1
|
Hagiwara H, Sakimura K, Abe M, Itoi K, Kamiya Y, Akema T, Funabashi T. Sex differences in pain-induced modulation of corticotropin-releasing hormone neurons in the dorsolateral part of the stria terminalis in mice. Brain Res 2021; 1773:147688. [PMID: 34644526 DOI: 10.1016/j.brainres.2021.147688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/22/2021] [Accepted: 10/06/2021] [Indexed: 01/06/2023]
Abstract
We earlier reported female-biased, sex-specific involvement of the dorsolateral bed nucleus of the stria terminalis (dl BST) in the formalin-induced pain response in rats. The present study investigated pain effects on mice behaviors. Because the dl BST is densely populated with corticotropin-releasing hormone (CRH) neurons, we examined sex differences in these parameters for the dl BST CRH neurons in male and female mice of a mouse line for which the CRH gene promoter (corticotropin-releasing factor [CRF]-Venus ΔNeo) controls the expression of the modified yellow fluorescent protein (Venus). Approximately 92% of Venus-positive cells in the dl BST were also CRH mRNA-positive, irrespective of sex. Therefore, the cells identified using Venus fluorescence were regarded as CRH neurons. A female-biased sex difference was observed in pain-induced behaviors during the interphase (5-15 min after formalin injection) but not during the later phase (phase 2, 15-60 min) in wild-type mice. In CRF-Venus ΔNeo mice, a female-biased difference was observed in either the earlier phase (phase 1, 0-5 min) or the interphase, but not in phase 2. Patch-clamp recordings taken using an acute BST slice obtained from a CRF-Venus ΔNeo mouse after formalin injection showed miniature excitatory postsynaptic currents (mEPSCs) and miniature inhibitory postsynaptic currents (mIPSCs). Remarkably, the mEPSCs frequency was higher in the Venus-expressing cells of formalin-injected female mice than in vehicle-treated female mice. Male mice showed no increase in mEPSC frequency by formalin injection. Formalin injection had no effect on mEPSC or mIPSC amplitudes in either sex. Pain-induced changes in mEPSC frequency in putative CRH neurons were phase-dependent. Results show that excitatory synaptic inputs to BST CRH neurons are temporally enhanced along with behavioral sex differences in pain response, suggesting that pain signals alter the BST CRH neurons excitability in a sex-dependent manner.
Collapse
Affiliation(s)
- Hiroko Hagiwara
- Department of Physiology, St. Marianna University School of Medicine, 2-16-1 Sugao Miyamae-ku, Kawasaki 216-8511, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori Chuo-ku, Niigata 951-8585, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, 1-757 Asahimachi-dori Chuo-ku, Niigata 951-8585, Japan
| | - Keiichi Itoi
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, 6-3-09 Aramaki-aza Aoba-ku, Sendai 980-8579, Japan
| | - Yoshinori Kamiya
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 950-8510, Japan
| | - Tatsuo Akema
- Department of Physiology, St. Marianna University School of Medicine, 2-16-1 Sugao Miyamae-ku, Kawasaki 216-8511, Japan
| | - Toshiya Funabashi
- Department of Physiology, St. Marianna University School of Medicine, 2-16-1 Sugao Miyamae-ku, Kawasaki 216-8511, Japan.
| |
Collapse
|
2
|
Hong JS, Feng JH, Park JS, Lee HJ, Lee JY, Lim SS, Suh HW. Antinociceptive effect of chrysin in diabetic neuropathy and formalin-induced pain models. Anim Cells Syst (Seoul) 2020; 24:143-150. [PMID: 33209194 PMCID: PMC7651853 DOI: 10.1080/19768354.2020.1765019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Chrysin, a natural flavonoid, is the main ingredient of many medicinal plants, which shows potent pharmacological properties. In the present study, the antinociceptive effects of chrysin were examined in ICR mice. Chrysin orally administered at the doses of from 10 to 100 mg/kg exerted the reductions of formalin-induced pain behaviors observed during the second phase in the formalin test in a dose-dependent manner. In addition, the antinociceptive effect of chrysin was further characterized in streptozotocin-induced diabetic neuropathy model. Oral administration chrysin caused reversals of decreased pain threshold observed in diabetic-induced peripheral neuropathy model. Intraperitoneally (i.p.) pretreatment with naloxone (a classic opioid receptor antagonist), but not yohimbine (an antagonist of α2-adrenergic receptors) or methysergide (an antagonist of serotonergic receptors), effectively reversed chrysin-induced antinociceptive effect in the formalin test. Moreover, chrysin caused a reduction of formalin-induced up-regulated spinal p-CREB level, which was also reversed by i.t. pretreated naloxone. Finally, chrysin also suppressed the increase of the spinal p-CREB level induced by diabetic neuropathy. Our results suggest that chrysin shows an antinociceptive property in formalin-induced pain and diabetic neuropathy models. In addition, spinal opioid receptors and CREB protein appear to mediate chrysin-induced antinociception in the formalin-induced pain model.
Collapse
Affiliation(s)
- Jae-Seung Hong
- Department of Physical Education, College of Natural Science, Hallym University, Chuncheon, Korea
| | - Jing-Hui Feng
- Institute of Natural Medicine, Department of Pharmacology, College of Medicine, Hallym University, Chuncheon, Korea
| | - Jung-Seok Park
- Department of Physical Education, College of Natural Science, Hallym University, Chuncheon, Korea
| | - Hee-Jung Lee
- Institute of Natural Medicine, Department of Pharmacology, College of Medicine, Hallym University, Chuncheon, Korea
| | - Jae-Yong Lee
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Korea
| | - Soon-Sung Lim
- Department of Food Sciences and Nutrition, College of Natural, Health, and Life Sciences, Hallym University, Chuncheon, Korea
| | - Hong-Won Suh
- Institute of Natural Medicine, Department of Pharmacology, College of Medicine, Hallym University, Chuncheon, Korea
| |
Collapse
|
3
|
Neuropathic and cAMP-induced pain behavior is ameliorated in mice lacking CNGB1. Neuropharmacology 2020; 171:108087. [PMID: 32272140 DOI: 10.1016/j.neuropharm.2020.108087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/22/2020] [Accepted: 04/01/2020] [Indexed: 11/21/2022]
Abstract
Cyclic nucleotide-gated (CNG) channels, which are directly activated by cAMP and cGMP, have long been known to play a key role in retinal and olfactory signal transduction. Emerging evidence indicates that CNG channels are also involved in signaling pathways important for pain processing. Here, we found that the expression of the channel subunits CNGA2, CNGA3, CNGA4 and CNGB1 in dorsal root ganglia, and of CNGA2 in the spinal cord, is transiently altered after peripheral nerve injury in mice. Specifically, we show using in situ hybridization and quantitative real-time RT-PCR that CNG channels containing the CNGB1b subunit are localized to populations of sensory neurons and predominantly excitatory interneurons in the spinal dorsal horn. In CNGB1 knockout (CNGB1-/-) mice, neuropathic pain behavior is considerably attenuated whereas inflammatory pain behavior is normal. Finally, we provide evidence to support CNGB1 as a downstream mediator of cAMP signaling in pain pathways. Altogether, our data suggest that CNGB1-positive CNG channels specifically contribute to neuropathic pain processing after peripheral nerve injury.
Collapse
|
4
|
Feng JH, Lee HJ, Sim SM, Shende M, Suh HW. The modulatory role of β-amyloid in the regulation of nociception in mice. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Abstract
Agrimonia pilosa Ledeb. produces an antinociceptive effect in ICR mice in both chemically induced and thermal pain models. In the present study, we examined the antinociceptive effects of single components isolated from Agrimonia pilosa Ledeb. (AP) extract in ICR mice. Three active compounds isolated from AP, including rutin, luteolin-7-O-glucuronide, and apigenin-7-O-glucuronide, were isolated and identified by comparing EI-MS, 1H-, 13C-NMR, and UV. We studied the antinociceptive effects of three single components administered orally at doses of 10 and 20 mg/kg in monosodium urate (MSU)-treated pain model as measured by von Frey test. Among these compounds, apigenin-7-O-glucuronide was more effective in the production of antinociceptive effects. We further characterized the antinociceptive effects and possible mechanisms of apigenin-7-O-glucuronide in writhing and formalin tests. Oral administration of Apigenin-7-O-glucuronide caused a reduction in the number of writhing and effectively reduced the pain behavior observed during the second phase of the formalin test in a dose-dependent manner. In addition, the pretreatment of yohimbine instead of naloxone or methysergide attenuated apigenin-7-O-glucuronide-induced antinociception in the writhing test. Moreover, apigenin-7-O-glucuronide caused reduction in the expression of p-P38, p-CREB, and p-mTOR induced by formalin injection. Our results indicate that apigenin-7-O-glucuronide shows an antinociceptive effect in various pain models. In addition, spinal α2-adrenergic receptors appear to be involved in the production of antinociception induced by apigenin-7-O-glucuronide. Furthermore, the antinociceptive effect of apigenin-7-O-glucuronide appears to be mediated by reduction in the expression of p-P38, p-CREB and p-mTOR levels in the spinal cord.
Collapse
|
6
|
CRF modulation of central monoaminergic function: Implications for sex differences in alcohol drinking and anxiety. Alcohol 2018; 72:33-47. [PMID: 30217435 DOI: 10.1016/j.alcohol.2018.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/03/2018] [Accepted: 01/19/2018] [Indexed: 01/06/2023]
Abstract
Decades of research have described the importance of corticotropin-releasing factor (CRF) signaling in alcohol addiction, as well as in commonly co-expressed neuropsychiatric diseases, including anxiety and mood disorders. However, CRF signaling can also acutely regulate binge alcohol consumption, anxiety, and affect in non-dependent animals, possibly via modulation of central monoaminergic signaling. We hypothesize that basal CRF tone is particularly high in animals and humans with an inherent propensity for high anxiety and alcohol consumption, and thus these individuals are at increased risk for the development of alcohol use disorder and comorbid neuropsychiatric diseases. The current review focuses on extrahypothalamic CRF circuits, particularly those stemming from the bed nucleus of the stria terminalis (BNST), found to play a role in basal phenotypes, and examines whether the intrinsic hyperactivity of these circuits is sufficient to escalate the expression of these behaviors and steepen the trajectory of development of disease states. We focus our efforts on describing CRF modulation of biogenic amine neuron populations that have widespread projections to the forebrain to modulate behaviors, including alcohol and drug intake, stress reactivity, and anxiety. Further, we review the known sex differences and estradiol modulation of these neuron populations and CRF signaling at their synapses to address the question of whether females are more susceptible to the development of comorbid addiction and stress-related neuropsychiatric diseases because of hyperactive extrahypothalamic CRF circuits compared to males.
Collapse
|
7
|
Jang SP, Park SH, Jung JS, Lee HJ, Hong JW, Lee JY, Suh HW. Characterization of changes of pain behavior and signal transduction system in food-deprived mice. Anim Cells Syst (Seoul) 2018; 22:227-233. [PMID: 30460102 PMCID: PMC6138332 DOI: 10.1080/19768354.2018.1490348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 12/18/2022] Open
Abstract
Fasting in general causes several metabolic changes. In the present study, we examined the possible changes of several types of nociception during the food deprivation were investigated in mice. After the mice were forced into the fasting for 12, 24, or 48 h, the changes of nociception were measured by the tail-flick, writhing, formalin or von-frey tests. We found that the nociceptive behavior induced by intraperitoneally (i.p.) administered acetic acid (writhing response) or intraplantar injection of 5% formalin into the hind-paw were reduced in fasted group. In addition, the tail-flick response and threshold for nociception in mechanical von-frey test were also elevated in fasted group. Moreover, the p-CREB and p-ERK levels in the dorsal root ganglia (DRG) and the spinal cord were reduced in food-deprived group. Furthermore, p-AMPKα1 expressions in DRG and the spinal cord were up-regulated, whereas p-mTOR in DRG and the spinal cord was down-regulated in food-deprived group. Our results suggest that the chemical, mechanical, and thermal nociceptions appear to be reduced in a food-deprived mouse group. Additionally, reduction of nociception in food-deprived group appears to be closely associated with the expressions of several signal transduction molecules such as ERK, CREB, AMPKα1 and mTOR proteins in DRG and the spinal cord.
Collapse
Affiliation(s)
- Sang-Pil Jang
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Korea
| | - Seong-Hwan Park
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Korea
| | - Jun-Sub Jung
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Korea
| | - Hee-Jung Lee
- Department of Life science, Hallym University, Chuncheon, Korea
| | - Jung-Woo Hong
- Department of Biomedical Science, Hallym University, Chuncheon, Korea
| | - Jae-Yong Lee
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Korea
| | - Hong-Won Suh
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon, Korea
| |
Collapse
|
8
|
Phosphorylated CCAAT/Enhancer Binding Protein β Contributes to Rat HIV-Related Neuropathic Pain: In Vitro and In Vivo Studies. J Neurosci 2017; 38:555-574. [PMID: 29196315 DOI: 10.1523/jneurosci.3647-16.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 11/01/2017] [Accepted: 11/13/2017] [Indexed: 01/05/2023] Open
Abstract
Chronic pain is increasingly recognized as an important comorbidity of HIV-infected patients, however, the exact molecular mechanisms of HIV-related pain are still elusive. CCAAT/enhancer binding proteins (C/EBPs) are expressed in various tissues, including the CNS. C/EBPβ, one of the C/EBPs, is involved in the progression of HIV/AIDS, but the exact role of C/EBPβ and its upstream factors are not clear in HIV pain state. Here, we used a neuropathic pain model of perineural HIV envelope glycoprotein gp120 application onto the rat sciatic nerve to test the role of phosphorylated C/EBPβ (pC/EBPβ) and its upstream pathway in the spinal cord dorsal horn (SCDH). HIV gp120 induced overexpression of pC/EBPβ in the ipsilateral SCDH compared with contralateral SCDH. Inhibition of C/EBPβ using siRNA against C/EBPβ reduced mechanical allodynia. HIV gp120 also increased TNFα, TNFRI, mitochondrial superoxide (mtO2·-), and pCREB in the ipsilateral SCDH. ChIP-qPCR assay showed that pCREB enrichment on the C/EBPβ gene promoter regions in rats with gp120 was higher than that in sham rats. Intrathecal TNF soluble receptor I (functionally blocking TNFα bioactivity) or knockdown of TNFRI using antisense oligodeoxynucleotide against TNFRI reduced mechanical allodynia, and decreased mtO2·-, pCREB and pC/EBPβ. Intrathecal Mito-tempol (a mitochondria-targeted O2·-scavenger) reduced mechanical allodynia and decreased pCREB and pC/EBPβ. Knockdown of CREB with antisense oligodeoxynucleotide against CREB reduced mechanical allodynia and lowered pC/EBPβ. These results suggested that the pathway of TNFα/TNFRI-mtO2·--pCREB triggers pC/EBPβ in the HIV gp120-induced neuropathic pain state. Furthermore, we confirmed the pathway using both cultured neurons treated with recombinant TNFα in vitro and repeated intrathecal injection of recombinant TNFα in naive rats. This finding provides new insights in the understanding of the HIV neuropathic pain mechanisms and treatment.SIGNIFICANCE STATEMENT Painful HIV-associated sensory neuropathy is a neurological complication of HIV infection. Phosphorylated C/EBPβ (pC/EBPβ) influences AIDS progression, but it is still not clear about the exact role of pC/EBPβ and the detailed upstream factors of pC/EBPβ in HIV-related pain. In a neuropathic pain model of perineural HIV gp120 application onto the sciatic nerve, we found that pC/EBPβ was triggered by TNFα/TNFRI-mtO2·--pCREB signaling pathway. The pathway was confirmed by using cultured neurons treated with recombinant TNFα in vitro, and by repeated intrathecal injection of recombinant TNFα in naive rats. The present results revealed the functional significance of TNFα/TNFRI-mtO2·--pCREB-pC/EBPβ signaling in HIV neuropathic pain, and should help in the development of more specific treatments for neuropathic pain.
Collapse
|
9
|
Sullivan DA, Rocha EM, Aragona P, Clayton JA, Ding J, Golebiowski B, Hampel U, McDermott AM, Schaumberg DA, Srinivasan S, Versura P, Willcox MDP. TFOS DEWS II Sex, Gender, and Hormones Report. Ocul Surf 2017; 15:284-333. [PMID: 28736336 DOI: 10.1016/j.jtos.2017.04.001] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/16/2017] [Indexed: 12/21/2022]
Abstract
One of the most compelling features of dry eye disease (DED) is that it occurs more frequently in women than men. In fact, the female sex is a significant risk factor for the development of DED. This sex-related difference in DED prevalence is attributed in large part to the effects of sex steroids (e.g. androgens, estrogens), hypothalamic-pituitary hormones, glucocorticoids, insulin, insulin-like growth factor 1 and thyroid hormones, as well as to the sex chromosome complement, sex-specific autosomal factors and epigenetics (e.g. microRNAs). In addition to sex, gender also appears to be a risk factor for DED. "Gender" and "sex" are words that are often used interchangeably, but they have distinct meanings. "Gender" refers to a person's self-representation as a man or woman, whereas "sex" distinguishes males and females based on their biological characteristics. Both gender and sex affect DED risk, presentation of the disease, immune responses, pain, care-seeking behaviors, service utilization, and myriad other facets of eye health. Overall, sex, gender and hormones play a major role in the regulation of ocular surface and adnexal tissues, and in the difference in DED prevalence between women and men. The purpose of this Subcommittee report is to review and critique the nature of this role, as well as to recommend areas for future research to advance our understanding of the interrelationships between sex, gender, hormones and DED.
Collapse
Affiliation(s)
- David A Sullivan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| | - Eduardo M Rocha
- Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Pasquale Aragona
- Department of Biomedical Sciences, Ocular Surface Diseases Unit, University of Messina, Messina, Sicily, Italy
| | - Janine A Clayton
- National Institutes of Health Office of Research on Women's Health, Bethesda, MD, USA
| | - Juan Ding
- Schepens Eye Research Institute, Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Blanka Golebiowski
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Ulrike Hampel
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alison M McDermott
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX, USA
| | - Debra A Schaumberg
- Harvard School of Public Health, Boston, MA, USA; University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Sruthi Srinivasan
- Centre for Contact Lens Research, School of Optometry, University of Waterloo, Ontario, Canada
| | - Piera Versura
- Department of Specialized, Experimental, and Diagnostic Medicine, University of Bologna, Bologna, Italy
| | - Mark D P Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
10
|
Wan D, Wang D, Sun Q, Song Y, Jiang Y, Li R, Ye J. Antinociception of spirocyclopiperazinium salt compound LXM-10-M targeting α7 nicotinic receptor and M4 muscarinic receptor and inhibiting CaMKIIα/CREB/CGRP signaling pathway in mice. Eur J Pharmacol 2015; 770:92-8. [PMID: 26658370 DOI: 10.1016/j.ejphar.2015.11.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 10/22/2022]
Abstract
The present study was designed to investigate the antinociception of spirocyclopiperazinium salt compound LXM-10-M (2,4-dimethyl-9-β-m-hydroxyphenylethyl-3-oxo-6, 9-diazaspiro [5.5] undecane chloride) in thermal and chemical pain models, and further to explore the molecular target and potential signal pathway. We assessed the antinociception of LXM-10-M in hot-plate test, formalin test and acetic acid writhing test in mice. The possible changes of calcium/calmodulin-dependent protein kinase IIα (CaMKIIα)/cAMP response element-binding protein (CREB)/calcitonin gene related peptide (CGRP) signaling pathway were detected by Western Blot in mice. Administration of LXM-10-M produced significant antinociception in hot-plate test, formalin test and acetic acid writhing test in mice, with no obvious toxicity. The antinociceptive effects were blocked by pretreatment with methyllycaconitine citrate (MLA, α7 nicotinic receptor antagonist) or tropicamide (TRO, M4 muscarinic receptor antagonist). Western blot analysis showed that the upregulations of p-CaMKIIα, p-CREB and CGRP in the spinal cord were reduced by LXM-10-M in chemical pain model in mice, and the effects were blocked by MLA or TRO pretreatment. This is the first paper to report that LXM-10-M exerted significant antinociception, which may be attributed to the activation of α7 nicotinic receptor and M4 muscarinic receptor and thereby triggering the inhibition of CaMKIIα/CREB/CGRP signaling pathway in mice.
Collapse
Affiliation(s)
- Dan Wan
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ding Wang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qi Sun
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yan Song
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - YiMin Jiang
- Medical and Healthy Analysis Center, Peking University, Beijing, China
| | - RunTao Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jia Ye
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
11
|
Kanao M, Kanda H, Huang W, Liu S, Yi H, Candiotti KA, Lubarsky DA, Levitt RC, Hao S. Gene Transfer of Glutamic Acid Decarboxylase 67 by Herpes Simplex Virus Vectors Suppresses Neuropathic Pain Induced by Human Immunodeficiency Virus gp120 Combined with ddC in Rats. Anesth Analg 2015; 120:1394-404. [PMID: 25851180 DOI: 10.1213/ane.0000000000000729] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Human immunodeficiency virus (HIV)-related painful sensory neuropathies primarily consist of the HIV infection-related distal sensory polyneuropathy and antiretroviral toxic neuropathies. Pharmacotherapy provides only partial relief of pain in patients with HIV/acquired immune deficiency syndrome because little is known about the exact neuropathological mechanisms for HIV-associated neuropathic pain (NP). Hypofunction of γ-aminobutyric acid (GABA) GABAergic inhibitory mechanisms has been reported after peripheral nerve injury. In this study, we tested the hypothesis that HIV gp120 combined with antiretroviral therapy reduces spinal GABAergic inhibitory tone and that restoration of GABAergic inhibitory tone will reduce HIV-related NP in a rat model. METHODS The application of recombinant HIV-1 envelope protein gp120 into the sciatic nerve plus systemic ddC (one antiretroviral drug) induced mechanical allodynia. The hind paws of rats were inoculated with replication-defective herpes simplex virus (HSV) vectors genetically encoding gad1 gene to express glutamic acid decarboxylase 67 (GAD67), an enzyme that catalyzes the decarboxylation of glutamate to GABA. Mechanical threshold was tested using von Frey filaments before and after treatments with the vectors. The expression of GAD67 in both the lumbar spinal cord and the L4-5 dorsal root ganglia was examined using western blots. The expression of mitochondrial superoxide in the spinal dorsal horn was examined using MitoSox imaging. The immunoreactivity of spinal GABA, pCREB, and pC/EBPβ was tested using immunohistochemistry. RESULTS In the gp120 with ddC-induced neuropathic pain model, GAD67 expression mediated by the HSV vector caused an elevation of mechanical threshold that was apparent on day 3 after vector inoculation. The antiallodynic effect of the single HSV vector inoculation expressing GAD67 lasted >28 days. The area under the time-effect curves in the HSV vector expressing GAD67 was increased compared with that in the control vectors (P = 0.0005). Intrathecal GABA-A/B agonists elevated mechanical threshold in the pain model. The HSV vectors expressing GAD67 reversed the lowered GABA immunoreactivity in the spinal dorsal horn in the neuropathic rats. HSV vectors expressing GAD67 in the neuropathic rats reversed the increased signals of mitochondrial superoxide in the spinal dorsal horn. The vectors expressing GAD67 reversed the upregulated immunoreactivity expression of pCREB and pC/EBPβ in the spinal dorsal horn in rats exhibiting NP. CONCLUSIONS Based on our results, we suggest that GAD67 mediated by HSV vectors acting through the suppression of mitochondrial reactive oxygen species and transcriptional factors in the spinal cord decreases pain in the HIV-related neuropathic pain model, providing preclinical evidence for gene therapy applications in patients with HIV-related pain states.
Collapse
Affiliation(s)
- Megumi Kanao
- From the *Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, Florida; †Department of Anesthesiology, Asahikawa Medical University, Asahikawa, Japan; ‡Hussman Institute of Human Genomics, University of Miami Miller School of Medicine, Miami, Florida; and §Veterans Affairs Medical Center, Miami, Florida
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sex-specific differences in pain response by dopamine in the bed nucleus of the stria terminalis in rats. Neuroreport 2013; 24:181-5. [PMID: 23348592 DOI: 10.1097/wnr.0b013e32835d8540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The formalin test for nociception shows characteristic sex differences in the pain response during the interphase period of the test. However, the mechanism underlying these differences remains unclear. We have recently reported the sex-specific involvement of the lateral subdivision of the bed nucleus of the stria terminalis (BSTL) in the formalin test in rats. Here, we evaluated whether sex-specific differences in the pain response were modulated by the dopamine system in the BSTL. We first examined the effects of injecting a dopamine D1 receptor agonist, dihydrexidine, or antagonist, SCH23390, into the BSTL on the formalin test. During the interphase of the formalin test, injection of the D1 receptor agonist exerted no effect in male or female rats. The antagonist significantly enhanced the nociceptive response in female rats but not in males, indicating a sex difference in the involvement of the dopamine system in the formalin test. Next, we examined the expression of dopamine D1 receptors in the BSTL. Immunohistochemical analysis showed that the dopamine D1 receptor was expressed in the BSTL in both sexes but showed stronger immunoreactivity in male rats than in females. These results suggest sex-specific differences in the formalin test in which the response of dopamine neurons projecting to the BSTL plays a role in attenuating pain in female rats.
Collapse
|
13
|
Fukushima A, Furuta M, Kimura F, Akema T, Funabashi T. Testosterone exposure during the critical period decreases corticotropin-releasing hormone-immunoreactive neurons in the bed nucleus of the stria terminalis of female rats. Neurosci Lett 2013; 534:64-8. [DOI: 10.1016/j.neulet.2012.11.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 10/16/2012] [Accepted: 11/16/2012] [Indexed: 11/25/2022]
|
14
|
Sex differences in pain and pain inhibition: multiple explanations of a controversial phenomenon. Nat Rev Neurosci 2013; 13:859-66. [PMID: 23165262 DOI: 10.1038/nrn3360] [Citation(s) in RCA: 681] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A clear majority of patients with chronic pain are women; however, it has been surprisingly difficult to determine whether this sex bias corresponds to actual sex differences in pain sensitivity. A survey of the currently available epidemiological and laboratory data indicates that the evidence for clinical and experimental sex differences in pain is overwhelming. Various explanations for this phenomenon have been given, ranging from experiential and sociocultural differences in pain experience between men and women to hormonally and genetically driven sex differences in brain neurochemistry.
Collapse
|
15
|
Moriyama A, Nishizawa D, Kasai S, Hasegawa J, Fukuda KI, Nagashima M, Katoh R, Ikeda K. Association between genetic polymorphisms of the β1-adrenergic receptor and sensitivity to pain and fentanyl in patients undergoing painful cosmetic surgery. J Pharmacol Sci 2012; 121:48-57. [PMID: 23257656 DOI: 10.1254/jphs.12159fp] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Individual differences in the sensitivity to fentanyl, a widely used opioid analgesic, can hamper effective pain treatment. The adrenergic system is reportedly involved in the mechanisms of pain and analgesia. Here, we focused on one of the adrenergic receptor genes, ADRB1, and analyzed the influence of single-nucleotide polymorphisms (SNPs) in the ADRB1 gene on individual differences in pain and analgesic sensitivity. We examined associations between pain and fentanyl sensitivity and the two SNPs, A145G and G1165C, in the human ADRB1 gene in 216 Japanese patients who underwent painful orofacial cosmetic surgery, including bone dissection. The patients who carried the A-allele of the A145G SNP were more sensitive to cold pressor- induced pain than those who did not carry this allele, especially in male patients. The analgesic effect was significantly less in females who carried the G-allele of the G1165C SNP than the females who did not carry the G-allele. The haplotype analysis revealed a significant decrease in 24-h postoperative fentanyl use in female 145A/1165C haplotype carriers. These results suggest that SNPs in the ADRB1 gene are associated with individual differences in pain and analgesic sensitivity, and analyzing these SNPs may promote personalized pain treatment in the future.
Collapse
Affiliation(s)
- Ayako Moriyama
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|