1
|
Crossley M, Benjamin PR, Kemenes G, Staras K, Kemenes I. A circuit mechanism linking past and future learning through shifts in perception. SCIENCE ADVANCES 2023; 9:eadd3403. [PMID: 36961898 PMCID: PMC10038338 DOI: 10.1126/sciadv.add3403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Long-term memory formation is energetically costly. Neural mechanisms that guide an animal to identify fruitful associations therefore have important survival benefits. Here, we elucidate a circuit mechanism in Lymnaea, which enables past memory to shape new memory formation through changes in perception. Specifically, strong classical conditioning drives a positive shift in perception that facilitates the robust learning of a subsequent and otherwise ineffective weak association. Circuit dissection approaches reveal the neural control network responsible, characterized by a mutual inhibition motif. This both sets perceptual state and acts as the master controller for gating new learning. Pharmacological circuit manipulation in vivo fully substitutes for strong paradigm learning, shifting the network into a more receptive state to enable subsequent weak paradigm learning. Thus, perceptual change provides a conduit to link past and future memory storage. We propose that this mechanism alerts animals to learning-rich periods, lowering the threshold for new memory acquisition.
Collapse
|
2
|
Okada S, Hirano N, Abe T, Nagayama T. Aversive operant conditioning alters the phototactic orientation of the marbled crayfish. J Exp Biol 2021; 224:jeb.242180. [PMID: 33536310 DOI: 10.1242/jeb.242180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022]
Abstract
Aversive learning was applied to affect the phototactic behaviour of the marbled crayfish. Animals initially showed negative phototaxis to white light and positive taxis to blue light. Using an aversive learning paradigm, we investigated the plasticity of innate behaviour following operant conditioning. The initial rate of choosing a blue-lit exit was analysed by a dual choice experiment between blue-lit and white-lit exits in pre-test conditions. During training, electrical shocks were applied to the animals when they oriented to the blue-lit exit. Memory tests were given to analyse the orientation rate to the blue-lit exit in trials 1 and 24 h after training and these rates were compared with the pre-test. In general, animals avoided the blue-lit exit in the memory tests. When training was carried out three times, the long-term memory was retained for at least 48 h, although a single bout of training was also enough to form a long-term memory. Cooling animals at 4°C or injection of cycloheximide immediately after training altered the formation of long-term memory, but had no effect on short-term memory formation. Administration of the adenylate cyclase inhibitor SQ22536, the PKA inhibitor H89 or the CREB inhibitor KG-501 immediately after training also blocked the formation of long-term memory, but had no effect on short-term memory formation. Thus, our pharmacological behavioural analyses showed that new protein synthesis was necessary to form long-term memories and that the cAMP/PKA/CREB pathway is the main signal cascade for long-term memory formation in the marbled crayfish.
Collapse
Affiliation(s)
- Shione Okada
- Department of Biology, Faculty of Science, Yamagata University, 990-8560 Yamagata, Japan
| | - Natsumi Hirano
- Department of Biology, Faculty of Science, Yamagata University, 990-8560 Yamagata, Japan
| | - Toshiki Abe
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560 Yamagata, Japan
| | - Toshiki Nagayama
- Department of Biology, Faculty of Science, Yamagata University, 990-8560 Yamagata, Japan
| |
Collapse
|
3
|
Miller MW. Dopamine as a Multifunctional Neurotransmitter in Gastropod Molluscs: An Evolutionary Hypothesis. THE BIOLOGICAL BULLETIN 2020; 239:189-208. [PMID: 33347799 PMCID: PMC8016498 DOI: 10.1086/711293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
AbstractThe catecholamine 3,4-dihydroxyphenethylamine, or dopamine, acts as a neurotransmitter across a broad phylogenetic spectrum. Functions attributed to dopamine in the mammalian brain include regulation of motor circuits, valuation of sensory stimuli, and mediation of reward or reinforcement signals. Considerable evidence also supports a neurotransmitter role for dopamine in gastropod molluscs, and there is growing appreciation for its potential common functions across phylogeny. This article reviews evidence for dopamine's transmitter role in the nervous systems of gastropods. The functional properties of identified dopaminergic neurons in well-characterized neural circuits suggest a hypothetical incremental sequence by which dopamine accumulated its diverse roles. The successive acquisition of dopamine functions is proposed in the context of gastropod feeding behavior: (1) sensation of potential nutrients, (2) activation of motor circuits, (3) selection of motor patterns from multifunctional circuits, (4) valuation of sensory stimuli with reference to internal state, (5) association of motor programs with their outcomes, and (6) coincidence detection between sensory stimuli and their consequences. At each stage of this sequence, it is proposed that existing functions of dopaminergic neurons favored their recruitment to fulfill additional information processing demands. Common functions of dopamine in other intensively studied groups, ranging from mammals and insects to nematodes, suggest an ancient origin for this progression.
Collapse
|
4
|
Morgan LD, Mohammed A, Patel BA, Arundell M, Jennert-Burtson K, Hernádi L, Overall A, Bowler LD, O'Hare D, Yeoman MS. Decreased 14-3-3 expression correlates with age-related regional reductions in CNS dopamine and motor function in the pond snail, Lymnaea. Eur J Neurosci 2020; 53:1394-1411. [PMID: 33131114 DOI: 10.1111/ejn.15033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 11/28/2022]
Abstract
Ageing is associated in many organisms with a reduction in motor movements. We have previously shown that the rate of feeding movements of the pond snail, Lymnaea, decreased with age but the underlying cause is not fully understood. Here, we show that dopamine in the cerebro-buccal complex is an important signalling molecule regulating feeding frequency in Lymnaea and that ageing is associated with a decrease in CNS dopamine. A proteomic screen of young and old CNSs highlighted a group of proteins that regulate stress responses. One of the proteins identified was 14-3-3, which can enhance the synthesis of dopamine. We show that the Lymnaea 14-3-3 family exists as three distinct isoforms. The expression of the 29 kDa isoform (14-3-3Lym3) in the cerebro-buccal complex decreased with age and correlated with feeding rate. Using a 14-3-3 antagonist (R18) we were able to reduce the synthesis of L-DOPA and dopamine in ex vivo cerebro-buccal complexes. Together these data suggest that an age-related reduction in 14-3-3 can decrease CNS dopamine leading to a consequential reduction in feeding rate.
Collapse
Affiliation(s)
- Lindsay D Morgan
- Centre for Stress and Age-Related Disease, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Aiyaz Mohammed
- Centre for Stress and Age-Related Disease, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Bhavik Anil Patel
- Centre for Stress and Age-Related Disease, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Martin Arundell
- Department of Bioengineering, College of Science Technology & Medicine, Imperial College, University of London, London, UK
| | - Katrin Jennert-Burtson
- Centre for Stress and Age-Related Disease, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - László Hernádi
- Balaton Limnological Institute, Centre for Ecological Research, Tihany, Hungary
| | - Andrew Overall
- Centre for Stress and Age-Related Disease, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Lucas D Bowler
- Centre for Stress and Age-Related Disease, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Danny O'Hare
- Department of Bioengineering, College of Science Technology & Medicine, Imperial College, University of London, London, UK
| | - Mark S Yeoman
- Centre for Stress and Age-Related Disease, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| |
Collapse
|
5
|
Rivi V, Benatti C, Colliva C, Radighieri G, Brunello N, Tascedda F, Blom JMC. Lymnaea stagnalis as model for translational neuroscience research: From pond to bench. Neurosci Biobehav Rev 2019; 108:602-616. [PMID: 31786320 DOI: 10.1016/j.neubiorev.2019.11.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/24/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Abstract
The purpose of this review is to illustrate how a reductionistic, but sophisticated, approach based on the use of a simple model system such as the pond snail Lymnaea stagnalis (L. stagnalis), might be useful to address fundamental questions in learning and memory. L. stagnalis, as a model, provides an interesting platform to investigate the dialog between the synapse and the nucleus and vice versa during memory and learning. More importantly, the "molecular actors" of the memory dialogue are well-conserved both across phylogenetic groups and learning paradigms, involving single- or multi-trials, aversion or reward, operant or classical conditioning. At the same time, this model could help to study how, where and when the memory dialog is impaired in stressful conditions and during aging and neurodegeneration in humans and thus offers new insights and targets in order to develop innovative therapies and technology for the treatment of a range of neurological and neurodegenerative disorders.
Collapse
Affiliation(s)
- V Rivi
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - C Benatti
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - C Colliva
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - G Radighieri
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - N Brunello
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - F Tascedda
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - J M C Blom
- Dept. of Education and Human Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
6
|
Crossley M, Lorenzetti FD, Naskar S, O’Shea M, Kemenes G, Benjamin PR, Kemenes I. Proactive and retroactive interference with associative memory consolidation in the snail Lymnaea is time and circuit dependent. Commun Biol 2019; 2:242. [PMID: 31263786 PMCID: PMC6595009 DOI: 10.1038/s42003-019-0470-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/18/2019] [Indexed: 12/29/2022] Open
Abstract
Interference-based forgetting occurs when new information acquired either before or after a learning event attenuates memory expression (proactive and retroactive interference, respectively). Multiple learning events often occur in rapid succession, leading to competition between consolidating memories. However, it is unknown what factors determine which memory is remembered or forgotten. Here, we challenge the snail, Lymnaea, to acquire two consecutive similar or different memories and identify learning-induced changes in neurons of its well-characterized motor circuits. We show that when new learning takes place during a stable period of the original memory, proactive interference only occurs if the two consolidating memories engage the same circuit mechanisms. If different circuits are used, both memories survive. However, any new learning during a labile period of consolidation promotes retroactive interference and the acquisition of the new memory. Therefore, the effect of interference depends both on the timing of new learning and the underlying neuronal mechanisms.
Collapse
Affiliation(s)
- Michael Crossley
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG UK
| | | | - Souvik Naskar
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG UK
| | - Michael O’Shea
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG UK
| | - György Kemenes
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG UK
| | - Paul R. Benjamin
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG UK
| | - Ildikó Kemenes
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, BN1 9QG UK
| |
Collapse
|
7
|
Totani Y, Aonuma H, Oike A, Watanabe T, Hatakeyama D, Sakakibara M, Lukowiak K, Ito E. Monoamines, Insulin and the Roles They Play in Associative Learning in Pond Snails. Front Behav Neurosci 2019; 13:65. [PMID: 31001093 PMCID: PMC6454038 DOI: 10.3389/fnbeh.2019.00065] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/14/2019] [Indexed: 12/28/2022] Open
Abstract
Molluscan gastropods have long been used for studying the cellular and molecular mechanisms underlying learning and memory. One such gastropod, the pond snail Lymnaea stagnalis, exhibits long-term memory (LTM) following both classical and operant conditioning. Using Lymnaea, we have successfully elucidated cellular mechanisms of learning and memory utilizing an aversive classical conditioning procedure, conditioned taste aversion (CTA). Here, we present the behavioral changes following CTA training and show that the memory score depends on the duration of food deprivation. Then, we describe the relationship between the memory scores and the monoamine contents of the central nervous system (CNS). A comparison of learning capability in two different strains of Lymnaea, as well as the filial 1 (F1) cross from the two strains, presents how the memory scores are correlated in these populations with monoamine contents. Overall, when the memory scores are better, the monoamine contents of the CNS are lower. We also found that as the insulin content of the CNS decreases so does the monoamine contents which are correlated with higher memory scores. The present review deepens the relationship between monoamine and insulin contents with the memory score.
Collapse
Affiliation(s)
- Yuki Totani
- Department of Biology, Waseda University, Tokyo, Japan
| | - Hitoshi Aonuma
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Akira Oike
- Department of Biology, Waseda University, Tokyo, Japan
| | - Takayuki Watanabe
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Dai Hatakeyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Manabu Sakakibara
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Etsuro Ito
- Department of Biology, Waseda University, Tokyo, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
8
|
Menezes CEDS, McIntyre RS, Chaves Filho AJM, Vasconcelos SMM, de Sousa FCF, Quevedo J, Hyphantis TN, Carvalho AF, Macêdo D. The effect of paroxetine, venlafaxine and bupropion administration alone and combined on spatial and aversive memory performance in rats. Pharmacol Rep 2018; 70:1173-1179. [PMID: 30321807 DOI: 10.1016/j.pharep.2018.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/07/2018] [Accepted: 07/20/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND The use of antidepressants in combination is common practice following non-response to single antidepressant agents. Nevertheless, the scientific literature lacks preclinical studies regarding the combined administration of antidepressants across multiple behavioral measures including, but not limited to, cognition. Hence, we aimed to determine the effects of paroxetine (PAR), venlafaxine (VEN) and bupropion (BUP) alone or combined (PAR+BUP or VEN+BUP) on spatial and affective memory tasks to advance the knowledge about the combined use of antidepressants in cognition. METHODS Adult rats received daily injections (15 days) of PAR (20mg/kg, ip), VEN (20mg/kg, ip), BUP (20mg/kg, ip) alone or combined and were submitted to behavioral measures of spatial memory (radial-arm maze - RAM), aversive memory (passive avoidance - PA), open field (OF) and forced swimming (FST) tests. RESULTS In the RAM, VEN or VEN+BUP impaired learning, while short-term memory (STM) was impaired by PAR, BUP and their combination. VEN+BUP improved STM as compared to BUP. PAR impaired long-term memory (LTM). VEN or BUP alone impaired STM and long-term fear memory, whilst PAR+BUP or VEN+BUP did not induce significant alterations. CONCLUSIONS The effects of VEN, PAR or BUP alone and in combination on measures of memory are variable and vary as a function of the pharmacodynamics profile of each drug as well as the specific memory paradigm.
Collapse
Affiliation(s)
| | - Roger S McIntyre
- Department of Psychiatry, Department of Pharmacology and Toxicology, Mood Disorders Psychopharmacology Unit, University of Toronto, Toronto, ON, Canada
| | | | | | | | - João Quevedo
- Laboratory of Neurosciences, University of Southern Santa Catarina, Criciúma, SC, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | | | - André F Carvalho
- Department of Psychiatry, Department of Pharmacology and Toxicology, Mood Disorders Psychopharmacology Unit, University of Toronto, Toronto, ON, Canada; Centre for Addiction & Mental Health (CAMH), University of Toronto, Toronto, ON, Canada
| | - Danielle Macêdo
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, Brazil.
| |
Collapse
|
9
|
Aonuma H, Totani Y, Sakakibara M, Lukowiak K, Ito E. Comparison of brain monoamine content in three populations of Lymnaea that correlates with taste-aversive learning ability. Biophys Physicobiol 2018; 15:129-135. [PMID: 29955564 PMCID: PMC6018436 DOI: 10.2142/biophysico.15.0_129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/20/2018] [Indexed: 12/01/2022] Open
Abstract
To find a causal mechanism of learning and memory is a heuristically important topic in neuroscience. In the pond snail Lymnaea stagnalis, the following experimental facts have accrued regarding a classical conditioning procedure known as conditioned taste aversion (CTA): (1) one-day food-deprived Dutch snails have superior CTA memory formation; (2) the one-day food-deprived snails have a low monoamine content (e.g., serotonin, dopamine, octopamine) in their central nervous system (CNS); (3) fed or five-day food-deprived snails have poorer CTA memory and a higher monoamine content; (4) the Dutch snails form better CTA memory than the Canadian TC1 strain; and, (5) the F1 cross snails between the Dutch and Canadian TC1 strains also form poor CTA memory. Here, in one-day food-deprived snails, we measured the monoamine content in the CNSs of the 3 populations. In most instances, the monoamine content of the Dutch strain was lower than in the other two populations. The F1 cross snails had the highest monoamine content. A lower monoamine content is correlated with the better CTA memory formation.
Collapse
Affiliation(s)
- Hitoshi Aonuma
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido 060-0811, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Yuki Totani
- Department of Biology, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Manabu Sakakibara
- Research Organization for Nano and Life Innovation, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Etsuro Ito
- Department of Biology, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan.,Research Organization for Nano and Life Innovation, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan.,WASEDA Bioscience Research Institute in Singapore, 138667, Singapore.,Graduate Institute of Medicine and Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
10
|
Intermediate frequency of aversive conditioning best restores wariness in habituated elk (Cervus canadensis). PLoS One 2018; 13:e0199216. [PMID: 29940021 PMCID: PMC6016931 DOI: 10.1371/journal.pone.0199216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 04/24/2018] [Indexed: 11/19/2022] Open
Abstract
In protected areas around the world, wildlife habituate to humans and human infrastructure, potentially resulting in human-wildlife conflict, and leading to trophic disruptions through excess herbivory and disconnection of predators from prey. For large species that threaten human safety, wildlife managers sometimes attempt to reverse habituation with aversive conditioning. This technique associates people as a conditioned stimulus with a negative, unconditioned stimulus, such as pain or fright, to increase wariness and prevent the need for lethal wildlife management. Resistance to aversive conditioning by some habituated individuals often results in more frequent conditioning events by managers, but there are few studies of conditioning frequency with which to evaluate the usefulness of this management response. We evaluated the effect of conditioning frequency on the wariness of elk (Cervus canadensis) by subjecting marked individuals to predator-resembling chases by people over a period of three months. In that time, animals were subjected to conditioning a total of 3, 4, 5, 6, 7, or 9 times which we analyzed as both an ordinal variable and a binary one divided into low (3-5) and high (6-9) conditioning frequencies. We measured wariness before, during, and after the conditioning period using flight response distances from an approaching researcher. During the conditioning period, overall wariness increased significantly for elk in both treatment groups, although the increase was significantly greater in individuals subjected to high conditioning frequencies. However in the post-conditioning period, wariness gains also declined most in the high-frequency group, equating to more rapid extinction of learned behaviour. Across all treatment frequencies, rapid changes in flight responses also characterized the individuals with the lowest wariness at the beginning of the study period, suggesting that individuals with greater behavioural flexibility are more likely to habituate to both people and their attempts to change wariness via aversive conditioning. Together, our results imply that aversive conditioning may be most effective at intermediate frequencies and that its utility might be further increased with proactive assessment of individual personalities in habituated wildlife.
Collapse
|
11
|
de Weerd L, Hermann PM, Wildering WC. Linking the 'why' and 'how' of ageing: evidence for somatotropic control of long-term memory function in the pond snail Lymnaea stagnalis. ACTA ACUST UNITED AC 2017; 220:4088-4094. [PMID: 28954817 DOI: 10.1242/jeb.167395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/22/2017] [Indexed: 12/11/2022]
Abstract
Organisms live on a budget; hence, they cannot maximize all their activities at the same time. Instead, they must prioritize how they spend limiting resources on the many processes they rely on in their lives. Among others, they are thought to economize on the maintenance and repair processes required for survival in favour of maximizing reproduction, with ageing as a consequence. We investigate the biological mechanisms of neuronal ageing. Using Lymnaea stagnalis, we have previously described various aspects of age-associated neuronal decline and appetitive long-term memory failure. In view of postulated trade-offs between somatic maintenance and reproduction, we tested for interactions between resource allocation mechanisms and brain function. We show that removal of the lateral lobes, which are key regulators of energy balance in L. stagnalis, increases body mass and enhances appetitive learning, raising the possibility that the lateral lobes are one of the sites where the 'why' and 'how' of (neuronal) ageing meet.
Collapse
Affiliation(s)
- Lis de Weerd
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary T2N 1N4, Alberta, Canada
| | - Petra M Hermann
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary T2N 1N4, Alberta, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary T2N 4N1, Alberta, Canada
| | - Willem C Wildering
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary T2N 1N4, Alberta, Canada .,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary T2N 4N1, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary T2N 4N1, Alberta, Canada
| |
Collapse
|
12
|
Shiratori C, Suzuki N, Momohara Y, Shiraishi K, Aonuma H, Nagayama T. Cyclic AMP-regulated opposing and parallel effects of serotonin and dopamine on phototaxis in the Marmorkrebs (marbled crayfish). Eur J Neurosci 2017; 46:1863-1874. [PMID: 28661085 DOI: 10.1111/ejn.13632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 02/01/2023]
Abstract
Phototactic behaviours are observed from prokaryotes to amphibians and are a basic form of orientation. We showed that the marbled crayfish displays phototaxis in which the behavioural response reversed from negative to positive depending on external light conditions. Animals reared in a 12-L/12-D light cycle showed negative phototaxis during daytime and positive phototaxis during night-time. Animals reared under constant light conditioning showed negative phototaxis during day- and night-time, while animals reared under constant dark conditioning showed positive phototaxis during day- and night-time. Injection of serotonin leads to a reversal of negative to positive phototaxis in both light/dark-reared and light/light-reared animals while injection of dopamine induced reversed negative phototaxis in dark/dark-reared animals. Four hours of dark adaptation were enough for light/dark-reared animals to reverse phototaxis from negative to positive. Injection of a serotonin 5HT1 receptor antagonist blocked the reverse phototaxis while serotonin 5HT2 receptor antagonists had no effects. Similarly, dark/dark-reared animals reversed to showing negative phototaxis after 4 h of light adaptation. Injection of a dopamine DA1 receptor antagonist blocked this reverse phototaxis, while dopamine DA2 receptor antagonists had no effects. Injection of a cAMP analogue into light/dark-reared animals blocked reverse phototaxis after dark adaptation, while adenylate cyclase inhibitor in dark/dark-reared animals blocked reverse phototaxis after light adaptation. These results strongly suggest that serotonin mediates positive phototaxis owing to decreased cAMP levels, while dopamine-mediated negative phototaxis occurs due to increased cAMP levels. Supporting this, the ratio of serotonin to dopamine in the brain was much higher in dark/dark-reared than light/dark-reared animals.
Collapse
Affiliation(s)
- Chihiro Shiratori
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560, Yamagata, Japan
| | - Nanoka Suzuki
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560, Yamagata, Japan
| | - Yuto Momohara
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560, Yamagata, Japan
| | - Kyosuke Shiraishi
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560, Yamagata, Japan
| | - Hitoshi Aonuma
- Research Institute for Electronic Science, Hokkaido University, 060-0812, Sapporo, Japan
| | - Toshiki Nagayama
- Department of Biology, Faculty of Science, Yamagata University, 990-8560, Yamagata, Japan
| |
Collapse
|
13
|
Aonuma H, Kaneda M, Hatakeyama D, Watanabe T, Lukowiak K, Ito E. Weak involvement of octopamine in aversive taste learning in a snail. Neurobiol Learn Mem 2017; 141:189-198. [DOI: 10.1016/j.nlm.2017.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/20/2017] [Accepted: 04/23/2017] [Indexed: 01/06/2023]
|
14
|
Ford L, Crossley M, Vadukul DM, Kemenes G, Serpell LC. Structure-dependent effects of amyloid-β on long-term memory in Lymnaea stagnalis. FEBS Lett 2017; 591:1236-1246. [PMID: 28337747 PMCID: PMC5435943 DOI: 10.1002/1873-3468.12633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/24/2017] [Accepted: 03/20/2017] [Indexed: 12/03/2022]
Abstract
Amyloid‐β (Aβ) peptides are implicated in the causation of memory loss, neuronal impairment, and neurodegeneration in Alzheimer's disease. Our recent work revealed that Aβ 1–42 and Aβ 25–35 inhibit long‐term memory (LTM) recall in Lymnaea stagnalis (pond snail) in the absence of cell death. Here, we report the characterization of the active species prepared under different conditions, describe which Aβ species is present in brain tissue during the behavioral recall time point and relate the sequence and structure of the oligomeric species to the resulting neuronal properties and effect on LTM. Our results suggest that oligomers are the key toxic Aβ1–42 structures, which likely affect LTM through synaptic plasticity pathways, and that Aβ 1–42 and Aβ 25–35 cannot be used as interchangeable peptides.
Collapse
Affiliation(s)
- Lenzie Ford
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
- Present address: Department of NeuroscienceColumbia UniversityNew YorkNY10032USA
- Present address: Howard Hughes Medical InstituteColumbia UniversityNew YorkNY10032USA
| | - Michael Crossley
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Devkee M. Vadukul
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - György Kemenes
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Louise C. Serpell
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| |
Collapse
|
15
|
Aonuma H, Kaneda M, Hatakeyama D, Watanabe T, Lukowiak K, Ito E. Relationship between the grades of a learned aversive-feeding response and the dopamine contents in Lymnaea. Biol Open 2016; 5:1869-1873. [PMID: 27815244 PMCID: PMC5200912 DOI: 10.1242/bio.021634] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pond snail Lymnaea learns conditioned taste aversion (CTA) and remembers not to respond to food substances that initially cause a feeding response. The possible relationship between how well snails learn to follow taste-aversion training and brain dopamine contents is not known. We examined this relationship and found the following: first, snails in the act of eating just before the commencement of CTA training were poor learners and had the highest dopamine contents in the brain; second, snails which had an ad libitum access to food, but were not eating just before training, were average learners and had lower dopamine contents; third, snails food-deprived for one day before training were the best learners and had significantly lower contents of dopamine compared to the previous two cohorts. There was a negative correlation between the CTA grades and the brain dopamine contents in these three cohorts. Fourth, snails food-deprived for five days before training were poor learners and had higher dopamine contents. Thus, severe hunger increased the dopamine content in the brain. Because dopamine functions as a reward transmitter, CTA in the severely deprived snails (i.e. the fourth cohort) was thought to be mitigated by a high dopamine content.
Collapse
Affiliation(s)
- Hitoshi Aonuma
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0811, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Mugiho Kaneda
- Laboratory of Functional Biology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan
| | - Dai Hatakeyama
- Laboratory of Functional Biology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan
| | - Takayuki Watanabe
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0811, Japan
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Etsuro Ito
- Laboratory of Functional Biology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki 769-2193, Japan .,Department of Biology, Waseda University, Shinjuku, Tokyo 162-8480, Japan
| |
Collapse
|
16
|
Matsuo R, Tanaka M, Fukata R, Kobayashi S, Aonuma H, Matsuo Y. Octopaminergic system in the central nervous system of the terrestrial slugLimax. J Comp Neurol 2016; 524:3849-3864. [DOI: 10.1002/cne.24039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/26/2016] [Accepted: 05/16/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Ryota Matsuo
- International College of Arts and Sciences; Fukuoka Women's University; Higashi-ku Fukuoka 813-8529 Japan
| | - Marin Tanaka
- International College of Arts and Sciences; Fukuoka Women's University; Higashi-ku Fukuoka 813-8529 Japan
| | - Rena Fukata
- International College of Arts and Sciences; Fukuoka Women's University; Higashi-ku Fukuoka 813-8529 Japan
| | - Suguru Kobayashi
- Kagawa School of Pharmaceutical Sciences; Tokushima Bunri University; Sanuki Kagawa 769-2193 Japan
| | - Hitoshi Aonuma
- Research Center of Mathematics for Social Creativity, Research Institute of Electronic Science; Hokkaido University; Sapporo Hokkaido 060-0812 Japan
- Japan Science and Technology Agency; CREST; Kawaguchi Saitama 332-0012 Japan
| | - Yuko Matsuo
- International College of Arts and Sciences; Fukuoka Women's University; Higashi-ku Fukuoka 813-8529 Japan
| |
Collapse
|
17
|
Function of insulin in snail brain in associative learning. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:969-81. [PMID: 26233474 DOI: 10.1007/s00359-015-1032-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 12/23/2022]
Abstract
Insulin is well known as a hormone regulating glucose homeostasis across phyla. Although there are insulin-independent mechanisms for glucose uptake in the mammalian brain, which had contributed to a perception of the brain as an insulin-insensitive organ for decades, the finding of insulin and its receptors in the brain revolutionized the concept of insulin signaling in the brain. However, insulin's role in brain functions, such as cognition, attention, and memory, remains unknown. Studies using invertebrates with their open blood-vascular system have the promise of promoting a better understanding of the role played by insulin in mediating/modulating cognitive functions. In this review, the relationship between insulin and its impact on long-term memory (LTM) is discussed particularly in snails. The pond snail Lymnaea stagnalis has the ability to undergo conditioned taste aversion (CTA), that is, it associatively learns and forms LTM not to respond with a feeding response to a food that normally elicits a robust feeding response. We show that molluscan insulin-related peptides are up-regulated in snails exhibiting CTA-LTM and play a key role in the causal neural basis of CTA-LTM. We also survey the relevant literature of the roles played by insulin in learning and memory in other phyla.
Collapse
|
18
|
de Brito Sanchez MG, Serre M, Avarguès-Weber A, Dyer AG, Giurfa M. Learning context modulates aversive taste strength in honey bees. ACTA ACUST UNITED AC 2015; 218:949-59. [PMID: 25788729 DOI: 10.1242/jeb.117333] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The capacity of honey bees (Apis mellifera) to detect bitter substances is controversial because they ingest without reluctance different kinds of bitter solutions in the laboratory, whereas free-flying bees avoid them in visual discrimination tasks. Here, we asked whether the gustatory perception of bees changes with the behavioral context so that tastes that are less effective as negative reinforcements in a given context become more effective in a different context. We trained bees to discriminate an odorant paired with 1 mol l(-1) sucrose solution from another odorant paired with either distilled water, 3 mol l(-1) NaCl or 60 mmol l(-1) quinine. Training was either Pavlovian [olfactory conditioning of the proboscis extension reflex (PER) in harnessed bees], or mainly operant (olfactory conditioning of free-walking bees in a Y-maze). PER-trained and maze-trained bees were subsequently tested both in their original context and in the alternative context. Whereas PER-trained bees transferred their choice to the Y-maze situation, Y-maze-trained bees did not respond with a PER to odors when subsequently harnessed. In both conditioning protocols, NaCl and distilled water were the strongest and the weakest aversive reinforcement, respectively. A significant variation was found for quinine, which had an intermediate aversive effect in PER conditioning but a more powerful effect in the Y-maze, similar to that of NaCl. These results thus show that the aversive strength of quinine varies with the learning context, and reveal the plasticity of the bee's gustatory system. We discuss the experimental constraints of both learning contexts and focus on stress as a key modulator of taste in the honey bee. Further explorations of bee taste are proposed to understand the physiology of taste modulation in bees.
Collapse
Affiliation(s)
- Maria Gabriela de Brito Sanchez
- University of Toulouse, Research Center on Animal Cognition, Toulouse 31062, Cedex 9, France CNRS, Research Center on Animal Cognition, Toulouse 31062, Cedex 9, France
| | - Marion Serre
- University of Toulouse, Research Center on Animal Cognition, Toulouse 31062, Cedex 9, France CNRS, Research Center on Animal Cognition, Toulouse 31062, Cedex 9, France
| | - Aurore Avarguès-Weber
- University of Toulouse, Research Center on Animal Cognition, Toulouse 31062, Cedex 9, France CNRS, Research Center on Animal Cognition, Toulouse 31062, Cedex 9, France
| | - Adrian G Dyer
- School of Media and Communication, RMIT University, Melbourne, Victoria 3000, Australia
| | - Martin Giurfa
- University of Toulouse, Research Center on Animal Cognition, Toulouse 31062, Cedex 9, France CNRS, Research Center on Animal Cognition, Toulouse 31062, Cedex 9, France
| |
Collapse
|
19
|
Abstract
It is now almost forty years since the first description of learning in the fruit fly Drosophila melanogaster. Various incarnations of the classic mutagenesis approach envisaged in the early days have provided around one hundred learning defective mutant fly strains. Recent technological advances permit temporal control of neural function in the behaving fly. These approaches have radically changed experiments in the field and have provided a neural circuit perspective of memory formation, consolidation and retrieval. Combining neural perturbations with more classical mutant intervention allows investigators to interrogate the molecular and cellular processes of memory within the defined neural circuits. Here, we summarize some of the progress made in the last ten years that indicates a remarkable conservation of the neural mechanisms of memory formation between flies and mammals. We emphasize that considering an ethologically-relevant viewpoint might provide additional experimental power in studies of Drosophila memory.
Collapse
|
20
|
Takigami S, Sunada H, Lukowiak K, Kuzirian AM, Alkon DL, Sakakibara M. Protein kinase C mediates memory consolidation of taste avoidance conditioning in Lymnaea stagnalis. Neurobiol Learn Mem 2014; 111:9-18. [PMID: 24613854 DOI: 10.1016/j.nlm.2014.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 02/05/2014] [Accepted: 02/23/2014] [Indexed: 11/25/2022]
Abstract
In Lymnaea stagnalis, in order to obtain a 10 min short-term memory (STM) of taste avoidance conditioning (TAC) at least 10 paired presentations of a conditioned stimulus (CS), sucrose, and an unconditioned stimulus (US), tactile stimulation to the animal's head, are required. Pre-exposure of snails to the protein kinase C (PKC) α and ε activator bryostatin (Bryo) facilitated STM formation in that only 5 paired CS-US trials were required. Typically 20 paired presentations of the CS-US are required for formation of STM and LTM. However, 20 paired presentations do not result in STM or LTM if snails are pre-incubated with a PKC inhibitor, Ro-32-0432. We also found that LTM lasting longer than 48 h was acquired with Bryo incubation for 45 min even after termination of the conditioning paradigm. These data suggest that activation of the α and ε isozymes of PKC is crucially involved in the formation of LTM and provide further support for a mechanism that has been conserved across the evolution of species ranging from invertebrate molluscs to higher mammals.
Collapse
Affiliation(s)
- Satoshi Takigami
- Graduate School of Bioscience, Tokai University, 410-0321 Numazu, Shizuoka, Japan
| | - Hiroshi Sunada
- Hotchkiss Brain Institute, University of Calgary, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ken Lukowiak
- Hotchkiss Brain Institute, University of Calgary, Faculty of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Alan M Kuzirian
- Program in Sensory Physiology & Behavior, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Daniel L Alkon
- Blanchette Rockefeller Neuroscience Institute, 9601 Medical Center Drive, Rockville, MD 20850-3332, USA
| | - Manabu Sakakibara
- Graduate School of Bioscience, Tokai University, 410-0321 Numazu, Shizuoka, Japan; School of High-Technology for Human Welfare, Tokai University, 410-0321 Numazu, Shizuoka, Japan.
| |
Collapse
|
21
|
Hermann PM, Park D, Beaulieu E, Wildering WC. Evidence for inflammation-mediated memory dysfunction in gastropods: putative PLA2 and COX inhibitors abolish long-term memory failure induced by systemic immune challenges. BMC Neurosci 2013; 14:83. [PMID: 23915010 PMCID: PMC3750374 DOI: 10.1186/1471-2202-14-83] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/02/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Previous studies associate lipid peroxidation with long-term memory (LTM) failure in a gastropod model (Lymnaea stagnalis) of associative learning and memory. This process involves activation of Phospholipase A2 (PLA2), an enzyme mediating the release of fatty acids such as arachidonic acid that form the precursor for a variety of pro-inflammatory lipid metabolites. This study investigated the effect of biologically realistic challenges of L. stagnalis host defense response system on LTM function and potential involvement of PLA2, COX and LOX therein. RESULTS Systemic immune challenges by means of β-glucan laminarin injections induced elevated H2O2 release from L. stagnalis circulatory immune cells within 3 hrs of treatment. This effect dissipated within 24 hrs after treatment. Laminarin exposure has no direct effect on neuronal activity. Laminarin injections disrupted LTM formation if training followed within 1 hr after injection but had no behavioural impact if training started 24 hrs after treatment. Intermediate term memory was not affected by laminarin injection. Chemosensory and motor functions underpinning the feeding response involved in this learning model were not affected by laminarin injection. Laminarin's suppression of LTM induction was reversed by treatment with aristolochic acid, a PLA2 inhibitor, or indomethacin, a putative COX inhibitor, but not by treatment with nordihydro-guaiaretic acid, a putative LOX inhibitor. CONCLUSIONS A systemic immune challenge administered shortly before behavioural training impairs associative LTM function in our model that can be countered with putative inhibitors of PLA2 and COX, but not LOX. As such, this study establishes a mechanistic link between the state of activity of this gastropod's innate immune system and higher order nervous system function. Our findings underwrite the rapidly expanding view of neuroinflammatory processes as a fundamental, evolutionary conserved cause of cognitive and other nervous system disorders.
Collapse
Affiliation(s)
- Petra M Hermann
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | | | | |
Collapse
|
22
|
Marra V, O'Shea M, Benjamin PR, Kemenes I. Susceptibility of memory consolidation during lapses in recall. Nat Commun 2013; 4:1578. [PMID: 23481386 PMCID: PMC3615469 DOI: 10.1038/ncomms2591] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 02/07/2013] [Indexed: 12/27/2022] Open
Abstract
Memories that can be recalled several hours after learning may paradoxically become inaccessible for brief periods after their formation. This raises major questions about the function of these early memory lapses in the structure of memory consolidation. These questions are difficult to investigate because of the lack of information on the precise timing of lapses. However, the use of a single-trial conditioning paradigm in Lymnaea solves this problem. Here we use electrophysiological and behavioural experiments to reveal lapses in memory recall at 30 min and 2 h post conditioning. We show that only during these lapses is consolidation of long-term memory susceptible to interruption by external disturbance. These shared time points of memory lapse and susceptibility correspond to transitions between different phases of memory that have different molecular requirements. We propose that during periods of molecular transition memory recall is weakened, allowing novel sensory cues to block the consolidation of long-term memory. Memory lapses during memory consolidation are periods when the memory becomes briefly inaccessible after its formation. Marra and colleagues study memory lapses in the mollusc Lymnaea, and find that only during these lapses is consolidation of memories susceptible to interruption by external disturbances.
Collapse
Affiliation(s)
- Vincenzo Marra
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | | | | | | |
Collapse
|
23
|
Ito E, Kojima S, Lukowiak K, Sakakibara M. From likes to dislikes: conditioned taste aversion in the great pond snail (Lymnaea stagnalis). CAN J ZOOL 2013. [DOI: 10.1139/cjz-2012-0292] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The neural circuitry comprising the central pattern generator (CPG) that drives feeding behavior in the great pond snail (Lymnaea stagnalis (L., 1758)) has been worked out. Because the feeding behavior undergoes associative learning and long-term memory (LTM) formation, it provides an excellent opportunity to study the causal neuronal mechanisms of these two processes. In this review, we explore some of the possible causal neuronal mechanisms of associative learning of conditioned taste aversion (CTA) and its subsequent consolidation processes into LTM in L. stagnalis. In the CTA training procedure, a sucrose solution, which evokes a feeding response, is used as the conditioned stimulus (CS) and a potassium chloride solution, which causes a withdrawal response, is used as the unconditioned stimulus (US). The pairing of the CS–US alters both the feeding response of the snail and the function of a pair of higher order interneurons in the cerebral ganglia. Following the acquisition of CTA, the polysynaptic inhibitory synaptic input from the higher order interneurons onto the feeding CPG neurons is enhanced, resulting in suppression of the feeding response. These changes in synaptic efficacy are thought to constitute a “memory trace” for CTA in L. stagnalis.
Collapse
Affiliation(s)
- E. Ito
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki 769-2193, Japan
| | - S. Kojima
- Sandler Neurosciences Center, University of California, San Francisco, 675 Nelson Rising Lane 518, San Francisco, CA 94143-0444, USA
| | - K. Lukowiak
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - M. Sakakibara
- School of High-Technology for Human Welfare, Tokai University, 317 Nishino, Numazu 410-0321, Japan
| |
Collapse
|
24
|
Implication of dopaminergic modulation in operant reward learning and the induction of compulsive-like feeding behavior in Aplysia. Learn Mem 2013; 20:318-27. [PMID: 23685764 DOI: 10.1101/lm.029140.112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Feeding in Aplysia provides an amenable model system for analyzing the neuronal substrates of motivated behavior and its adaptability by associative reward learning and neuromodulation. Among such learning processes, appetitive operant conditioning that leads to a compulsive-like expression of feeding actions is known to be associated with changes in the membrane properties and electrical coupling of essential action-initiating B63 neurons in the buccal central pattern generator (CPG). Moreover, the food-reward signal for this learning is conveyed in the esophageal nerve (En), an input nerve rich in dopamine-containing fibers. Here, to investigate whether dopamine (DA) is involved in this learning-induced plasticity, we used an in vitro analog of operant conditioning in which electrical stimulation of En substituted the contingent reinforcement of biting movements in vivo. Our data indicate that contingent En stimulation does, indeed, replicate the operant learning-induced changes in CPG output and the underlying membrane and synaptic properties of B63. Significantly, moreover, this network and cellular plasticity was blocked when the input nerve was stimulated in the presence of the DA receptor antagonist cis-flupenthixol. These results therefore suggest that En-derived dopaminergic modulation of CPG circuitry contributes to the operant reward-dependent emergence of a compulsive-like expression of Aplysia's feeding behavior.
Collapse
|
25
|
Sinnamon GCB, Caltabiano M, Baune BT. Differentiating disordered affect in children and adolescents with type 1 diabetes. J Affect Disord 2013; 147:51-8. [PMID: 23141632 DOI: 10.1016/j.jad.2012.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 02/02/2023]
Abstract
BACKGROUND There is evidence for increased risk of affective disorders (AD) in adults with type 1 diabetes however, the prevalence and characteristics of AD in young people with the condition is unclear. Comorbid AD in type 1 diabetes is associated with deleterious self-management, sub-optimal clinical indicators, reduced quality of life, poorer physical health, increased complications, increased high risk behaviours in adolescence and young adulthood, and earlier mortality. The present study investigated the prevalence and character of AD in young people with type 1 diabetes. METHODS The self-report PH-PANAS-C was employed in a cross-sectional, case-control design to identify and differentiate full-syndrome (FS) and subthreshold (St) levels of AD in 53 participants with type 1 diabetes (case) and 54 age-balanced controls (N=107; 7-18 yrs). RESULTS Case participants reported greater AD than controls. When differentiated, only anxiety was significantly more prevalent. Case participants reported less positive affect, and greater negative affect and autonomic arousal. Further, 1:3 case participants presented with St symptoms of AD. LIMITATIONS Self-report measures are known to produce moderated responses therefore symptoms may be more severe than reported. There has been some suggestion that responses to somatic items in the PH-PANAS-C may relate to diabetes-specific states rather than affect-related symptoms however, recent evidence has refuted this argument. CONCLUSIONS AD, particularly anxiety, represents a significant clinical concern in young people with type 1 diabetes both as a disorder in its own right and as a major impediment to primary care and management of the diabetes. The significant dominance of anxiety-related symptoms and prevalence of subthreshold presentation warrant further investigation.
Collapse
Affiliation(s)
- Grant C B Sinnamon
- Department of Psychiatry and Psychiatric Neuroscience, School of Medicine and Dentistry, James Cook University, Angus Smith Drive, Townsville, QLD, Australia.
| | | | | |
Collapse
|
26
|
Kemenes G. Molecular and Cellular Mechanisms of Classical Conditioning in the Feeding System of Lymnaea. INVERTEBRATE LEARNING AND MEMORY 2013. [DOI: 10.1016/b978-0-12-415823-8.00020-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Sadamoto H, Takahashi H, Okada T, Kenmoku H, Toyota M, Asakawa Y. De novo sequencing and transcriptome analysis of the central nervous system of mollusc Lymnaea stagnalis by deep RNA sequencing. PLoS One 2012; 7:e42546. [PMID: 22870333 PMCID: PMC3411651 DOI: 10.1371/journal.pone.0042546] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/10/2012] [Indexed: 12/11/2022] Open
Abstract
The pond snail Lymnaea stagnalis is among several mollusc species that have been well investigated due to the simplicity of their nervous systems and large identifiable neurons. Nonetheless, despite the continued attention given to the physiological characteristics of its nervous system, the genetic information of the Lymnaea central nervous system (CNS) has not yet been fully explored. The absence of genetic information is a large disadvantage for transcriptome sequencing because it makes transcriptome assembly difficult. We here performed transcriptome sequencing for Lymnaea CNS using an Illumina Genome Analyzer IIx platform and obtained 81.9 M of 100 base pair (bp) single end reads. For de novo assembly, five programs were used: ABySS, Velvet, OASES, Trinity and Rnnotator. Based on a comparison of the assemblies, we chose the Rnnotator dataset for the following blast searches and gene ontology analyses. The present dataset, 116,355 contigs of Lymnaea transcriptome shotgun assembly (TSA), contained longer sequences and was much larger compared to the previously reported Lymnaea expression sequence tag (EST) established by classical Sanger sequencing. The TSA sequences were subjected to blast analyses against several protein databases and Aplysia EST data. The results demonstrated that about 20,000 sequences had significant similarity to the reported sequences using a cutoff value of 1e-6, and showed the lack of molluscan sequences in the public databases. The richness of the present TSA data allowed us to identify a large number of new transcripts in Lymnaea and molluscan species.
Collapse
Affiliation(s)
- Hisayo Sadamoto
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Shido, Sanuki-City, Kagawa, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Harris CA, Buckley CL, Nowotny T, Passaro PA, Seth AK, Kemenes G, O'Shea M. Multi-neuronal refractory period adapts centrally generated behaviour to reward. PLoS One 2012; 7:e42493. [PMID: 22860134 PMCID: PMC3409166 DOI: 10.1371/journal.pone.0042493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/06/2012] [Indexed: 11/18/2022] Open
Abstract
Oscillating neuronal circuits, known as central pattern generators (CPGs), are responsible for generating rhythmic behaviours such as walking, breathing and chewing. The CPG model alone however does not account for the ability of animals to adapt their future behaviour to changes in the sensory environment that signal reward. Here, using multi-electrode array (MEA) recording in an established experimental model of centrally generated rhythmic behaviour we show that the feeding CPG of Lymnaea stagnalis is itself associated with another, and hitherto unidentified, oscillating neuronal population. This extra-CPG oscillator is characterised by high population-wide activity alternating with population-wide quiescence. During the quiescent periods the CPG is refractory to activation by food-associated stimuli. Furthermore, the duration of the refractory period predicts the timing of the next activation of the CPG, which may be minutes into the future. Rewarding food stimuli and dopamine accelerate the frequency of the extra-CPG oscillator and reduce the duration of its quiescent periods. These findings indicate that dopamine adapts future feeding behaviour to the availability of food by significantly reducing the refractory period of the brain's feeding circuitry.
Collapse
Affiliation(s)
- Christopher A. Harris
- Sussex Centre for Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- * E-mail: (CAH); (MOS)
| | | | - Thomas Nowotny
- School of Engineering and Informatics, University of Sussex, Brighton, United Kingdom
| | - Peter A. Passaro
- School of Engineering and Informatics, University of Sussex, Brighton, United Kingdom
| | - Anil K. Seth
- School of Engineering and Informatics, University of Sussex, Brighton, United Kingdom
- Sackler Centre for Consciousness Science, University of Sussex, Brighton, United Kingdom
| | - György Kemenes
- Sussex Centre for Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Michael O'Shea
- Sussex Centre for Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- * E-mail: (CAH); (MOS)
| |
Collapse
|
29
|
Benjamin PR. Distributed network organization underlying feeding behavior in the mollusk Lymnaea. NEURAL SYSTEMS & CIRCUITS 2012; 2:4. [PMID: 22510302 PMCID: PMC3350398 DOI: 10.1186/2042-1001-2-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 04/17/2012] [Indexed: 12/03/2022]
Abstract
The aim of the work reviewed here is to relate the properties of individual neurons to network organization and behavior using the feeding system of the gastropod mollusk, Lymnaea. Food ingestion in this animal involves sequences of rhythmic biting movements that are initiated by the application of a chemical food stimulus to the lips and esophagus. We investigated how individual neurons contribute to various network functions that are required for the generation of feeding behavior such as rhythm generation, initiation ('decision making'), modulation and hunger and satiety. The data support the view that feeding behavior is generated by a distributed type of network organization with individual neurons often contributing to more than one network function, sharing roles with other neurons. Multitasking in a distributed type of network would be 'economically' sensible in the Lymnaea feeding system where only about 100 neurons are available to carry out a variety of complex tasks performed by millions of neurons in the vertebrate nervous system. Having complementary and potentially alternative mechanisms for network functions would also add robustness to what is a 'noisy' network where variable firing rates and synaptic strengths are commonly encountered in electrophysiological recording experiments.
Collapse
Affiliation(s)
- Paul R Benjamin
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| |
Collapse
|