1
|
Sohail S, Mottaghitalab M, Hossein-Zadeh NG, Nazaran MH. Effect of advanced chelate technology-based trace minerals on growth performance, mineral digestibility, tibia properties, and antioxidant status in two broiler strains. Poult Sci 2024; 103:104304. [PMID: 39332341 PMCID: PMC11467658 DOI: 10.1016/j.psj.2024.104304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024] Open
Abstract
This research aimed to assess the impact of diet supplementation of Advanced Chelate Technology-based Mineral (ACTMS), on the Ross and Arian broilers performance. 520 broilers, of two strains, were allocated to 8 treatments (4 for each strain), 5 replicates, (13 chicks/replicate) and reared for 42 d. The treatments include 0 (CONT), 250 (SBC250), 1,000 (SBC1000), and 2,000 (SBC2000) of ACTMS. Feed intake, weight gain, and feed conversion ratio were recorded, and the European Production Efficiency Factor (EPEF) was also calculated. Serum antibody was measured in response to sheep red blood cell (SRBC) to evaluate humoral immune response. Blood sample and tibia were used to measure the bone composition of Ca and P. No significant difference was obtained in feed intake (P > 0.05), however, weight gain, feed conversion ratio, and EPEF showed significant differences (P ˂ 0.05). The results showed that the interaction effect of Ross× SBC250 had the highest average daily feed intake during 25 to 42 and 0 to 42 d of age, but Ross×CONT group provided the lowest average daily feed intake (P ˂ 0.05). Furthermore, the Ross×CONT group had the highest average daily gain during 0 to 10, 25 to 42, and 0 to 42 d of age (P < 0.05). The Ross×CONT group also provided the best feed conversion ratio during 0 to 10 d of rearing period compared to other treatments (P < 0.05). Various levels of ACTMS, significantly (P ˂ 0.05) enhanced the antioxidant activity of superoxide dismutase and glutathione peroxidase. No significant differences were obtained in blood parameter (P > 0.05), though, SBC2000 exhibited the greatest numerical phosphorus content. There was no significant impact of strain effects on blood metabolites, however, the Ross strain exhibited higher values. The results indicated that the Arian× SBC250 group had the largest tibia diameter which had a significant difference from the Arian×CONT group (P < 0.05). In conclusion, ACTMS inclusion in the ration (either replacement or on top) led to the significant improvement of FCR and ADWG (SBC250 as on top) and EPEF (SBC2000 replacement) in the Ross strain and some parameters in Arian strains (mostly numerically).
Collapse
Affiliation(s)
- Sarwar Sohail
- Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Majid Mottaghitalab
- Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
| | | | | |
Collapse
|
2
|
Demas GE, Munley KM, Jasnow AM. A seasonal switch hypothesis for the neuroendocrine control of aggression. Trends Endocrinol Metab 2023; 34:799-812. [PMID: 37722999 DOI: 10.1016/j.tem.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023]
Abstract
Aggression is a well-studied social behavior that is universally exhibited by animals across a wide range of contexts. Prevailing knowledge suggests gonadal steroids primarily mediate aggression; however, this is based mainly on studies of male-male aggression in laboratory rodents. When males and females of other species, including humans, are examined, a positive relationship between gonadal steroids and aggression is less substantiated. For instance, hamsters housed in short 'winter-like' days show increased aggression compared with long-day housed hamsters, despite relatively low circulating gonadal steroids. These results suggest alternative, non-gonadal mechanisms controlling aggression. Here, we propose the seasonal switch hypothesis, which employs a multidisciplinary approach to describe how seasonal variation in extra-gonadal steroids, orchestrated by melatonin, drives context-specific changes in aggression.
Collapse
Affiliation(s)
- Gregory E Demas
- Department of Biology, Program in Neuroscience, and Program in Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Kathleen M Munley
- Department of Psychology, University of Houston, Houston, TX 77204, USA
| | - Aaron M Jasnow
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
3
|
Munley KM, Han Y, Lansing MX, Demas GE. Winter madness: Melatonin as a neuroendocrine regulator of seasonal aggression. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:873-889. [PMID: 35451566 PMCID: PMC9587138 DOI: 10.1002/jez.2601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/16/2022] [Accepted: 04/07/2022] [Indexed: 12/25/2022]
Abstract
Individuals of virtually all vertebrate species are exposed to annual fluctuations in the deterioration and renewal of their environments. As such, organisms have evolved to restrict energetically expensive processes and activities to a specific time of the year. Thus, the precise timing of physiology and behavior is critical for individual reproductive success and subsequent fitness. Although the majority of research on seasonality has focused on seasonal reproduction, pronounced fluctuations in other non-reproductive social behaviors, including agonistic behaviors (e.g., aggression), also occur. To date, most studies that have investigated the neuroendocrine mechanisms underlying seasonal aggression have focused on the role of photoperiod (i.e., day length); prior findings have demonstrated that some seasonally breeding species housed in short "winter-like" photoperiods display increased aggression compared with those housed in long "summer-like" photoperiods, despite inhibited reproduction and low gonadal steroid levels. While fewer studies have examined how the hormonal correlates of environmental cues regulate seasonal aggression, our previous work suggests that the pineal hormone melatonin acts to increase non-breeding aggression in Siberian hamsters (Phodopus sungorus) by altering steroid hormone secretion. This review addresses the physiological and cellular mechanisms underlying seasonal plasticity in aggressive and non-aggressive social behaviors, including a key role for melatonin in facilitating a "neuroendocrine switch" to alternative physiological mechanisms of aggression across the annual cycle. Collectively, these studies highlight novel and important mechanisms by which melatonin regulates aggressive behavior in vertebrates and provide a more comprehensive understanding of the neuroendocrine bases of seasonal social behaviors broadly.
Collapse
Affiliation(s)
- Kathleen M. Munley
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Yuqi Han
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Matt X. Lansing
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Gregory E. Demas
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
4
|
Zamoshchina TA, Gostyukhina AA, Doroshenko OS, Zaitsev KV, Yartsev VV, Prokopova AV, Zhukova OB. [Speciality of restoring the psychophysiological parameters of laboratory rats with the help of balneological procedures during the periods of equinox]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2022; 99:42-49. [PMID: 36538403 DOI: 10.17116/kurort20229906142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
UNLABELLED Currently methods development for restoring physiological functions and increasing the adaptive capabilities of the body after prolonged stress exposure of various genesis is an urgent problem in the field of balneology and physiotherapy. It is known that the adaptive potential of the organism is not the same in different seasons of the year. In this regard, it becomes necessary to take into account the seasonality factor when carrying out recreational activities. PURPOSE OF THE STUDY To perform a comparative study of balneotherapeutic procedures effectiveness in the form of water and antler baths in relation to the restoration of the psychophysiological parameters of laboratory rats after a consistent stressful effect of light desynchronosis and physical activity to a state of complete fatigue during autumn and spring equinoxes. MATERIAL AND METHODS The experiment was carried out during the periods of the spring and autumn equinoxes on 160 male Wistar rats weighing 220-250 g. In each season, the animals were divided into 8 groups of 10 individuals. Two groups were in natural lighting conditions. Animals of the 1st group (intact) were not exposed to experimental influences; rats of the 2nd group were exposed to physical activity in the form of a swimming test until complete fatigue for 5 days in a row in the morning; animals of groups 3-8 were exposed to stress loads in the form of 10-day light desynchronosis (light or dark deprivation) followed by physical activity. In the 4-th, 5-th, 7-th and 8-th groups, post-experimental post-stress recovery programs were carried out using water baths (groups 4 and 7) and baths with drug «Pantovanna» (groups 5 and 8). After the completion of exposures, the animals were tested in the «open field» according to the standard method. The level of corticosterone in the blood serum was determined by ELISA. RESULTS It was found that in laboratory rats sensitivity to stressful influences - light desynchronosis followed by physical activity to the point of fatigue, as well as active post-stress recovery were determined by the nature of desynchronosis and the season of the year. The stress load was accompanied by a phase of exhaustion during the spring equinox and by a phase of anxiety during the autumn equinox. In the spring, antler baths as a procedure for active post-stress recovery were ineffective; in autumn, they had a normalizing effect on the level of corticosterone and behavior only after dark deprivation. CONCLUSION The conducted experiment indicates the need to take into account the season of the year and the direction of the transmeridian flight to sanatorium-and-spa treatment with balneotherapy procedures. Using the example of equinoxes under experimental conditions on laboratory rats, it has been shown that balneological procedures will more effectively perform rehabilitative functions when the light phase of the day expands as a result of such a shift, but not the dark one.
Collapse
Affiliation(s)
- T A Zamoshchina
- Federal Scientific and Clinical Center for Medical Rehabilitation and Balneology of the Federal Medical and Biological Agency, Moscow, Russia
- Siberian State Medical University, Tomsk, Russia
- National Research Tomsk State University, Tomsk, Russia
| | - A A Gostyukhina
- Federal Scientific and Clinical Center for Medical Rehabilitation and Balneology of the Federal Medical and Biological Agency, Moscow, Russia
- National Research Tomsk State University, Tomsk, Russia
| | - O S Doroshenko
- Federal Scientific and Clinical Center for Medical Rehabilitation and Balneology of the Federal Medical and Biological Agency, Moscow, Russia
- National Research Tomsk State University, Tomsk, Russia
| | - K V Zaitsev
- Federal Scientific and Clinical Center for Medical Rehabilitation and Balneology of the Federal Medical and Biological Agency, Moscow, Russia
| | - V V Yartsev
- Federal Scientific and Clinical Center for Medical Rehabilitation and Balneology of the Federal Medical and Biological Agency, Moscow, Russia
- Siberian State Medical University, Tomsk, Russia
- National Research Tomsk State University, Tomsk, Russia
| | - A V Prokopova
- Federal Scientific and Clinical Center for Medical Rehabilitation and Balneology of the Federal Medical and Biological Agency, Moscow, Russia
- National Research Tomsk State University, Tomsk, Russia
| | - O B Zhukova
- Federal Scientific and Clinical Center for Medical Rehabilitation and Balneology of the Federal Medical and Biological Agency, Moscow, Russia
| |
Collapse
|
5
|
Salehzadeh M, Soma KK. Glucocorticoid production in the thymus and brain: Immunosteroids and neurosteroids. Brain Behav Immun Health 2021; 18:100352. [PMID: 34988497 PMCID: PMC8710407 DOI: 10.1016/j.bbih.2021.100352] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/05/2021] [Accepted: 09/17/2021] [Indexed: 12/23/2022] Open
Abstract
Glucocorticoids (GCs) regulate a myriad of physiological systems, such as the immune and nervous systems. Systemic GC levels in blood are often measured as an indicator of local GC levels in target organs. However, several extra-adrenal organs can produce and metabolize GCs locally. More sensitive and specific methods for GC analysis (i.e., mass spectrometry) allow measurement of local GC levels in small tissue samples with low GC concentrations. Consequently, is it now apparent that systemic GC levels often do not reflect local GC levels. Here, we review the use of systemic GC measurements in clinical and research settings, discuss instances where systemic GC levels do not reflect local GC levels, and present evidence that local GC levels provide useful insights, with a focus on local GC production in the thymus (immunosteroids) and brain (neurosteroids). Lastly, we suggest key areas for further research, such as the roles of immunosteroids and neurosteroids in neonatal programming and the potential clinical relevance of local GC modulators.
Collapse
Affiliation(s)
- Melody Salehzadeh
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Kiran K Soma
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Hamden JE, Gray KM, Salehzadeh M, Kachkovski GV, Forys BJ, Ma C, Austin SH, Soma KK. Steroid profiling of glucocorticoids in microdissected mouse brain across development. Dev Neurobiol 2021; 81:189-206. [PMID: 33420760 DOI: 10.1002/dneu.22808] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022]
Abstract
Corticosterone is produced by the adrenal glands and also produced locally by other organs, such as the brain. Local levels of corticosterone in specific brain regions during development are not known. Here, we microdissected brain tissue and developed a novel liquid chromatography tandem mass spectrometry method (LC-MS/MS) to measure a panel of seven steroids (including 11-deoxycorticosterone (DOC), corticosterone, and 11-dehydrocorticosterone (DHC) in the blood, hippocampus (HPC), cerebral cortex (CC), and hypothalamus (HYP) of mice at postnatal day (PND) 5, 21, and 90. In a second cohort of mice, we measured the expression of three genes that code for steroidogenic enzymes that regulate corticosterone levels (Cyp11b1, Hsd11b1, and Hsd11b2) in the HPC, CC, and HYP. There were region-specific patterns of steroid levels across development, including higher corticosterone levels in the HPC and HYP than in the blood at PND5. In contrast, corticosterone levels were higher in the blood than in all brain regions at PND21 and PND90. Brain corticosterone levels were not positively correlated with blood corticosterone levels, and correlations across brain regions increased with age. Local corticosterone levels were best predicted by local DOC levels at PND5, but by local DHC levels at PND21 and PND90. Transcripts for the three enzymes were detectable in all samples (with highest expression of Hsd11b1) and showed region-specific changes with age. These data demonstrate that individual brain regions fine-tune local levels of corticosterone during early development and that coupling of glucocorticoid levels across regions increases with age.
Collapse
Affiliation(s)
- Jordan E Hamden
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Katherine M Gray
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Melody Salehzadeh
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - George V Kachkovski
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Brandon J Forys
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Chunqi Ma
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Suzanne H Austin
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA
| | - Kiran K Soma
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Department of Psychology, University of British Columbia, Vancouver, BC, Canada.,Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Jalabert C, Ma C, Soma KK. Profiling of systemic and brain steroids in male songbirds: Seasonal changes in neurosteroids. J Neuroendocrinol 2021; 33:e12922. [PMID: 33314446 DOI: 10.1111/jne.12922] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 12/11/2022]
Abstract
Steroids are secreted by the gonads and adrenal glands into the blood to modulate neurophysiology and behaviour. In addition, the brain can metabolise circulating steroids and synthesise steroids de novo. Songbirds show high levels of neurosteroid synthesis. In the present study, we developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for the measurement of 10 steroids in whole blood, plasma and microdissected brain tissue (1-2 mg) of song sparrows. Our assay is highly accurate, precise, specific and sensitive. Moreover, the liquid-liquid extraction is fast, simple and effective. We quantified steroids in the blood and brain of wild male song sparrows in both breeding and non-breeding seasons. As expected, systemic androgen levels were higher in the breeding season than in the non-breeding season. Brain androgens were detectable only in the breeding season; androstenedione and 5α-dihydrotestosterone levels were up to 20-fold higher in specific brain regions than in blood. Oestrogens were not detectable in blood in both seasons. Oestrone and 17β-oestradiol were detectable in brain in the breeding season only (up to 1.4 ng g-1 combined). Progesterone levels in several regions were higher in the non-breeding season than the breeding season, despite the lack of seasonal changes in systemic progesterone. Corticosterone levels in the blood were higher in the breeding season than in the non-breeding season but showed few seasonal differences in the brain. In general, the steroid levels presented here are lower than those in previous reports using immunoassays, because of the higher specificity of mass spectrometry. We conclude that (i) brain steroid levels can differ greatly from circulating steroid levels and (ii) brain steroid levels show region-specific seasonal patterns that are not a simple reflection of circulating steroid levels. This approach using ultrasensitive LC-MS/MS is broadly applicable to other species and allows steroid profiling in microdissected brain regions.
Collapse
Affiliation(s)
- Cecilia Jalabert
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Chunqi Ma
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Kiran K Soma
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Wingfield JC, Goymann W, Jalabert C, Soma KK. Reprint of "Concepts derived from the Challenge Hypothesis". Horm Behav 2020; 123:104802. [PMID: 32540136 DOI: 10.1016/j.yhbeh.2020.104802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 12/19/2022]
Abstract
The Challenge Hypothesis was developed to explain why and how regulatory mechanisms underlying patterns of testosterone secretion vary so much across species and populations as well as among and within individuals. The hypothesis has been tested many times over the past 30years in all vertebrate groups as well as some invertebrates. Some experimental tests supported the hypothesis but many did not. However, the emerging concepts and methods extend and widen the Challenge Hypothesis to potentially all endocrine systems, and not only control of secretion, but also transport mechanisms and how target cells are able to adjust their responsiveness to circulating levels of hormones independently of other tissues. The latter concept may be particularly important in explaining how tissues respond differently to the same hormone concentration. Responsiveness of the hypothalamo-pituitary-gonad (HPG) axis to environmental and social cues regulating reproductive functions may all be driven by gonadotropin-releasing hormone (GnRH) or gonadotropin-inhibiting hormone (GnIH), but the question remains as to how different contexts and social interactions result in stimulation of GnRH or GnIH release. These concepts, although suspected for many decades, continue to be explored as integral components of environmental endocrinology and underlie fundamental mechanisms by which animals, including ourselves, cope with a changing environment. Emerging mass spectrometry techniques will have a tremendous impact enabling measurement of multiple steroids in specific brain regions. Such data will provide greater spatial resolution for studying how social challenges impact multiple steroids within the brain. Potentially the Challenge Hypothesis will continue to stimulate new ways to explore hormone-behavior interactions and generate future hypotheses.
Collapse
Affiliation(s)
- John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Wolfgang Goymann
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Cecilia Jalabert
- Department of Zoology, University of British Columbia, Vancouver, Canada; Djavad Mofawaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Kiran K Soma
- Department of Zoology, University of British Columbia, Vancouver, Canada; Djavad Mofawaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Psychology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
9
|
Rensel MA, Schlinger BA. The stressed brain: regional and stress-related corticosterone and stress-regulated gene expression in the adult zebra finch (Taeniopygia guttata). J Neuroendocrinol 2020; 32:e12852. [PMID: 32364267 PMCID: PMC7286616 DOI: 10.1111/jne.12852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/16/2020] [Accepted: 04/01/2020] [Indexed: 11/30/2022]
Abstract
Glucocorticoids (CORT) are well-known as important regulators of behaviour and cognition at basal levels and under stress. However, the precise mechanisms governing CORT action and functional outcomes of this action in the brain remain unclear, particularly in model systems other than rodents. In the present study, we investigated the dynamics of CORT regulation in the zebra finch, an important model system for vocal learning, neuroplasticity and cognition. We tested the hypothesis that CORT is locally regulated in the zebra finch brain by quantifying regional and stress-related variation in total CORT across brain regions. In addition, we used an ex vivo slice culture system to test whether CORT regulates target gene expression uniquely in discrete regions of the brain. We documented a robust increase in brain CORT across regions after 30 minutes of restraint stress but, interestingly, baseline and stress-induced CORT levels varied between regions. In addition, CORT treatment of brain slice cultures differentially affected expression of three CORT target genes: it up-regulated expression of FKBP5 in most regions and SGK1 in the hypothalamus only, whereas GILZ was unaffected by CORT treatment across all brain regions investigated. The specific mechanisms producing regional variation in CORT and CORT-dependent downstream gene expression remain unknown, although these data provide additional support for the hypothesis that the songbird brain employs regulatory mechanisms that result in precise control over the influence of CORT on glucocorticoid-sensitive neural circuits.
Collapse
Affiliation(s)
- Michelle A. Rensel
- Institute for Society and Genetics, the University of California Los Angeles, Los Angeles, CA
- Laboratory of Neuroendocrinology, the University of California Los Angeles, Los Angeles, CA
- Corresponding author (MAR)
| | - Barney A. Schlinger
- Laboratory of Neuroendocrinology, the University of California Los Angeles, Los Angeles, CA
- Dept. of Integrative Biology and Physiology, the University of California Los Angeles, Los Angeles, CA
- Dept. of Ecology and Evolutionary Biology, the University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
10
|
Chu L, Li N, Deng J, Wu Y, Yang H, Wang W, Zhou D, Deng H. LC-APCI +-MS/MS method for the analysis of ten hormones and two endocannabinoids in plasma and hair from the mice with different gut microbiota. J Pharm Biomed Anal 2020; 185:113223. [PMID: 32145535 DOI: 10.1016/j.jpba.2020.113223] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 12/26/2022]
Abstract
The effect of gut microbiota on the activity of the HPA and HPG axes and ECS is a short-term or long-lasting process remains unclear in rodents. However, the extant studies focused only on its short-term effect on the HPA activity because there is lack of reliable biomarkers characterizing short-term activity of the HPG axis and ECS and long-term activities of the three endocrine systems. The endogenous levels of aldosterone (ALD), 11-dehydrocorticosterone (11-DHC), estradiol (E2), estrone (E1), androstenedione (A4), dihydrotestosterone (DHT), corticosterone (CORT), dehydroepiandrosterone (DHEA), testosterone (T), progesterone (P), N-arachidonoyl ethanoamide (AEA) and 1-arachydonoyl glycerol (1-AG) in hair and plasma are the potential long-term and short-term biomarkers of the three systems. This study aimed to develop the sensitive and selective methods for simultaneous quantitation of the twelve compounds in rodent's hair and plasma. Then the methods were used to explore the differences in the hair levels of the twelve compounds between the mice in XZ group possibly having gut microbiota with more diversity and SPF group possibly having gut microbiota with less diversity and the inter-group differences in the plasma levels in the response to 1-h restraint stress. The methods were based on high performance liquid chromatography tandem mass spectrometry with atmospheric pressure chemical ionization in positive mode. The methods were adopted for 20 mg hair and 100 μL plasma, respectively. Hair samples were incubated in methanol at 40 ℃ for 24 h, and were performed by solid phase extraction. Plasma samples were implemented by liquid-liquid extraction with ethyl acetate. The methods showed limit of quantification at 0.06-1.3 pg/mg and 0.03-0.6 ng/mL and recovery ranging between 87.7-115.1 % and 86.1-114.6 % for all compounds in rodent's hair and plasma, and the intra-day and inter-day coefficients of variation less than 15 %, and good freeze/thaw and short-term stability. The present methods also had good reliability as demonstrated by the sex difference in the testosterone levels in hair and plasma. The inter-group comparison revealed that the mice in XZ group showed significantly higher hair levels than those in SPF group for 1-AG and most of hormones except for T and P. The non-stressed female mice in SPF showed significantly higher plasma levels than those in XZ for AEA and most of hormones except for E2, A4, DHT, T and 1-AG, but there were no inter-group differences for the stressed mice except for DHEA and 11-DHC and for the non-stressed male mice. Additionally, the stressed mice showed significantly higher corticosterone level in plasma than controls for male and female mice in XZ and male mice in SPF, but it was not true for female mice in SPF.
Collapse
Affiliation(s)
- Liuxi Chu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing 210096, China; Institute of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing 210096, China
| | - Na Li
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing 210096, China
| | - Jia Deng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Wu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing 210096, China; Institute of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing 210096, China
| | - Haoran Yang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing 210096, China; Institute of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing 210096, China
| | - Wei Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing 210096, China; Institute of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing 210096, China
| | - Dongrui Zhou
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing 210096, China
| | - Huihua Deng
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing 210096, China; Institute of Child Development and Education, Research Center for Learning Science, Southeast University, Nanjing 210096, China.
| |
Collapse
|
11
|
Assessment of Cortisol and DHEA Concentrations in Griffon Vulture ( Gyps fulvus) Feathers to Evaluate its Allostatic Load. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2019-0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The use of a non-invasive approach to collect biological samples from natural populations represents a great means of gathering information while avoiding handling animals. Even if corticosterone is the main glucocorticoid investigated in birds, there has been observed a proportional direct link between corticosterone and cortisol concentrations. Dehydroepiandrosterone (DHEA) can be produced by the adrenal cortex and should have prominent antiglucocorticoid properties also in birds. The aim of this study was to verify if there is any difference in the cortisol and DHEA feather concentrations between clinically normal and physiologically compromised Griffon vultures (Gyps fulvus) through the non-invasive approach of collecting moulted feathers without having to pluck them from the bird. The study was carried out using 8 physiologically compromised (PC) Griffons and 9 clinically normal Griffons considered as the control (CTRL) group that were necropsied or from the wildlife rehabilitation centre. Primary and secondary covert feathers were either collected directly from the birds’ cage floors, or, in the case of dead Griffons, they were plucked off the animals. The results, obtained by RIA, revealed that both cortisol (P<0.01) and DHEA (P<0.05) feather concentrations were higher in the PC than in the CTRL group. No difference was observed by comparing the cortisol/DHEA ratio between the two evaluated groups (P=0.15). Pearson’s correlation coefficients showed no correlation between feather hormone concentrations in the PC group (r=0.01, P=0.96) while a positive correlation in the CTRL group (r=0.65, P=0.006) was observed. In conclusion, our study reveals that moulted feathers can be a non-invasive and an interesting tool to evaluate the allostatic load of wild birds and they allowed better understanding the relationship between hormones of the hypothalamic–pituitary–adrenal axis and the physiological status of the birds.
Collapse
|
12
|
Munley KM, Deyoe JE, Ren CC, Demas GE. Melatonin mediates seasonal transitions in aggressive behavior and circulating androgen profiles in male Siberian hamsters. Horm Behav 2020; 117:104608. [PMID: 31669179 PMCID: PMC6980702 DOI: 10.1016/j.yhbeh.2019.104608] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 01/12/2023]
Abstract
Some seasonally-breeding animals are more aggressive during the short, "winter-like" days (SD) of the non-breeding season, despite gonadal regression and reduced circulating androgen levels. While the mechanisms underlying SD increases in aggression are not well understood, previous work from our lab suggests that pineal melatonin (MEL) and the adrenal androgen dehydroepiandrosterone (DHEA) are important in facilitating non-breeding aggression in Siberian hamsters (Phodopus sungorus). To characterize the role of MEL in modulating seasonal transitions in aggressive behavior, we housed male hamsters in long days (LD) or SD, treated them with timed MEL (M) or saline injections, and measured aggression after 3, 6, and 9 weeks. Furthermore, to assess whether MEL mediates seasonal shifts in gonadal and adrenal androgen synthesis, serum testosterone (T) and DHEA concentrations were quantified 36 h before and immediately following an aggressive encounter. LD-M and SD males exhibited similar physiological and behavioral responses to treatment. Specifically, both LD-M and SD males displayed higher levels of aggression than LD males and reduced circulating DHEA and T in response to an aggressive encounter, whereas LD males elevated circulating androgens. Interestingly, LD and SD males exhibited distinct relationships between circulating androgens and aggressive behavior, in which changes in serum T following an aggressive interaction (∆T) were negatively correlated with aggression in LD males, while ∆DHEA was positively correlated with aggression in SD males. Collectively, these findings suggest that SD males transition from synthesis to metabolism of circulating androgens following an aggressive encounter, a mechanism that is modulated by MEL.
Collapse
Affiliation(s)
- Kathleen M Munley
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Jessica E Deyoe
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Clarissa C Ren
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Gregory E Demas
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
13
|
Hamden JE, Salehzadeh M, Jalabert C, O'Leary TP, Snyder JS, Gomez-Sanchez CE, Soma KK. Measurement of 11-dehydrocorticosterone in mice, rats and songbirds: Effects of age, sex and stress. Gen Comp Endocrinol 2019; 281:173-182. [PMID: 31145891 PMCID: PMC6751571 DOI: 10.1016/j.ygcen.2019.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/02/2019] [Accepted: 05/26/2019] [Indexed: 12/23/2022]
Abstract
Glucocorticoids (GCs) are secreted into the blood by the adrenal glands and are also locally-produced by organs such as the lymphoid organs (bone marrow, thymus, and spleen). Corticosterone is the primary circulating GC in many species, including mice, rats and birds. Within lymphoid organs, corticosterone can be locally produced from the inactive metabolite, 11-dehydrocorticosterone (DHC). However, very little is known about endogenous DHC levels, and no immunoassays are currently available to measure DHC. Here, we developed an easy-to-use and inexpensive immunoassay to measure DHC that is accurate, precise, sensitive, and specific. The DHC immunoassay was validated in multiple ways, including comparison with a mass spectrometry assay. After assay validations, we demonstrated the usefulness of this immunoassay by measuring DHC (and corticosterone) in mice, rats and song sparrows. Overall, corticosterone levels were higher than DHC levels across species. In Study 1, using mice, we measured steroids in whole blood and lymphoid organs at postnatal day (PND) 5, PND23, and PND90. Corticosterone and DHC showed distinct tissue-specific patterns across development. In Studies 2 and 3, we measured circulating corticosterone and DHC in adult rats and song sparrows, before and after restraint stress. In rats and song sparrows, restraint stress rapidly increased circulating levels of both steroids. This novel DHC immunoassay revealed major changes in DHC concentrations during development and in response to stress, which have important implications for understanding GC physiology, effects of stress on immune function, and regulation of local GC levels.
Collapse
Affiliation(s)
- Jordan E Hamden
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Melody Salehzadeh
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Cecilia Jalabert
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Timothy P O'Leary
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Jason S Snyder
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Celso E Gomez-Sanchez
- Endocrine and Research Service, G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS, USA; Division of Endocrinology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kiran K Soma
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
14
|
Wingfield JC, Goymann W, Jalabert C, Soma KK. Concepts derived from the Challenge Hypothesis. Horm Behav 2019; 115:104550. [PMID: 31265826 DOI: 10.1016/j.yhbeh.2019.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 12/25/2022]
Abstract
The Challenge Hypothesis was developed to explain why and how regulatory mechanisms underlying patterns of testosterone secretion vary so much across species and populations as well as among and within individuals. The hypothesis has been tested many times over the past 30years in all vertebrate groups as well as some invertebrates. Some experimental tests supported the hypothesis but many did not. However, the emerging concepts and methods extend and widen the Challenge Hypothesis to potentially all endocrine systems, and not only control of secretion, but also transport mechanisms and how target cells are able to adjust their responsiveness to circulating levels of hormones independently of other tissues. The latter concept may be particularly important in explaining how tissues respond differently to the same hormone concentration. Responsiveness of the hypothalamo-pituitary-gonad (HPG) axis to environmental and social cues regulating reproductive functions may all be driven by gonadotropin-releasing hormone (GnRH) or gonadotropin-inhibiting hormone (GnIH), but the question remains as to how different contexts and social interactions result in stimulation of GnRH or GnIH release. These concepts, although suspected for many decades, continue to be explored as integral components of environmental endocrinology and underlie fundamental mechanisms by which animals, including ourselves, cope with a changing environment. Emerging mass spectrometry techniques will have a tremendous impact enabling measurement of multiple steroids in specific brain regions. Such data will provide greater spatial resolution for studying how social challenges impact multiple steroids within the brain. Potentially the Challenge Hypothesis will continue to stimulate new ways to explore hormone-behavior interactions and generate future hypotheses.
Collapse
Affiliation(s)
- John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Wolfgang Goymann
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Cecilia Jalabert
- Department of Zoology, University of British Columbia, Vancouver, Canada; Djavad Mofawaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Kiran K Soma
- Department of Zoology, University of British Columbia, Vancouver, Canada; Djavad Mofawaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Psychology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
15
|
Fokidis HB, Ma C, Radin B, Prior NH, Adomat HH, Guns ES, Soma KK. Neuropeptide Y and orexin immunoreactivity in the sparrow brain coincide with seasonal changes in energy balance and steroids. J Comp Neurol 2018; 527:347-361. [DOI: 10.1002/cne.24535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
Affiliation(s)
| | - Chunqi Ma
- Department of Psychology; University of British Columbia; Vancouver British Columbia Canada
| | - Benjamin Radin
- Department of Biology; Rollins College; Winter Park Florida
| | - Nora H. Prior
- Department of Psychology; University of British Columbia; Vancouver British Columbia Canada
- Program in Neuroscience and Cognitive Neuroscience; University of Maryland; College Park Maryland
| | - Hans H. Adomat
- The Prostate Centre; Vancouver General Hospital; Vancouver British Columbia Canada
| | - Emma S. Guns
- The Prostate Centre; Vancouver General Hospital; Vancouver British Columbia Canada
- Department of Urological Sciences; University of British Columbia; Vancouver British Columbia Canada
| | - Kiran K. Soma
- Department of Psychology; University of British Columbia; Vancouver British Columbia Canada
- Graduate Program in Neuroscience; University of British Columbia; Vancouver British Columbia Canada
- Djavad Mowafaghian Centre for Brain Health; University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|
16
|
Heimovics SA, Merritt JR, Jalabert C, Ma C, Maney DL, Soma KK. Rapid effects of 17β-estradiol on aggressive behavior in songbirds: Environmental and genetic influences. Horm Behav 2018; 104:41-51. [PMID: 29605636 PMCID: PMC6344317 DOI: 10.1016/j.yhbeh.2018.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Abstract
Contribution to Special Issue on Fast effects of steroids. 17β-estradiol (E2) has numerous rapid effects on the brain and behavior. This review focuses on the rapid effects of E2 on aggression, an important social behavior, in songbirds. First, we highlight the contributions of studies on song sparrows, which reveal that seasonal changes in the environment profoundly influence the capacity of E2 to rapidly alter aggressive behavior. E2 administration to male song sparrows increases aggression within 20 min in the non-breeding season, but not in the breeding season. Furthermore, E2 rapidly modulates several phosphoproteins in the song sparrow brain. In particular, E2 rapidly affects pCREB in the medial preoptic nucleus, in the non-breeding season only. Second, we describe studies of the white-throated sparrow, which reveal how a genetic polymorphism may influence the rapid effects of E2 on aggression. In this species, a chromosomal rearrangement that includes ESR1, which encodes estrogen receptor α (ERα), affects ERα expression in the brain and the ability of E2 to rapidly promote aggression. Third, we summarize studies showing that aggressive interactions rapidly affect levels of E2 and other steroids, both in the blood and in specific brain regions, and the emerging potential for steroid profiling by liquid chromatography tandem mass spectrometry (LC-MS/MS). Such studies of songbirds demonstrate the value of an ethologically informed approach, in order to reveal how steroids act rapidly on the brain to alter naturally-occurring behavior.
Collapse
Affiliation(s)
| | | | - Cecilia Jalabert
- University of British Columbia, Department of Zoology, Vancouver, BC, Canada
| | - Chunqi Ma
- University of British Columbia, Department of Psychology, Vancouver, BC, Canada
| | - Donna L Maney
- Emory University, Department of Psychology, Atlanta, GA, USA
| | - Kiran K Soma
- University of British Columbia, Department of Zoology, Vancouver, BC, Canada; University of British Columbia, Department of Psychology, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, Canada
| |
Collapse
|
17
|
Munley KM, Rendon NM, Demas GE. Neural Androgen Synthesis and Aggression: Insights From a Seasonally Breeding Rodent. Front Endocrinol (Lausanne) 2018; 9:136. [PMID: 29670576 PMCID: PMC5893947 DOI: 10.3389/fendo.2018.00136] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/15/2018] [Indexed: 11/24/2022] Open
Abstract
Aggression is an essential social behavior that promotes survival and reproductive fitness across animal systems. While research on the neuroendocrine mechanisms underlying this complex behavior has traditionally focused on the classic neuroendocrine model, in which circulating gonadal steroids are transported to the brain and directly mediate neural circuits relevant to aggression, recent studies have suggested that this paradigm is oversimplified. Work on seasonal mammals that exhibit territorial aggression outside of the breeding season, such as Siberian hamsters (Phodopus sungorus), has been particularly useful in elucidating alternate mechanisms. These animals display elevated levels of aggression during the non-breeding season, in spite of gonadal regression and reduced levels of circulating androgens. Our laboratory has provided considerable evidence that the adrenal hormone precursor dehydroepiandrosterone (DHEA) is important in maintaining aggression in both male and female Siberian hamsters during the non-breeding season, a mechanism that appears to be evolutionarily-conserved in some seasonal rodent and avian species. This review will discuss research on the neuroendocrine mechanisms of aggression in Siberian hamsters, a species that displays robust neural, physiological, and behavioral changes on a seasonal basis. Furthermore, we will address how these findings support a novel neuroendocrine pathway for territorial aggression in seasonal animals, in which adrenal DHEA likely serves as an essential precursor for neural androgen synthesis during the non-breeding season.
Collapse
|
18
|
McCormley MC, Champagne CD, Deyarmin JS, Stephan AP, Crocker DE, Houser DS, Khudyakov JI. Repeated adrenocorticotropic hormone administration alters adrenal and thyroid hormones in free-ranging elephant seals. CONSERVATION PHYSIOLOGY 2018; 6:coy040. [PMID: 30034809 PMCID: PMC6048993 DOI: 10.1093/conphys/coy040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/30/2018] [Accepted: 06/27/2018] [Indexed: 05/18/2023]
Abstract
Understanding the physiological response of marine mammals to anthropogenic stressors can inform marine ecosystem conservation strategies. Stress stimulates the activation of the hypothalamic-pituitary-adrenal (HPA) axis and synthesis of glucocorticoid (GC) hormones, which increase energy substrate availability while suppressing energy-intensive processes. Exposure to repeated stressors can potentially affect an animal's ability to respond to and recover from subsequent challenges. To mimic repeated activation of the HPA axis by environmental stressors (or challenges), we administered adrenocorticotropic hormone (ACTH) to free-ranging juvenile northern elephant seals (Mirounga angustirostris; n = 7) once daily for 4 days. ACTH administration induced significant elevation in circulating cortisol and aldosterone levels. The cortisol responses did not vary in magnitude between the first ACTH administration on Day 1 and the last administration on Day 4. In contrast, aldosterone levels remained elevated above baseline for at least 24 h after each ACTH injection, and responses were greater on Day 4 than Day 1. Total triiodothyronine (tT3) levels were decreased on Day 4 relative to Day 1, while reverse triiodothyronine (rT3) concentrations increased relative to baseline on Days 1 and 4 in response to ACTH, indicating a suppression of thyroid hormone production. There was no effect of ACTH on the sex steroid dehydroepiandrosterone. These data suggest that elephant seals are able to mount adrenal responses to multiple ACTH administrations. However, repeated ACTH administration resulted in facilitation of aldosterone secretion and suppression of tT3, which may impact osmoregulation and metabolism, respectively. We propose that aldosterone and tT3 are informative additional indicators of repeated stress in marine mammals.
Collapse
Affiliation(s)
- Molly C McCormley
- Department of Biological Sciences, University of the Pacific, Stockton, CA, USA
| | - Cory D Champagne
- Conservation and Biological Research Program, National Marine Mammal Foundation, San Diego, CA, USA
| | - Jared S Deyarmin
- Department of Biological Sciences, University of the Pacific, Stockton, CA, USA
| | - Alicia P Stephan
- Department of Biological Sciences, University of the Pacific, Stockton, CA, USA
| | - Daniel E Crocker
- Biology Department, Sonoma State University, Rohnert Park, CA, USA
| | - Dorian S Houser
- Conservation and Biological Research Program, National Marine Mammal Foundation, San Diego, CA, USA
| | - Jane I Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA, USA
- Conservation and Biological Research Program, National Marine Mammal Foundation, San Diego, CA, USA
- Corresponding author: Department of Biological Sciences, University of the Pacific, 3601 Pacific Ave. Stockton, CA 95211, USA.
| |
Collapse
|
19
|
Newman AEM, Hess H, Woodworth BK, Norris DR. Time as tyrant: The minute, hour and day make a difference for corticosterone concentrations in wild nestlings. Gen Comp Endocrinol 2017; 250:80-84. [PMID: 28577897 DOI: 10.1016/j.ygcen.2017.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 05/15/2017] [Accepted: 05/30/2017] [Indexed: 12/28/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis has been studied extensively in adults, but the HPA axis in early life is not well characterized, and there is an immense amount of unexplained variation in glucocorticoid levels during early life, especially in wild animals. To characterize population-wide natural variation in early-life HPA axis function, we compared plasma corticosterone levels (at baseline and after 30min acute restraint-stress) from seven-day-old nestlings (n=123) from a free-living, marked population of Savannah sparrows (Passerculus sandwichensis). We found a surprising sensitivity of the HPA axis to timing of sample collection across time scales. Even within the accepted 3-min framework to collect baseline samples, time to collect blood had a significant effect on baseline corticosterone concentrations. Daily rhythms also influenced baseline levels, which increased significantly during the relatively short window of sample collection (1100 and 1600). On a broader timeframe, there was a strong effect of hatch date (over a 2month period) on HPA axis responsiveness, where nestlings hatched later in the breeding season had lower stress-induced corticosterone levels than those hatched earlier. The ecophysiological mechanisms and implications of these patterns warrant future investigation; meanwhile this study highlights the critical need to consider, and potentially restrict, time across scales when collecting blood samples from wild birds to assess stress physiology.
Collapse
Affiliation(s)
- Amy E M Newman
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Helmi Hess
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bradley K Woodworth
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - D Ryan Norris
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
20
|
Fokidis HB. Sources of variation in plasma corticosterone and dehydroepiandrosterone in the male northern cardinal (Cardinalis cardinalis): I. Seasonal patterns and effects of stress and adrenocorticotropic hormone. Gen Comp Endocrinol 2016; 235:192-200. [PMID: 27255363 DOI: 10.1016/j.ygcen.2016.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 11/16/2022]
Abstract
The secretion of steroids from the adrenal gland is a classic endocrine response to perturbations that can affect homeostasis. During an acute stress response, glucocorticoids (GC), such as corticosterone (CORT), prepare the metabolic physiology and cognitive abilities of an animal in a manner that promotes survival during changing conditions. Although GC functions during stress are well established, much less is understood concerning how adrenal androgens, namely dehydroepiandrosterone (DHEA) are influenced by stress. I conducted three field studies (one experimental and two descriptive) aimed at identifying how both CORT and DHEA secretion in free-living male northern cardinals (Cardinalis cardinalis), vary during acute stress; across different circulations (brachial vs. jugular); in response to ACTH challenge; and during the annual cycle. As predicted, restraint stress increased plasma CORT, but unexpectedly DHEA levels decreased, but the latter effect was only seen for blood sampled from the jugular vein, and not the brachial. The difference in DHEA between circulations may result from increased neural uptake of DHEA during stress. Injection with exogenous adrenocorticotropic hormone (ACTH) increased CORT concentrations, but failed to alter DHEA levels, thus suggesting ACTH is not a direct regulator of DHEA. Monthly field sampling revealed distinct seasonal patterns to both initial and restraint stress CORT and DHEA levels with distinct differences in the steroid milieu between breeding and non-breeding seasons. These data suggest that the CORT response to stress remains relatively consistent, but DHEA secretion is largely independent of the response by CORT. Although CORT functions have been well-studied in wild animals, little research exists for the role of DHEA and their variable relationship sets the stage for future experimental research addressing steroid stress responses.
Collapse
Affiliation(s)
- H Bobby Fokidis
- Department of Biology, Rollins College, Winter Park, FL 37289, USA.
| |
Collapse
|
21
|
Rao SVR, Prakash B, Raju MVLN, Panda AK, Kumari RK, Reddy EPK. Effect of Supplementing Organic Forms of Zinc, Selenium and Chromium on Performance, Anti-Oxidant and Immune Responses in Broiler Chicken Reared in Tropical Summer. Biol Trace Elem Res 2016; 172:511-520. [PMID: 26743864 DOI: 10.1007/s12011-015-0587-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
Abstract
Two experiments were conducted to study the effect of supplementing organic forms of zinc (Zn), selenium (Se) and chromium (Cr) on performance, anti-oxidant activities and immune responses in broiler chickens from 1 to 21 days of age, which were reared in cyclic heat-stressed condition under tropical summer in open-sided poultry house. A total of 200 (experiment I) and 450-day-old (experiment II) broiler male chicks (Cobb 400) were randomly distributed in stainless steel battery brooders (610 mm × 762 mm × 475 mm) at the rate of five birds per pen. A maize-soybean meal-based control diet (CD) containing recommended (Vencobb 400, Broiler Management Guide) concentrations of inorganic trace minerals and other nutrients was prepared. The CD was supplemented individually with organic form of selenium (Se, 0.30 mg/kg), chromium (Cr, 2 mg/kg) and zinc (Zn, 40 mg/kg) in experiment I. In experiment II, two concentrations of each Zn (20 and 40 mg/kg), Se (0.15 and 0.30 mg/kg) and Cr (1 and 2 mg/kg) were supplemented to the basal diet in 2 × 2 × 2 factorial design. A group without supplementing inorganic trace minerals was maintained as control group in both experiments. Each diet was allotted randomly to ten replicates in both experiments and fed ad libitum from 1 to 21 days of age. At 19th day of age, blood samples were collected for estimation of anti-oxidant and immune responses. Supplementation of Se, Cr and Zn increased (P < 0.05) body mass gain (BMG) and feed intake compared to those fed the CD in experiment I. The feed efficiency (FE) in Cr-fed group was higher (P < 0.05) compared to the CD-fed group. Se or Cr supplementation reduced lipid peroxidation (LP) compared to broilers fed the CD. In experiment II, BMG was not affected (P > 0.05) by the interaction between levels of Zn, Se and Cr in broiler diet. The FE improved (P < 0.05) with supplementation of the trace minerals tested at both concentrations except in group fed 40 mg Zn, 0.5 mg Se and 1 mg Cr/kg. Reduction in lipid peroxidation (LP, P < 0.05) and increased (P < 0.05) activity of superoxide dismutase were observed in broiler fed organic Zn, Se and Cr compared to the CD-fed group. The dietary concentrations of Zn, Se and Cr did not influence (P > 0.05) the immune responses (Newcastle disease titre and cell-mediated immune response to phytohaemagglutinin-P) in both the experiments. Based on the results, it is concluded that supplementation of organic form of Se, Cr and Zn (0.30, 2 and 40 mg/kg, respectively) either alone or in combination significantly improved performance and anti-oxidant responses (reduced LP and increased superoxide dismutase) in commercial broiler chicks (21 days of age) reared in cyclic heat stress conditions in open-sided poultry house during summer.
Collapse
Affiliation(s)
- S V Rama Rao
- ICAR-Directorate of Poultry Research, Indian Council of Agricultural Research, Rajendranagar, Hyderabad, 500030, India.
| | - B Prakash
- ICAR-Directorate of Poultry Research, Indian Council of Agricultural Research, Rajendranagar, Hyderabad, 500030, India
| | - M V L N Raju
- ICAR-Directorate of Poultry Research, Indian Council of Agricultural Research, Rajendranagar, Hyderabad, 500030, India
| | - A K Panda
- ICAR-Directorate of Poultry Research, Indian Council of Agricultural Research, Rajendranagar, Hyderabad, 500030, India
| | - R K Kumari
- ICAR-Directorate of Poultry Research, Indian Council of Agricultural Research, Rajendranagar, Hyderabad, 500030, India
| | - E Pradeep Kumar Reddy
- ICAR-Directorate of Poultry Research, Indian Council of Agricultural Research, Rajendranagar, Hyderabad, 500030, India
| |
Collapse
|
22
|
Rensel MA, Schlinger BA. Determinants and significance of corticosterone regulation in the songbird brain. Gen Comp Endocrinol 2016; 227:136-42. [PMID: 26141145 PMCID: PMC4696926 DOI: 10.1016/j.ygcen.2015.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/03/2015] [Accepted: 06/09/2015] [Indexed: 11/18/2022]
Abstract
Songbirds exhibit significant adult neuroplasticity that, together with other neural specializations, makes them an important model system for neurobiological studies. A large body of work also points to the songbird brain as a significant target of steroid hormones, including corticosterone (CORT), the primary avian glucocorticoid. Whereas CORT positively signals the brain for many functions, excess CORT may interfere with natural neuroplasticity. Consequently, mechanisms may exist to locally regulate CORT levels in brain to ensure optimal concentrations. However, most studies in songbirds measure plasma CORT as a proxy for levels at target tissues. In this paper, we review literature concerning circulating CORT and its effects on behavior in songbirds, and discuss recent work suggesting that brain CORT levels are regulated independently of changes in adrenal secretion. We review possible mechanisms for CORT regulation in the avian brain, including corticosteroid-binding globulins, p-glycoprotein activity in the blood-brain barrier and CORT metabolism by the 11ß hydroxysteroid dehydrogenases. Data supporting a role for CORT regulation within the songbird brain have only recently begun to emerge, suggesting that this is an avenue for important future research.
Collapse
Affiliation(s)
- Michelle A Rensel
- Department of Integrative Biology and Physiology, The University of California, Los Angeles, 610 Charles E Young Drive East, Los Angeles, CA 90095, USA.
| | - Barney A Schlinger
- Department of Integrative Biology and Physiology, The University of California, Los Angeles, 610 Charles E Young Drive East, Los Angeles, CA 90095, USA; Laboratory of Neuroendocrinology, Brain Research Institute, The University of California, Los Angeles, 610 Charles E Young Drive East, Los Angeles, CA 90095, USA; Department of Ecology and Evolutionary Biology, The University of California, Los Angeles, 610 Charles E Young Drive East, Los Angeles, CA 90095, USA
| |
Collapse
|
23
|
Schlinger BA. Steroids in the Avian Brain: Heterogeneity across Space and Time. JOURNAL OF ORNITHOLOGY 2015; 156:419-424. [PMID: 26924851 PMCID: PMC4767503 DOI: 10.1007/s10336-015-1184-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Sex steroids influence a diversity of neural and behavioral endpoints in birds, including some that have little to do with reproduction per se. Recent advances in neurochemistry and molecular biology further indicate that the avian brain is comprised of a network of unique sex steroid microenvironments. Factors involved in steroid synthesis and metabolism are present in the avian brain with expression levels that vary from region to region and with activities that are, in some cases, subject to regulation over relatively slow or rapid time intervals. Advances in our ability to a) isolate steroids from brain tissue and b) precisely measure their concentrations reveal how steroid levels vary spatially and temporally. A full appreciation of sex steroid effects on the avian brain require not only measures of hormones in blood but also an understanding of the numerous and varied mechanisms whereby the brain creates such a heterogeneous steroidal environment.
Collapse
Affiliation(s)
- Barney A Schlinger
- Department of Integrative Biology and Physiology & Ecology and Evolutionary Biology, UCLA, Los Angeles, CA 90290, USA
| |
Collapse
|
24
|
Prior NH, Soma KK. Neuroendocrine regulation of long-term pair maintenance in the monogamous zebra finch. Horm Behav 2015; 76:11-22. [PMID: 25935729 DOI: 10.1016/j.yhbeh.2015.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/18/2015] [Accepted: 04/06/2015] [Indexed: 01/01/2023]
Abstract
This article is part of a Special Issue "SBN 2014". Understanding affiliative behavior is critical to understanding social organisms. While affiliative behaviors are present across a wide range of taxa and contexts, much of what is known about the neuroendocrine regulation of affiliation comes from studies of pair-bond formation in prairie voles. This leaves at least three gaps in our current knowledge. First, little is known about long-term pair-bond maintenance. Second, few studies have examined non-mammalian systems, even though monogamy is much more common in birds than in mammals. Third, the influence of breeding condition on affiliation is largely unknown. The zebra finch (Taeniopygia guttata) is an excellent model system for examining the neuroendocrine regulation of affiliative behaviors, including the formation and maintenance of a long-term pair bond. Zebra finches form genetically monogamous pair bonds, which they actively maintain throughout the year. The genomic and neuroanatomical resources, combined with the wealth of knowledge on the ecology and ethology of wild zebra finches, give this model system unique advantages to study the neuroendocrine regulation of pair bonding. Here, we review the endocrinology of opportunistic breeding in zebra finches, the sex steroid profiles of breeding and non-breeding zebra finches (domesticated and wild), and the roles of sex steroids and other signaling molecules in pair-maintenance behaviors in the zebra finch and other monogamous species. Studies of zebra finches and other songbirds will be useful for broadly understanding the neuroendocrine regulation of affiliative behaviors, including pair bonding and monogamy.
Collapse
Affiliation(s)
- Nora H Prior
- Zoology Department, University of British Columbia, Vancouver, BC, Canada.
| | - Kiran K Soma
- Psychology Department, University of British Columbia, Vancouver, BC, Canada; Zoology Department, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
Heimovics SA, Trainor BC, Soma KK. Rapid Effects of Estradiol on Aggression in Birds and Mice: The Fast and the Furious. Integr Comp Biol 2015; 55:281-93. [PMID: 25980562 DOI: 10.1093/icb/icv048] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Across invertebrates and vertebrates, steroids are potent signaling molecules that affect nearly every cell in the organism, including cells of the nervous system. Historically, researchers have focused on the genomic (or "nuclear-initiated") effects of steroids. However, all classes of steroids also have rapid non-genomic (or "membrane-initiated") effects, although there is far less basic knowledge of these non-genomic effects. In particular, steroids synthesized in the brain ("neurosteroids") have genomic and non-genomic effects on behavior. Here, we review evidence that estradiol has rapid effects on aggression, an important social behavior, and on intracellular signaling cascades in relevant regions of the brain. In particular, we focus on studies of song sparrows (Melospiza melodia) and Peromyscus mice, in which estradiol has rapid behavioral effects under short photoperiods only. Furthermore, in captive Peromyscus, estrogenic compounds (THF-diols) in corncob bedding profoundly alter the rapid effects of estradiol. Environmental factors in the laboratory, such as photoperiod, diet, and bedding, are critical variables to consider in experimental design. These studies are consistent with the hypothesis that locally-produced steroids are more likely than systemic steroids to act via non-genomic mechanisms. Furthermore, these studies illustrate the dynamic balance between genomic and non-genomic signaling for estradiol, which is likely to be relevant for other steroids, behaviors, and species.
Collapse
Affiliation(s)
- Sarah A Heimovics
- *Department of Biology, University of St Thomas, St Paul, MN 55105, USA;
| | - Brian C Trainor
- Department of Psychology, University of California-Davis, Davis, CA 95616, USA
| | - Kiran K Soma
- Departments of Psychology and Zoology, Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, V6T 1Z7, Canada
| |
Collapse
|
26
|
Foltz SL, Davis JE, Battle KE, Greene VW, Laing BT, Rock RP, Ross AE, Tallant JA, Vega RC, Moore IT. Across time and space: Effects of urbanization on corticosterone and body condition vary over multiple years in song sparrows (Melospiza melodia). ACTA ACUST UNITED AC 2015; 323:109-20. [DOI: 10.1002/jez.1906] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/15/2014] [Accepted: 11/06/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Sarah L. Foltz
- Department of Biological Sciences; Virginia Tech; Blacksburg Virginia
| | - Jason E. Davis
- Department of Biology; Reed Hall; Radford University; Radford Virginia
| | - Kathryn E. Battle
- Department of Biological Sciences; Virginia Tech; Blacksburg Virginia
| | | | - Brenton T. Laing
- Department of Biological Sciences; Virginia Tech; Blacksburg Virginia
| | - Ryan P. Rock
- Department of Biological Sciences; Virginia Tech; Blacksburg Virginia
| | - Allen E. Ross
- Department of Biological Sciences; Virginia Tech; Blacksburg Virginia
| | - James A. Tallant
- Department of Biological Sciences; Virginia Tech; Blacksburg Virginia
| | - Rene C. Vega
- Department of Biology; Reed Hall; Radford University; Radford Virginia
| | - Ignacio T. Moore
- Department of Biological Sciences; Virginia Tech; Blacksburg Virginia
| |
Collapse
|
27
|
Soma KK, Rendon NM, Boonstra R, Albers HE, Demas GE. DHEA effects on brain and behavior: insights from comparative studies of aggression. J Steroid Biochem Mol Biol 2015; 145:261-72. [PMID: 24928552 DOI: 10.1016/j.jsbmb.2014.05.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/09/2014] [Accepted: 05/15/2014] [Indexed: 12/24/2022]
Abstract
Historically, research on the neuroendocrinology of aggression has been dominated by the paradigm that the brain receives sex steroid hormones, such as testosterone (T), from the gonads, and then these gonadal hormones modulate behaviorally relevant neural circuits. While this paradigm has been extremely useful for advancing the field, recent studies reveal important alternatives. For example, most vertebrate species are seasonal breeders, and many species show aggression outside of the breeding season, when the gonads are regressed and circulating levels of gonadal steroids are relatively low. Studies in diverse avian and mammalian species suggest that adrenal dehydroepiandrosterone (DHEA), an androgen precursor and prohormone, is important for the expression of aggression when gonadal T synthesis is low. Circulating DHEA can be converted into active sex steroids within the brain. In addition, the brain can synthesize sex steroids de novo from cholesterol, thereby uncoupling brain steroid levels from circulating steroid levels. These alternative mechanisms to provide sex steroids to specific neural circuits may have evolved to avoid the costs of high circulating T levels during the non-breeding season. Physiological indicators of season (e.g., melatonin) may allow animals to switch from one neuroendocrine mechanism to another across the year. DHEA and neurosteroids are likely to be important for the control of multiple behaviors in many species, including humans. These studies yield fundamental insights into the regulation of DHEA secretion, the mechanisms by which DHEA affects behavior, and the brain regions and neural processes that are modulated by DHEA. It is clear that the brain is an important site of DHEA synthesis and action. This article is part of a Special Issue entitled 'Essential role of DHEA'.
Collapse
Affiliation(s)
- Kiran K Soma
- Departments of Psychology and Zoology, Graduate Program in Neuroscience, and the Brain Research Centre, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.
| | - Nikki M Rendon
- Department of Biology, Program in Neuroscience, and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Rudy Boonstra
- Centre for Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada M1C 1A4
| | - H Elliott Albers
- Neuroscience Institute, and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | - Gregory E Demas
- Department of Biology, Program in Neuroscience, and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
28
|
Fokidis HB, Adomat HH, Kharmate G, Hosseini-Beheshti E, Guns ES, Soma KK. Regulation of local steroidogenesis in the brain and in prostate cancer: lessons learned from interdisciplinary collaboration. Front Neuroendocrinol 2015; 36:108-29. [PMID: 25223867 DOI: 10.1016/j.yfrne.2014.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 11/16/2022]
Abstract
Sex steroids play critical roles in the regulation of the brain and many other organs. Traditionally, researchers have focused on sex steroid signaling that involves travel from the gonads via the circulation to intracellular receptors in target tissues. This classic concept has been challenged, however, by the growing number of cases in which steroids are synthesized locally and act locally within diverse tissues. For example, the brain and prostate carcinoma were previously considered targets of gonadal sex steroids, but under certain circumstances, these tissues can upregulate their steroidogenic potential, particularly when circulating sex steroid concentrations are low. We review some of the similarities and differences between local sex steroid synthesis in the brain and prostate cancer. We also share five lessons that we have learned during the course of our interdisciplinary collaboration, which brought together neuroendocrinologists and cancer biologists. These lessons have important implications for future research in both fields.
Collapse
Affiliation(s)
- H Bobby Fokidis
- Department of Biology, Rollins College, Winter Park, FL 37289, USA; Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada.
| | - Hans H Adomat
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | | | | | - Emma S Guns
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; Department of Urological Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Kiran K Soma
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Brain Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
29
|
Krause JS, Dorsa D, Wingfield JC. Changes in plasma concentrations of progesterone, dehydroepiandrosterone and corticosterone in response to acute stress of capture, handling and restraint in two subspecies of white-crowned sparrows. Comp Biochem Physiol A Mol Integr Physiol 2014; 177:35-40. [DOI: 10.1016/j.cbpa.2014.07.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 01/21/2023]
|
30
|
Rensel MA, Comito D, Kosarussavadi S, Schlinger BA. Region-specific neural corticosterone patterns differ from plasma in a male songbird. Endocrinology 2014; 155:3572-81. [PMID: 24914945 PMCID: PMC4138571 DOI: 10.1210/en.2014-1231] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/28/2014] [Indexed: 12/13/2022]
Abstract
The adrenal hormone corticosterone (CORT) acts on brain to mediate physiology and behavior. In songbirds, behavioral effects of CORT vary across species, environmental conditions, and life history stage, with several mechanisms proposed to account for these divergent results. Although blood CORT levels are well characterized, few studies measure CORT within the brain itself. Here we used in vivo microdialysis to measure CORT in two regions of the zebra finch brain, the hippocampus (HP) and caudal nidopallium (cNp). Our results show that we can successfully measure physiological levels of CORT in brain within 15- to 30-minute intervals of dialysate collection. Moreover, we found that levels in the cNp were generally lower than levels in the HP. Surprisingly, whereas plasma CORT levels increased in response to a standard stressor, no stress-induced surge was detected in the HP or cNp. In addition, although a diel CORT rhythm was observed in plasma, the rhythm in brain was attenuated and only observed when levels were integrated over a 4-hour time period. Regional differences in brain CORT levels were reflected in local mRNA expression levels of the CORT-inactivating enzyme 11β-hydroxysteroid dehydrogenase type 2 with levels elevated in the cNp relative to the HP. Region-specific CORT metabolism may therefore play a role in buffering the brain from CORT fluctuations.
Collapse
Affiliation(s)
- M A Rensel
- Department of Integrative Biology and Physiology (M.A.R., D.C., S.K., B.A.S.) and Laboratory of Neuroendocrinology (B.A.S.), Brain Research Institute, University of California Los Angeles, Los Angeles, California 90095
| | | | | | | |
Collapse
|
31
|
Fokidis HB, Prior NH, Soma KK. Fasting increases aggression and differentially modulates local and systemic steroid levels in male zebra finches. Endocrinology 2013; 154:4328-39. [PMID: 23939990 DOI: 10.1210/en.2013-1171] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Aggression enables individuals to obtain and retain limited resources. Studies of the neuroendocrine regulation of aggression have focused on territorial and reproductive contexts. By contrast, little is understood concerning the neuroendocrine regulation of aggression over other resources, such as food. Here, we developed a paradigm to examine the role of steroids in food-related aggression. In groups of male zebra finches, a 6-hour fast decreased body mass and increased aggressive interactions among subjects that competed for a point source feeder. Fasting also dramatically altered circulating steroid levels by decreasing plasma testosterone but not estradiol (E2). By contrast, both plasma corticosterone and dehydroepiandrosterone (DHEA) concentrations were elevated with fasting. Interestingly, short-term access to food (15 minutes) after fasting normalized circulating steroid levels. Fasting increased corticosterone levels in a wide range of peripheral tissues but increased DHEA levels specifically in adrenal glands and liver; these effects were quickly normalized with refeeding. DHEA can be metabolized within specific brain regions to testosterone and E2, which promote the expression of aggression. We measured E2 in microdissected brain regions and found that fasting specifically increased local E2 levels in 3 regions: the periaqueductal gray, ventral tegmental area, and ventromedial nucleus of the hypothalamus. These regions are part of the vertebrate social behavior network and regulate the expression of aggression. Together, these data suggest that fasting stimulates secretion of DHEA from the adrenals and liver and subsequent conversion of DHEA to E2 within specific brain regions, to enable individuals to compete for limited food resources.
Collapse
Affiliation(s)
- H Bobby Fokidis
- Rollins College, 1000 Holt Avenue, Winter Park, Florida 32789-4499, USA
| | | | | |
Collapse
|
32
|
Caruso D, Pesaresi M, Abbiati F, Calabrese D, Giatti S, Garcia-Segura LM, Melcangi RC. Comparison of plasma and cerebrospinal fluid levels of neuroactive steroids with their brain, spinal cord and peripheral nerve levels in male and female rats. Psychoneuroendocrinology 2013; 38:2278-90. [PMID: 23706961 DOI: 10.1016/j.psyneuen.2013.04.016] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 04/26/2013] [Accepted: 04/28/2013] [Indexed: 01/31/2023]
Abstract
Physiological changes and pathological alterations in the nervous system of rodents are associated with modifications in the levels of neuroactive steroids in the brain, spinal cord and/or peripheral nerves. Measures of tissue levels of steroids in the nervous system present serious limitations for human studies and for longitudinal studies in animals. In this study we have explored whether levels of neuroactive steroids in plasma and the cerebrospinal fluid reflect their levels in neural tissues. To this aim, we have evaluated by liquid chromatography-tandem mass spectrometry the levels of several neuroactive steroids in plasma, cerebrospinal fluid, cerebral cortex, cerebellum, hippocampus, spinal cord and sciatic nerve of male and female rats. Data indicate that plasma and cerebrospinal fluid levels of steroids do not fully reflect their tissue levels. However, the interindividual variations in the levels of all the steroids assessed, with the exception of dehydroepiandrosterone, showed a positive correlation in plasma and cerebral cortex. Most steroids also showed a positive correlation in plasma and the cerebellum, the spinal cord and the sciatic nerve. In the hippocampus, the levels of tetrahydroprogesterone, testosterone and testosterone metabolites showed a significant positive correlation with their respective levels in plasma. The cerebrospinal fluid levels of some steroids, such as testosterone and dihydrotestosterone, showed a full correlation with tissue levels. In addition, cerebrospinal fluid levels of pregnenolone, progesterone, and 17β-estradiol showed a positive correlation with their corresponding levels in the majority of the neural structures analyzed. These findings suggest that the levels of some neuroactive steroids in cerebrospinal fluid as well as in plasma may be valuable to predict their levels in the nervous system.
Collapse
Affiliation(s)
- Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Newman AEM, Zanette LY, Clinchy M, Goodenough N, Soma KK. Stress in the wild: chronic predator pressure and acute restraint affect plasma DHEA and corticosterone levels in a songbird. Stress 2013; 16:363-7. [PMID: 22934568 DOI: 10.3109/10253890.2012.723076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effects of chronic stressors on glucocorticoid levels are well described in laboratory rodents, but far less is known about the effects of chronic stressors on wild animals or on dehydroepiandrosterone (DHEA) levels. DHEA can be produced by the adrenal cortex and has prominent antiglucocorticoid properties. Here, we examined wild songbirds to elucidate the relationship between chronic predator pressure and plasma DHEA and corticosterone levels. We measured circulating steroid levels at baseline and after acute restraint in the breeding and nonbreeding seasons. During the breeding season, males in low predator pressure (LPP) environments had higher baseline DHEA levels than males in high predator pressure (HPP) environments. Also, acute restraint decreased DHEA levels in LPP males only but increased corticosterone levels in HPP and LPP males similarly. During the nonbreeding season, DHEA and corticosterone levels were lower than during the breeding season, and acute restraint decreased DHEA levels in both HPP and LPP males. Unlike males, breeding females showed no effect of predator pressure on baseline DHEA or corticosterone levels. These data suggest that naturalistic chronic and acute stressors affect circulating DHEA and corticosterone levels in wild animals and highlight the importance of using multiple endpoints when studying the physiological effects of chronic stress.
Collapse
Affiliation(s)
- A E M Newman
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | |
Collapse
|
34
|
Prior NH, Heimovics SA, Soma KK. Effects of water restriction on reproductive physiology and affiliative behavior in an opportunistically-breeding and monogamous songbird, the zebra finch. Horm Behav 2013; 63:462-74. [PMID: 23274698 DOI: 10.1016/j.yhbeh.2012.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 01/14/2023]
Abstract
Wild zebra finches form long-term monogamous pair-bonds that are actively maintained year-round, even when not in breeding condition. These desert finches are opportunistic breeders, and breeding is highly influenced by unpredictable rainfall. Their high levels of affiliation and complex breeding patterns make zebra finches an excellent model in which to study the endocrine regulation of affiliation. Here, we compared zebra finch pairs that were provided with water ad libitum (control) or water restricted. We examined (1) reproductive physiology, (2) pair-maintenance behaviors in several contexts, and (3) circulating and brain steroid levels. In females, water restriction profoundly reduced largest ovarian follicle size, ovary size, oviduct size, and egg laying. In males, water restriction had no effect on testes size but decreased systemic testosterone levels. However, in the hypothalamus, local testosterone and estradiol levels were unaffected by water restriction in both sexes. Systemic and local levels of the androgen precursor dehydroepiandrosterone (DHEA) were also unaffected by water restriction. Lastly, in three different behavioral paradigms, we examined a variety of pair-maintenance behaviors, and none were reduced by water restriction. Taken together, these correlational data are consistent with the hypothesis that local production of sex steroids in the brain promotes the expression of pair-maintenance behaviors in non-breeding zebra finches.
Collapse
Affiliation(s)
- Nora H Prior
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| | | | | |
Collapse
|
35
|
Influence of testosterone metabolites on song-control system neuroplasticity during photostimulation in adult European starlings (Sturnus vulgaris). PLoS One 2012; 7:e40060. [PMID: 22792214 PMCID: PMC3391231 DOI: 10.1371/journal.pone.0040060] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/31/2012] [Indexed: 02/03/2023] Open
Abstract
The song-control system is a network of discrete nuclei in the songbird brain that controls the production and learning of birdsong and exhibits some of the best-studied neuroplasticity found in the adult brain. Photoperiodic growth of the song-control system during the breeding season is driven, at least in part, by the gonadal steroid testosterone. When acting on neural tissue, however, testosterone can be metabolized into 5α-dihydrotestosterone (DHT) or 17β-estradiol (E2), which activate different hormonal signaling pathways. By treating adult starlings with both testosterone metabolites and metabolite antagonists, we attempted to isolate the effects of androgen and estrogen treatment on neuroplasticity during photostimulation in male and female European starlings (Sturnus vulgaris). Photostimulation resulted in a large HVC volume typical of the breeding season in all treatments independent of hormone treatment. E2 had additional effects on HVC growth by reducing neuron density and enhancing early survival of new neurons recruited to HVC in females but did not significantly affect HVC volume. Conversely, DHT reduced the migration of new neurons, assessed by the expression of doublecortin, to HVC. DHT also increased syrinx mass and maintained RA (robust nucleus of the arcopallium) cytoarchitecture in the presence of aromatase inhibitors. In addition, we document the first evidence of sex-specific neuroplastic responses of the song-control system to androgens and estrogens. These findings suggest that the contributions of DHT and E2 signaling in songbird neuroplasticity may be regulated by photoperiod and that future studies should account for species and sex differences in the brain.
Collapse
|
36
|
de Andrade JS, Abrão RO, Céspedes IC, Garcia MC, Nascimento JOG, Spadari-Bratfisch RC, Melo LL, da Silva RCB, Viana MB. Acute restraint differently alters defensive responses and fos immunoreactivity in the rat brain. Behav Brain Res 2012; 232:20-9. [PMID: 22487246 DOI: 10.1016/j.bbr.2012.03.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 03/21/2012] [Accepted: 03/23/2012] [Indexed: 11/30/2022]
Abstract
Results from a previous study show that rats exposed to acute restraint display anxiogenic-like behavior, evidenced by facilitation of avoidance responses in the elevated T-maze (ETM) model of anxiety. In contrast, escape responses were unaltered by stress exposure. Since ETM avoidance and escape tasks seem to activate distinct sets of brain structures, it is possible that the differences observed with acute restraint are due to particularities in the neurobiological mechanisms which modulate these responses. In the present study, analysis of fos protein immunoreactivity (fos-ir) was used to map areas activated by exposure of male Wistar rats to restraint stress (30 min) previously (30 min) to the ETM. Corticosterone levels were also measured in stressed and non-stressed animals. Confirming previous observations restraint facilitated avoidance performance, an anxiogenic result, while leaving escape unaltered. Performance of the avoidance task increased fos-ir in the frontal cortex, intermediate lateral septum, basolateral amygdala, basomedial amygdala, lateral amygdala, anterior hypothalamus and dorsal raphe nucleus. In contrast, performance of escape increased fos-ir in the ventromedial hypothalamus, dorsolateral periaqueductal gray and locus ceruleus. Both behavioral tasks also increased fos-ir in the dorsomedial hypothalamus. Restraint significantly raised corticosterone levels. Additionally after restraint, fos-ir was predominantly seen in the basolateral amygdala and dorsal raphe of animals submitted to the avoidance task. This data confirms that different sets of brain structures are activated by ETM avoidance and escape tasks and suggests that acute restraint differently alters ETM behavior and the pattern of fos activation in the brain.
Collapse
Affiliation(s)
- J S de Andrade
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Dickens MJ, Cornil CA, Balthazart J. Acute stress differentially affects aromatase activity in specific brain nuclei of adult male and female quail. Endocrinology 2011; 152:4242-51. [PMID: 21878510 PMCID: PMC3199009 DOI: 10.1210/en.2011-1341] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The rapid and temporary suppression of reproductive behavior is often assumed to be an important feature of the adaptive acute stress response. However, how this suppression operates at the mechanistic level is poorly understood. The enzyme aromatase converts testosterone to estradiol in the brain to activate reproductive behavior in male Japanese quail (Coturnix japonica). The discovery of rapid and reversible modification of aromatase activity (AA) provides a potential mechanism for fast, stress-induced changes in behavior. We investigated the effects of acute stress on AA in both sexes by measuring enzyme activity in all aromatase-expressing brain nuclei before, during, and after 30 min of acute restraint stress. We show here that acute stress rapidly alters AA in the male and female brain and that these changes are specific to the brain nuclei and sex of the individual. Specifically, acute stress rapidly (5 min) increased AA in the male medial preoptic nucleus, a region controlling male reproductive behavior; in females, a similar increase was also observed, but it appeared delayed (15 min) and had smaller amplitude. In the ventromedial and tuberal hypothalamus, regions associated with female reproductive behavior, stress induced a quick and sustained decrease in AA in females, but in males, only a slight increase (ventromedial) or no change (tuberal) in AA was observed. Effects of acute stress on brain estrogen production, therefore, represent one potential way through which stress affects reproduction.
Collapse
Affiliation(s)
- Molly J Dickens
- University of Liège, GIGA Neurosciences, Research Group in Behavioral Neuroendocrinology, 1 Avenue de l'Hopital (B36), 4000 Liège, Belgium.
| | | | | |
Collapse
|
38
|
Newman AEM, Soma KK. Aggressive interactions differentially modulate local and systemic levels of corticosterone and DHEA in a wild songbird. Horm Behav 2011; 60:389-96. [PMID: 21784076 DOI: 10.1016/j.yhbeh.2011.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 07/06/2011] [Accepted: 07/07/2011] [Indexed: 12/27/2022]
Abstract
During the nonbreeding season, when gonadal androgen synthesis is basal, recent evidence suggests that neurosteroids regulate the aggression of male song sparrows. In particular, dehydroepiandrosterone (DHEA) is rapidly converted in the brain to androgens in response to aggressive interactions. In other species, aggressive encounters increase systemic glucocorticoid levels. However, the relationship between aggression and local steroid levels is not well understood. Here, during the breeding and nonbreeding seasons, we tested the effects of a simulated territorial intrusion (STI) on DHEA and corticosterone levels in the brachial and jugular plasma. Jugular plasma is enriched with neurosteroids and provides an indirect index of brain steroid levels. Further, during the nonbreeding season, we directly measured steroid levels in the brain and peripheral tissues. Both breeding and nonbreeding males displayed robust aggressive responses to STI. During the breeding season, STI increased brachial and jugular corticosterone levels and jugular DHEA levels. During the nonbreeding season, STI did not affect plasma corticosterone levels, but increased jugular DHEA levels. During the nonbreeding season, STI did not affect brain levels of corticosterone or DHEA. However, STI did increase corticosterone and DHEA concentrations in the liver and corticosterone concentrations in the pectoral muscle. These data suggest that 1) aggressive social interactions affect neurosteroid levels in both seasons and 2) local steroid synthesis in peripheral tissues may mobilize energy reserves to fuel aggression in the nonbreeding season. Local steroid synthesis in brain, liver or muscle may serve to avoid the costs of systemic increases in corticosterone and testosterone.
Collapse
Affiliation(s)
- Amy E M Newman
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | | |
Collapse
|
39
|
Shah AH, Chin EH, Schmidt KL, Soma KK. DHEA and estradiol levels in brain, gonads, adrenal glands, and plasma of developing male and female European starlings. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2011; 197:949-58. [PMID: 21691747 DOI: 10.1007/s00359-011-0655-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 05/11/2011] [Accepted: 05/23/2011] [Indexed: 01/09/2023]
Abstract
Traditionally, sexual differentiation of the brain was thought to be driven by gonadal hormones, particularly testosterone (T). However, recent studies in songbirds suggest that other steroids may also be important. For example, dehydroepiandrosterone (DHEA) can be synthesized by the gonads, adrenal glands, and/or brain and locally metabolized into T and 17β-estradiol (E(2)). Here, we examined DHEA and E(2) levels in the brain, peripheral tissues, and plasma of wild European starlings (Sturnus vulgaris). In Study 1, samples were collected from males and females at P0 (day of hatch), P6, and P8. In Study 2, samples were collected at P4. At P0, DHEA levels in the diencephalon were higher in males than females. DHEA levels were generally high in the gonads and adrenals, and they were higher in testes than ovaries at P8. Further, E(2) levels were non-detectable in most brain samples, suggesting that DHEA was not metabolized to E(2) or that locally produced E(2) was rapidly inactivated. At P4, DHEA levels in telencephalic regions were lower in males than females. Taken together, these data suggest that sex differences in peripheral DHEA secretion and neural DHEA metabolism at specific ages during development might play a role in sexual differentiation of the songbird brain.
Collapse
Affiliation(s)
- Amit H Shah
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | |
Collapse
|
40
|
Hau M, Beebe K. Plastic endocrine regulation of year-round territorial aggression in tropical male spotted antbirds. Gen Comp Endocrinol 2011; 172:305-13. [PMID: 21447333 DOI: 10.1016/j.ygcen.2011.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 03/14/2011] [Accepted: 03/19/2011] [Indexed: 12/16/2022]
Abstract
Studies investigating the hormonal regulation of aggression often focus on the role of the steroid hormone testosterone (T). These studies have generally found an association in temperate zone species between T and male aggression in a reproductive context. However, in most temperate zone species seasonal variation in reproductive context cannot easily be separated from concomitant seasonal changes in other variables, including territory location and partner presence. Therefore, we investigated the hormonal regulation of territorial aggression in a tropical bird that breeds seasonally, but remains mated and territorial year-round. Free-living male spotted antbirds (Hylophylax n. naevioides) displayed similar aggressive behavior in the non-breeding, early, and middle breeding seasons when exposed to a simulated territorial intrusion (STI). Plasma T concentrations after STIs were low and seasonally invariant, but plasma dehydroepiandrosterone (DHEA) was elevated during the non-breeding season. Simultaneous administration of pharmacological inhibitors of androgenic and estrogenic actions during the non-breeding season was less effective in reducing aggressive behavior of captive males compared with a previous study conducted during the breeding season. Hence, in male spotted antbirds endocrine mechanisms appear to vary with reproductive context, both in DHEA concentrations and in the importance of T for regulating aggressive behavior. Furthermore, combining the current data with previous findings suggests that short-term increases in T during aggressive interactions in this tropical species are dependent on the context and the intensity of aggressive stimuli, regardless of season.
Collapse
Affiliation(s)
- Michaela Hau
- Max Planck Institute for Ornithology, Department of Migration and Immuno-Ecology, Radolfzell, Germany.
| | | |
Collapse
|
41
|
Péczely P, Bogenfürst F, Kulcsár M, Polgár B. Role of gonadal and adrenal steroids and thyroid hormones in the regulation of molting in domestic goose. ACTA BIOLOGICA HUNGARICA 2011; 62:1-21. [PMID: 21388915 DOI: 10.1556/abiol.61.2011.1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plasma levels of testosterone (T), 17-β-estradiol (E2), progesterone (P4), dehydroepiandrosterone (DHEA), corticosterone (B), thyroxine (T4) and triiodothyronine (T3) were monitored during postnuptial and the prenuptial molt in domestic goose (Anser anser domesticus) in both sexes. 1. At the beginning of postnuptial molt (when the old, worn dawny-, and cover feathers' loss starts) in ganders, the levels of T, E2, P4 decrease while DHEA and B significantly increase. The elevated levels of T4 and low T3 concentrations characteristic of the last phase of the reproduction, remain unchanged. In layers, similar changes were observed, however, B decreases. 2. In the early phase of outgrowth of wing and cover feathers, plasma levels of T, E2 and P4 are low. Elevated B, DHEA and T4 concentrations decrease in ganders, while in layers DHEA increases and B and T4 levels remain unchanged. T3 increases in both sexes. 3. The subsequent intensive outgrowth period of wing- and cover feathers both in ganders and in layers is characterized by very low levels of T, E2, DHEA and T4, but P4 increased, and T3 concentration remain high. 4. At the end of postnuptial molt - when the outgrowth of dawny, cover-, and wing feathers stops - very low T, E2, P4, DHEA and T4 levels and and high T3 plasma levels were found in both sexes. Fast increase of plasma B was detected in ganders, while in geese, B concentration remain high. 5. During prenuptial molting (outgrowth of contour and tail feathers) low E2, P4 and T4, increasing T and DHEA, but very high T3 and B plasma concentration were measured in ganders. In layers, very low T, E2, P4, DHEA and T4 levels, and very high B and T3 levels were found. 6. At the beginning of the fall-winter sexual repose (postmolting stage) T, E2, P4, DHEA and T4 levels increase, T3 and B declines in both sexes. 7. In the subsequent phase of fall-winter period (preparatory stage) there is a further increase in T, P4 and T4, a fast increase of B and a decrease of E2, DHEA and T3 in ganders. In layers, T, P4 and DHEA decrease, B increases and the T4 and T3 do not change. 8. At the beginning of reproduction high T level, unchanged DHEA, slightly declined P4, and decreased E2, T4, T3 and a strong decline of B concentrations occur in ganders. In layers, T is further increased, E2 and P4 shows high levels, and, at the same time DHEA and T3 remain unchanged, while B and T4 decrease.
Collapse
Affiliation(s)
- P Péczely
- Department of Reproductive Biology, Faculty of Agriculture, Szent István University, Gödöllo, Hungary.
| | | | | | | |
Collapse
|
42
|
Taves MD, Ma C, Heimovics SA, Saldanha CJ, Soma KK. Measurement of steroid concentrations in brain tissue: methodological considerations. Front Endocrinol (Lausanne) 2011; 2:39. [PMID: 22654806 PMCID: PMC3356067 DOI: 10.3389/fendo.2011.00039] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 09/06/2011] [Indexed: 12/17/2022] Open
Abstract
It is well recognized that steroids are synthesized de novo in the brain (neurosteroids). In addition, steroids circulating in the blood enter the brain. Steroids play numerous roles in the brain, such as influencing neural development, adult neuroplasticity, behavior, neuroinflammation, and neurodegenerative diseases such as Alzheimer's disease. In order to understand the regulation and functions of steroids in the brain, it is important to directly measure steroid concentrations in brain tissue. In this brief review, we discuss methods for the detection and quantification of steroids in the brain. We concisely present the major advantages and disadvantages of different technical approaches at various experimental stages: euthanasia, tissue collection, steroid extraction, steroid separation, and steroid measurement. We discuss, among other topics, the potential effects of anesthesia and saline perfusion prior to tissue collection; microdissection via Palkovits punch; solid phase extraction; chromatographic separation of steroids; and immunoassays and mass spectrometry for steroid quantification, particularly the use of mass spectrometry for "steroid profiling." Finally, we discuss the interpretation of local steroid concentrations, such as comparing steroid levels in brain tissue with those in the circulation (plasma vs. whole blood samples; total vs. free steroid levels). We also present reference values for a variety of steroids in different brain regions of adult rats. This brief review highlights some of the major methodological considerations at multiple experimental stages and provides a broad framework for designing studies that examine local steroid levels in the brain as well as other steroidogenic tissues, such as thymus, breast, and prostate.
Collapse
Affiliation(s)
- Matthew D. Taves
- Department of Psychology, University of British ColumbiaVancouver, BC, Canada
- Department of Zoology, University of British ColumbiaVancouver, BC, Canada
- *Correspondence: Matthew D. Taves, Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, Canada V6T 1Z4. e-mail:
| | - Chunqi Ma
- Department of Psychology, University of British ColumbiaVancouver, BC, Canada
| | - Sarah A. Heimovics
- Department of Psychology, University of British ColumbiaVancouver, BC, Canada
| | - Colin J. Saldanha
- Department of Biological Sciences, Lehigh UniversityBethlehem, PA, USA
- Program in Cognitive Science, Lehigh UniversityBethlehem, PA, USA
| | - Kiran K. Soma
- Department of Psychology, University of British ColumbiaVancouver, BC, Canada
- Department of Zoology, University of British ColumbiaVancouver, BC, Canada
- Graduate Program in Neuroscience, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
43
|
Taves MD, Schmidt KL, Ruhr IM, Kapusta K, Prior NH, Soma KK. Steroid concentrations in plasma, whole blood and brain: effects of saline perfusion to remove blood contamination from brain. PLoS One 2010; 5:e15727. [PMID: 21206751 PMCID: PMC3012083 DOI: 10.1371/journal.pone.0015727] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Accepted: 11/21/2010] [Indexed: 12/19/2022] Open
Abstract
The brain and other organs locally synthesize steroids. Local synthesis is suggested when steroid levels are higher in tissue than in the circulation. However, measurement of both circulating and tissue steroid levels are subject to methodological considerations. For example, plasma samples are commonly used to estimate circulating steroid levels in whole blood, but steroid levels in plasma and whole blood could differ. In addition, tissue steroid measurements might be affected by blood contamination, which can be addressed experimentally by using saline perfusion to remove blood. In Study 1, we measured corticosterone and testosterone (T) levels in zebra finch (Taeniopygia guttata) plasma, whole blood, and red blood cells (RBC). We also compared corticosterone in plasma, whole blood, and RBC at baseline and after 60 min restraint stress. In Study 2, we quantified corticosterone, dehydroepiandrosterone (DHEA), T, and 17β-estradiol (E2) levels in the brains of sham-perfused or saline-perfused subjects. In Study 1, corticosterone and T concentrations were highest in plasma, significantly lower in whole blood, and lowest in RBC. In Study 2, saline perfusion unexpectedly increased corticosterone levels in the rostral telencephalon but not other regions. In contrast, saline perfusion decreased DHEA levels in caudal telencephalon and diencephalon. Saline perfusion also increased E2 levels in caudal telencephalon. In summary, when comparing local and systemic steroid levels, the inclusion of whole blood samples should prove useful. Moreover, blood contamination has little or no effect on measurement of brain steroid levels, suggesting that saline perfusion is not necessary prior to brain collection. Indeed, saline perfusion itself may elevate and lower steroid concentrations in a rapid, region-specific manner.
Collapse
Affiliation(s)
- Matthew D Taves
- Department of Psychology, University of British Columbia, Vancouver, Canada.
| | | | | | | | | | | |
Collapse
|
44
|
Newman AEM, MacDougall-Shackleton SA, An YS, Kriengwatana B, Soma KK. Corticosterone and dehydroepiandrosterone have opposing effects on adult neuroplasticity in the avian song control system. J Comp Neurol 2010; 518:3662-78. [PMID: 20653028 DOI: 10.1002/cne.22395] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chronic elevations in glucocorticoids can decrease the production and survival of new cells in the adult brain. In rat hippocampus, supraphysiological doses of dehydroepiandrosterone (DHEA; a sex steroid precursor synthesized in the gonads, adrenals, and brain) have antiglucocorticoid properties. With male song sparrows (Melospiza melodia), we examined the effects of physiological doses of corticosterone, the primary circulating glucocorticoid in birds, and DHEA on adult neuroplasticity. We treated four groups of nonbreeding sparrows for 28 days with empty (control), corticosterone, DHEA, or corticosterone + DHEA implants. Subjects were injected with BrdU on days 3 and 4. In HVC, a critical song control nucleus, corticosterone and DHEA had independent, additive effects. Corticosterone decreased, whereas DHEA increased, HVC volume, NeuN(+) cell number, and BrdU(+) cell number. Coadministration of DHEA completely reversed the neurodegenerative effects of chronic corticosterone treatment. In an efferent target of HVC, the robust nucleus of the arcopallium (RA), DHEA increased RA volume, but this effect was blocked by coadministration of corticosterone. There were similar antagonistic interactions between corticosterone and DHEA on BrdU(+) cell number in the hippocampus and ventricular zone. This is the first report on the effects of corticosterone treatment on the adult song control circuit, and HVC was the most corticosterone-sensitive song nucleus examined. In HVC, DHEA is neuroprotective and counteracts several pronounced effects of corticosterone. Within brain regions that are particularly vulnerable to corticosterone, such as the songbird HVC and rat hippocampus, DHEA appears to be a potent native antiglucocorticoid.
Collapse
Affiliation(s)
- Amy E M Newman
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.
| | | | | | | | | |
Collapse
|
45
|
Brummelte S, Schmidt KL, Taves MD, Soma KK, Galea LA. Elevated corticosterone levels in stomach milk, serum, and brain of male and female offspring after maternal corticosterone treatment in the rat. Dev Neurobiol 2010; 70:714-25. [DOI: 10.1002/dneu.20805] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
Pradhan DS, Newman AEM, Wacker DW, Wingfield JC, Schlinger BA, Soma KK. Aggressive interactions rapidly increase androgen synthesis in the brain during the non-breeding season. Horm Behav 2010; 57:381-9. [PMID: 20116379 PMCID: PMC2849911 DOI: 10.1016/j.yhbeh.2010.01.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 12/30/2009] [Accepted: 01/14/2010] [Indexed: 12/15/2022]
Abstract
In male song sparrows (Melospiza melodia), territorial challenges during the breeding season can rapidly increase circulating levels of testosterone (T). During the non-breeding season, male song sparrows are highly aggressive, but the gonads are regressed and plasma T levels are non-detectable and unaffected by territorial challenges. The pro-hormone dehydroepiandrosterone (DHEA) is elevated in song sparrow plasma and brain during the non-breeding season and may be locally converted to sex steroids in the brain to regulate aggression. The enzyme 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4 isomerase (3beta-HSD) converts DHEA to androstenedione (AE) using the cofactor NAD(+), and this is a critical rate-limiting step. We predicted that brain 3beta-HSD activity varies seasonally and is rapidly modulated by aggressive challenges. In the first study, brain 3beta-HSD activity was highest in the non-breeding season in specific regions. In the second study, a simulated territorial challenge rapidly increased aggressive behavior in non-breeding song sparrows. Brain 3beta-HSD activity, when measured without exogenous NAD(+), increased by approximately 250 to 500% in telencephalic regions of challenged subjects. When brain 3beta-HSD activity was measured with exogenous NAD(+), these effects of territorial challenges were not observed. These data suggest that territorial challenges rapidly increase endogenous NAD(+) levels or increase 3beta-HSD activity specifically within a NAD-rich subcellular compartment. Together, these two studies suggest a shift from systemic to local sex steroid signaling in the non-breeding season. Local steroid signaling produces high spatial and temporal specificity of steroid signals and avoids the costs of high systemic T levels during the non-breeding season.
Collapse
Affiliation(s)
- Devaleena S Pradhan
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.
| | | | | | | | | | | |
Collapse
|