1
|
West GL, Patai ZE, Coutrot A, Hornberger M, Bohbot VD, Spiers HJ. Landmark-dependent Navigation Strategy Declines across the Human Life-Span: Evidence from Over 37,000 Participants. J Cogn Neurosci 2023; 35:452-467. [PMID: 36603038 DOI: 10.1162/jocn_a_01956] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Humans show a remarkable capacity to navigate various environments using different navigation strategies, and we know that strategy changes across the life span. However, this observation has been based on studies of small sample sizes. To this end, we used a mobile app-based video game (Sea Hero Quest) to test virtual navigation strategies and memory performance within a distinct radial arm maze level in over 37,000 participants. Players were presented with six pathways (three open and three closed) and were required to navigate to the three open pathways to collect a target. Next, all six pathways were made available and the player was required to visit the pathways that were previously unavailable. Both reference memory and working memory errors were calculated. Crucially, at the end of the level, the player was asked a multiple-choice question about how they found the targets (i.e., a counting-dependent strategy vs. a landmark-dependent strategy). As predicted from previous laboratory studies, we found the use of landmarks declined linearly with age. Those using landmark-based strategies also performed better on reference memory than those using a counting-based strategy. These results extend previous observations in the laboratory showing a decreased use of landmark-dependent strategies with age.
Collapse
Affiliation(s)
| | - Zita Eva Patai
- University College London, United Kingdom.,King's College London, United Kingdom
| | | | | | | | | |
Collapse
|
2
|
Application of Real and Virtual Radial Arm Maze Task in Human. Brain Sci 2022; 12:brainsci12040468. [PMID: 35447999 PMCID: PMC9027137 DOI: 10.3390/brainsci12040468] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Virtual Reality (VR) emerges as a promising technology capable of creating different scenarios in which the body, environment, and brain are closely related, proving enhancements in the diagnosis and treatment of several spatial memory deficits. In recent years, human spatial navigation has increasingly been studied in interactive virtual environments. However, navigational tasks are still not completely adapted in immersive 3D VR systems. We stipulate that an immersive Radial Arm Maze (RAM) is an excellent instrument, allowing the participants to be physically active within the maze exactly as in the walking RAM version in reality modality. RAM is a behavioral ecological task that allows the analyses of different facets of spatial memory, distinguishing declarative components from procedural ones. In addition to describing the characteristics of RAM, we will also analyze studies in which RAM has been used in virtual modality to provide suggestions into RAM building in immersive modality.
Collapse
|
3
|
West GL, Konishi K, MacDonald K, Ni A, Joober R, Bohbot VD. The BDNF val66met polymorphism is associated with decreased use of landmarks and decreased fMRI activity in the hippocampus during virtual navigation. Eur J Neurosci 2021; 54:6406-6421. [PMID: 34467592 DOI: 10.1111/ejn.15431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/01/2022]
Abstract
People can navigate in a new environment using multiple strategies dependent on different memory systems. A series of studies have dissociated between hippocampus-dependent 'spatial' navigation and habit-based 'response' learning mediated by the caudate nucleus. The val66met polymorphism of the brain-derived neurotrophic factor (BDNF) gene leads to decreased secretion of BDNF in the brain, including the hippocampus. Here, we aim to investigate the role of the BDNF val66met polymorphism on virtual navigation behaviour and brain activity in healthy older adults. A total of 139 healthy older adult participants (mean age = 65.8 ± 4.4 years) were tested in this study. Blood samples were collected, and BDNF val66met genotyping was performed. Participants were divided into two genotype groups: val homozygotes and met carriers. Participants were tested on virtual dual-solution navigation tasks in which they could use either a hippocampus-dependent spatial strategy or a caudate nucleus-dependent response strategy to solve the task. A subset of the participants (n = 66) were then scanned in a 3T functional magnetic resonance imaging (fMRI) scanner while engaging in another dual-solution navigation task. BDNF val/val individuals and met carriers did not differ in learning performance. However, the two BDNF groups differed in learning strategy. BDNF val/val individuals relied more on landmarks to remember target locations (i.e., increased use of flexible spatial learning), while met carriers relied more on sequences and patterns to remember target locations (i.e., increased use of inflexible response learning). Additionally, BDNF val/val individuals had more fMRI activity in the hippocampus compared with BDNF met carriers during performance on the navigation task. This is the first study to show in older adults that BDNF met carriers use alternate learning strategies from val/val individuals and to identify differential brain activation of this behavioural difference between the two groups.
Collapse
Affiliation(s)
- Greg L West
- Department of Psychology, University of Montreal, Montréal, Quebec, Canada
| | - Kyoko Konishi
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Verdun, Quebec, Canada
| | - Kathleen MacDonald
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Verdun, Quebec, Canada
| | - Anjie Ni
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Verdun, Quebec, Canada
| | - Ridha Joober
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Verdun, Quebec, Canada
| | - Veronique D Bohbot
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Verdun, Quebec, Canada
| |
Collapse
|
4
|
Goodman J. Place vs. Response Learning: History, Controversy, and Neurobiology. Front Behav Neurosci 2021; 14:598570. [PMID: 33643005 PMCID: PMC7904695 DOI: 10.3389/fnbeh.2020.598570] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/21/2020] [Indexed: 01/26/2023] Open
Abstract
The present article provides a historical review of the place and response learning plus-maze tasks with a focus on the behavioral and neurobiological findings. The article begins by reviewing the conflict between Edward C. Tolman's cognitive view and Clark L. Hull's stimulus-response (S-R) view of learning and how the place and response learning plus-maze tasks were designed to resolve this debate. Cognitive learning theorists predicted that place learning would be acquired faster than response learning, indicating the dominance of cognitive learning, whereas S-R learning theorists predicted that response learning would be acquired faster, indicating the dominance of S-R learning. Here, the evidence is reviewed demonstrating that either place or response learning may be dominant in a given learning situation and that the relative dominance of place and response learning depends on various parametric factors (i.e., amount of training, visual aspects of the learning environment, emotional arousal, et cetera). Next, the neurobiology underlying place and response learning is reviewed, providing strong evidence for the existence of multiple memory systems in the mammalian brain. Research has indicated that place learning is principally mediated by the hippocampus, whereas response learning is mediated by the dorsolateral striatum. Other brain regions implicated in place and response learning are also discussed in this section, including the dorsomedial striatum, amygdala, and medial prefrontal cortex. An exhaustive review of the neurotransmitter systems underlying place and response learning is subsequently provided, indicating important roles for glutamate, dopamine, acetylcholine, cannabinoids, and estrogen. Closing remarks are made emphasizing the historical importance of the place and response learning tasks in resolving problems in learning theory, as well as for examining the behavioral and neurobiological mechanisms of multiple memory systems. How the place and response learning tasks may be employed in the future for examining extinction, neural circuits of memory, and human psychopathology is also briefly considered.
Collapse
Affiliation(s)
- Jarid Goodman
- Department of Psychology, Delaware State University, Dover, DE, United States
| |
Collapse
|
5
|
Woon EP, Sequeira MK, Barbee BR, Gourley SL. Involvement of the rodent prelimbic and medial orbitofrontal cortices in goal-directed action: A brief review. J Neurosci Res 2020; 98:1020-1030. [PMID: 31820488 PMCID: PMC7392403 DOI: 10.1002/jnr.24567] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/13/2019] [Accepted: 11/15/2019] [Indexed: 01/15/2023]
Abstract
Goal-directed action refers to selecting behaviors based on the expectation that they will be reinforced with desirable outcomes. It is typically conceptualized as opposing habit-based behaviors, which are instead supported by stimulus-response associations and insensitive to consequences. The prelimbic prefrontal cortex (PL) is positioned along the medial wall of the rodent prefrontal cortex. It is indispensable for action-outcome-driven (goal-directed) behavior, consolidating action-outcome relationships and linking contextual information with instrumental behavior. In this brief review, we will discuss the growing list of molecular factors involved in PL function. Ventral to the PL is the medial orbitofrontal cortex (mOFC). We will also summarize emerging evidence from rodents (complementing existing literature describing humans) that it too is involved in action-outcome conditioning. We describe experiments using procedures that quantify responding based on reward value, the likelihood of reinforcement, or effort requirements, touching also on experiments assessing food consumption more generally. We synthesize these findings with the argument that the mOFC is essential to goal-directed action when outcome value information is not immediately observable and must be recalled and inferred.
Collapse
Affiliation(s)
- Ellen P. Woon
- Graduate Program in Neuroscience
- Yerkes National Primate Research Center, Departments of Pediatrics and Psychiatry and Behavioral Sciences, Center for Translational and Social Neuroscience
| | - Michelle K. Sequeira
- Graduate Program in Neuroscience
- Yerkes National Primate Research Center, Departments of Pediatrics and Psychiatry and Behavioral Sciences, Center for Translational and Social Neuroscience
| | - Britton R. Barbee
- Yerkes National Primate Research Center, Departments of Pediatrics and Psychiatry and Behavioral Sciences, Center for Translational and Social Neuroscience
- Graduate Program in Molecular and Systems Pharmacology Emory University, Atlanta, GA
| | - Shannon L. Gourley
- Graduate Program in Neuroscience
- Yerkes National Primate Research Center, Departments of Pediatrics and Psychiatry and Behavioral Sciences, Center for Translational and Social Neuroscience
- Graduate Program in Molecular and Systems Pharmacology Emory University, Atlanta, GA
| |
Collapse
|
6
|
Sodums DJ, Bohbot VD. Negative correlation between grey matter in the hippocampus and caudate nucleus in healthy aging. Hippocampus 2020; 30:892-908. [PMID: 32384195 DOI: 10.1002/hipo.23210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 01/18/2023]
Abstract
Neurobiological changes that occur with aging include a reduction in function and volume of the hippocampus. These changes were associated with corresponding memory deficits in navigation tasks. However, navigation can involve different strategies that are dependent on the hippocampus and caudate nucleus. The proportion of people using hippocampus-dependent spatial strategies decreases across the lifespan. As such, the decrease in spatial strategies, and corresponding increase in caudate nucleus-dependent response strategies with age, may play a role in the observed neurobiological changes in the hippocampus. Furthermore, we previously showed a negative correlation between grey matter in the hippocampus and caudate nucleus/striatum in mice, young adults, and in individuals diagnosed with Alzheimer's disease. As such, we hypothesized that this negative relationship between the two structures would be present during normal aging. The aim of the current study was to investigate this gap in the literature by studying the relationship between grey matter in the hippocampus and caudate nucleus of the striatum, in relation to each other and to navigation strategies, during healthy aging. Healthy older adults (N = 39) were tested on the Concurrent Spatial Discrimination Learning Task (CSDLT), a virtual radial task that dissociates between spatial and response strategies. A regression of strategies against structural MRIs showed for the first time in older adults that the response strategy was associated with higher amounts of grey matter in the caudate nucleus. As expected, the spatial strategy correlated with grey matter in the hippocampus, which was negatively correlated with grey matter in the caudate nucleus. Interestingly, a sex difference emerged showing that among older adult response learners, women have the least amount of grey matter in the hippocampus, which is a known risk for Alzheimer's disease. This difference was absent among spatial learners. These results are discussed in the context of the putative protective role of spatial memory against grey matter loss in the hippocampus, especially in women.
Collapse
Affiliation(s)
- Devin J Sodums
- Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Véronique D Bohbot
- Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Goodman J, McClay M, Dunsmoor JE. Threat-induced modulation of hippocampal and striatal memory systems during navigation of a virtual environment. Neurobiol Learn Mem 2020; 168:107160. [PMID: 31918021 DOI: 10.1016/j.nlm.2020.107160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 02/08/2023]
Abstract
The brain is composed of multiple memory systems that mediate distinct types of navigation. The hippocampus is important for encoding and retrieving allocentric spatial cognitive maps, while the dorsal striatum mediates procedural memories based on stimulus-response (S-R) associations. These memory systems are differentially affected by emotional arousal. In particular, rodent studies show that stress typically impairs hippocampal spatial memory while it spares or sometimes enhances striatal S-R memory. The influence of emotional arousal on these separate navigational memory systems has received less attention in human subjects. We investigated the effect of dynamic changes in anticipatory anxiety on hippocampal spatial and dorsal striatal S-R memory systems while participants attempted to solve a virtual eight-arm radial maze. In Experiment 1, participants completed a hippocampus-dependent spatial version of the eight-arm radial maze that required allocentric spatial memory to successfully navigate the environment. In Experiment 2, participants completed a dorsal striatal S-R version of the maze where no allocentric spatial cues were present, requiring the use of S-R navigation. Anticipatory anxiety was modulated via threat of receiving an unpleasant electrical shock to the wrist during memory retrieval. Results showed that threat of shock was associated with more errors and increased use of non-spatial navigational strategies in the hippocampal spatial task, but did not influence memory performance in the striatal S-R task. Findings indicate a dissociation regarding the influence of anticipatory anxiety on memory systems that has implications for understanding how fear and anxiety contribute to memory-related symptoms in human psychopathologies.
Collapse
Affiliation(s)
- Jarid Goodman
- Department of Psychology, Delaware State University, Dover, DE, United States; Department of Psychiatry, Dell Medical School, University of Texas at Austin, United States.
| | - Mason McClay
- Department of Psychiatry, Dell Medical School, University of Texas at Austin, United States
| | - Joseph E Dunsmoor
- Department of Psychiatry, Dell Medical School, University of Texas at Austin, United States.
| |
Collapse
|
8
|
Laczó J, Cechova K, Parizkova M, Lerch O, Andel R, Matoska V, Kaplan V, Matuskova V, Nedelska Z, Vyhnalek M, Hort J. The Combined Effect of APOE and BDNF Val66Met Polymorphisms on Spatial Navigation in Older Adults. J Alzheimers Dis 2020; 78:1473-1492. [PMID: 33325388 PMCID: PMC7836052 DOI: 10.3233/jad-200615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The apolipoprotein E (APOE) ɛ4 allele is associated with episodic memory and spatial navigation deficits. The brain-derived neurotrophic factor (BDNF) Met allele may further worsen memory impairment in APOEɛ4 carriers but its role in APOEɛ4-related spatial navigation deficits has not been established. OBJECTIVE We examined influence of APOE and BDNF Val66Met polymorphism combination on spatial navigation and volumes of selected navigation-related brain regions in cognitively unimpaired (CU) older adults and those with amnestic mild cognitive impairment (aMCI). METHODS 187 participants (aMCI [n = 116] and CU [n = 71]) from the Czech Brain Aging Study were stratified based on APOE and BDNF Val66Met polymorphisms into four groups: ɛ4-/BDNFVal/Val, ɛ4-/BDNFMet, ɛ4+/BDNFVal/Val, and ɛ4+/BDNFMet. The participants underwent comprehensive neuropsychological examination, brain MRI, and spatial navigation testing of egocentric, allocentric, and allocentric delayed navigation in a real-space human analogue of the Morris water maze. RESULTS Among the aMCI participants, the ɛ4+/BDNFMet group had the least accurate egocentric navigation performance (p < 0.05) and lower verbal memory performance than the ɛ4-/BDNFVal/Val group (p = 0.007). The ɛ4+/BDNFMet group had smaller hippocampal and entorhinal cortical volumes than the ɛ4-/BDNFVal/Val (p≤0.019) and ɛ4-/BDNFMet (p≤0.020) groups. Among the CU participants, the ɛ4+/BDNFMet group had less accurate allocentric and allocentric delayed navigation performance than the ɛ4-/BDNFVal/Val group (p < 0.05). CONCLUSION The combination of APOEɛ4 and BDNF Met polymorphisms is associated with more pronounced egocentric navigation impairment and atrophy of the medial temporal lobe regions in individuals with aMCI and less accurate allocentric navigation in CU older adults.
Collapse
Affiliation(s)
- Jan Laczó
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Katerina Cechova
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Martina Parizkova
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Ondrej Lerch
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Ross Andel
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
- School of Aging Studies, University of South Florida, Tampa, FL, USA
| | - Vaclav Matoska
- Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Prague, Czech Republic
| | - Vojtech Kaplan
- Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Prague, Czech Republic
| | - Veronika Matuskova
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Zuzana Nedelska
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Martin Vyhnalek
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Jakub Hort
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
9
|
Konishi K, Joober R, Poirier J, MacDonald K, Chakravarty M, Patel R, Breitner J, Bohbot VD. Healthy versus Entorhinal Cortical Atrophy Identification in Asymptomatic APOE4 Carriers at Risk for Alzheimer's Disease. J Alzheimers Dis 2019; 61:1493-1507. [PMID: 29278888 PMCID: PMC5798531 DOI: 10.3233/jad-170540] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Early detection of Alzheimer’s disease (AD) has been challenging as current biomarkers are invasive and costly. Strong predictors of future AD diagnosis include lower volume of the hippocampus and entorhinal cortex, as well as the ɛ4 allele of the Apolipoprotein E gene (APOE) gene. Therefore, studying functions that are critically mediated by the hippocampus and entorhinal cortex, such as spatial memory, in APOE ɛ4 allele carriers, may be key to the identification of individuals at risk of AD, prior to the manifestation of cognitive impairments. Using a virtual navigation task developed in-house, specifically designed to assess spatial versus non-spatial strategies, the current study is the first to differentiate functional and structural differences within APOE ɛ4 allele carriers. APOE ɛ4 allele carriers that predominantly use non-spatial strategies have decreased fMRI activity in the hippocampus and increased atrophy in the hippocampus, entorhinal cortex, and fimbria compared to APOE ɛ4 allele carriers who use spatial strategies. In contrast, APOE ɛ4 allele carriers who use spatial strategies have grey matter levels comparable to non-APOE ɛ4 allele carriers. Furthermore, in a leave-one-out analysis, grey matter in the entorhinal cortex could predict navigational strategy with 92% accuracy.
Collapse
Affiliation(s)
- Kyoko Konishi
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Ridha Joober
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Judes Poirier
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Kathleen MacDonald
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Mallar Chakravarty
- Department of Biomedical Engineering, Brain Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Raihaan Patel
- Department of Biomedical Engineering, Brain Imaging Centre, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - John Breitner
- Department of Psychiatry, Centre for Studies on Prevention of Alzheimer's Disease (StoP-AD), Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Véronique D Bohbot
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Patterson TK, Knowlton BJ. Subregional specificity in human striatal habit learning: a meta-analytic review of the fMRI literature. Curr Opin Behav Sci 2018. [DOI: 10.1016/j.cobeha.2017.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Neurobiological links between depression and AD: The role of TGF-β1 signaling as a new pharmacological target. Pharmacol Res 2018; 130:374-384. [DOI: 10.1016/j.phrs.2018.02.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/03/2018] [Accepted: 02/07/2018] [Indexed: 12/19/2022]
|
12
|
Spriggs MJ, Kirk IJ, Skelton RW. Hex Maze: A new virtual maze able to track acquisition and usage of three navigation strategies. Behav Brain Res 2018; 339:195-206. [DOI: 10.1016/j.bbr.2017.11.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 11/17/2017] [Accepted: 11/30/2017] [Indexed: 10/18/2022]
|
13
|
Miller JK, McDougall S, Thomas S, Wiener J. The Impact of the Brain-Derived Neurotrophic Factor Gene on Trauma and Spatial Processing. J Clin Med 2017; 6:E108. [PMID: 29186896 PMCID: PMC5742797 DOI: 10.3390/jcm6120108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/27/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022] Open
Abstract
The influence of genes and the environment on the development of Post-Traumatic Stress Disorder (PTSD) continues to motivate neuropsychological research, with one consistent focus being the Brain-Derived Neurotrophic Factor (BDNF) gene, given its impact on the integrity of the hippocampal memory system. Research into human navigation also considers the BDNF gene in relation to hippocampal dependent spatial processing. This speculative paper brings together trauma and spatial processing for the first time and presents exploratory research into their interactions with BDNF. We propose that quantifying the impact of BDNF on trauma and spatial processing is critical and may well explain individual differences in clinical trauma treatment outcomes and in navigation performance. Research has already shown that the BDNF gene influences PTSD severity and prevalence as well as navigation behaviour. However, more data are required to demonstrate the precise hippocampal dependent processing mechanisms behind these influences in different populations and environmental conditions. This paper provides insight from recent studies and calls for further research into the relationship between allocentric processing, trauma processing and BDNF. We argue that research into these neural mechanisms could transform PTSD clinical practice and professional support for individuals in trauma-exposing occupations such as emergency response, law enforcement and the military.
Collapse
Affiliation(s)
- Jessica K Miller
- Faculty of Human, Social & Political Science, University of Cambridge, Cambridge CB2 1TN, UK.
| | - Siné McDougall
- Department of Psychology, Bournemouth University, Poole BH12 5BB, UK.
| | - Sarah Thomas
- Faculty of Health & Social Sciences, Clinical Research Unit, Bournemouth University, Poole BH12 5BB, UK.
| | - Jan Wiener
- Department of Psychology, Ageing and Dementia Research Centre, Bournemouth University, Poole BH12 5BB, UK.
| |
Collapse
|
14
|
Impairment in active navigation from trauma and Post-Traumatic Stress Disorder. Neurobiol Learn Mem 2017; 140:114-123. [DOI: 10.1016/j.nlm.2017.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 02/22/2017] [Accepted: 02/25/2017] [Indexed: 01/14/2023]
|
15
|
Wegman J, Tyborowska A, Hoogman M, Arias Vásquez A, Janzen G. The brain-derived neurotrophic factor Val66Met polymorphism affects encoding of object locations during active navigation. Eur J Neurosci 2016; 45:1501-1511. [PMID: 27717213 PMCID: PMC5484279 DOI: 10.1111/ejn.13416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/10/2016] [Accepted: 09/22/2016] [Indexed: 12/31/2022]
Abstract
The brain‐derived neurotrophic factor (BDNF) was shown to be involved in spatial memory and spatial strategy preference. A naturally occurring single nucleotide polymorphism of the BDNF gene (Val66Met) affects activity‐dependent secretion of BDNF. The current event‐related fMRI study on preselected groups of ‘Met’ carriers and homozygotes of the ‘Val’ allele investigated the role of this polymorphism on encoding and retrieval in a virtual navigation task in 37 healthy volunteers. In each trial, participants navigated toward a target object. During encoding, three positional cues (columns) with directional cues (shadows) were available. During retrieval, the invisible target had to be replaced while either two objects without shadows (objects trial) or one object with a shadow (shadow trial) were available. The experiment consisted of blocks, informing participants of which trial type would be most likely to occur during retrieval. We observed no differences between genetic groups in task performance or time to complete the navigation tasks. The imaging results show that Met carriers compared to Val homozygotes activate the left hippocampus more during successful object location memory encoding. The observed effects were independent of non‐significant performance differences or volumetric differences in the hippocampus. These results indicate that variations of the BDNF gene affect memory encoding during spatial navigation, suggesting that lower levels of BDNF in the hippocampus results in less efficient spatial memory processing.
Collapse
Affiliation(s)
- Joost Wegman
- Behavioural Science Institute, Radboud University Nijmegen, Postbus 9104, Nijmegen, 6500 HE, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Anna Tyborowska
- Behavioural Science Institute, Radboud University Nijmegen, Postbus 9104, Nijmegen, 6500 HE, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Martine Hoogman
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.,Department of Language and Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Alejandro Arias Vásquez
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.,Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Gabriele Janzen
- Behavioural Science Institute, Radboud University Nijmegen, Postbus 9104, Nijmegen, 6500 HE, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| |
Collapse
|
16
|
Konishi K, Bhat V, Banner H, Poirier J, Joober R, Bohbot VD. APOE2 Is Associated with Spatial Navigational Strategies and Increased Gray Matter in the Hippocampus. Front Hum Neurosci 2016; 10:349. [PMID: 27468260 PMCID: PMC4942687 DOI: 10.3389/fnhum.2016.00349] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 06/28/2016] [Indexed: 11/30/2022] Open
Abstract
The Apolipoprotein E (APOE) gene has a strong association with Alzheimer’s disease (AD). The ε4 allele is a well-documented genetic risk factor of AD. In contrast, the ε2 allele of the APOE gene is known to be protective against AD. Much of the focus on the APOE gene has been on the ε4 allele in both young and older adults and few studies have looked into the cognitive and brain structure correlates of the ε2 allele, especially in young adults. In the current study, we investigated the relationship between APOE genotype, navigation behavior, and hippocampal gray matter in healthy young adults. One-hundred and twenty-four healthy young adults were genotyped and tested on the 4on8 virtual maze, a task that allows for the assessment of navigation strategy. The task assesses the spontaneous use of either a hippocampus-dependent spatial strategy or a caudate nucleus-dependent response strategy. Of the 124 participants, 37 underwent structural magnetic resonance imaging (MRI). We found that ε2 carriers use a hippocampus-dependent spatial strategy to a greater extent than ε3 homozygous individuals and ε4 carriers. We also found that APOE ε2 allele carriers have more gray matter in the hippocampus compared to ε3 homozygous individuals and ε4 carriers. Our findings suggest that the protective effects of the ε2 allele may, in part, be expressed through increased hippocampus gray matter and increased use of hippocampus-dependent spatial strategies. The current article demonstrates the relationship between brain structure, navigation behavior, and APOE genotypes in healthy young adults.
Collapse
Affiliation(s)
- Kyoko Konishi
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University Verdun, QC, Canada
| | - Venkat Bhat
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University Verdun, QC, Canada
| | - Harrison Banner
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University Verdun, QC, Canada
| | - Judes Poirier
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University Verdun, QC, Canada
| | - Ridha Joober
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University Verdun, QC, Canada
| | - Véronique D Bohbot
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University Verdun, QC, Canada
| |
Collapse
|
17
|
Jing D, Lee FS, Ninan I. The BDNF Val66Met polymorphism enhances glutamatergic transmission but diminishes activity-dependent synaptic plasticity in the dorsolateral striatum. Neuropharmacology 2016; 112:84-93. [PMID: 27378336 DOI: 10.1016/j.neuropharm.2016.06.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/28/2016] [Indexed: 12/22/2022]
Abstract
The Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) gene disrupts the activity-dependent release of BDNF, which might underlie its involvement in several neuropsychiatric disorders. Consistent with the potential role of regulated release of BDNF in synaptic functions, earlier studies have demonstrated that the BDNF Val66Met polymorphism impairs NMDA receptor-mediated synaptic transmission and plasticity in the hippocampus, the medial prefrontal cortex and the central amygdala. However, it is unknown whether the BDNF Val66Met polymorphism affects synapses in the dorsal striatum, which depends on cortical afferents for BDNF. Electrophysiological experiments revealed an enhanced glutamatergic transmission in the dorsolateral striatum (DLS) of knock-in mice containing the variant polymorphism (BDNFMet/Met) compared to the wild-type (BDNFVal/Val) mice. This increase in glutamatergic transmission is mediated by a potentiation in glutamate release and NMDA receptor transmission in the medium spiny neurons without any alterations in non-NMDA receptor-mediated transmission. We also observed an impairment of synaptic plasticity, both long-term potentiation and depression in the DLS neurons, in BDNFMet/Met mice. Thus, the BDNF Val66Met polymorphism exerts an increase in glutamatergic transmission but impairs synaptic plasticity in the dorsal striatum, which might play a role in its effect on neuropsychiatric symptoms. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.
Collapse
Affiliation(s)
- Deqiang Jing
- Department of Psychiatry, Weill Medical College of Cornell University, New York, USA
| | - Francis S Lee
- Department of Psychiatry, Weill Medical College of Cornell University, New York, USA
| | - Ipe Ninan
- Department of Psychiatry, NYU School of Medicine, New York, USA.
| |
Collapse
|
18
|
Pitts EG, Taylor JR, Gourley SL. Prefrontal cortical BDNF: A regulatory key in cocaine- and food-reinforced behaviors. Neurobiol Dis 2016; 91:326-35. [PMID: 26923993 PMCID: PMC4913044 DOI: 10.1016/j.nbd.2016.02.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 02/20/2016] [Accepted: 02/24/2016] [Indexed: 12/21/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) affects synaptic plasticity and neural structure and plays key roles in learning and memory processes. Recent evidence also points to important, yet complex, roles for BDNF in rodent models of cocaine abuse and addiction. Here we examine the role of prefrontal cortical (PFC) BDNF in reward-related decision making and behavioral sensitivity to, and responding for, cocaine. We focus on BDNF within the medial and orbital PFC, its regulation by cocaine during early postnatal development and in adulthood, and how BDNF in turn influences responding for drug reinforcement, including in reinstatement models. When relevant, we draw comparisons and contrasts with experiments using natural (food) reinforcers. We also summarize findings supporting, or refuting, the possibility that BDNF in the medial and orbital PFC regulate the development and maintenance of stimulus-response habits. Further investigation could assist in the development of novel treatment approaches for cocaine use disorders.
Collapse
Affiliation(s)
- Elizabeth G Pitts
- Graduate Program in Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Jane R Taylor
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States; Interdepartmental Neuroscience Program, Department of Psychology, Yale University, New Haven, CT, United States
| | - Shannon L Gourley
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States; Graduate Program in Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.
| |
Collapse
|
19
|
Lisiecka DM, O'Hanlon E, Fagan AJ, Carballedo A, Morris D, Suckling J, Frodl T. BDNF Val66Met polymorphism in patterns of neural activation in individuals with MDD and healthy controls. J Affect Disord 2015; 184:239-44. [PMID: 26117067 DOI: 10.1016/j.jad.2015.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/04/2015] [Accepted: 06/04/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Rs6265 single nucleotide polymorphism, which influences brain-derived neurotrophic factor (BDNF) levels in the cortical and subcortical brain structures, may result in distinguished patterns of neural activation during a major depressive disorder (MDD) episode. Valine homozygotes with high levels of BDNF and methionine carriers with lower levels of BDNF may present specific neural correlates of MDD. In our study we have tested differences in blood oxygen level dependant (BOLD) signal between individuals with MDD and healthy controls for both allelic variants. METHODS Individuals with MDD (N = 37) and healthy controls (N = 39) were genotyped for rs6265 and compared separately in each allelic variant for BOLD response in a functional magnetic resonance imaging experiment examining appraisal of emotional scenes. The two allelic variants were also compared separately for both individuals with MDD and healthy controls. RESULTS In the homozygous valine group MDD was associated with decreased neural activation in areas responsible for cognitive appraisal of emotional scenes. In the methionine group MDD was related to increased activation in subcortical regions responsible for visceral reaction to emotional stimuli. During an MDD episode methionine carriers showed more activation in areas associated with cognitive appraisal of emotional information in comparison to valine homozygotes. LIMITATIONS Small sample size of healthy controls carrying methionine (N=8). CONCLUSION Our results suggest that allelic variations in the rs6265 gene lead to specific neural correlates of MDD which may be associated with different mechanisms of MDD in the two allelic groups. This may have potential importance for screening and treatment of patients.
Collapse
Affiliation(s)
- Danuta M Lisiecka
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, UK; Behavioural and Clinical Neuroscience Institute, Department of Psychiatry, University of Cambridge, UK.
| | - Erik O'Hanlon
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Royal College of Surgeons, Dublin, Ireland
| | - Andrew J Fagan
- Centre for Advanced Medical Imaging (CAMI), St James's Hospital, Dublin, Ireland; Department of Clinical Medicine, Trinity College Dublin, Ireland
| | | | - Derek Morris
- Cognitive Genetics and Therapy Group, Discipline of Biochemistry and School of Psychology, National University of Ireland, Galway, Ireland
| | - John Suckling
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, UK; Behavioural and Clinical Neuroscience Institute, Department of Psychiatry, University of Cambridge, UK; Cambridge and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Thomas Frodl
- Department of Psychiatry, Trinity College Dublin, Ireland; Department of Psychiatry, University of Regensburg, Germany
| |
Collapse
|
20
|
Bertholet L, Escobar MT, Depré M, Chavan CF, Giuliani F, Gisquet-Verrier P, Preissmann D, Schenk F. Spatial radial maze procedures and setups to dissociate local and distal relational spatial frameworks in humans. J Neurosci Methods 2015; 253:126-41. [DOI: 10.1016/j.jneumeth.2015.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 12/18/2022]
|
21
|
Goodman J, Packard MG. The influence of cannabinoids on learning and memory processes of the dorsal striatum. Neurobiol Learn Mem 2015; 125:1-14. [PMID: 26092091 DOI: 10.1016/j.nlm.2015.06.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 12/15/2022]
Abstract
Extensive evidence indicates that the mammalian endocannabinoid system plays an integral role in learning and memory. Our understanding of how cannabinoids influence memory comes predominantly from studies examining cognitive and emotional memory systems mediated by the hippocampus and amygdala, respectively. However, recent evidence suggests that cannabinoids also affect habit or stimulus-response (S-R) memory mediated by the dorsal striatum. Studies implementing a variety of maze tasks in rats indicate that systemic or intra-dorsolateral striatum infusions of cannabinoid receptor agonists or antagonists impair habit memory. In mice, cannabinoid 1 (CB1) receptor knockdown can enhance or impair habit formation, whereas Δ(9)THC tolerance enhances habit formation. Studies in human cannabis users also suggest an enhancement of S-R/habit memory. A tentative conclusion based on the available data is that acute disruption of the endocannabinoid system with either agonists or antagonists impairs, whereas chronic cannabinoid exposure enhances, dorsal striatum-dependent S-R/habit memory. CB1 receptors are required for multiple forms of striatal synaptic plasticity implicated in memory, including short-term and long-term depression. Interactions with the hippocampus-dependent memory system may also have a role in some of the observed effects of cannabinoids on habit memory. The impairing effect often observed with acute cannabinoid administration argues for cannabinoid-based treatments for human psychopathologies associated with a dysfunctional habit memory system (e.g. post-traumatic stress disorder and drug addiction/relapse). In addition, the enhancing effect of repeated cannabinoid exposure on habit memory suggests a novel neurobehavioral mechanism for marijuana addiction involving the dorsal striatum-dependent memory system.
Collapse
Affiliation(s)
- Jarid Goodman
- Department of Psychology, Texas A&M Institute for Neuroscience, Texas A&M University, United States
| | - Mark G Packard
- Department of Psychology, Texas A&M Institute for Neuroscience, Texas A&M University, United States.
| |
Collapse
|
22
|
Differential effects of BDNF val(66)met in repetitive associative learning paradigms. Neurobiol Learn Mem 2015; 123:11-7. [PMID: 25933507 DOI: 10.1016/j.nlm.2015.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 11/21/2022]
Abstract
In healthy young subjects, the brain derived neurotropic factor (BDNF) val(66)met polymorphism negatively affects behavioural outcome in short-term motor cortex or hippocampus-based learning paradigms. In repetitive training paradigms over several days this effect can be overcome, in tests involving other brain areas even positive effects were found. To further specify the role of this polymorphism in cognitive processes, we used an associative vocabulary learning paradigm over four consecutive days and tested 38 young healthy subjects and 29 healthy elderly subjects. As a control paradigm, we designed a nonverbal haptic Braille letter-learning paradigm based on the same principles. Behavioural outcome was then associated with the BDNF-genotype. In the vocabulary learning task, met carrier (met/val and met/met) benefitted more from the repetitive training than val/val subjects. This was paralleled by a higher reduction of delayed answers during the course of the study, an effect that was also present in the haptic paradigm. However, in a group of healthy elderly subjects, no similar tendency was found. We conclude that the BDNF val(66)met polymorphism alters highly circumscribed answer behaviours in young healthy subjects. This might partly explain the high variability of previously published results.
Collapse
|
23
|
Genetics and Functional Imaging: Effects of APOE, BDNF, COMT, and KIBRA in Aging. Neuropsychol Rev 2015; 25:47-62. [DOI: 10.1007/s11065-015-9279-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/20/2015] [Indexed: 01/28/2023]
|
24
|
Kennedy KM, Reese ED, Horn MM, Sizemore AN, Unni AK, Meerbrey ME, Kalich AG, Rodrigue KM. BDNF val66met polymorphism affects aging of multiple types of memory. Brain Res 2014; 1612:104-17. [PMID: 25264352 DOI: 10.1016/j.brainres.2014.09.044] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/15/2014] [Accepted: 09/19/2014] [Indexed: 11/18/2022]
Abstract
The BDNF val66met polymorphism (rs6265) influences activity-dependent secretion of brain-derived neurotrophic factor in the synapse, which is crucial for learning and memory. Individuals homozygous or heterozygous for the met allele have lower BDNF secretion than val homozygotes and may be at risk for reduced declarative memory performance, but it remains unclear which types of declarative memory may be affected and how aging of memory across the lifespan is impacted by the BDNF val66met polymorphism. This cross-sectional study investigated the effects of BDNF polymorphism on multiple indices of memory (item, associative, prospective, subjective complaints) in a lifespan sample of 116 healthy adults aged 20-93 years. Advancing age showed a negative effect on item, associative and prospective memory, but not on subjective memory complaints. For item and prospective memory, there were significant age×BDNF group interactions, indicating the adverse effect of age on memory performance across the lifespan was much stronger in the BDNF met carriers than for the val homozygotes. BDNF met carriers also endorsed significantly greater subjective memory complaints, regardless of age, and showed a trend (p<.07) toward poorer associative memory performance compared to val homozygotes. These results suggest that genetic predisposition to the availability of brain-derived neurotrophic factor, by way of the BDNF val66met polymorphism, exerts an influence on multiple indices of episodic memory - in some cases in all individuals regardless of age (subjective memory and perhaps associative memory), in others as an exacerbation of age-related differences in memory across the lifespan (item and prospective memory). This article is part of a Special Issue entitled Memory & Aging.
Collapse
Affiliation(s)
- Kristen M Kennedy
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 1600 Viceroy Dr., Ste 800, Dallas, TX 75235, United States.
| | - Elizabeth D Reese
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 1600 Viceroy Dr., Ste 800, Dallas, TX 75235, United States
| | - Marci M Horn
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 1600 Viceroy Dr., Ste 800, Dallas, TX 75235, United States
| | - April N Sizemore
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 1600 Viceroy Dr., Ste 800, Dallas, TX 75235, United States
| | - Asha K Unni
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 1600 Viceroy Dr., Ste 800, Dallas, TX 75235, United States
| | - Michael E Meerbrey
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 1600 Viceroy Dr., Ste 800, Dallas, TX 75235, United States
| | - Allan G Kalich
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 1600 Viceroy Dr., Ste 800, Dallas, TX 75235, United States
| | - Karen M Rodrigue
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 1600 Viceroy Dr., Ste 800, Dallas, TX 75235, United States
| |
Collapse
|
25
|
BDNF-TrkB receptor regulation of distributed adult neural plasticity, memory formation, and psychiatric disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:169-92. [PMID: 24484701 DOI: 10.1016/b978-0-12-420170-5.00006-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) and its single transmembrane receptor, tropomysin-related kinase B (TrkB), are essential for adult synaptic plasticity and the formation of memories. However, there are regional and task-dependent differences underlying differential mechanisms of BDNF-TrkB function in the formation of these memories. Additionally, the BDNF pathway has been implicated in several psychiatric disorders including posttraumatic stress disorder, phobia, and panic disorder. Gaining a better understanding of this pathway and the neurobiology of memory through fundamental research may be helpful to identify effective prevention and treatment approaches both for diseases of memory deficit as well as in cases of enhanced aversive memory, such as in anxiety disorders.
Collapse
|
26
|
Bohbot VD, Del Balso D, Conrad K, Konishi K, Leyton M. Caudate nucleus-dependent navigational strategies are associated with increased use of addictive drugs. Hippocampus 2014; 23:973-84. [PMID: 23939925 PMCID: PMC3935407 DOI: 10.1002/hipo.22187] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 11/21/2022]
Abstract
This study aimed to investigate the relationship between navigational strategies and the use of abused substances in a sample of healthy young adults. Navigational strategies were assessed with the 4-on-8 virtual maze (4/8VM), a task previously shown to dissociate between hippocampal-dependent spatial navigational strategies and caudate nucleus-dependent stimulus-response navigational strategies. Spatial strategies involve learning the spatial relationships between the landmarks in an environment, while response learning strategies involve learning a rigid set of stimulus-response type associations, e.g., see the tree, turn left. We have shown that spatial learners have increased gray matter and fMRI activity in the hippocampus compared with response learners, while response learners have increased gray matter and fMRI activity in the caudate nucleus. We were interested in the prevalence of use of substances of abuse in spatial and response learners because of the evidence that people who score high on traits such as novelty seeking, sensation seeking, reward seeking, and impulsivity, are more cue-responsive and more likely to use substances of abuse. Since response learners show increased activity and gray matter in the caudate nucleus of the striatum, which is a brain area involved in addiction, we hypothesized that response learners would have a greater use of abused substances than spatial learners. Fifty-five young adults were tested on the 4/8VM and completed a time-line follow-back assessment of drug and alcohol use. We found that response learners had smoked a significantly greater number of cigarettes in their lifetime than spatial learners, were more likely to have used cannabis, and had double the lifetime alcohol consumption. We discuss the possible relationship between substance abuse and response strategies as well as the implications for the hippocampus, risks of neurological and psychiatric disorders, and healthy cognition. © 2013 The Authors. Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Veronique D Bohbot
- This is an open access article under the terms of the Creative Commons Attribution-Non-Commercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. 1Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Verdun, Quebec, Canada
| | | | | | | | | |
Collapse
|
27
|
Konishi K, Etchamendy N, Roy S, Marighetto A, Rajah N, Bohbot VD. Decreased functional magnetic resonance imaging activity in the hippocampus in favor of the caudate nucleus in older adults tested in a virtual navigation task. Hippocampus 2014; 23:1005-14. [PMID: 23929534 DOI: 10.1002/hipo.22181] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 08/02/2013] [Indexed: 11/05/2022]
Abstract
The neuroimaging literature has shown consistent decreases in functional magnetic resonance imaging (fMRI) activity in the hippocampus of healthy older adults engaged in a navigation task. However, navigation in a virtual maze relies on spatial or response strategies known to depend on the hippocampus and caudate nucleus, respectively. Therefore, since the proportion of people using spatial strategies decreases with normal aging, we hypothesized that it was responsible for the observed decreases in fMRI activity in the hippocampus reported in the literature. The aim of this study was to examine the effects of aging on the hippocampus and caudate nucleus during navigation while taking into account individual navigational strategies. Young (N = 23) and older adults (N = 29) were tested using fMRI on the Concurrent Spatial Discrimination Learning Task, a radial task that dissociates between spatial and response strategies (in Stage 2) after participants reached criteria (in Stage 1). Success on Stage 2 requires that participants have encoded the spatial relationship between the target object and environmental landmarks, that is, the spatial strategy. While older adults required more trials, all participants reached criterion. fMRI results showed that, as a group, young adults had significant activity in the hippocampus as opposed to older adults who instead had significant activity in the caudate nucleus. Importantly, individual differences showed that the older participants who used a spatial strategy to solve the task had significant activity in the hippocampus. These findings suggest that the aging process involves a shift from using the hippocampus toward the caudate nucleus during navigation but that activity in the hippocampus is sustained in a subset of healthy older adults engaged in spatial strategies.
Collapse
Affiliation(s)
- Kyoko Konishi
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Verdun, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Wilkins LK, Girard TA, Konishi K, King M, Herdman KA, King J, Christensen B, Bohbot VD. Selective deficit in spatial memory strategies contrast to intact response strategies in patients with schizophrenia spectrum disorders tested in a virtual navigation task. Hippocampus 2014; 23:1015-24. [PMID: 23939937 DOI: 10.1002/hipo.22189] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2013] [Indexed: 11/11/2022]
Abstract
Spatial memory is impaired among persons with schizophrenia (SCZ). However, different strategies may be used to solve most spatial memory and navigation tasks. This study investigated the hypothesis that participants with schizophrenia-spectrum disorders (SSD) would demonstrate differential impairment during acquisition and retrieval of target locations when using a hippocampal-dependent spatial strategy, but not a response strategy, which is more associated with caudate function. Healthy control (CON) and SSD participants were tested using the 4-on-8 virtual maze (4/8VM), a virtual navigation task designed to differentiate between participants' use of spatial and response strategies. Consistent with our predictions, SSD participants demonstrated a differential deficit such that those who navigated using a spatial strategy made more errors and took longer to locate targets. In contrast, SSD participants who spontaneously used a response strategy performed as well as CON participants. The differential pattern of spatial-memory impairment in SSD provides only indirect support for underlying hippocampal dysfunction. These findings emphasize the importance of considering individual strategies when investigating SSD-related memory and navigation performance. Future cognitive intervention protocols may harness SSD participants' intact ability to navigate using a response strategy and/or train the deficient ability to navigate using a spatial strategy to improve navigation and memory abilities in participants with SSD.
Collapse
Affiliation(s)
- Leanne K Wilkins
- Department of Psychology, Ryerson University, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Cárdenas-Morales L, Grön G, Sim EJ, Stingl JC, Kammer T. Neural activation in humans during a simple motor task differs between BDNF polymorphisms. PLoS One 2014; 9:e96722. [PMID: 24828051 PMCID: PMC4020821 DOI: 10.1371/journal.pone.0096722] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/10/2014] [Indexed: 12/04/2022] Open
Abstract
The BDNF Val66Met polymorphism has been linked to decreased synaptic plasticity involved in motor learning tasks. We investigated whether individual differences in this polymorphism may promote differences in neural activity during a two-alternative forced-choice motor performance. In two separate sessions, the BOLD signal from 22 right-handed healthy men was measured during button presses with the left and right index finger upon visual presentation of an arrow. 11 men were Val66Val carriers (ValVal group), the other 11 men carried either the Val66Met or the Met66Met polymorphism (Non-ValVal group). Reaction times, resting and active motor thresholds did not differ between ValVal and Non-ValVal groups. Compared to the ValVal group the Non-ValVal group showed significantly higher BOLD signals in the right SMA and motor cingulate cortex during motor performance. This difference was highly consistent for both hands and across all four sessions. Our finding suggests that this BDNF polymorphism may not only influence complex performance during motor learning but is already associated with activation differences during rather simple motor tasks. The higher BOLD signal observed in Non-ValVal subjects suggests the presence of cumulative effects of the polymorphism on the motor system, and may reflect compensatory functional activation mediating equal behavioral performance between groups.
Collapse
Affiliation(s)
- Lizbeth Cárdenas-Morales
- Department of Psychiatry, University of Ulm, Ulm, Germany
- Max Planck Institute for Neurological Research, Cologne, Germany
- Neurological Department, University of Cologne, Cologne, Germany
| | - Georg Grön
- Department of Psychiatry, University of Ulm, Ulm, Germany
| | - Eun-Jin Sim
- Department of Psychiatry, University of Ulm, Ulm, Germany
| | - Julia C. Stingl
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, University of Ulm, Ulm, Germany
- Research Department, Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - Thomas Kammer
- Department of Psychiatry, University of Ulm, Ulm, Germany
- * E-mail:
| |
Collapse
|
30
|
Mueller SC, Cornwell BR, Grillon C, Macintyre J, Gorodetsky E, Goldman D, Pine DS, Ernst M. Evidence of MAOA genotype involvement in spatial ability in males. Behav Brain Res 2014; 267:106-10. [PMID: 24671068 DOI: 10.1016/j.bbr.2014.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/13/2014] [Accepted: 03/15/2014] [Indexed: 10/25/2022]
Abstract
Although the monoamine oxidase-A (MAOA) gene has been linked to spatial learning and memory in animal models, convincing evidence in humans is lacking. Performance on an ecologically-valid, virtual computer-based equivalent of the Morris Water Maze task was compared between 28 healthy males with the low MAOA transcriptional activity and 41 healthy age- and IQ-matched males with the high MAOA transcriptional activity. The results revealed consistently better performance (reduced heading error, shorter path length, and reduced failed trials) for the high MAOA activity individuals relative to the low activity individuals. By comparison, groups did not differ on pre-task variables or strategic measures such as first-move latency. The results provide novel evidence of MAOA gene involvement in human spatial navigation using a virtual analogue of the Morris Water Maze task.
Collapse
Affiliation(s)
- Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, 9000 Ghent, Belgium; Section on Developmental and Affective Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | - Christian Grillon
- Section Neurobiology of Fear & Anxiety, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica Macintyre
- Section on Developmental and Affective Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elena Gorodetsky
- Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Goldman
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel S Pine
- Section on Developmental and Affective Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Monique Ernst
- Section on Developmental and Affective Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
31
|
Colelli V, Campus P, Conversi D, Orsini C, Cabib S. Either the dorsal hippocampus or the dorsolateral striatum is selectively involved in consolidation of forced swim-induced immobility depending on genetic background. Neurobiol Learn Mem 2014; 111:49-55. [PMID: 24667495 DOI: 10.1016/j.nlm.2014.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/20/2014] [Accepted: 03/07/2014] [Indexed: 02/02/2023]
Abstract
Healthy subjects differ in the memory system they engage to learn dual-solution tasks. Both genotype and stress experience could contribute to this phenotypic variability. The present experiments tested whether the hippocampus and the dorsal striatum, the core nodes of two different memory systems, are differently involved in 24 h retention of a stress-associated memory in two genetically unrelated inbred strains of mice. Mice from both the C57BL/6J and the DBA/2J inbred strains showed progressive increase of immobility during 10 min exposure to forced swim (FS) and retrieved the acquired levels of immobility when tested 24h later. The pattern of c-fos immunostaining promoted by FS revealed activation of a large number of brain areas in both strains, including CA1 and CA3 fields of the hippocampus. However, only DBA/2J mice showed activation of the dorsolateral striatum (DLS). In addition, FS induced a positive correlation between c-fos expression in the amygdala and CA1 and CA3 in C57BL/6J mice whereas it induced a positive correlation between c-fos expression in the amygdala and DLS in DBA/2J mice. Finally, temporary post-training inactivation of the dorsal hippocampus, by local infusion of lidocaine, prevented 24h retention of immobility in C57BL/6J mice only, whereas inactivation of the DLS prevented retention in DBA/2J mice only. These findings support the view that genetic factors can determine whether the dorsal hippocampus or the DLS are selectively engaged to consolidate stress-related memory.
Collapse
Affiliation(s)
- V Colelli
- Dept. Psicologia, Center D.Bovet (CRIN), 'Sapienza' University of Rome, via dei Marsi 78, I-00185 Rome, Italy.
| | - P Campus
- Dept. Psicologia, Center D.Bovet (CRIN), 'Sapienza' University of Rome, via dei Marsi 78, I-00185 Rome, Italy.
| | - D Conversi
- Dept. Psicologia, Center D.Bovet (CRIN), 'Sapienza' University of Rome, via dei Marsi 78, I-00185 Rome, Italy; Fondazione Santa Lucia I.R.C.C.S., Via del Fosso di Fiorano 64, I-00143 Rome, Italy.
| | - C Orsini
- Dept. Psicologia, Center D.Bovet (CRIN), 'Sapienza' University of Rome, via dei Marsi 78, I-00185 Rome, Italy; Fondazione Santa Lucia I.R.C.C.S., Via del Fosso di Fiorano 64, I-00143 Rome, Italy.
| | - S Cabib
- Dept. Psicologia, Center D.Bovet (CRIN), 'Sapienza' University of Rome, via dei Marsi 78, I-00185 Rome, Italy; Fondazione Santa Lucia I.R.C.C.S., Via del Fosso di Fiorano 64, I-00143 Rome, Italy.
| |
Collapse
|
32
|
Hernaus D, van Winkel R, Gronenschild E, Habets P, Kenis G, Marcelis M, van Os J, Myin-Germeys I, Collip D. Brain-derived neurotrophic factor/FK506-binding protein 5 genotype by childhood trauma interactions do not impact on hippocampal volume and cognitive performance. PLoS One 2014; 9:e92722. [PMID: 24658422 PMCID: PMC3962453 DOI: 10.1371/journal.pone.0092722] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/25/2014] [Indexed: 01/19/2023] Open
Abstract
In the development of psychotic symptoms, environmental and genetic factors may both play a role. The reported association between childhood trauma and psychotic symptoms could therefore be moderated by single nucleotide polymorphisms (SNPs) associated with the stress response, such as FK506-binding protein 5 (FKBP5) and brain-derived neurotrophic factor (BDNF). Recent studies investigating childhood trauma by SNP interactions have inconsistently found the hippocampus to be a potential target underlying these interactions. Therefore, more detailed modelling of these effects, using appropriate covariates, is required. We examined whether BDNF/FKBP5 and childhood trauma interactions affected two proxies of hippocampal integrity: (i) hippocampal volume and (ii) cognitive performance on a block design (BD) and delayed auditory verbal task (AVLT). We also investigated whether the putative interaction was different for patients with a psychotic disorder (n = 89) compared to their non-psychotic siblings (n = 95), in order to elicit possible group-specific protective/vulnerability effects. SNPs were rs9296158, rs4713916, rs992105, rs3800373 (FKBP5) and rs6265 (BDNF). In the combined sample, no BDNF/FKBP5 by childhood trauma interactions were apparent for either outcome, and BDNF/FKBP5 by childhood trauma interactions were not different for patients and siblings. The omission of drug use and alcohol consumption sometimes yielded false positives, greatly affected explained error and influenced p-values. The consistent absence of any significant BDNF/FKBP5 by childhood trauma interactions on assessments of hippocampal integrity suggests that the effect of these interactions on psychotic symptoms is not mediated by hippocampal integrity. The importance of appropriate statistical designs and inclusion of relevant covariates should be carefully considered.
Collapse
Affiliation(s)
- Dennis Hernaus
- Department of Psychiatry and Psychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and NeuroScience MHeNS Maastricht University, Maastricht, The Netherlands
| | - Ruud van Winkel
- Department of Psychiatry and Psychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and NeuroScience MHeNS Maastricht University, Maastricht, The Netherlands
- University Psychiatric Centre Catholic University Leuven, Kortenberg, Belgium
| | - Ed Gronenschild
- Department of Psychiatry and Psychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and NeuroScience MHeNS Maastricht University, Maastricht, The Netherlands
| | - Petra Habets
- Department of Psychiatry and Psychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and NeuroScience MHeNS Maastricht University, Maastricht, The Netherlands
| | - Gunter Kenis
- Department of Psychiatry and Psychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and NeuroScience MHeNS Maastricht University, Maastricht, The Netherlands
| | - Machteld Marcelis
- Department of Psychiatry and Psychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and NeuroScience MHeNS Maastricht University, Maastricht, The Netherlands
| | - Jim van Os
- Department of Psychiatry and Psychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and NeuroScience MHeNS Maastricht University, Maastricht, The Netherlands
- King's College London, King's Health Partners, Department of Psychosis Studies, Institute of Psychiatry, London, United Kingdom
| | - Inez Myin-Germeys
- Department of Psychiatry and Psychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and NeuroScience MHeNS Maastricht University, Maastricht, The Netherlands
| | - Dina Collip
- Department of Psychiatry and Psychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and NeuroScience MHeNS Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
33
|
Cruz-Fuentes CS, Benjet C, Martínez-Levy GA, Pérez-Molina A, Briones-Velasco M, Suárez-González J. BDNF Met66 modulates the cumulative effect of psychosocial childhood adversities on major depression in adolescents. Brain Behav 2014; 4:290-7. [PMID: 24683520 PMCID: PMC3967543 DOI: 10.1002/brb3.220] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 12/13/2013] [Accepted: 12/23/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The interplay among lifetime adversities and the genetic background has been previously examined on a variety of measures of depression; however, only few studies have focused on major depression disorder (MDD) in adolescence. METHODS Using clinical data and DNA samples from mouthwash gathered from an epidemiological study on the prevalence of mental disorders in youths between 12 and 17 years old, we tested the statistical interaction between a set of psychosocial adversities experienced during childhood (CAs) with two common polymorphisms in the brain-derived neurotrophic factor (BDNF) (Val66Met) and SLC6A4 (L/S) genes on the probability of suffering MDD in adolescence. RESULTS Genotype or allele frequencies for both polymorphisms were similar between groups of comparison (MDD N = 246; controls N = 270). The CAs factors: Abuse, neglect, and family dysfunctions; parental maladjustment, parental death, and to have experienced a life-threatening physical illness were predictors of clinical depression in adolescents. Remarkably, the cumulative number of psychosocial adversities was distinctly associated with an increase in the prevalence of depression but only in those Val/Val BDNF individuals; while the possession of at least a copy of the BDNF Met allele (i.e., Met +) was statistically linked with a "refractory" or resilient phenotype to the noticeable influence of CAs. CONCLUSION Liability or resilience to develop MDD in adolescence is dependent of a complex interplay between particular environmental exposures and a set of plasticity genes including BDNF. A better understanding of these factors is important for developing better prevention and early intervention measures.
Collapse
Affiliation(s)
- Carlos S Cruz-Fuentes
- Psychiatric Genetics Department, Clinical Research Branch, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz" Mexico City, México
| | - Corina Benjet
- Epidemiology and Psychosocial Research Division, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz" Mexico City, México
| | - Gabriela A Martínez-Levy
- Psychiatric Genetics Department, Clinical Research Branch, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz" Mexico City, México
| | - Amado Pérez-Molina
- Psychiatric Genetics Department, Clinical Research Branch, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz" Mexico City, México
| | - Magdalena Briones-Velasco
- Psychiatric Genetics Department, Clinical Research Branch, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz" Mexico City, México
| | - Jesús Suárez-González
- Psychiatric Genetics Department, Clinical Research Branch, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñíz" Mexico City, México
| |
Collapse
|
34
|
Chaieb L, Antal A, Ambrus GG, Paulus W. Brain-derived neurotrophic factor: its impact upon neuroplasticity and neuroplasticity inducing transcranial brain stimulation protocols. Neurogenetics 2014; 15:1-11. [DOI: 10.1007/s10048-014-0393-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/07/2014] [Indexed: 01/05/2023]
|
35
|
Effects of the BDNF Val66Met polymorphism and met allele load on declarative memory related neural networks. PLoS One 2013; 8:e74133. [PMID: 24244264 PMCID: PMC3823923 DOI: 10.1371/journal.pone.0074133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/28/2013] [Indexed: 11/19/2022] Open
Abstract
It has been suggested that the BDNF Val66Met polymorphism modulates episodic memory performance via effects on hippocampal neural circuitry. However, fMRI studies have yielded inconsistent results in this respect. Moreover, very few studies have examined the effect of met allele load on activation of memory circuitry. In the present study, we carried out a comprehensive analysis of the effects of the BDNF polymorphism on brain responses during episodic memory encoding and retrieval, including an investigation of the effect of met allele load on memory related activation in the medial temporal lobe. In contrast to previous studies, we found no evidence for an effect of BDNF genotype or met load during episodic memory encoding. Met allele carriers showed increased activation during successful retrieval in right hippocampus but this was contrast-specific and unaffected by met allele load. These results suggest that the BDNF Val66Met polymorphism does not, as previously claimed, exert an observable effect on neural systems underlying encoding of new information into episodic memory but may exert a subtle effect on the efficiency with which such information can be retrieved.
Collapse
|
36
|
Gardner RS, Uttaro MR, Fleming SE, Suarez DF, Ascoli GA, Dumas TC. A secondary working memory challenge preserves primary place strategies despite overtraining. Learn Mem 2013; 20:648-56. [PMID: 24136182 DOI: 10.1101/lm.031336.113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Learning by repetition engages distinct cognitive strategies whose contributions are adjusted with experience. Early in learning, performance relies upon flexible, attentive strategies. With extended practice, inflexible, automatic strategies emerge. This transition is thought fundamental to habit formation and applies to human and animal cognition. In the context of spatial navigation, place strategies are flexible, typically employed early in training, and rely on the spatial arrangement of landmarks to locate a goal. Response strategies are inflexible, become dominant after overtraining, and utilize fixed motor sequences. Although these strategies can operate independently, they have also been shown to interact. However, since previous work has focused on single-choice learning, if and how these strategies interact across sequential choices remains unclear. To test strategy interactions across sequential choices, we utilized various two-choice spatial navigation tasks administered on the Opposing Ts maze, an apparatus for rodents that permits experimental control over strategy recruitment. We found that when a second choice required spatial working memory, the transition to response navigation on the first choice was blocked. Control experiments specified this effect to the cognitive aspects of the secondary task. In addition, response navigation, once established on a single choice, was not reversed by subsequent introduction of a secondary choice reliant on spatial working memory. These results demonstrate that performance strategies interact across choices, highlighting the sensitivity of strategy use to the cognitive demands of subsequent actions, an influence from which overtrained rigid actions may be protected.
Collapse
Affiliation(s)
- Robert S Gardner
- Molecular Neuroscience Department, George Mason University, Fairfax, Virginia 22030, USA
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Here, we investigate the genetic basis of human memory in healthy individuals and the potential role of two polymorphisms, previously implicated in memory function. We have explored aspects of retrospective and prospective memory including semantic, short term, working and long-term memory in conjunction with brain derived neurotrophic factor (BDNF) and tumor necrosis factor-alpha (TNF-α). The memory scores for healthy individuals in the population were obtained for each memory type and the population was genotyped via restriction fragment length polymorphism for the BDNF rs6265 (Val66Met) SNP and via pyrosequencing for the TNF-α rs113325588 SNP. Using univariate ANOVA, a significant association of the BDNF polymorphism with visual and spatial memory retention and a significant association of the TNF-α polymorphism was observed with spatial memory retention. In addition, a significant interactive effect between BDNF and TNF-α polymorphisms was observed in spatial memory retention. In practice visual memory involves spatial information and the two memory systems work together, however our data demonstrate that individuals with the Val/Val BDNF genotype have poorer visual memory but higher spatial memory retention, indicating a level of interaction between TNF-α and BDNF in spatial memory retention. This is the first study to use genetic analysis to determine the interaction between BDNF and TNF-α in relation to memory in normal adults and provides important information regarding the effect of genetic determinants and gene interactions on human memory.
Collapse
|
38
|
Schuck NW, Doeller CF, Schjeide BMM, Schröder J, Frensch PA, Bertram L, Li SC. Aging and KIBRA/WWC1 genotype affect spatial memory processes in a virtual navigation task. Hippocampus 2013; 23:919-30. [DOI: 10.1002/hipo.22148] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Nicolas W. Schuck
- Max Planck Institute for Human Development; Center for Lifespan Psychology; 14195 Berlin Germany
- Department of Psychology; Humboldt-Universität zu Berlin; 10099 Berlin Germany
| | - Christian F. Doeller
- Donders Institute for Brain, Cognition and Behaviour; Radboud University Nijmegen; 6525 Nijmegen The Netherlands
| | - Brit-Maren M. Schjeide
- Department of Vertebrate Genomics; Max Planck Institute for Molecular Genetics, Neuropsychiatric Genetics Group; 14195 Berlin Germany
| | - Julia Schröder
- Department of Vertebrate Genomics; Max Planck Institute for Molecular Genetics, Neuropsychiatric Genetics Group; 14195 Berlin Germany
- Evangelisches Geriatriezentrum Berlin; Charité - Universitätsmedizin Berlin; 10117 Berlin Germany
| | - Peter A. Frensch
- Department of Psychology; Humboldt-Universität zu Berlin; 10099 Berlin Germany
| | - Lars Bertram
- Department of Vertebrate Genomics; Max Planck Institute for Molecular Genetics, Neuropsychiatric Genetics Group; 14195 Berlin Germany
| | - Shu-Chen Li
- Max Planck Institute for Human Development; Center for Lifespan Psychology; 14195 Berlin Germany
- Department of Psychology; TU Dresden, Section of Lifespan Developmental Neuroscience; 01062 Dresden Germany
| |
Collapse
|
39
|
Senescent-induced dysregulation of cAMP/CREB signaling and correlations with cognitive decline. Brain Res 2013; 1516:93-109. [PMID: 23623816 DOI: 10.1016/j.brainres.2013.04.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 04/12/2013] [Accepted: 04/13/2013] [Indexed: 11/20/2022]
Abstract
It is well known that alongside senescence there is a gradual decline in cognitive ability, most noticeably certain kinds of memory such as working, episodic, spatial, and long term memory. However, until recently, not much has been known regarding the specific mechanisms responsible for the decline in cognitive ability with age. Over the past decades, researchers have become more interested in cAMP signaling, and its downstream transcription factor cAMP response element binding protein (CREB) in the context of senescence. However, there is still a lack of understanding on what ultimately causes the cognitive deficits observed with senescence. This review will focus on the changes in intracellular signaling in the brain, more specifically, alterations in cAMP/CREB signaling in aging. In addition, the downstream effects of altered cAMP signaling on cognitive ability with age will be further discussed. Overall, understanding the senescent-related changes that occur in cAMP/CREB signaling could be important for the development of novel drug targets for both healthy aging, and pathological aging such as Alzheimer's disease.
Collapse
|
40
|
Konishi K, Bohbot VD. Spatial navigational strategies correlate with gray matter in the hippocampus of healthy older adults tested in a virtual maze. Front Aging Neurosci 2013; 5:1. [PMID: 23430962 PMCID: PMC3576603 DOI: 10.3389/fnagi.2013.00001] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 01/07/2013] [Indexed: 01/13/2023] Open
Abstract
Healthy young adults use different strategies when navigating in a virtual maze. Spatial strategies involve using environmental landmarks while response strategies involve executing a series of movements from specific stimuli. Neuroimaging studies previously confirmed that people who use spatial strategies show increased activity and gray matter in the hippocampus, while those who use response strategies show increased activity and gray matter in caudate nucleus (Iaria et al., 2003; Bohbot et al., 2007). A growing number of studies report that cognitive decline that occurs with normal aging is correlated with a decrease in volume of the hippocampus. Here, we used voxel-based morphometry (VBM) to examine whether spatial strategies in aging are correlated with greater gray matter in the hippocampus, as found in our previous study with healthy young participants. Forty-five healthy older adults were tested on a virtual navigation task that allows spatial and response strategies. All participants learn the task to criterion after which a special “probe” trial that assesses spatial and response strategies is given. Results show that spontaneous spatial memory strategies, and not performance on the navigation task, positively correlate with gray matter in the hippocampus. Since numerous studies have shown that a decrease in the volume of the hippocampus correlates with cognitive deficits during normal aging and increases the risks of ensuing dementia, the current results suggest that older people who use their spatial memory strategies in their everyday lives may have increased gray matter in the hippocampus and enhance their probability of healthy and successful aging.
Collapse
Affiliation(s)
- Kyoko Konishi
- Department of Psychiatry, Douglas Institute, McGill University Verdun, QC, Canada
| | | |
Collapse
|
41
|
Dodds CM, Henson RN, Miller SR, Nathan PJ. Overestimation of the effects of the BDNF val66met polymorphism on episodic memory-related hippocampal function: a critique of a recent meta-analysis. Neurosci Biobehav Rev 2013; 37:739-41. [PMID: 23348002 DOI: 10.1016/j.neubiorev.2013.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 11/16/2022]
Affiliation(s)
- Chris M Dodds
- Experimental Medicine, GlaxoSmithKline Pharmaceuticals, Clinical Unit Cambridge, UK.
| | | | | | | |
Collapse
|
42
|
Kauppi K, Nilsson LG, Adolfsson R, Lundquist A, Eriksson E, Nyberg L. Decreased medial temporal lobe activation in BDNF (66)Met allele carriers during memory encoding. Neuropsychologia 2012; 51:2462-8. [PMID: 23211991 DOI: 10.1016/j.neuropsychologia.2012.11.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/12/2012] [Accepted: 11/17/2012] [Indexed: 11/29/2022]
Abstract
The Met allele of the Brain-derived neurotrophic factor (BDNF) Val(66)Met polymorphism has been associated with impaired activity-dependent secretion of BDNF protein and decreased memory performance. Results from imaging studies relating Val(66)Met to brain activation during memory processing have been inconsistent, with reports of both increased and decreased activation in the Medial Temporal Lobe (MTL) in Met carriers relative to Val homozygotes. Here, we extensively studied BDNF Val(66)Met in relation to brain activation and white matter integrity as well as memory performance in a large imaging (n=194) and behavioral (n=2229) sample, respectively. Functional magnetic resonance imaging (fMRI) was used to investigate MTL activation in healthy participants in the age of 55-75 years during a face-name episodic encoding and retrieval task. White matter integrity was measured using diffusion tensor imaging. BDNF Met allele carriers had significantly decreased activation in the MTL during encoding processes, but not during retrieval processes. In contrast to previous proposals, the effect was not modulated by age and the polymorphism was not related to white matter integrity. Met carriers had lower memory performance than Val homozygotes, but differences were subtle and not significant. In conclusion, the BDNF Met allele has a negative influence on MTL functioning, preferentially during encoding processes, which might translate into impaired episodic memory function.
Collapse
Affiliation(s)
- Karolina Kauppi
- Department of Integrative Medical Biology (Physiology) Umeå University, SE-90187, Umeå, Sweden and Umeå Center for Functional Brain Imaging (UFBI), Umeå, Sweden.
| | | | | | | | | | | |
Collapse
|
43
|
Bohbot VD, McKenzie S, Konishi K, Fouquet C, Kurdi V, Schachar R, Boivin M, Robaey P. Virtual navigation strategies from childhood to senescence: evidence for changes across the life span. Front Aging Neurosci 2012; 4:28. [PMID: 23162463 PMCID: PMC3498879 DOI: 10.3389/fnagi.2012.00028] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 10/09/2012] [Indexed: 11/15/2022] Open
Abstract
This study sought to investigate navigational strategies across the life span, by testing 8-years old children to 80-years old healthy older adults on the 4 on 8 virtual maze (4/8VM). The 4/8VM was previously developed to assess spontaneous navigational strategies, i.e., hippocampal-dependent spatial strategies (navigation by memorizing relationships between landmarks) versus caudate nucleus-dependent response strategies (memorizing a series of left and right turns from a given starting position). With the 4/8VM, we previously demonstrated greater fMRI activity and gray matter in the hippocampus of spatial learners relative to response learners. A sample of 599 healthy participants was tested in the current study. Results showed that 84.4% of children, 46.3% of young adults, and 39.3% of older adults spontaneously used spatial strategies (p < 0.0001). Our results suggest that while children predominantly use spatial strategies, the proportion of participants using spatial strategies decreases across the life span, in favor of response strategies. Factors promoting response strategies include repetition, reward and stress. Since response strategies can result from successful repetition of a behavioral pattern, we propose that the increase in response strategies is a biological adaptive mechanism that allows for the automatization of behavior such as walking in order to free up hippocampal-dependent resources. However, the down-side of this shift from spatial to response strategies occurs if people stop building novel relationships, which occurs with repetition and routine, and thereby stop stimulating their hippocampus. Reduced fMRI activity and gray matter in the hippocampus were shown to correlate with cognitive deficits in normal aging. Therefore, these results have important implications regarding factors involved in healthy and successful aging.
Collapse
Affiliation(s)
- Veronique D. Bohbot
- Department of Psychiatry, Douglas Institute, McGill UniversityVerdun, QC, Canada
| | - Sam McKenzie
- Department of Psychiatry, Douglas Institute, McGill UniversityVerdun, QC, Canada
| | - Kyoko Konishi
- Department of Psychiatry, Douglas Institute, McGill UniversityVerdun, QC, Canada
| | - Celine Fouquet
- Department of Psychiatry, Douglas Institute, McGill UniversityVerdun, QC, Canada
| | - Vanessa Kurdi
- Department of Psychiatry, Douglas Institute, McGill UniversityVerdun, QC, Canada
| | | | - Michel Boivin
- Deptartment of Psychology, Université de LavalQuebec, QC, Canada
| | - Philippe Robaey
- Department of Psychiatry, Ste-Justine Research CenterMontreal, QC, Canada
| |
Collapse
|
44
|
Effect of BDNF val66met polymorphism on declarative memory and its neural substrate: A meta-analysis. Neurosci Biobehav Rev 2012; 36:2165-77. [DOI: 10.1016/j.neubiorev.2012.07.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 03/16/2012] [Accepted: 07/07/2012] [Indexed: 12/27/2022]
|
45
|
Foster TC, Defazio RA, Bizon JL. Characterizing cognitive aging of spatial and contextual memory in animal models. Front Aging Neurosci 2012; 4:12. [PMID: 22988436 PMCID: PMC3439636 DOI: 10.3389/fnagi.2012.00012] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/15/2012] [Indexed: 11/30/2022] Open
Abstract
Episodic memory, especially memory for contextual or spatial information, is particularly vulnerable to age-related decline in humans and animal models of aging. The continuing improvement of virtual environment technology for testing humans signifies that widely used procedures employed in the animal literature for examining spatial memory could be developed for examining age-related cognitive decline in humans. The current review examines cross species considerations for implementing these tasks and translating findings across different levels of analysis. The specificity of brain systems as well as gaps in linking human and animal laboratory models is discussed.
Collapse
Affiliation(s)
- Thomas C Foster
- Department of Neuroscience, Evelyn F. and William L. McKnight Brain Institute, University of Florida Gainesville, FL, USA
| | | | | |
Collapse
|
46
|
Briand LA, Lee FS, Blendy JA, Pierce RC. Enhanced extinction of cocaine seeking in brain-derived neurotrophic factor Val66Met knock-in mice. Eur J Neurosci 2012; 35:932-9. [PMID: 22394056 DOI: 10.1111/j.1460-9568.2012.08021.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Val66Met polymorphism in the brain-derived neurotropic factor (BDNF) gene results in alterations in fear extinction behavior in both human populations and mouse models. However, it is not clear whether this polymorphism plays a similar role in extinction of appetitive behaviors. Therefore, we examined operant learning and extinction of both food and cocaine self-administration behavior in an inbred genetic knock-in mouse strain expressing the variant Bdnf. These mice provide a unique opportunity to relate alterations in aversive and appetitive extinction learning as well as provide insight into how human genetic variation can lead to differences in behavior. BDNF(Met/Met) mice exhibited a severe deficit in operant learning as demonstrated by an inability to learn the food self-administration task. Therefore, extinction experiments were performed comparing wildtype (BDNF(Val/Val) ) animals to mice heterozygous for the Met allele (BDNF(Val/Met) ), which did not differ in food or cocaine self-administration behavior. In contrast to the deficit in fear extinction previously demonstrated in these mice, we found that BDNF(Val/Met) mice exhibited more rapid extinction of cocaine responding compared to wildtype mice. No differences were found between the genotypes in the extinction of food self-administration behavior or the reinstatement of cocaine seeking, indicating that the effect is specific to extinction of cocaine responding. These results suggest that the molecular mechanisms underlying aversive and appetitive extinction are distinct from one another and BDNF may play opposing roles in the two phenomena.
Collapse
Affiliation(s)
- Lisa A Briand
- Department of Pharmacology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
47
|
Abstract
The val(66)met polymorphism on the BDNF gene has been reported to explain individual differences in hippocampal volume and memory-related activity. These findings, however, have not been replicated consistently and no studies to date controlled for the potentially confounding impact of early life stress, such as childhood abuse, and psychiatric status. Using structural and functional MRI, we therefore investigated in 126 depressed and/or anxious patients and 31 healthy control subjects the effects of val(66)met on hippocampal volume and encoding activity of neutral, positive and negative words, while taking into account childhood abuse and psychiatric status. Our results show slightly lower hippocampal volumes in carriers of a met allele (n=54) relative to val/val homozygotes (n=103) (P=0.02, effect size (Cohen's d)=0.37), which appeared to be independent of childhood abuse and psychiatric status. For hippocampal encoding activity, we found a val(66)met-word valence interaction (P=0.02) such that carriers of a met allele showed increased levels of activation in response to negative words relative to activation in the neutral word condition and relative to val/val homozygotes. This, however, was only evident in the absence of childhood abuse, as abused val/val homozygotes showed hippocampal encoding activity for negative words that was comparable to that of carriers of a met allele. Neither psychiatric status nor memory accuracy did account for these associations. In conclusion, BDNF val(66)met has a significant impact on hippocampal volume independently of childhood abuse and psychiatric status. Furthermore, early adverse experiences such as childhood abuse account for individual differences in hippocampal encoding activity of negative stimuli but this effect manifests differently as a function of val(66)met.
Collapse
|