1
|
4-Aminopyridine Induces Nerve Growth Factor to Improve Skin Wound Healing and Tissue Regeneration. Biomedicines 2022; 10:biomedicines10071649. [PMID: 35884953 PMCID: PMC9313269 DOI: 10.3390/biomedicines10071649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 11/30/2022] Open
Abstract
The discovery of ways to enhance skin wound healing is of great importance due to the frequency of skin lesions. We discovered that 4-aminopyridine (4-AP), a potassium channel blocker approved by the FDA for improving walking ability in multiple sclerosis, greatly enhances skin wound healing. Benefits included faster wound closure, restoration of normal-appearing skin architecture, and reinnervation. Hair follicle neogenesis within the healed wounds was increased, both histologically and by analysis of K15 and K17 expression. 4-AP increased levels of vimentin (fibroblasts) and alpha-smooth muscle actin (α-SMA, collagen-producing myofibroblasts) in the healed dermis. 4-AP also increased neuronal regeneration with increased numbers of axons and S100+ Schwann cells (SCs), and increased expression of SRY-Box Transcription Factor 10 (SOX10). Treatment also increased levels of transforming growth factor-β (TGF-β), substance P, and nerve growth factor (NGF), important promoters of wound healing. In vitro studies demonstrated that 4-AP induced nerve growth factor and enhanced proliferation and migration of human keratinocytes. Thus, 4-AP enhanced many of the key attributes of successful wound healing and offers a promising new approach to enhance skin wound healing and tissue regeneration.
Collapse
|
2
|
Fadu head and neck squamous cell carcinoma induces hyperexcitability of primary sensory neurons in an in vitro coculture model. Pain Rep 2022; 7:e1012. [PMID: 35620249 PMCID: PMC9113206 DOI: 10.1097/pr9.0000000000001012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/03/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. Squamouscell carcinoma cells promoted an inflammatory microenvironment and induced sensitization of both human and rat dorsal root ganglion neurons in patch clamp electrophysiology recordings. Introduction: Methods: Results: Conclusions:
Collapse
|
3
|
Ahtiainen A, Genocchi B, Tanskanen JMA, Barros MT, Hyttinen JAK, Lenk K. Astrocytes Exhibit a Protective Role in Neuronal Firing Patterns under Chemically Induced Seizures in Neuron-Astrocyte Co-Cultures. Int J Mol Sci 2021; 22:12770. [PMID: 34884577 PMCID: PMC8657549 DOI: 10.3390/ijms222312770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Astrocytes and neurons respond to each other by releasing transmitters, such as γ-aminobutyric acid (GABA) and glutamate, that modulate the synaptic transmission and electrochemical behavior of both cell types. Astrocytes also maintain neuronal homeostasis by clearing neurotransmitters from the extracellular space. These astrocytic actions are altered in diseases involving malfunction of neurons, e.g., in epilepsy, Alzheimer's disease, and Parkinson's disease. Convulsant drugs such as 4-aminopyridine (4-AP) and gabazine are commonly used to study epilepsy in vitro. In this study, we aim to assess the modulatory roles of astrocytes during epileptic-like conditions and in compensating drug-elicited hyperactivity. We plated rat cortical neurons and astrocytes with different ratios on microelectrode arrays, induced seizures with 4-AP and gabazine, and recorded the evoked neuronal activity. Our results indicated that astrocytes effectively counteracted the effect of 4-AP during stimulation. Gabazine, instead, induced neuronal hyperactivity and synchronicity in all cultures. Furthermore, our results showed that the response time to the drugs increased with an increasing number of astrocytes in the co-cultures. To the best of our knowledge, our study is the first that shows the critical modulatory role of astrocytes in 4-AP and gabazine-induced discharges and highlights the importance of considering different proportions of cells in the cultures.
Collapse
Affiliation(s)
- Annika Ahtiainen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
| | - Barbara Genocchi
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
| | - Jarno M. A. Tanskanen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
| | - Michael T. Barros
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
- School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK
| | - Jari A. K. Hyttinen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
| | - Kerstin Lenk
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (J.M.A.T.); (M.T.B.); (J.A.K.H.); (K.L.)
- Institute of Neural Engineering, Graz University of Technology, 8010 Graz, Austria
- BioTechMed, 8010 Graz, Austria
| |
Collapse
|
4
|
Yang YS, Choi JH, Rah JC. Hypoxia with inflammation and reperfusion alters membrane resistance by dynamically regulating voltage-gated potassium channels in hippocampal CA1 neurons. Mol Brain 2021; 14:147. [PMID: 34556177 PMCID: PMC8461870 DOI: 10.1186/s13041-021-00857-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 02/01/2023] Open
Abstract
Hypoxia typically accompanies acute inflammatory responses in patients and animal models. However, a limited number of studies have examined the effect of hypoxia in combination with inflammation (Hypo-Inf) on neural function. We previously reported that neuronal excitability in hippocampal CA1 neurons decreased during hypoxia and greatly rebounded upon reoxygenation. We attributed this altered excitability mainly to the dynamic regulation of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels and input resistance. However, the molecular mechanisms underlying input resistance changes by Hypo-Inf and reperfusion remained unclear. In the present study, we found that a change in the density of the delayed rectifier potassium current (IDR) can explain the input resistance variability. Furthermore, voltage-dependent inactivation of A-type potassium (IA) channels shifted in the depolarizing direction during Hypo-Inf and reverted to normal upon reperfusion without a significant alteration in the maximum current density. Our results indicate that changes in the input resistance, and consequently excitability, caused by Hypo-Inf and reperfusion are at least partially regulated by the availability and voltage dependence of KV channels. Moreover, these results suggest that selective KV channel modulators can be used as potential neuroprotective drugs to minimize hypoxia- and reperfusion-induced neuronal damage.
Collapse
Affiliation(s)
- Yoon-Sil Yang
- Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41062 South Korea
| | - Joon Ho Choi
- Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41062 South Korea
| | - Jong-Cheol Rah
- Korea Brain Research Institute, 61 Cheomdan-ro, Dong-gu, Daegu, 41062 South Korea
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, 333 Techno Jungang-daero, Dalseong-gun, Daegu, 42988 South Korea
| |
Collapse
|
5
|
Ondacova K, Moravcikova L, Jurkovicova D, Lacinova L. Fibrotic scar model and TGF-β1 differently modulate action potential firing and voltage-dependent ion currents in hippocampal neurons in primary culture. Eur J Neurosci 2017; 46:2161-2176. [DOI: 10.1111/ejn.13663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/17/2017] [Accepted: 07/21/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Katarina Ondacova
- Center of Biosciences; Institute of Molecular Physiology and Genetics; Slovak Academy of Sciences; Dubravska cesta 9 Bratislava 84005 Slovakia
| | - Lucia Moravcikova
- Center of Biosciences; Institute of Molecular Physiology and Genetics; Slovak Academy of Sciences; Dubravska cesta 9 Bratislava 84005 Slovakia
| | - Dana Jurkovicova
- KRD Molecular Technologies s. r. o.; Bratislava Slovakia
- Biomedical Research Center; Cancer Research Institute; Slovak Academy of Sciences; Bratislava Slovakia
| | - Lubica Lacinova
- Center of Biosciences; Institute of Molecular Physiology and Genetics; Slovak Academy of Sciences; Dubravska cesta 9 Bratislava 84005 Slovakia
| |
Collapse
|
6
|
Wu KW, Kou ZW, Mo JL, Deng XX, Sun FY. Neurovascular coupling protects neurons against hypoxic injury via inhibition of potassium currents by generation of nitric oxide in direct neuron and endothelium cocultures. Neuroscience 2016; 334:275-282. [PMID: 27531855 DOI: 10.1016/j.neuroscience.2016.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/15/2016] [Accepted: 08/07/2016] [Indexed: 12/15/2022]
Abstract
This study examined the effect of neuron-endothelial coupling on the survival of neurons after ischemia and the possible mechanism underlying that effect. Whole-cell patch-clamp experiments were performed on cortical neurons cultured alone or directly cocultured with brain microvascular endothelial cells (BMEC). Propidium iodide (PI) and NeuN staining were performed to examine neuronal death following oxygen and glucose deprivation (OGD). We found that the neuronal transient outward potassium currents (IA) decreased in the coculture system, whereas the outward delayed-rectifier potassium currents (IK) did not. Sodium nitroprusside, a NO donor, enhanced BMEC-induced IA inhibition and nitro-l-arginine methylester, a NOS inhibitor, partially prevented this inhibition. Moreover, the neurons directly cocultured with BMEC showed more resistance to OGD-induced injury compared with the neurons cultured alone, and that neuroprotective effect was abolished by treatment with NS5806, an activator of the IA. These results indicate that vascular endothelial cells assist neurons to prevent hypoxic injury via inhibiting neuronal IA by production of NO in the direct neuron-BMEC coculture system. These results further provide direct evidence of functional coupling between neurons and vascular endothelial cells. This study clearly demonstrates that vascular endothelial cells play beneficial roles in the pathophysiological processes of neurons after hypoxic injury, suggesting that the improvement of neurovascular coupling or functional remodeling may become an important therapeutic target for preventing brain injury.
Collapse
Affiliation(s)
- Kun-Wei Wu
- Institute of Biomedical Sciences and Department of Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Research Center on Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
| | - Zeng-Wei Kou
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Research Center on Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, PR China
| | - Jia-Lin Mo
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Research Center on Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, PR China
| | - Xu-Xu Deng
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Research Center on Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, PR China
| | - Feng-Yan Sun
- Institute of Biomedical Sciences and Department of Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Research Center on Aging and Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, PR China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
7
|
Ambegaokar SS, Kolson DL. Heme oxygenase-1 dysregulation in the brain: implications for HIV-associated neurocognitive disorders. Curr HIV Res 2015; 12:174-88. [PMID: 24862327 PMCID: PMC4155834 DOI: 10.2174/1570162x12666140526122709] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 01/20/2014] [Accepted: 01/27/2014] [Indexed: 12/17/2022]
Abstract
Heme oxygenase-1 (HO-1) is a highly inducible and ubiquitous cellular enzyme that subserves cytoprotective responses to toxic insults, including inflammation and oxidative stress. In neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease and multiple sclerosis, HO-1 expression is increased, presumably reflecting an endogenous neuroprotective response against ongoing cellular injury. In contrast, we have found that in human immunodeficiency virus (HIV) infection of the brain, which is also associated with inflammation, oxidative stress and neurodegeneration, HO-1 expression is decreased, likely reflecting a unique role for HO-1 deficiency in neurodegeneration pathways activated by HIV infection. We have also shown that HO-1 expression is significantly suppressed by HIV replication in cultured macrophages which represent the primary cellular reservoir for HIV in the brain. HO-1 deficiency is associated with release of neurotoxic levels of glutamate from both HIV-infected and immune-activated macrophages; this glutamate-mediated neurotoxicity is suppressed by pharmacological induction of HO-1 expression in the macrophages. Thus, HO-1 induction could be a therapeutic strategy for neuroprotection against HIV infection and other neuroinflammatory brain diseases. Here, we review various stimuli and signaling pathways regulating HO-1 expression in macrophages, which could promote neuronal survival through HO-1-modulation of endogenous antioxidant and immune modulatory pathways, thus limiting the oxidative stress that can promote HIV disease progression in the CNS. The use of pharmacological inducers of endogenous HO-1 expression as potential adjunctive neuroprotective therapeutics in HIV infection is also discussed.
Collapse
Affiliation(s)
| | - Dennis L Kolson
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 280 Clinical Research Building, 415 Curie Blvd., Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Shah NH, Aizenman E. Voltage-gated potassium channels at the crossroads of neuronal function, ischemic tolerance, and neurodegeneration. Transl Stroke Res 2013; 5:38-58. [PMID: 24323720 DOI: 10.1007/s12975-013-0297-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/14/2013] [Accepted: 10/14/2013] [Indexed: 11/29/2022]
Abstract
Voltage-gated potassium (Kv) channels are widely expressed in the central and peripheral nervous system and are crucial mediators of neuronal excitability. Importantly, these channels also actively participate in cellular and molecular signaling pathways that regulate the life and death of neurons. Injury-mediated increased K(+) efflux through Kv2.1 channels promotes neuronal apoptosis, contributing to widespread neuronal loss in neurodegenerative disorders such as Alzheimer's disease and stroke. In contrast, some forms of neuronal activity can dramatically alter Kv2.1 channel phosphorylation levels and influence their localization. These changes are normally accompanied by modifications in channel voltage dependence, which may be neuroprotective within the context of ischemic injury. Kv1 and Kv7 channel dysfunction leads to neuronal hyperexcitability that critically contributes to the pathophysiology of human clinical disorders such as episodic ataxia and epilepsy. This review summarizes the neurotoxic, neuroprotective, and neuroregulatory roles of Kv channels and highlights the consequences of Kv channel dysfunction on neuronal physiology. The studies described in this review thus underscore the importance of normal Kv channel function in neurons and emphasize the therapeutic potential of targeting Kv channels in the treatment of a wide range of neurological diseases.
Collapse
Affiliation(s)
- Niyathi Hegde Shah
- Department of Neurobiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, E1456 BST, Pittsburgh, PA, 15261, USA,
| | | |
Collapse
|
9
|
Chen L, Liu J, Xu C, Keblesh J, Zang W, Xiong H. HIV-1gp120 induces neuronal apoptosis through enhancement of 4-aminopyridine-senstive outward K+ currents. PLoS One 2011; 6:e25994. [PMID: 22016798 PMCID: PMC3189248 DOI: 10.1371/journal.pone.0025994] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 09/15/2011] [Indexed: 12/14/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1)-associated dementia (HAD) usually occurs late in the course of HIV-1 infection and the mechanisms underlying HAD pathogenesis are not well understood. Accumulating evidence indicates that neuronal voltage-gated potassium (Kv) channels play an important role in memory processes and acquired neuronal channelopathies in HAD. To examine whether Kv channels are involved in HIV-1-associated neuronal injury, we studied the effects of HIV-1 glycoprotein 120 (gp120) on outward K+ currents in rat cortical neuronal cultures using whole-cell patch techniques. Exposure of cortical neurons to gp120 produced a dose-dependent enhancement of A-type transient outward K+ currents (IA). The gp120-induced increase of IA was attenuated by T140, a specific antagonist for chemokine receptor CXCR4, suggesting gp120 enhancement of neuronal IA via CXCR4. Pretreatment of neuronal cultures with a protein kinase C (PKC) inhibitor, GF109203X, inhibited the gp120-induced increase of IA. Biological significance of gp120 enhancement of IA was demonstrated by experimental results showing that gp120-induced neuronal apoptosis, as detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and caspase-3 staining, was attenuated by either an IA blocker 4-aminopyridine or a specific CXCR4 antagonist T140. Taken together, these results suggest that gp120 may induce caspase-3 dependent neuronal apoptosis by enhancing IA via CXCR4-PKC signaling.
Collapse
Affiliation(s)
- Lina Chen
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pharmacology, College of Medicine, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Jianuo Liu
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Changshui Xu
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - James Keblesh
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Weijin Zang
- Department of Pharmacology, College of Medicine, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Huangui Xiong
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|