Due to the novelty of this category, understanding the underlying neural mechanisms that support these unique abilities of social-support-reminders has yet to be investigated. Here, we examined the neural correlates that enable social-support-reminders to resist becoming associated with fear during a retardation-of-acquisition test. We found that social-support-figure-images (vs stranger-images) were less readily associated with fear, replicating prior work, and that this effect was associated with decreased amygdala activity and increased ventromedial prefrontal cortex (VMPFC) activity for social-support-figure-images (vs stranger-images), suggesting that social-support-engagement of the VMPFC and consequent inhibition of the amygdala may contribute to unique their inhibitory effects. Connectivity analyses supported this interpretation, showing greater connectivity between the VMPFC and left amygdala for social-support-figure-images (vs stranger-images).
Collapse
Affiliation(s)
- E.A Hornstein
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
| | - C J Leschak
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
| | - M H Parrish
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
| | - K E Byrne-Haltom
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
| | - M S Fanselow
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA 90095, USA
| | - M G Craske
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA 90095, USA
| | - N I Eisenberger
- Department of Psychology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Kiyokawa Y, Tamogami S, Ootaki M, Kahl E, Mayer D, Fendt M, Nagaoka S, Tanikawa T, Takeuchi Y. An appeasing pheromone ameliorates fear responses in the brown rat ( Rattus norvegicus). iScience 2023; 26:107081. [PMID: 37426349 PMCID: PMC10329171 DOI: 10.1016/j.isci.2023.107081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
The brown rat (Rattus norvegicus) is one of the major animals both in the laboratory and in urban centers. Brown rats communicate various types of information using pheromones, the chemicals that mediate intra-species communication in minute amounts. Therefore, analyses of pheromones would further our understanding of the mode of life of rats. We show that a minute amount of 2-methylbutyric acid (2-MB) released from the neck region can ameliorate fear responses both in laboratory rats and in wild brown rats. Based on these findings, we conclude that 2-MB is an appeasing pheromone in the brown rat. A better understanding of rats themselves would allow us to perform more effective ecologically based research on social skills and pest management campaigns with low animal welfare impacts, which might contribute to furthering the advancement of science and improving public health.
Collapse
Affiliation(s)
- Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigeyuki Tamogami
- Laboratory of Veterinary Ethology, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masato Ootaki
- Laboratory of Veterinary Ethology, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Evelyn Kahl
- Institute for Pharmacology and Toxicology & Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany
| | - Dana Mayer
- Institute for Pharmacology and Toxicology & Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology & Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, D-39120 Magdeburg, Germany
| | - Satoru Nagaoka
- Daimaru Compound Chemical Co., Ltd, Nagano 381-1222, Japan
| | - Tsutomu Tanikawa
- Technical Research Laboratory, Ikari Shodoku Co., Ltd, Chiba 275-0024, Japan
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
8
|
Lu MH, Uematsu A, Kiyokawa Y, Emoto K, Takeuchi Y. Glutamatergic Projections from the Posterior Complex of the Anterior Olfactory Nucleus to the Amygdala Complexes. Neuroscience 2023; 521:102-109. [PMID: 37142179 DOI: 10.1016/j.neuroscience.2023.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Social buffering is a phenomenon where stress responses are ameliorated by an affiliative conspecific. Our previous findings suggest that the posterior complex of the anterior olfactory nucleus (AOP) is well positioned to participate in the neural mechanisms underlying social buffering. However, the lack of anatomical information prevents us from further estimating the role of the AOP. Here, we obtained anatomical information regarding the AOP in male rats. In Experiment 1 (n = 5), among 4',6-diamidino-2-phenylindole-positive cells in the AOP, the proportion of glutamic acid decarboxylase 67 (GAD67)-positive cells was 13.8% ± 1.2%. In Experiment 2 (n = 5), among the cells that were labeled by a retrograde tracer injected into the basolateral complex of the amygdala (BLA), the proportion of GAD67-positive cells was 18.6% ± 0.8%. In Experiment 3 (n = 5), we demonstrated the existence of cells that were labeled by the retrograde tracer injected into the posterior part of the medial amygdala (MeP), mostly into the ventral part of the MeP. In addition, the proportion of GAD67-positive cells among the tracer-labeled cells was 21.7% ± 1.7%. In Experiment 4 (n = 3), the retrograde tracers were injected into the BLA and MeP, mostly into the ventral part of the MeP. The proportion of double-labeled cells among the tracer-labeled cells was 2.1% ± 1.2%. Taken together, these results suggest that the AOP is predominantly composed of glutamatergic neurons. In addition, the AOP sends mutually independent glutamatergic-predominant projections to the BLA and MeP.
Collapse
Affiliation(s)
- Ming-Hsuan Lu
- Laboratory of Veterinary Ethology, The University of Tokyo, Japan
| | - Akira Uematsu
- International Research Center for Neurointelligence, The University of Tokyo, Japan; Graduate School of Science, The University of Tokyo, Japan; Present Adress: Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Japan
| | - Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, Japan.
| | - Kazuo Emoto
- International Research Center for Neurointelligence, The University of Tokyo, Japan; Graduate School of Science, The University of Tokyo, Japan
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, The University of Tokyo, Japan
| |
Collapse
|
9
|
Gorkiewicz T, Danielewski K, Andraka K, Kondrakiewicz K, Meyza K, Kaminski J, Knapska E. Social buffering diminishes fear response but does not equal improved fear extinction. Cereb Cortex 2022; 33:5007-5024. [PMID: 36218820 PMCID: PMC10110450 DOI: 10.1093/cercor/bhac395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/15/2022] Open
Abstract
Social support during exposure-based psychotherapy is believed to diminish fear and improve therapy outcomes. However, some clinical trials challenge that notion. Underlying mechanisms remain unknown, hindering the understanding of benefits and pitfalls of such approach. To study social buffering during fear extinction, we developed a behavioral model in which partner's presence decreases response to fear-associated stimuli. To identify the neuronal background of this phenomenon, we combined behavioral testing with c-Fos mapping, optogenetics, and chemogenetics. We found that the presence of a partner during fear extinction training causes robust inhibition of freezing; the effect, however, disappears in subjects tested individually on the following day. It is accompanied by lowered activation of the prelimbic (PL) and anterior cingulate (ACC) but not infralimbic (IL) cortex. Accordingly, blocking of IL activity left social buffering intact. Similarly, inhibition of the ventral hippocampus-PL pathway, suppressing fear response after prolonged extinction training, did not diminish the effect. In contrast, inhibition of the ACC-central amygdala pathway, modulating social behavior, blocked social buffering. By reporting that social modulation of fear inhibition is transient and insensitive to manipulation of the fear extinction-related circuits, we show that the mechanisms underlying social buffering during extinction are different from those of individual extinction.
Collapse
Affiliation(s)
- Tomasz Gorkiewicz
- Neurobiology of Emotions Laboratory, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Konrad Danielewski
- Neurobiology of Emotions Laboratory, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Karolina Andraka
- Neurobiology of Emotions Laboratory, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Kacper Kondrakiewicz
- Neurobiology of Emotions Laboratory, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.,NeuroElectronics Research Flanders, Leuven, Belgium
| | - Ksenia Meyza
- Neurobiology of Emotions Laboratory, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Jan Kaminski
- Neurophysiology of Mind Laboratory, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Ewelina Knapska
- Neurobiology of Emotions Laboratory, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| |
Collapse
|
10
|
Mechin V, Asproni P, Bienboire-Frosini C, Cozzi A, Chabaud C, Arroub S, Mainau E, Nagnan-Le Meillour P, Pageat P. Inflammation interferes with chemoreception in pigs by altering the neuronal layout of the vomeronasal sensory epithelium. Front Vet Sci 2022; 9:936838. [PMID: 36172609 PMCID: PMC9510685 DOI: 10.3389/fvets.2022.936838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Chemical communication is widely used by animals to exchange information in their environment, through the emission and detection of semiochemicals to maintain social organization and hierarchical rules in groups. The vomeronasal organ (VNO) is one of the main detectors of these messages, and its inflammation has been linked to behavioral changes because it potentially prevents molecule detection and, consequently, the translation of the signal into action. Our previous study highlighted the link between the intensity of vomeronasal sensory epithelium (VNSE) inflammation, probably induced by farm contaminant exposure, and intraspecific aggression in pigs. The aim of this study was to evaluate the cellular and molecular changes that occur during vomeronasalitis in 76 vomeronasal sensorial epithelia from 38 intensive-farmed pigs. Histology was used to evaluate the condition of each VNO and classify inflammation as healthy, weak, moderate, or strong. These data were compared to the thickness of the sensorial epithelium and the number of type 1 vomeronasal receptor cells using anti-Gαi2 protein immunohistochemistry (IHC) and analysis. The presence of odorant-binding proteins (OBPs) in the areas surrounding the VNO was also analyzed by IHC and compared to inflammation intensity since its role as a molecule transporter to sensory neurons has been well-established. Of the 76 samples, 13 (17%) were healthy, 31 (41%) presented with weak inflammation, and 32 (42%) presented with moderate inflammation. No severe inflammation was observed. Epithelial thickness and the number of Gαi2+ cells were inversely correlated with inflammation intensity (Kruskal–Wallis and ANOVA tests, p < 0.0001), while OBP expression in areas around the VNO was increased in inflamed VNO (Kruskal–Wallis test, p = 0.0094), regardless of intensity. This study showed that inflammation was associated with a reduction in the thickness of the sensory epithelium and Gαi2+ cell number, suggesting that this condition can induce different degrees of neuronal loss. This finding could explain how vomeronasalitis may prevent the correct functioning of chemical communication, leading to social conflict with a potential negative impact on welfare, which is one of the most important challenges in pig farming.
Collapse
Affiliation(s)
- Violaine Mechin
- Tissue Biology and Chemical Communication Department, IRSEA, Institute of Research in Semiochemistry and Applied Ethology, Apt, France
- *Correspondence: Violaine Mechin
| | - Pietro Asproni
- Tissue Biology and Chemical Communication Department, IRSEA, Institute of Research in Semiochemistry and Applied Ethology, Apt, France
| | - Cécile Bienboire-Frosini
- Molecular Biology and Chemical Communication Department, IRSEA, Institute of Research in Semiochemistry and Applied Ethology, Apt, France
| | - Alessandro Cozzi
- Research and Education Board, IRSEA, Institute of Research in Semiochemistry and Applied Ethology, Apt, France
| | - Camille Chabaud
- Molecular Biology and Chemical Communication Department, IRSEA, Institute of Research in Semiochemistry and Applied Ethology, Apt, France
| | - Sana Arroub
- Statistics and Data Management Service, IRSEA, Institute of Research in Semiochemistry and Applied Ethology, Apt, France
| | - Eva Mainau
- Department of Animal and Food Science, School of Veterinary Science, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Patrick Pageat
- Research and Education Board, IRSEA, Institute of Research in Semiochemistry and Applied Ethology, Apt, France
| |
Collapse
|
11
|
Hornstein EA, Craske MG, Fanselow MS, Eisenberger NI. Reclassifying the Unique Inhibitory Properties of Social Support Figures: A Roadmap for Exploring Prepared Fear Suppression. Biol Psychiatry 2022; 91:778-785. [PMID: 35063185 DOI: 10.1016/j.biopsych.2021.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022]
Abstract
Recent work has revealed that social support cues are powerful inhibitors of the fear response. They are endowed with a unique combination of inhibitory properties, enabling them to both inhibit fear in the short term and reduce fear in the long term. While these findings had previously been thought to suggest that social support cues belong to a category of prepared safety stimuli, mounting evidence clearly shows that the mechanisms underlying safety signaling cannot account for the unique effects of social support cues. Here, we propose a reclassification of social support cues as members of a prepared fear suppressor category. We present an argument for the prepared fear suppressor classification, discuss potential mechanisms underlying the unique effects of prepared fear suppressors, and outline next steps to build an understanding of this category and its clinical implications. This review is meant to serve as a roadmap for exploring this novel category of prepared fear suppressors, whose never-before-seen range of inhibitory effects makes them an important and impactful discovery with implications for both fear learning theory and clinical application.
Collapse
Affiliation(s)
- Erica A Hornstein
- Department of Psychology, University of California Los Angeles, Los Angeles, California.
| | - Michelle G Craske
- Department of Psychology, University of California Los Angeles, Los Angeles, California; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California
| | - Michael S Fanselow
- Department of Psychology, University of California Los Angeles, Los Angeles, California; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California
| | - Naomi I Eisenberger
- Department of Psychology, University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
12
|
Stryjek R, Modlinska K. Pre-exposure via wire-mesh partition reduces intraspecific aggression in male, wild-type Norway rats. Anim Welf 2022. [DOI: 10.7120/09627286.31.2.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There are instances when animals are introduced and expected to live alongside unfamiliar conspecifics within zoos, laboratories and wildlife sanctuaries. These pairings of unfamiliar animals may result in stress, trauma, or even death, in addition to reduced confidence in data resulting
from these subjects. For species that communicate relatedness, sex, social status, and emotional state through olfactory cues (eg pheromones), one means of counteracting aggression may involve a period of partial separation — where animals are close enough to become acquainted —
while a permeable barrier maintains separation. For our study, we evaluated the use of a novel, autoclavable, wire-mesh partition to separate potential aggressors. We tested different pairs of 24 wild-type male Norway rats (Rattus norvegicus), previously kept in social isolation for
seven days. Each control pair were merged directly into one cage, while pairs from the experimental groups underwent three pre-exposure sessions that lasted two to four days. We used continuous video recordings to assess five common threat displays: lateral threat, keep down, upright posture,
chase, and clinch attack. We used two types of bedding: new (unscented) bedding and recently used bedding that conveyed scents from both merged rats. We found that rats subjected to pre-exposure demonstrated lower aggression levels across three of the five metrics (lateral threats, upright
postures, and keep downs). We conclude that permeable partitions show promise as a humane mechanism to mix new individuals into preexisting colonies. Further research may explore whether partitions could be helpful with other species that communicate social information by pheromones or direct
visual inspection.
Collapse
Affiliation(s)
- R Stryjek
- Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| | - K Modlinska
- Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
13
|
Zhang X, Kiyokawa Y, Takeuchi Y. Mapping of c-Fos expression in the medial amygdala following social buffering in male rats. Behav Brain Res 2022; 422:113746. [PMID: 35033609 DOI: 10.1016/j.bbr.2022.113746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/16/2021] [Accepted: 01/11/2022] [Indexed: 11/15/2022]
Abstract
Social buffering is the phenomenon in which an affiliative conspecific (associate) ameliorates stress responses of a subject. We previously found that social buffering in Wistar subject rats is induced if the strain of the associate is Wistar or a strain derived from Wistar rats. In the present study, we assessed the possible role of medial amygdala (Me) in this strain-dependent induction of social buffering. The subjects were exposed to the conditioned stimulus (CS) that had been paired or unpaired with a foot shock either alone, with an unfamiliar Wistar associate, or with an unfamiliar Fischer 344 (F344) associate. We found that the Wistar associates, but not F344 associates, ameliorated increased freezing and Fos expression in the paraventricular nucleus of the hypothalamus and lateral amygdala caused by the CS. In addition, Fos expression in the posterior complex of the anterior olfactory nucleus and lateral intercalated cell mass of the amygdala was increased simultaneously. These results suggest that Wistar associates, but not F344 associates, induced social buffering. In the Me, we did not find any differences associated with stress responses or amelioration of stress responses. In contrast, a comparison among the unpaired subjects found that the Wistar associates, but not F344 associates, increased exploratory behavior and Fos expression in the posteroventral subdivision of the Me (MePV). Based on these results, we propose that the MePV is involved in the recognition of social similarity with the associates. Taken together, the present study provides information about the possible role of Me in social buffering.
Collapse
Affiliation(s)
- Xinrui Zhang
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
14
|
Puścian A, Bryksa A, Kondrakiewicz L, Kostecki M, Winiarski M, Knapska E. Ability to share emotions of others as a foundation of social learning. Neurosci Biobehav Rev 2021; 132:23-36. [PMID: 34838526 DOI: 10.1016/j.neubiorev.2021.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/25/2023]
Abstract
The natural habitats of most species are far from static, forcing animals to adapt to continuously changing conditions. Perhaps the most efficient strategy addressing this challenge consists of obtaining and acting upon pertinent information from others through social learning. We discuss how animals transfer information via social channels and what are the benefits of such exchanges, playing out on different levels, from theperception of socially delivered information to emotional sharing, manifesting themselves across different taxa of increasing biological complexity. We also discuss how social learning is influenced by different factors including pertinence of information for survival, the complexity of the environment, sex, genetic relatedness, and most notably, the relationship between interacting partners. The results appear to form a consistent picture once we shift our focus from emotional contagion as a prerequisite for empathy onto the role of shared emotions in providing vital information about the environment. From this point of view, we can propose approaches that are the most promising for further investigation of complex social phenomena, including learning from others.
Collapse
Affiliation(s)
- A Puścian
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - A Bryksa
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - L Kondrakiewicz
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - M Kostecki
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - M Winiarski
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - E Knapska
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
15
|
Cai H, Zhang P, Qi G, Zhang L, Li T, Li M, Lv X, Lei J, Ming J, Tian B. Systematic Input-Output Mapping Reveals Structural Plasticity of VTA Dopamine Neurons-Zona Incerta Loop Underlying the Social Buffering Effects in Learned Helplessness. Mol Neurobiol 2021; 59:856-871. [PMID: 34796463 DOI: 10.1007/s12035-021-02614-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/19/2021] [Indexed: 11/28/2022]
Abstract
A common phenomenon called social buffering (SB), communication within conspecific animals is a benefit for a stressed individual to better recover from aversive events, is crucial to all mammals. Although the dopamine reward system has been implicated in SB, it is not clear which neuronal populations are relevant and how they contribute. Here, we adopted a learned helplessness (LH) animal model of depression and found that LH subjects housed with a conspecific partner show better performance in the shuttle box test, showing that SB improves the stress-coping abilities to deal with stress. Bidirectional manipulation of ventral tegmental area (VTA) dopamine neurons by chemogenetic tools can mimic or block the SB effect in LH mice. To screen for SB-induced structure plasticity of VTA dopamine neurons, we employed viral genetic tools for mapping input and output architecture and found LH- and SB-triggered circuit-level changes in neuronal ensembles. Zona incerta (ZI), an overlapping brain region, was significantly changed in both anterograde and retrograde tracing during LH and SB. These results reveal a neural loop with structural plasticity between VTA dopamine neurons and ZI underlies the SB effects in LH and lays a foundation for studying how VTA dopamine neurons regulate SB-related neural circuits.
Collapse
Affiliation(s)
- Hongwei Cai
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People's Republic of China
| | - Pei Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People's Republic of China
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People's Republic of China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, 430030, People's Republic of China
| | - Guangjian Qi
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People's Republic of China
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People's Republic of China
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, 430030, People's Republic of China
| | - Lijun Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People's Republic of China
| | - Tongxia Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People's Republic of China
| | - Ming Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People's Republic of China
| | - Xinyuan Lv
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People's Republic of China
| | - Jie Lei
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People's Republic of China
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, People's Republic of China.
| | - Bo Tian
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People's Republic of China.
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, People's Republic of China.
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei Province, 430030, People's Republic of China.
| |
Collapse
|
16
|
Let's get wild: A review of free-ranging rat assays as context-enriched supplements to traditional laboratory models. J Neurosci Methods 2021; 362:109303. [PMID: 34352335 DOI: 10.1016/j.jneumeth.2021.109303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 01/30/2023]
Abstract
More than 24,000 rodent studies are published annually, with the vast majority of these studies focused on genetically undiverse animals in highly-controlled laboratory settings. However, findings from the laboratory have become increasingly unreliable for predicting outcomes in field and clinical settings, leading to a perceived crisis in translational research. One cause of this disparity might be that most human societies, in contrast to laboratory rodents, are genetically diverse and live in super-enriched environments. Methods for importing wild rats into the laboratory, and also exporting laboratory-style chambers into natural environments are not well-known outside their respective disciplines. Therefore, we have reviewed the current status of supplements to the laboratory rodent assay. We progress logically from highly-controlled experiments with natural breeding colonies to purely naturalistic approaches with free-ranging rats. We then highlight a number of approaches that allow genetically-diverse wild rats to be utilized in context-enriched paradigms. While considering the benefits and shortcomings of each available approach, we detail protocols for random sampling, remote-sensing, and deployment of laboratory chambers in the field. As supplements to standardized laboratory trials, some of these assays could offer key insights to help unify outcomes between laboratory and field studies. However, we note several outstanding questions that must be addressed such as: the trade-off between control and context, possible reductions in sample size, ramifications for the 'standardization fallacy', and ethical dilemmas of working with wild animals. Given these challenges, further innovation will be required before supplemental assays can be made broadly-accessible and thus, transferrable across disciplines.
Collapse
|
17
|
Kogo H, Maeda N, Kiyokawa Y, Takeuchi Y. Rats do not consider all unfamiliar strains to be equivalent. Behav Processes 2021; 190:104457. [PMID: 34216685 DOI: 10.1016/j.beproc.2021.104457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 11/28/2022]
Abstract
Humans show distinct social behaviours when we recognise social similarity in opponents that are members of the same social group. However, little attention has been paid to the role of social similarity in non-human animals. In the Wistar subject rats, the presence of an unfamiliar Wistar rat mitigated stress responses, suggesting the importance of social similarity in this stress-buffering phenomenon. We subsequently found that the presence of unfamiliar Sprague-Dawley (SD) or Long-Evans (LE) rats, but not an unfamiliar Fischer 344 (F344) rat, similarly mitigated stress responses in the subject rats. It is therefore possible that the subject rats recognised social similarity to unfamiliar SD and LE rats. In this study, we demonstrated that the Wistar subject rats were capable of categorizing unfamiliar rats based on their strain, and that the Wistar subjects showed a preference for unfamiliar Wistar, SD, and LE rats over F344 rats. However, the subject rats did not show a preference among Wistar, SD, and LE rats. In addition, the results were not due to an aversion to F344 rats, and preference was not affected when anaesthetised rats were presented to the subject rats. The findings suggested that rats recognise social similarity to certain unfamiliar strains of rats.
Collapse
Affiliation(s)
- Hiroki Kogo
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Naori Maeda
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
18
|
|
19
|
Hernández-Soto R, Villasana-Salazar B, Pinedo-Vargas L, Peña-Ortega F. Chronic intermittent hypoxia alters main olfactory bulb activity and olfaction. Exp Neurol 2021; 340:113653. [PMID: 33607078 DOI: 10.1016/j.expneurol.2021.113653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/02/2021] [Accepted: 02/14/2021] [Indexed: 02/08/2023]
Abstract
Olfactory dysfunction is commonly observed in patients with obstructive sleep apnea (OSA), which is related to chronic intermittent hypoxia (CIH). OSA patients exhibit alterations in discrimination, identification and odor detection threshold. These olfactory functions strongly rely on neuronal processing within the main olfactory bulb (MOB). However, a direct evaluation of the effects of controlled CIH on olfaction and MOB network activity has not been performed. Here, we used electrophysiological field recordings in vivo to evaluate the effects of 21-day-long CIH on MOB network activity and its response to odors. In addition, we assessed animals´ olfaction with the buried food and habituation/dishabituation tests. We found that mice exposed to CIH show alterations in MOB spontaneous activity in vivo, consisting of a reduction in beta and gamma frequency bands power along with an increase in the theta band power. Likewise, the MOB was less responsive to odor stimulation, since the proportional increase of the power of its population activity in response to four different odorants was smaller than the one observed in control animals. These CIH-induced MOB functional alterations correlate with a reduction in the ability to detect, habituate and discriminate olfactory stimuli. Our findings indicate that CIH generates alterations in the MOB neural network, which could be involved in the olfactory deterioration in patients with OSA.
Collapse
Affiliation(s)
- Rebeca Hernández-Soto
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, Mexico
| | - Benjamín Villasana-Salazar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, Mexico
| | - Laura Pinedo-Vargas
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, Mexico
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, Mexico.
| |
Collapse
|
20
|
Physical contact with cage mates modifies stress-induced hyperthermia in mice. LEARNING AND MOTIVATION 2021. [DOI: 10.1016/j.lmot.2020.101692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Kavaliers M, Ossenkopp KP, Choleris E. Pathogens, odors, and disgust in rodents. Neurosci Biobehav Rev 2020; 119:281-293. [PMID: 33031813 PMCID: PMC7536123 DOI: 10.1016/j.neubiorev.2020.09.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 01/04/2023]
Abstract
All animals are under the constant threat of attack by parasites. The mere presence of parasite threat can alter behavior before infection takes place. These effects involve pathogen disgust, an evolutionarily conserved affective/emotional system that functions to detect cues associated with parasites and infection and facilitate avoidance behaviors. Animals gauge the infection status of conspecific and the salience of the threat they represent on the basis of various sensory cues. Odors in particular are a major source of social information about conspecifics and the infection threat they present. Here we briefly consider the origins, expression, and regulation of the fundamental features of odor mediated pathogen disgust in rodents. We briefly review aspects of: (1) the expression of affective states and emotions and in particular, disgust, in rodents; (2) olfactory mediated recognition and avoidance of potentially infected conspecifics and the impact of pathogen disgust and its' fundamental features on behavior; (3) pathogen disgust associated trade-offs; (4) the neurobiological mechanisms, and in particular the roles of the nonapeptide, oxytocin, and steroidal hormones, in the expression of pathogen disgust and the regulation of avoidance behaviors and concomitant trade-offs. Understanding the roles of pathogen disgust in rodents can provide insights into the regulation and expression of responses to pathogens and infection in humans.
Collapse
Affiliation(s)
- Martin Kavaliers
- Department of Psychology and Neuroscience Program, University of Western Ontario, London, Canada; Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Klaus-Peter Ossenkopp
- Department of Psychology and Neuroscience Program, University of Western Ontario, London, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
22
|
Hennessy MB, Willen RM, Schiml PA. Psychological Stress, Its Reduction, and Long-Term Consequences: What Studies with Laboratory Animals Might Teach Us about Life in the Dog Shelter. Animals (Basel) 2020; 10:E2061. [PMID: 33171805 PMCID: PMC7694980 DOI: 10.3390/ani10112061] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022] Open
Abstract
There is a long history of laboratory studies of the physiological and behavioral effects of stress, its reduction, and the later psychological and behavioral consequences of unmitigated stress responses. Many of the stressors employed in these studies approximate the experience of dogs confined in an animal shelter. We review how the laboratory literature has guided our own work in describing the reactions of dogs to shelter housing and in helping formulate means of reducing their stress responses. Consistent with the social buffering literature in other species, human interaction has emerged as a key ingredient in moderating glucocorticoid stress responses of shelter dogs. We discuss variables that appear critical for effective use of human interaction procedures in the shelter as well as potential neural mechanisms underlying the glucocorticoid-reducing effect. We also describe recent studies in which enrichment centered on human interaction has been found to reduce aggressive responses in a temperament test used to determine suitability for adoption. Finally, we suggest that a critical aspect of the laboratory stress literature that has been underappreciated in studying shelter dogs is evidence for long-term behavioral consequences-often mediated by glucocorticoids-that may not become apparent until well after initial stress exposure.
Collapse
Affiliation(s)
| | | | - Patricia A. Schiml
- Department of Psychology, Wright State University, Dayton, OH 45435, USA;
| |
Collapse
|
23
|
Towards a unified theory of emotional contagion in rodents—A meta-analysis. Neurosci Biobehav Rev 2020; 132:1229-1248. [DOI: 10.1016/j.neubiorev.2020.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/30/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
|
24
|
Fendt M, Parsons MH, Apfelbach R, Carthey AJ, Dickman CR, Endres T, Frank AS, Heinz DE, Jones ME, Kiyokawa Y, Kreutzmann JC, Roelofs K, Schneider M, Sulger J, Wotjak CT, Blumstein DT. Context and trade-offs characterize real-world threat detection systems: A review and comprehensive framework to improve research practice and resolve the translational crisis. Neurosci Biobehav Rev 2020; 115:25-33. [DOI: 10.1016/j.neubiorev.2020.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 12/21/2022]
|
25
|
Yusishen ME, Yoon GR, Bugg W, Jeffries KM, Currie S, Anderson WG. Love thy neighbor: Social buffering following exposure to an acute thermal stressor in a gregarious fish, the lake sturgeon (Acipenser fulvescens). Comp Biochem Physiol A Mol Integr Physiol 2020; 243:110686. [DOI: 10.1016/j.cbpa.2020.110686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 11/17/2022]
|
26
|
Mikami K, Kiyokawa Y, Ishii A, Takeuchi Y. Social buffering enhances extinction of conditioned fear responses by reducing corticosterone levels in male rats. Horm Behav 2020; 118:104654. [PMID: 31830461 DOI: 10.1016/j.yhbeh.2019.104654] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/06/2019] [Accepted: 12/03/2019] [Indexed: 11/27/2022]
Abstract
The presence of an affiliative conspecific reduces stress responses to a wide variety of stimuli, which is termed "social buffering." We previously reported that social buffering in male rats ameliorated behavioral responses, as well as hypothalamic-pituitary-adrenal axis activation, elicited by an auditory conditioned stimulus (CS). In addition, subjects that experienced social buffering did not show stress responses when re-exposed to the CS the next day in the absence of an accompanying rat. However, the mechanisms underlying this enhancement of between-session extinction are poorly understood. In Experiment 1, we compared corticosterone levels at 0, 10, and 15 min after extinction training. Subjects that experienced social buffering had lower corticosterone levels than subjects that trained alone at the end of extinction training. However, corticosterone levels at 10 and 15 min after training were not affected by the experience of social buffering. These results suggest that a lower level of corticosterone during extinction training had an important role in the enhancement of extinction. To directly assess this, in Experiment 2, we manipulated the corticosterone level during extinction training. We found that a subcutaneous injection of corticosterone before extinction training blocked the enhancement of extinction by social buffering. These results demonstrate that the enhancement is caused by a low level of corticosterone during the training. Taken together, we suggest that social buffering enhances extinction of conditioned fear responses by reducing corticosterone levels in male rats.
Collapse
Affiliation(s)
- Kaori Mikami
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Akiko Ishii
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
27
|
Qi Y, Herrmann MJ, Bell L, Fackler A, Han S, Deckert J, Hein G. The mere physical presence of another person reduces human autonomic responses to aversive sounds. Proc Biol Sci 2020; 287:20192241. [PMID: 31964306 PMCID: PMC7015327 DOI: 10.1098/rspb.2019.2241] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/02/2020] [Indexed: 12/22/2022] Open
Abstract
Social animals show reduced physiological responses to aversive events if a conspecific is physically present. Although humans are innately social, it is unclear whether the mere physical presence of another person is sufficient to reduce human autonomic responses to aversive events. In our study, participants experienced aversive and neutral sounds alone (alone treatment) or with an unknown person that was physically present without providing active support. The present person was a member of the participants' ethnical group (ingroup treatment) or a different ethnical group (outgroup treatment), inspired by studies that have found an impact of similarity on social modulation effects. We measured skin conductance responses (SCRs) and collected subjective similarity and affect ratings. The mere presence of an ingroup or outgroup person significantly reduced SCRs to the aversive sounds compared with the alone condition, in particular in participants with high situational anxiety. Moreover, the effect was stronger if participants perceived the ingroup or outgroup person as dissimilar to themselves. Our results indicate that the mere presence of another person was sufficient to diminish autonomic responses to aversive events in humans, and thus verify the translational validity of basic social modulation effects across different species.
Collapse
Affiliation(s)
- Yanyan Qi
- Center of Mental Health, Department of Psychiatry, Psychosomatic and Psychotherapy, Translational Social Neuroscience Unit, University of Wurzburg, Wurzburg 97080, Germany
- Department of Psychology, School of Education, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, People's Republic of China
| | - Martin J. Herrmann
- Center of Mental Health, Department of Psychiatry, Psychosomatic and Psychotherapy, Translational Social Neuroscience Unit, University of Wurzburg, Wurzburg 97080, Germany
| | - Luisa Bell
- Center of Mental Health, Department of Psychiatry, Psychosomatic and Psychotherapy, Translational Social Neuroscience Unit, University of Wurzburg, Wurzburg 97080, Germany
| | - Anna Fackler
- Center of Mental Health, Department of Psychiatry, Psychosomatic and Psychotherapy, Translational Social Neuroscience Unit, University of Wurzburg, Wurzburg 97080, Germany
| | - Shihui Han
- School of Psychological and Cognitive Sciences, PKU-IDG/ McGovern Institute for Brain Research, Peking University, Beijing 10008, People's Republic of China
| | - Jürgen Deckert
- Center of Mental Health, Department of Psychiatry, Psychosomatic and Psychotherapy, Translational Social Neuroscience Unit, University of Wurzburg, Wurzburg 97080, Germany
| | - Grit Hein
- Center of Mental Health, Department of Psychiatry, Psychosomatic and Psychotherapy, Translational Social Neuroscience Unit, University of Wurzburg, Wurzburg 97080, Germany
| |
Collapse
|
28
|
Parsons MH, Deutsch MA, Dumitriu D, Munshi-South J. Differential responses by urban brown rats (Rattus norvegicus) toward male or female-produced scents in sheltered and high-risk presentations. JOURNAL OF URBAN ECOLOGY 2019. [DOI: 10.1093/jue/juz009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Wild rats (Rattus norvegicus) are among the most ubiquitous and consequential organisms in the urban environment. However, collecting data from city rats is difficult, and there has been little research to determine the influence, or valence, of rat scents on urban conspecifics. Using a mark-release-monitor protocol, we previously learned rats can be attracted to remote-sensing points when baited with mixed-bedding from male and female laboratory rats. It was thus essential that we disambiguate which scents were eliciting attraction (+ valence), inspection, a conditioned response whereby attraction may be followed by avoidance (–valence), or null-response (0 valence). We used radio-frequency identification tagging and scent-baited antennas to assess extended (>40 days) responses to either male or female scents against two risk presentations (near-shelter and exposed to predators). In response to male scents, rats (n = 8) visited both treatments (shelter, exposed) more than controls (0.2 visits/day treatment vs. 0.1/day; P < 0.05) indicating scents accounted for response more so than risk. Dwell-times, however, did not differ (1.2 s/visit treatment vs. 0.9 s/visit; P > 0.5). These outcomes are consistent with inspection (–valence). In response to female scents, rats (n = 7) increased visitation (5.02 visits/day vs. 0.1/day controls; P < 0.05), while dwell-times also increased 6.8 s/visit vs. 0.2 s/visit in both risk-settings. The latter is consistent with persistent attraction (+valence), but was also influenced by shelter, as runway visits (1.1 visits/day) were a magnitude more common than predator-exposed (0.1 visits/day). Further understanding and exploiting the mobility of city rats is necessary for improvements in basic and applied research, including city pathogen-surveillance and urban wildlife management.
Collapse
Affiliation(s)
- Michael H Parsons
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Michael A Deutsch
- Medical and Applied Entomology, Arrow Exterminating Company, Inc., Lynbrook, NY, USA
| | - Dani Dumitriu
- Departments of Pediatrics and Psychiatry, the Zuckerman Institute, and the Columbia Population Research Center, Columbia University, New York, NY, USA
| | - Jason Munshi-South
- Department of Biological Sciences and the Louis Calder Center—Biological Field Station, Fordham University, Armonk, NY, USA
| |
Collapse
|
29
|
Pittet F, Van Caenegem N, Hicks-Nelson AR, Santos HP, Bradburn S, Murgatroyd C, Nephew BC. Maternal social environment affects offspring cognition through behavioural and immune pathways in rats. J Neuroendocrinol 2019; 31:e12711. [PMID: 30887654 DOI: 10.1111/jne.12711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/14/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022]
Abstract
The social environment of lactation is a key etiological factor for the occurrence of postpartum disorders affecting women and their children. Postpartum depression and anxiety disorders are highly prevalent in new mothers and negatively affect offspring's cognitive development through mechanisms which are still unclear. Here, using a rat model, we manipulated the maternal social environment during lactation and explored the pathways through which social isolation (vs. the opportunity for limited social interaction with another lactating female, from 1 day before parturition to postpartum day 16) and chronic social conflict (daily exposure to a male intruder from postpartum day 2 to day 16) affect offspring learning and memory, measured at 40 to 60 days of age. We specifically explored the consequences of these social treatments on two main hypothesized mediators likely to affect offspring neurophysiological development: the quality of maternal care and maternal inflammation factors (brain-derived neurotrophic factor, granulocyte-macrophage colony-stimulating factor, intercellular adhesion molecule 1, tissue inhibitor of metalloproteinases 1 and vascular endothelial growth factor) likely to influence offspring development through lactation. Maternal rats which had the opportunity to interact with another lactating female spent more time with their pups which, in turn, displayed improved working and reference memory. Social stress affected maternal plasma levels of cytokines that were associated with cognitive deficits in their offspring. However, females subjected to social stress were protected from these stress-induced immune changes and associated offspring cognitive impairment by increased social affiliation. These results underscore the effects of social interaction for new mothers and their offspring and can be used to inform the development of clinical preventative measures and interventions.
Collapse
Affiliation(s)
- Florent Pittet
- Department of Biomedical Sciences, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts
- Neuroscience and Behavior Unit, California National Primate Research Center, University of California, Davis, California
- School for Human Evolution and Social Change, Arizona State University, Tempe, Arizona
| | - Nicolas Van Caenegem
- Department of Biomedical Sciences, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts
| | - Alexandria R Hicks-Nelson
- Department of Biomedical Sciences, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts
- Department of comparative Medicine, Stanford University School of Medicine, Stanford, California
| | - Hudson P Santos
- School of Nursing, University of North Carolina, Chapel Hill, North Carolina
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Steven Bradburn
- Bioscience Research Centre, Manchester Metropolitan University, Manchester, UK
| | | | - Benjamin C Nephew
- Department of Biomedical Sciences, Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
30
|
Minami S, Kiyokawa Y, Takeuchi Y. The lateral intercalated cell mass of the amygdala is activated during social buffering of conditioned fear responses in male rats. Behav Brain Res 2019; 372:112065. [PMID: 31260719 DOI: 10.1016/j.bbr.2019.112065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 01/01/2023]
Abstract
The presence of an affiliative conspecific reduces stress responses to a wide variety of stimuli. This phenomenon is termed "social buffering". We previously found that the presence of another Wistar rat (associate) suppressed activation of the lateral amygdala (LA) and ameliorated stress responses to an auditory conditioned stimulus (CS) in a fear-conditioned Wistar subject rat. Subsequent analyses suggested that activation of the posterior complex of the anterior olfactory nucleus (AOP) is responsible for the suppression of the LA. However, it remains unclear how the AOP suppresses the LA. To clarify this issue, a fear-conditioned Wistar subject was exposed to the CS either alone or with a Wistar associate. We also prepared a fear-conditioned Wistar subject that was tested with a Fischer344 (F344) associate as an additional control because F344 associates do not induce social buffering. We found that the presence of a Wistar associate induced a reduction of behavioral responses and Fos expression in the paraventricular nucleus of the hypothalamus (PVN) of the subject. Although Fos expression in the AOP was increased, the expression was not biased towards the GABAergic cells. In addition, Fos expression in the lateral intercalated cell mass of the amygdala (lITC) was increased. In contrast, the presence of a F344 associate did not affect Fos expression in subjects' PVN or lITC, whereas behavioral responses were slightly reduced. These results suggest that the lITC was activated during social buffering. Based on these findings, we propose that the AOP indirectly suppresses the LA by activating the lITC.
Collapse
Affiliation(s)
- Shota Minami
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
31
|
Kiyokawa Y, Li Y, Takeuchi Y. A dyad shows mutual changes during social buffering of conditioned fear responses in male rats. Behav Brain Res 2019; 366:45-55. [PMID: 30880219 DOI: 10.1016/j.bbr.2019.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 12/30/2022]
Abstract
The presence of an affiliative conspecific reduces stress responses to a wide variety of stimuli. This phenomenon is termed "social buffering". We previously found that the presence of another naïve rat (associate) reduced conditioned fear responses to an auditory conditioned stimulus in a conditioned subject rat. Although we subsequently conducted a series of studies to examine behavioral, physiological, and neural changes during social buffering in the conditioned subject, the changes in the associate remained unclear. Therefore, in the present study, we investigated the behavioral and neural changes in the associate. Fear-conditioned and non-conditioned rats were re-exposed to the conditioned stimulus with an associate placed in the same enclosure (Experiment 1) or separated by a wire-mesh partition (Experiment 2). In Experiment 1, the associate exhibited increased anogenital contact and allo-grooming, which were accompanied by increased c-Fos expression in the paraventricular nucleus of the hypothalamus and central amygdala. These results suggest that the subject and associate mutually affected each other during social buffering. In contrast, in Experiment 2, we found only a difference in the time course of investigation between associates tested with the conditioned and non-conditioned subjects. These results suggest that the associate was unable to acquire a sufficient amount of signal from the conditioned subject behind the wire-mesh partition necessary to show clear changes in behavior and c-Fos expression. Taken together, the current findings suggest that a dyad shows mutual changes during social buffering of conditioned fear responses in male rats.
Collapse
Affiliation(s)
- Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Yasong Li
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
32
|
Penha Farias C, Guerino Furini CR, Godfried Nachtigall E, Kielbovicz Behling JA, Silva de Assis Brasil E, Bühler L, Izquierdo I, de Carvalho Myskiw J. Extinction learning with social support depends on protein synthesis in prefrontal cortex but not hippocampus. Proc Natl Acad Sci U S A 2019; 116:1765-1769. [PMID: 30635411 PMCID: PMC6358673 DOI: 10.1073/pnas.1815893116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Extinction of contextual fear conditioning (CFC) in the presence of a familiar nonfearful conspecific (social support), such as that of others tasks, can occur regardless of whether the original memory is retrieved during the extinction training. Extinction with social support is blocked by the protein synthesis inhibitors anisomycin and rapamycin and by the inhibitor of gene expression 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole infused immediately after extinction training into the ventromedial prefrontal cortex (vmPFC) but unlike regular CFC extinction not in the CA1 region of the dorsal hippocampus. So social support generates a form of learning that differs from extinction acquired without social support in terms of the brain structures involved. This finding may lead to a better understanding of the brain mechanisms involved in the social support of memories and in therapies for disorders related to dysfunctional fear memories. Thus, here we show that the consolidation of extinction memory with social support relies on vmPFC rather than hippocampus gene expression and ribosomal- and mammalian target of rapamycin-dependent protein synthesis. These results provide additional knowledge about the cellular mechanisms and brain structures involved on the effect of social support in changing behavior and fear extinction memory.
Collapse
Affiliation(s)
- Clarissa Penha Farias
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
- National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Cristiane Regina Guerino Furini
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
- National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Eduarda Godfried Nachtigall
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Jonny Anderson Kielbovicz Behling
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Eduardo Silva de Assis Brasil
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Letícia Bühler
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Ivan Izquierdo
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil;
- National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Jociane de Carvalho Myskiw
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil;
- National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Kiyokawa Y, Kawai K, Takeuchi Y. The benefits of social buffering are maintained regardless of the stress level of the subject rat and enhanced by more conspecifics. Physiol Behav 2018; 194:177-183. [DOI: 10.1016/j.physbeh.2018.05.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 12/30/2022]
|
34
|
Speed dependent descending control of freezing behavior in Drosophila melanogaster. Nat Commun 2018; 9:3697. [PMID: 30209268 PMCID: PMC6135764 DOI: 10.1038/s41467-018-05875-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 07/31/2018] [Indexed: 11/26/2022] Open
Abstract
The most fundamental choice an animal has to make when it detects a threat is whether to freeze, reducing its chances of being noticed, or to flee to safety. Here we show that Drosophila melanogaster exposed to looming stimuli in a confined arena either freeze or flee. The probability of freezing versus fleeing is modulated by the fly’s walking speed at the time of threat, demonstrating that freeze/flee decisions depend on behavioral state. We describe a pair of descending neurons crucially implicated in freezing. Genetic silencing of DNp09 descending neurons disrupts freezing yet does not prevent fleeing. Optogenetic activation of both DNp09 neurons induces running and freezing in a state-dependent manner. Our findings establish walking speed as a key factor in defensive response choices and reveal a pair of descending neurons as a critical component in the circuitry mediating selection and execution of freezing or fleeing behaviors. Looming discs are perceived as an innate threat by flies and elicit a survival response. Here, the authors report that flies exhibit either an escape or freezing response depending on their walking speed and identify the involvement of a pair of neurons in mediating the behavior.
Collapse
|
35
|
Yuan J, Yan M, Xu Y, Chen W, Wang X. Social Company Disrupts Fear Memory Renewal: Evidence From Two Rodent Studies. Front Neurosci 2018; 12:565. [PMID: 30174582 PMCID: PMC6107706 DOI: 10.3389/fnins.2018.00565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/27/2018] [Indexed: 11/13/2022] Open
Abstract
Renewal of fear outside treatment context is a challenge for behavioral therapies. Prior studies suggest a social buffering effect that fear response is attenuated in the presence of social company. However, few studies have examined the role of social company in reducing fear renewal. Here, we used a Pavlovian fear conditioning procedure including acquisition, extinction and test stages to examine social buffering effect on fear memory renewal in male rats. The test context was manipulated to be either different from the extinction one in ABC model, or same as that in ACC model. All conditioned subjects underwent extinction individually in Experiment 1 but with a partner in Experiment 2. In test, both experiments manipulated social company (alone vs. accompanied) and context (ABC vs. ACC). Experiment 1 showed more freezing in ABC than in ACC model during the test-alone condition, indicating a fear renewal effect which, however, was absent during the test-accompanied condition. Also, accompanied subjects showed less freezing compared to alone subjects in the ABC model. In Experiment 2, animals showed a similar freezing in ABC and ACC models despite being tested alone, implying that social company offered at extinction disrupted fear renewal. Again, we observed reduced freezing in accompanied relative to alone subjects in the test. These results suggest that social company is effective in disrupting fear renewal after leaving treatment context.
Collapse
Affiliation(s)
- Jiajin Yuan
- College of Education Science, Chengdu University, Chengdu, China.,Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Minmin Yan
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Yin Xu
- School of Sociology, China University of Political Science and Law, Beijing, China
| | - Weihai Chen
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Xiaqing Wang
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
36
|
Morozov A, Ito W. Social modulation of fear: Facilitation vs buffering. GENES BRAIN AND BEHAVIOR 2018; 18:e12491. [PMID: 29896766 DOI: 10.1111/gbb.12491] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/29/2018] [Accepted: 06/11/2018] [Indexed: 12/23/2022]
Abstract
Social behaviors largely constitute mutual exchanges of social cues and the responses to them. The adaptive response also requires proper interpretation of the current context. In fear behaviors, social signals have bidirectional effects-some cues elicit or enhance fear whereas other suppress or buffer it. Studies on the social facilitation and social buffering of fear provide evidence of competition between social cues of opposing meanings. Co-expression of opposing cues by the same animal may explain the contradicting outcomes from the interaction between naive and frightened conspecifics, which reflect the fine balance between fear facilitation and buffering. The neuronal mechanisms that determine that balance provide an exciting target for future studies to probe the brain circuits underlying social modulation of emotional behaviors.
Collapse
Affiliation(s)
- Alexei Morozov
- Virginia Tech Carilion Research Institute, Roanoke, Virginia.,School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia.,Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| | - Wataru Ito
- Virginia Tech Carilion Research Institute, Roanoke, Virginia
| |
Collapse
|
37
|
Abstract
The lasting behavioral changes elicited by social signals provide important adaptations for survival of organisms that thrive as a group. Unlike the rapid innate responses to social cues, such adaptations have been understudied. Here, the rodent models of the lasting socially induced behavioral changes are presented as either modulations or reinforcements of the distinct forms of learning and memory or non-associative changes of affective state. The purpose of this categorization is to draw attention to the potential mechanistic links between the neuronal pathways that process social cues and the neuronal systems that mediate the well-studied forms of learning and memory. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Alexei Morozov
- Virginia Tech Carilion Research Institute, Roanoke, Virginia.,School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia.,Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| |
Collapse
|
38
|
Kiyokawa Y, Hennessy MB. Comparative studies of social buffering: A consideration of approaches, terminology, and pitfalls. Neurosci Biobehav Rev 2018; 86:131-141. [PMID: 29223771 PMCID: PMC5801062 DOI: 10.1016/j.neubiorev.2017.12.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 01/30/2023]
Abstract
KIYOKAWA, Y. and HENNESSY, M.B. Comparative studies of social buffering: A consideration of approaches, terminology, and pitfalls…NEUROSCI BIOBEHAV REV XXX-XXX, .- Over the past decades, there has been an increasing number of investigations of the impact of social variables on neural, endocrine, and immune outcomes. Among these are studies of "social buffering"-or the phenomenon by which affiliative social partners mitigate the response to stressors. Yet, as social buffering studies have become more commonplace, the variety of approaches taken, definitions employed, and divergent results obtained in different species can lead to confusion and miscommunication. The aim of the present paper, therefore, is to address terminology and approaches and to highlight potential pitfalls to the study of social buffering across nonhuman species. We review and categorize variables currently being employed in social buffering studies and provide an overview of responses measured, mediating sensory modalities and underlying mechanisms. It is our hope that the paper will be useful to those contemplating examination of social buffering in the context of their own research.
Collapse
Affiliation(s)
- Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Michael B Hennessy
- Department of Psychology, Wright State University, 335 Fawcett Hall, Dayton, OH, 45435, United States.
| |
Collapse
|
39
|
Meyza KZ, Bartal IBA, Monfils MH, Panksepp JB, Knapska E. The roots of empathy: Through the lens of rodent models. Neurosci Biobehav Rev 2017; 76:216-234. [PMID: 27825924 PMCID: PMC5418107 DOI: 10.1016/j.neubiorev.2016.10.028] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 10/18/2016] [Accepted: 10/28/2016] [Indexed: 11/27/2022]
Abstract
Empathy is a phenomenon often considered dependent on higher-order emotional control and an ability to relate to the emotional state of others. It is, by many, attributed only to species having well-developed cortical circuits capable of performing such complex tasks. However, over the years, a wealth of data has been accumulated showing that rodents are capable not only of sharing emotional states of their conspecifics, but also of prosocial behavior driven by such shared experiences. The study of rodent empathic behaviors is only now becoming an independent research field. Relevant animal models allow precise manipulation of neural networks, thereby offering insight into the foundations of empathy in the mammalian brains. Here we review the data on empathic behaviors in rat and mouse models, their neurobiological and neurophysiological correlates, and the factors influencing these behaviors. We discuss how simple rodent models of empathy enhance our understanding of how brain controls empathic behaviors.
Collapse
Affiliation(s)
- K Z Meyza
- Laboratory of Emotions' Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland.
| | - I Ben-Ami Bartal
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - M H Monfils
- Department of Psychology, University of Texas, Austin, TX, USA
| | - J B Panksepp
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - E Knapska
- Laboratory of Emotions' Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
40
|
Abstract
In this chapter, I describe 2 types of olfactory communication in rats, which appear to arouse anxiety and relief, respectively. In alarm pheromonal communication, rats release 4-methylpentanal and hexanal from their perianal region when they are stressed. These molecules activate the anxiety circuit, including the bed nucleus of the stria terminalis, when 4-methylpentanal and hexanal are simultaneously detected by the vomeronasal system and the main olfactory system, respectively. Consequently, recipient rats show a variety of anxiety responses, depending on the threatening stimuli. In appeasing olfactory communication, non-stressed rats release an appeasing olfactory signal, which is detected by the main olfactory system of other rats. When detected, this olfactory signal suppresses activation of the basolateral complex of the amygdala and, as a result, ameliorates stress responses elicited by an auditory conditioned stimulus during social buffering phenomenon. Because social buffering appears to be based on affinity and attachment to accompanying animals, the appeasing olfactory signal may arouse relief in rats. A definition of social buffering is also proposed as we still have no set definition for the term social buffering yet.
Collapse
Affiliation(s)
- Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
41
|
Physical Interaction Is Required in Social Buffering Induced by a Familiar Conspecific. Sci Rep 2016; 6:39788. [PMID: 28008991 PMCID: PMC5180222 DOI: 10.1038/srep39788] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/28/2016] [Indexed: 11/25/2022] Open
Abstract
In social animals, signals released from fearless conspecifics attenuate fear responses, namely social buffering. The presence of conspecific odor can suppress the expression of freezing response of conditioned mice. The present study investigated if physical social experience is required for this social buffering effect. The mice were exposed to donors, donor bedding (collected from cages of donors), or fresh bedding as control, respectively, for 10 days (1 hour daily) in prior to fear conditioning test. The fear expression test was examined in presence of donor bedding. The results showed that only the donor group mice showed reduced freezing time than the other two groups in the fear memory test. This phenomenon indicated that physical interaction might be required for the social buffering effect.
Collapse
|
42
|
Social buffering ameliorates conditioned fear responses in the presence of an auditory conditioned stimulus. Physiol Behav 2016; 168:34-40. [PMID: 27806255 DOI: 10.1016/j.physbeh.2016.10.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/21/2016] [Accepted: 10/26/2016] [Indexed: 12/21/2022]
Abstract
Social buffering is a phenomenon in which stress in an animal is ameliorated when the subject is accompanied by a conspecific animal(s) during exposure to distressing stimuli. Previous studies of social buffering of conditioned fear responses in rats have typically used a 3-s auditory conditioned stimulus (CS) as a stressor, observing stress responses during a specified experimental period. Because a 3-s CS is extremely short compared with a typical experimental period, freezing has thus been observed primarily in the absence of the CS. Therefore, it has been unclear whether social buffering ameliorates conditioned fear responses in the presence of the CS. To clarify this issue, the current study assessed the effects of social buffering on conditioned fear responses in the presence of a 20-s CS. We measured the percentage of time spent freezing during the 20-s period following the onset of the CS. When conditioned subjects were exposed to the 20-s CS alone, they exhibited a high percentage of freezing in the presence of the CS. The presence of another non-conditioned rat completely blocked this response. The same result was observed when freezing was observed primarily in the absence of the 3-s CS. In addition, we confirmed that the presence of an associate ameliorated conditioned fear responses induced by a 20-s CS or 3-s CS when the duration and frequency of fear responses was measured. These findings indicate that social buffering ameliorates conditioned fear responses in the presence of an auditory CS.
Collapse
|
43
|
Social buffering enhances extinction of conditioned fear responses in male rats. Physiol Behav 2016; 163:123-128. [DOI: 10.1016/j.physbeh.2016.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/24/2022]
|
44
|
Nakamura K, Ishii A, Kiyokawa Y, Takeuchi Y, Mori Y. The strain of an accompanying conspecific affects the efficacy of social buffering in male rats. Horm Behav 2016; 82:72-7. [PMID: 27191856 DOI: 10.1016/j.yhbeh.2016.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 04/14/2016] [Accepted: 05/05/2016] [Indexed: 12/27/2022]
Abstract
Social buffering is a phenomenon in which stress in an animal is ameliorated when the subject is accompanied by a conspecific animal(s) during exposure to distressing stimuli. We previously reported that in male Wistar rats, the presence of another Wistar rat mitigates conditioned fear responses to an auditory conditioned stimulus (CS). Subsequent analyses revealed several characteristics of this social buffering of conditioned fear responses. However, information regarding the specificity of accompanying conspecifics is still limited. In the present study, we assessed whether rats of other strains could induce social buffering in Wistar rats. When a fear-conditioned Wistar subject was re-exposed to the CS alone, we observed increased freezing and decreased investigation and walking, as well as elevated corticosterone levels. The presence of a Wistar, Sprague-Dawley, or Long-Evans rat blocked these responses, suggesting that social buffering was induced by these strains of rats. In contrast, a Fischer 344 rat did not induce social buffering in the Wistar subject. We further found that an inbred Lewis rat induced social buffering whereas a Brown Norway rat, a strain that has been established independently from Wistar rats, did not. These results suggest that the difference in origin, rather than the inbred or outbred status of the associate rat, seemed to account for the lack of social buffering induced by the F344 rats. Based on these findings, we conclude that strains of an accompanying conspecific can affect the efficacy of social buffering in rats.
Collapse
Affiliation(s)
- Kayo Nakamura
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Akiko Ishii
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Yuji Mori
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
45
|
Kiyokawa Y, Ishida A, Takeuchi Y, Mori Y. Sustained housing-type social buffering following social housing in male rats. Physiol Behav 2016; 158:85-9. [DOI: 10.1016/j.physbeh.2016.02.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/13/2016] [Accepted: 02/27/2016] [Indexed: 12/01/2022]
|
46
|
Ishii A, Kiyokawa Y, Takeuchi Y, Mori Y. Social buffering ameliorates conditioned fear responses in female rats. Horm Behav 2016; 81:53-8. [PMID: 27060333 DOI: 10.1016/j.yhbeh.2016.03.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/24/2016] [Accepted: 03/18/2016] [Indexed: 12/20/2022]
Abstract
The stress experienced by an animal is ameliorated when the animal is exposed to distressing stimuli along with a conspecific animal(s). This is known as social buffering. Previously, we found that the presence of an unfamiliar male rat induced social buffering and ameliorated conditioned fear responses of a male rat subjected to an auditory conditioned stimulus (CS). However, because our knowledge of social buffering is highly biased towards findings in male subjects, analyses using female subjects are crucial for comprehensively understanding the social buffering phenomenon. In the present studies, we assessed social buffering of conditioned fear responses in female rats. We found that the estrus cycle did not affect the intensity of the rats' fear responses to the CS or their degree of vigilance due to the presence of a conspecific animal. Based on these findings, we then assessed whether social buffering ameliorated conditioned fear responses in female rats without taking into account their estrus cycles. When fear conditioned female rats were exposed to the CS without the presence of a conspecific, they exhibited behavioral responses, including freezing, and elevated corticosterone levels. By contrast, the presence of an unfamiliar female rat suppressed these responses. Based on these findings, we conclude that social buffering can ameliorate conditioned fear responses in female rats.
Collapse
Affiliation(s)
- Akiko Ishii
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuji Mori
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
47
|
Muyama H, Kiyokawa Y, Inagaki H, Takeuchi Y, Mori Y. Alarm pheromone does not modulate 22-kHz calls in male rats. Physiol Behav 2016; 156:59-63. [DOI: 10.1016/j.physbeh.2016.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 11/24/2022]
|
48
|
Kredlow MA, Unger LD, Otto MW. Harnessing reconsolidation to weaken fear and appetitive memories: A meta-analysis of post-retrieval extinction effects. Psychol Bull 2015; 142:314-36. [PMID: 26689086 DOI: 10.1037/bul0000034] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A new understanding of the mechanisms of memory retrieval and reconsolidation holds the potential for improving exposure-based treatments. Basic research indicates that following fear extinction, safety and fear memories may compete, raising the possibility of return of fear. One possible solution is to modify original fear memories through reconsolidation interference, reducing the likelihood of return of fear. Postretrieval extinction is a behavioral method of reconsolidation interference that has been explored in the context of conditioned fear and appetitive memory paradigms. This meta-analysis examines the magnitude of postretrieval extinction effects and potential moderators of these effects. A PubMed and PsycINFO search was conducted through June 2014. Sixty-three comparisons examining postretrieval extinction for preventing the return of fear or appetitive responses in animals or humans met inclusion criteria. Postretrieval extinction demonstrated a significant, small-to-moderate effect (g = .40) for further reducing the return of fear in humans and a significant, large effect (g = 0.89) for preventing the return of appetitive responses in animals relative to standard extinction. For fear outcomes in animals, effects were small (g = 0.21) and nonsignificant, but moderated by the number of animals housed together and the duration of time between postretrieval extinction/extinction and test. Across paradigms, these findings support the efficacy of this preclinical strategy for preventing the return of conditioned fear and appetitive responses. Overall, findings to date support the continued translation of postretrieval extinction research to human and clinical applications, with particular application to the treatment of anxiety, traumatic stress, and substance use disorders.
Collapse
Affiliation(s)
| | - Leslie D Unger
- Department of Psychological and Brain Sciences, Boston University
| | - Michael W Otto
- Department of Psychological and Brain Sciences, Boston University
| |
Collapse
|
49
|
The 3-second auditory conditioned stimulus is a more effective stressor than the 20-second auditory conditioned stimulus in male rats. Neuroscience 2015; 299:79-87. [DOI: 10.1016/j.neuroscience.2015.04.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 01/01/2023]
|
50
|
Fuzzo F, Matsumoto J, Kiyokawa Y, Takeuchi Y, Ono T, Nishijo H. Social buffering suppresses fear-associated activation of the lateral amygdala in male rats: behavioral and neurophysiological evidence. Front Neurosci 2015; 9:99. [PMID: 25859179 PMCID: PMC4373252 DOI: 10.3389/fnins.2015.00099] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/09/2015] [Indexed: 11/13/2022] Open
Abstract
In social mammals, the presence of an affiliative conspecific reduces stress responses, a phenomenon referred to as “social buffering.”In a previous study, we found that the presence of a conspecific animal ameliorated a variety of stress responses to an aversive conditioned stimulus (CS), including freezing and Fos expression in the lateral amygdala (LA) of male rats. Although these findings suggest that the presence of a conspecific animal suppresses neural activity in the LA, direct neurophysiological evidence of suppressed activity in the LA during social buffering is still lacking. In the present study, we analyzed freezing behavior and local field potentials in the LA of fear-conditioned rats in response to the CS, in the presence or absence of a conspecific. After auditory aversive conditioning, the CS was presented to the conditioned rats in the presence or absence of a conspecific animal, on 2 successive days. The presence of a conspecific animal significantly decreased the mean peak amplitudes of auditory evoked field potentials, gamma oscillations (25–75 Hz) and high frequency oscillations (100–300 Hz) in the LA. Furthermore, magnitudes of these neural responses positively correlated with freezing duration of the fear-conditioned rats. The results provide the first electrophysiological evidence that social buffering suppresses CS-induced activation in the LA, which consequently reduces conditioned fear responses.
Collapse
Affiliation(s)
- Felipe Fuzzo
- System Emotional Science, University of Toyama Sugitani, Toyama, Japan
| | - Jumpei Matsumoto
- System Emotional Science, University of Toyama Sugitani, Toyama, Japan
| | - Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo Tokyo, Japan
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, The University of Tokyo Tokyo, Japan
| | - Taketoshi Ono
- System Emotional Science, University of Toyama Sugitani, Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, University of Toyama Sugitani, Toyama, Japan
| |
Collapse
|