1
|
Zeng Z, Wei L, Zhang H, Chen W, Wang S. The Effect of Dexamethasone on Neuroinflammation and Cerebral Edema in Rats With Traumatic Brain Injury Combined With Seawater Drowning. Cureus 2024; 16:e55309. [PMID: 38559532 PMCID: PMC10981799 DOI: 10.7759/cureus.55309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVE To investigate the effect and mechanism of dexamethasone (DX) on axonal injury after traumatic brain injury (TBI) combined with seawater drowning (SWD) in rats. METHODS To gain an in-depth understanding of TBI + SWD in rats, we established the compound injury model of rats by the Marmarou method and intratracheal pumping of seawater to simulate the pathological conditions. Rats in the DX group received intraperitoneal injections of DX (1 mg/kg) immediately after injury, and rats in the sham group and TBI + SWD group received intraperitoneal injections of the same amount of normal saline. RESULTS Hematoxylin-eosin (HE) showed that DX improved matrix looseness, cell swelling, and nuclear condensation 168 hours after injury. Immunohistochemistry (IHC) staining showed that the protein expression of AQP4 was decreased in the DX group compared with the TBI + SWD group from 12 hours to 168 hours after injury. DX decreased the modified neurological severity score (mNSS) significantly at 24 hours and 168 hours after injury (P < 0.05). At 72 h and 168 h after injury, DX significantly lowered the expressions of IL-8 and TNF-α (P < 0.05). CONCLUSION DX may play a neuroprotective role by reducing cerebral edema and inflammatory response after TBI + SWD injury in rats.
Collapse
Affiliation(s)
- Zihuan Zeng
- Department of Neurosurgery, Fuzhou 900th Hospital, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, CHN
| | - Liangfeng Wei
- Department of Neurosurgery, Fuzhou 900th Hospital, Fujian Medical University, Fuzhou, CHN
| | - Hao Zhang
- Department of Neurosurgery, Fuzhou 900th Hospital, Fujian Medical University, Fuzhou, CHN
| | - Weiqiang Chen
- Department of Neurosurgery, The First Affiliated Hospital, Shantou University Medical College, Shantou, CHN
| | - Shousen Wang
- Department of Neurosurgery, Fuzhou 900th Hospital, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, CHN
| |
Collapse
|
2
|
Zhang Y, Li Z, Wang H, Pei Z, Zhao S. Molecular biomarkers of diffuse axonal injury: recent advances and future perspectives. Expert Rev Mol Diagn 2024; 24:39-47. [PMID: 38183228 DOI: 10.1080/14737159.2024.2303319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
INTRODUCTION Diffuse axonal injury (DAI), with high mortality and morbidity both in children and adults, is one of the most severe pathological consequences of traumatic brain injury. Currently, clinical diagnosis, disease assessment, disability identification, and postmortem diagnosis of DAI is mainly limited by the absent of specific molecular biomarkers. AREAS COVERED In this review, we first introduce the pathophysiology of DAI, summarized the reported biomarkers in previous animal and human studies, and then the molecular biomarkers such as β-Amyloid precursor protein, neurofilaments, S-100β, myelin basic protein, tau protein, neuron-specific enolase, Peripherin and Hemopexin for DAI diagnosis is summarized. Finally, we put forward valuable views on the future research direction of diagnostic biomarkers of DAI. EXPERT OPINION In recent years, the advanced technology has ultimately changed the research of DAI, and the numbers of potential molecular biomarkers was introduced in related studies. We summarized the latest updated information in such studies to provide references for future research and explore the potential pathophysiological mechanism on diffuse axonal injury.
Collapse
Affiliation(s)
- Youyou Zhang
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Linfen People's Hosiptal, the Seventh Clinical Medical College of Shanxi Medical University, Linfen, Shanxi, China
| | - Zhaoyang Li
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Wang
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhiyong Pei
- Linfen People's Hosiptal, the Seventh Clinical Medical College of Shanxi Medical University, Linfen, Shanxi, China
| | - Shuquan Zhao
- Department of Forensic Pathology, Zhongshan School of Medicine Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Shih NC, Kurniawan ND, Cabeen RP, Korobkova L, Wong E, Chui HC, Clark KA, Miller CA, Hawes D, Jones KT, Sepehrband F. Microstructural mapping of dentate gyrus pathology in Alzheimer's disease: A 16.4 Tesla MRI study. Neuroimage Clin 2023; 37:103318. [PMID: 36630864 PMCID: PMC9841366 DOI: 10.1016/j.nicl.2023.103318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
The dentate gyrus (DG) is an integral portion of the hippocampal formation, and it is composed of three layers. Quantitative magnetic resonance (MR) imaging has the capability to map brain tissue microstructural properties which can be exploited to investigate neurodegeneration in Alzheimer's disease (AD). However, assessing subtle pathological changes within layers requires high resolution imaging and histological validation. In this study, we utilized a 16.4 Tesla scanner to acquire ex vivo multi-parameter quantitative MRI measures in human specimens across the layers of the DG. Using quantitative diffusion tensor imaging (DTI) and multi-parameter MR measurements acquired from AD (N = 4) and cognitively normal control (N = 6) tissues, we performed correlation analyses with histological measurements. Here, we found that quantitative MRI measures were significantly correlated with neurofilament and phosphorylated Tau density, suggesting sensitivity to layer-specific changes in the DG of AD tissues.
Collapse
Affiliation(s)
- Nien-Chu Shih
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nyoman D Kurniawan
- Center for Advanced Imaging, The University of Queensland, Brisbane 4072, Australia
| | - Ryan P Cabeen
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Laura Korobkova
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089. USA
| | - Ellen Wong
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Neurology, Rancho Los Amigos National Rehabilitation Center, Downey, CA 90242, USA
| | - Helena C Chui
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kristi A Clark
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Carol A Miller
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Debra Hawes
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Pathology and Laboratory Medicine, Children's Hospital of Los Angeles, Los Angeles, CA 90033, USA
| | - Kymry T Jones
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Farshid Sepehrband
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
4
|
Maffei C, Gilmore N, Snider SB, Foulkes AS, Bodien YG, Yendiki A, Edlow BL. Automated detection of axonal damage along white matter tracts in acute severe traumatic brain injury. Neuroimage Clin 2022; 37:103294. [PMID: 36529035 PMCID: PMC9792957 DOI: 10.1016/j.nicl.2022.103294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
New techniques for individualized assessment of white matter integrity are needed to detect traumatic axonal injury (TAI) and predict outcomes in critically ill patients with acute severe traumatic brain injury (TBI). Diffusion MRI tractography has the potential to quantify white matter microstructure in vivo and has been used to characterize tract-specific changes following TBI. However, tractography is not routinely used in the clinical setting to assess the extent of TAI, in part because focal lesions reduce the robustness of automated methods. Here, we propose a pipeline that combines automated tractography reconstructions of 40 white matter tracts with multivariate analysis of along-tract diffusion metrics to assess the presence of TAI in individual patients with acute severe TBI. We used the Mahalanobis distance to identify abnormal white matter tracts in each of 18 patients with acute severe TBI as compared to 33 healthy subjects. In all patients for which a FreeSurfer anatomical segmentation could be obtained (17 of 18 patients), including 13 with focal lesions, the automated pipeline successfully reconstructed a mean of 37.5 ± 2.1 white matter tracts without the need for manual intervention. A mean of 2.5 ± 2.1 tracts resulted in partial or failed reconstructions and needed to be reinitialized upon visual inspection. The pipeline detected at least one abnormal tract in all patients (mean: 9.1 ± 7.9) and accurately discriminated between patients and controls (AUC: 0.91). The number and neuroanatomic location of abnormal tracts varied across patients and levels of consciousness. The premotor, temporal, and parietal sections of the corpus callosum were the most commonly damaged tracts (in 10, 9, and 8 patients, respectively), consistent with prior histopathological studies of TAI. TAI measures were not associated with concurrent behavioral measures of consciousness. In summary, we provide proof-of-principle evidence that an automated tractography pipeline has translational potential to detect and quantify TAI in individual patients with acute severe TBI.
Collapse
Affiliation(s)
- Chiara Maffei
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Natalie Gilmore
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Samuel B Snider
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrea S Foulkes
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yelena G Bodien
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Brian L Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
5
|
Smith DH, Kochanek PM, Rosi S, Meyer R, Ferland-Beckham C, Prager EM, Ahlers ST, Crawford F. Roadmap for Advancing Pre-Clinical Science in Traumatic Brain Injury. J Neurotrauma 2021; 38:3204-3221. [PMID: 34210174 PMCID: PMC8820284 DOI: 10.1089/neu.2021.0094] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pre-clinical models of disease have long played important roles in the advancement of new treatments. However, in traumatic brain injury (TBI), despite the availability of numerous model systems, translation from bench to bedside remains elusive. Integrating clinical relevance into pre-clinical model development is a critical step toward advancing therapies for TBI patients across the spectrum of injury severity. Pre-clinical models include in vivo and ex vivo animal work-both small and large-and in vitro modeling. The wide range of pre-clinical models reflect substantial attempts to replicate multiple aspects of TBI sequelae in humans. Although these models reveal multiple putative mechanisms underlying TBI pathophysiology, failures to translate these findings into successful clinical trials call into question the clinical relevance and applicability of the models. Here, we address the promises and pitfalls of pre-clinical models with the goal of evolving frameworks that will advance translational TBI research across models, injury types, and the heterogenous etiology of pathology.
Collapse
Affiliation(s)
- Douglas H Smith
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Patrick M Kochanek
- Department of Critical Care Medicine; Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, Rangos Research Center, Pittsburgh, Pennsylvania, USA
| | - Susanna Rosi
- Departments of Physical Therapy Rehabilitation Science, Neurological Surgery, Weill Institute for Neuroscience, University of California San Francisco, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Retsina Meyer
- Cohen Veterans Bioscience, New York, New York, USA.,Delix Therapeutics, Inc, Boston, Massachusetts, USA
| | | | | | - Stephen T Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate Naval Medical Research Center, Silver Spring, Maryland, USA
| | | |
Collapse
|
6
|
Diekfuss JA, Yuan W, Barber Foss KD, Dudley JA, DiCesare CA, Reddington DL, Zhong W, Nissen KS, Shafer JL, Leach JL, Bonnette S, Logan K, Epstein JN, Clark J, Altaye M, Myer GD. The effects of internal jugular vein compression for modulating and preserving white matter following a season of American tackle football: A prospective longitudinal evaluation of differential head impact exposure. J Neurosci Res 2020; 99:423-445. [PMID: 32981154 DOI: 10.1002/jnr.24727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/17/2023]
Abstract
The purpose of this clinical trial was to examine whether internal jugular vein compression (JVC)-using an externally worn neck collar-modulated the relationships between differential head impact exposure levels and pre- to postseason changes in diffusion tensor imaging (DTI)-derived diffusivity and anisotropy metrics of white matter following a season of American tackle football. Male high-school athletes (n = 284) were prospectively assigned to a non-collar group or a collar group. Magnetic resonance imaging data were collected from participants pre- and postseason and head impact exposure was monitored by accelerometers during every practice and game throughout the competitive season. Athletes' accumulated head impact exposure was systematically thresholded based on the frequency of impacts of progressively higher magnitudes (10 g intervals between 20 to 150 g) and modeled with pre- to postseason changes in DTI measures of white matter as a function of JVC neck collar wear. The findings revealed that the JVC neck collar modulated the relationships between greater high-magnitude head impact exposure (110 to 140 g) and longitudinal changes to white matter, with each group showing associations that varied in directionality. Results also revealed that the JVC neck collar group partially preserved longitudinal changes in DTI metrics. Collectively, these data indicate that a JVC neck collar can provide a mechanistic response to the diffusion and anisotropic properties of brain white matter following the highly diverse exposure to repetitive head impacts in American tackle football. Clinicaltrials.gov: NCT# 04068883.
Collapse
Affiliation(s)
- Jed A Diekfuss
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Weihong Yuan
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Departments of Pediatrics and Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kim D Barber Foss
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jonathan A Dudley
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christopher A DiCesare
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Danielle L Reddington
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Wen Zhong
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Departments of Pediatrics and Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Katharine S Nissen
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jessica L Shafer
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James L Leach
- Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Scott Bonnette
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kelsey Logan
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jeffery N Epstein
- Departments of Pediatrics and Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
| | - Joseph Clark
- Departments of Pediatrics and Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mekibib Altaye
- Departments of Pediatrics and Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gregory D Myer
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Departments of Pediatrics and Orthopaedic Surgery, University of Cincinnati, Cincinnati, OH, USA.,The Micheli Center for Sports Injury Prevention, Waltham, MA, USA
| |
Collapse
|
7
|
In Vivo Diffusion Tensor Imaging in Acute and Subacute Phases of Mild Traumatic Brain Injury in Rats. eNeuro 2020; 7:ENEURO.0476-19.2020. [PMID: 32424056 PMCID: PMC7307627 DOI: 10.1523/eneuro.0476-19.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 04/27/2020] [Accepted: 05/11/2020] [Indexed: 12/23/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is the most common form of TBI with 10–25% of the patients experiencing long-lasting symptoms. The potential of diffusion tensor imaging (DTI) for evaluating microstructural damage after TBI is widely recognized, but the interpretation of DTI changes and their relationship with the underlying tissue damage is unclear. We studied how both axonal damage and gliosis contribute to DTI alterations after mTBI. We induced mTBI using the lateral fluid percussion (LFP) injury model in adult male Sprague Dawley rats and scanned them at 3 and 28 d post-mTBI. To characterize the DTI findings in the tissue, we assessed the histology by performing structure tensor (ST)-based analysis and cell counting on myelin-stained and Nissl-stained sections, respectively. In particular, we studied the contribution of two tissue components, myelinated axons and cellularity, to the DTI changes. Fractional anisotropy (FA), mean diffusivity (MD), and axial diffusivity (AD) were decreased in both white and gray matter areas in the acute phase post-mTBI, mainly at the primary lesion site. In the subacute phase, FA and AD were decreased in the white matter, external capsule, corpus callosum, and internal capsule. Our quantitative histologic assessment revealed axonal damage and gliosis throughout the brain in both white and gray matter, consistent with the FA and AD changes. Our findings suggest that the usefulness of in vivo DTI is limited in its detection of secondary damage distal to the primary lesion, while at the lesion site, DTI detected progressive microstructural damage in the white and gray matter after mTBI.
Collapse
|
8
|
Soni N, Vegh V, To XV, Mohamed AZ, Borges K, Nasrallah FA. Combined Diffusion Tensor Imaging and Quantitative Susceptibility Mapping Discern Discrete Facets of White Matter Pathology Post-injury in the Rodent Brain. Front Neurol 2020; 11:153. [PMID: 32210907 PMCID: PMC7067826 DOI: 10.3389/fneur.2020.00153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Early loss of white matter microstructure integrity is a significant cause of long-term neurological disorders following traumatic brain injury (TBI). White matter abnormalities typically involve axonal loss and demyelination. In-vivo imaging tools to detect and differentiate such microstructural changes are not well-explored. This work utilizes the conjoint potential offered by advanced magnetic resonance imaging techniques, including quantitative susceptibility mapping (QSM) and diffusion tensor imaging (DTI), to discern the underlying white matter pathology at specific time points (5 h, 1, 3, 7, 14, and 30 days) post-injury in the controlled cortical impact mouse model. A total of 42 animals were randomized into six TBI groups (n = 6 per group) and one sham group (n = 6). Histopathology was performed to validate in-vivo findings by performing myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) immunostaining for the assessment of changes to myelin and astrocytes. After 5 h of injury radial diffusivity (RD) was increased in white matter without a significant change in axial diffusivity (AxD) and susceptibility values. After 1 day post-injury RD was decreased. AxD and susceptibility changes were seen after 3 days post-injury. Susceptibility increases in white matter were observed in both ipsilateral and contralateral regions and persisted for 30 days. In histology, an increase in GFAP immunoreactivity was observed after 3 days post-injury and remained high for 30 days in both ipsilateral and contralateral white matter regions. A loss in MBP signal was noted after 3 days post-injury that continued up to 30 days. In conclusion, these results demonstrate the complementary ability of DTI and QSM in discerning the micro-pathological processes triggered following TBI. While DTI revealed acute and focal white matter changes, QSM mirrored the temporal demyelination in the white matter tracts and diffuse regions at the chronic state.
Collapse
Affiliation(s)
- Neha Soni
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Viktor Vegh
- Center for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Xuan Vinh To
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Abdalla Z Mohamed
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Karin Borges
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Fatima A Nasrallah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Brett BL, Wu YC, Mustafi SM, Saykin AJ, Koch KM, Nencka AS, Giza CC, Goldman J, Guskiewicz KM, Mihalik JP, Duma SM, Broglio SP, McAllister TW, McCrea MA, Meier TB. The Association Between Persistent White-Matter Abnormalities and Repeat Injury After Sport-Related Concussion. Front Neurol 2020; 10:1345. [PMID: 32038451 PMCID: PMC6990104 DOI: 10.3389/fneur.2019.01345] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/05/2019] [Indexed: 12/04/2022] Open
Abstract
Objective: A recent systematic review determined that the physiological effects of concussion may persist beyond clinical recovery. Preclinical models suggest that ongoing physiological effects are accompanied by increased cerebral vulnerability that is associated with risk for subsequent, more severe injury. This study examined the association between signal alterations on diffusion tensor imaging following clinical recovery of sport-related concussion in athletes with and without a subsequent second concussion. Methods: Average mean diffusivity (MD) was calculated in a region of interest (ROI) in which concussed athletes (n = 82) showed significantly elevated MD acutely after injury (<48 h), at an asymptomatic time point, 7 days post-return to play (RTP), and 6 months relative to controls (n = 69). The relationship between MD in the identified ROI and likelihood of sustaining a subsequent concussion over a 1-year period was examined with a binary logistic regression (re-injured, yes/no). Results: Eleven of 82 concussed athletes (13.4%) sustained a second concussion within 12 months of initial injury. Mean MD at 7 days post-RTP was significantly higher in those athletes who went on to sustain a repeat concussion within 1 year of initial injury than those who did not (p = 0.048; d = 0.75). In this underpowered sample, the relationship between MD at 7 days post-RTP and likelihood of sustaining a secondary injury approached significance [χ2 (1) = 4.17, p = 0.057; B = 0.03, SE = 0.017; OR = 1.03, CI = 0.99, 1.07]. Conclusions: These preliminary findings raise the hypothesis that persistent signal abnormalities in diffusion imaging metrics at RTP following concussion may be predictive of a repeat concussion. This may reflect a window of cerebral vulnerability or increased susceptibility following concussion, though understanding the clinical significance of these findings requires further study.
Collapse
Affiliation(s)
- Benjamin L. Brett
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sourajit M. Mustafi
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kevin M. Koch
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Andrew S. Nencka
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christopher C. Giza
- Department of Neurosurgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Joshua Goldman
- Division of Sports Medicine, Departments of Family Medicine and Orthopedics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kevin M. Guskiewicz
- Department of Exercise and Sport Science, Matthew Gfeller Sport-Related Traumatic Brain Injury Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jason P. Mihalik
- Department of Exercise and Sport Science, Matthew Gfeller Sport-Related Traumatic Brain Injury Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stefan M. Duma
- School of Biomedical Engineering and Sciences, Wake-Forest and Virginia Tech University, Blacksburg, VA, United States
| | - Steven P. Broglio
- Michigan Concussion Center, School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | - Thomas W. McAllister
- Department of Psychiatry, Indiana University School of Medicine, Bloomington, IN, United States
| | - Michael A. McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Timothy B. Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
10
|
Mohamed AZ, Corrigan F, Collins-Praino LE, Plummer SL, Soni N, Nasrallah FA. Evaluating spatiotemporal microstructural alterations following diffuse traumatic brain injury. Neuroimage Clin 2019; 25:102136. [PMID: 31865019 PMCID: PMC6931220 DOI: 10.1016/j.nicl.2019.102136] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Diffuse traumatic brain injury (TBI) is known to lead to microstructural changes within both white and grey matter detected in vivo with diffusion tensor imaging (DTI). Numerous studies have shown alterations in fractional anisotropy (FA) and mean diffusivity (MD) within prominent white matter tracts, but few have linked these to changes within the grey matter with confirmation via histological assessment. This is especially important as alterations in the grey matter may be predictive of long-term functional deficits. METHODS A total of 33 male Sprague Dawley rats underwent severe closed-head TBI. Eight animals underwent tensor-based morphometry (TBM) and DTI at baseline (pre-TBI), 24 hours (24 h), 7, 14, and 30 days post-TBI. Immunohistochemical analysis for the detection of ionised calcium-binding adaptor molecule 1 (IBA1) to assess microglia number and percentage of activated cells, β-amyloid precursor protein (APP) as a marker of axonal injury, and myelin basic protein (MBP) to investigate myelination was performed at each time-point. RESULTS DTI showed significant alterations in FA and RD in numerous white matter tracts including the corpus callosum, internal and external capsule, and optic tract and in the grey-matter in the cortex, thalamus, and hippocampus, with the most significant effects observed at 14 D post-TBI. TBM confirmed volumetric changes within the hippocampus and thalamus. Changes in DTI were in line with significant axonal injury noted at 24 h post-injury via immunohistochemical analysis of APP, with widespread microglial activation seen within prominent white matter tracts and the grey matter, which persisted to 30 D within the hippocampus and thalamus. Microstructural alterations in MBP+ve fibres were also noted within the hippocampus and thalamus, as well as the cortex. CONCLUSION This study confirms the widespread effects of diffuse TBI on white matter tracts which could be detected via DTI and extends these findings to key grey matter regions, with a comprehensive investigation of the whole brain. In particular, the hippocampus and thalamus appear to be vulnerable to ongoing pathology post-TBI, with DTI able to detect these alterations supporting the clinical utility in evaluating these regions post-TBI.
Collapse
Affiliation(s)
- Abdalla Z Mohamed
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, Saint Lucia, Brisbane, QLD 4072, Australia
| | - Frances Corrigan
- Head Injury Laboratory, Division of Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Lyndsey E Collins-Praino
- Cognition, Aging and Neurodegenerative Disease Laboratory (CANDL), Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Stephanie L Plummer
- Translational Neuropathology Laboratory, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Neha Soni
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, Saint Lucia, Brisbane, QLD 4072, Australia
| | - Fatima A Nasrallah
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, Saint Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
11
|
Yamagata B, Ueda R, Tasato K, Aoki Y, Hotta S, Hirano J, Takamiya A, Nakaaki S, Tabuchi H, Mimura M. Widespread White Matter Aberrations Are Associated with Phonemic Verbal Fluency Impairment in Chronic Traumatic Brain Injury. J Neurotrauma 2019; 37:975-981. [PMID: 31631743 DOI: 10.1089/neu.2019.6751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Microstructural white matter (WM) disruption and resulting abnormal structural connectivity form a potential underlying pathology in traumatic brain injury (TBI). Herein, to determine the potential mechanism of cognitive deterioration in TBI, we examined the association of damage to specific WM tracts with cognitive function in TBI patients. We recruited 18 individuals with mild-to-moderate/severe TBI in the chronic phase and 17 age-matched controls. We determined the pattern of WM aberrations in TBI using tract-based spatial statistics (TBSS) and then examined the relationship between cognitive impairment and WM damage using the threshold-free cluster enhancement correction in TBSS. TBSS analysis showed that TBI patients exhibited WM aberrations in a wide range of brain regions. In the majority of these regions, lower fractional anisotropy (FA) largely overlapped with increased radial diffusivity, but not with axial diffusivity. Further, voxel-wise correction in TBSS demonstrated that higher FA values were associated with better performance in the phonemic verbal fluency task (VFT) in widespread WM regions, but not with the semantic VFT. Despite variation in the magnitude and location of brain injury between individual cases, chronic TBI patients exhibited widespread WM aberrations. We confirmed the findings of previous studies that WM integrity is lower across the spectrum of TBI severity in chronic subjects compared to controls. Further, phonemic VFT may be a more sensitive cognitive measure of executive dysfunction associated with WM aberrations in TBI compared with semantic VFT.
Collapse
Affiliation(s)
- Bun Yamagata
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Ryo Ueda
- Department of Radiological Sciences, Graduate School of Health Sciences, Tokyo Metropolitan University, Tokyo, Japan.,Office of Radiation Technology, Keio University Hospital, Tokyo, Japan
| | - Kumiko Tasato
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yuta Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Shogo Hotta
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Jinichi Hirano
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Akihiro Takamiya
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shutaro Nakaaki
- Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hajime Tabuchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Relative Head Impact Exposure and Brain White Matter Alterations After a Single Season of Competitive Football: A Pilot Comparison of Youth Versus High School Football. Clin J Sport Med 2019; 29:442-450. [PMID: 31688173 DOI: 10.1097/jsm.0000000000000753] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Youth athletes are believed to be more susceptible to white matter (WM) degradation resulting from head impact exposure relative to high school (HS) athletes; this hypothesis has not been objectively tested. The purpose of this study was to determine preseason to postseason changes in WM integrity from repetitive head impacts for youth football (YFB) players compared with HS football players during a competitive football season. DESIGN Prospective cohort. SETTING One season of YFB (grades 7 and 8) and varsity HS football (grades 10-12). PATIENTS OR OTHER PARTICIPANTS Twelve YFB (13.08 ± 0.64 years) and 21 HS (17.5 ± 0.78 years) athletes. INTERVENTIONS Participants completed 2 magnetic resonance imaging sessions: preseason and postseason. Head impact exposure was recorded during practice and games using a helmet-mounted accelerometer. MAIN OUTCOME MEASURES Tract-based spatial statistics were used to evaluate group differences in preseason to postseason changes in diffusion tensor imaging, including fractional anisotropy and mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). RESULTS The HS group exhibited significant preseason to postseason reductions in MD, AD, and RD (P < 0.05, corrected) in widespread WM areas. Significant WM reductions for the YFB group were only observed for AD (P < 0.05, corrected), but was more limited in extent compared with HS. CONCLUSIONS Significant preseason to postseason AD reduction was found in both YFB and HS groups after one season of competitive play. Our results did not confirm recent speculation that younger children are more susceptible to the deleterious effects of repetitive head impacts compared with their older counterparts.
Collapse
|
13
|
Pieri V, Trovatelli M, Cadioli M, Zani DD, Brizzola S, Ravasio G, Acocella F, Di Giancamillo M, Malfassi L, Dolera M, Riva M, Bello L, Falini A, Castellano A. In vivo Diffusion Tensor Magnetic Resonance Tractography of the Sheep Brain: An Atlas of the Ovine White Matter Fiber Bundles. Front Vet Sci 2019; 6:345. [PMID: 31681805 PMCID: PMC6805705 DOI: 10.3389/fvets.2019.00345] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/24/2019] [Indexed: 11/30/2022] Open
Abstract
Diffusion Tensor Magnetic Resonance Imaging (DTI) allows to decode the mobility of water molecules in cerebral tissue, which is highly directional along myelinated fibers. By integrating the direction of highest water diffusion through the tissue, DTI Tractography enables a non-invasive dissection of brain fiber bundles. As such, this technique is a unique probe for in vivo characterization of white matter architecture. Unraveling the principal brain texture features of preclinical models that are advantageously exploited in experimental neuroscience is crucial to correctly evaluate investigational findings and to correlate them with real clinical scenarios. Although structurally similar to the human brain, the gyrencephalic ovine model has not yet been characterized by a systematic DTI study. Here we present the first in vivo sheep (ovis aries) tractography atlas, where the course of the main white matter fiber bundles of the ovine brain has been reconstructed. In the context of the EU's Horizon EDEN2020 project, in vivo brain MRI protocol for ovine animal models was optimized on a 1.5T scanner. High resolution conventional MRI scans and DTI sequences (b-value = 1,000 s/mm2, 15 directions) were acquired on ten anesthetized sheep o. aries, in order to define the diffusion features of normal adult ovine brain tissue. Topography of the ovine cortex was studied and DTI maps were derived, to perform DTI tractography reconstruction of the corticospinal tract, corpus callosum, fornix, visual pathway, and occipitofrontal fascicle, bilaterally for all the animals. Binary masks of the tracts were then coregistered and reported in the space of a standard stereotaxic ovine reference system, to demonstrate the consistency of the fiber bundles and the minimal inter-subject variability in a unique tractography atlas. Our results determine the feasibility of a protocol to perform in vivo DTI tractography of the sheep, providing a reliable reconstruction and 3D rendering of major ovine fiber tracts underlying different neurological functions. Estimation of fiber directions and interactions would lead to a more comprehensive understanding of the sheep's brain anatomy, potentially exploitable in preclinical experiments, thus representing a precious tool for veterinaries and researchers.
Collapse
Affiliation(s)
- Valentina Pieri
- Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Trovatelli
- Department of Health, Animal Science and Food Safety, Faculty of Veterinary Medicine, University of Milan, Milan, Italy
| | | | - Davide Danilo Zani
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Stefano Brizzola
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Giuliano Ravasio
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Fabio Acocella
- Department of Health, Animal Science and Food Safety, Faculty of Veterinary Medicine, University of Milan, Milan, Italy
| | - Mauro Di Giancamillo
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Luca Malfassi
- Fondazione La Cittadina Studi e Ricerche Veterinarie, Romanengo, Italy
| | - Mario Dolera
- Fondazione La Cittadina Studi e Ricerche Veterinarie, Romanengo, Italy
| | - Marco Riva
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.,Neurosurgical Oncology Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Andrea Falini
- Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonella Castellano
- Neuroradiology Unit and CERMAC, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
14
|
Li HJ, Sun ZL, Pan YB, Xu MH, Feng DF. Effect of α7nAChR on learning and memory dysfunction in a rat model of diffuse axonal injury. Exp Cell Res 2019; 383:111546. [PMID: 31398352 DOI: 10.1016/j.yexcr.2019.111546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 11/30/2022]
Abstract
Diffuse axonal injury (DAI) is the predominant effect of severe traumatic brain injury and significantly contributes to cognitive deficits. The mechanisms that underlie these cognitive deficits are often associated with complex molecular alterations. α7nAChR, one of the abundant and widespread nicotinic acetylcholine receptors (nAChRs) in the brain, plays important physiological functions in the central nervous system. However, the relationship between temporospatial alterations in the α7nAChR and DAI-related learning and memory dysfunction are not completely understood. Our study detected temporospatial alterations of α7nAChR in vulnerable areas (hippocampus, internal capsule, corpus callosum and brain stem) of DAI rats and evaluated the development and progression of learning and memory dysfunction via the Morris water maze (MWM). We determined that α7nAChR expression in vulnerable areas was mainly reduced at the recovery of DAI in rats. Moreover, the escape latency of the injured group increased significantly and the percentages of the distance travelled and time spent in the target quadrant were significantly decreased after DAI. Furthermore, α7nAChR expression in the vulnerable area was significantly positively correlated with MWM performance after DAI according to regression analysis. In addition, we determined that a selective α7nAChR agonist significantly improved learning and memory dysfunction. Rats in the α7nAChR agonist group showed better learning and memory performance than those in the antagonist group. These results demonstrate that microstructural injury-induced alterations of α7nAChR in the vulnerable area are significantly correlated with learning and memory dysfunctions after DAI and that augmentation of the α7nAChR level by its agonist contributes to the improvement of learning and memory function.
Collapse
Affiliation(s)
- Hong-Jiang Li
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China; Institute of Traumatic Medicine, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Zhao-Liang Sun
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China; Institute of Traumatic Medicine, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Yuan-Bo Pan
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Mang-Hua Xu
- Institute of Traumatic Medicine, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Dong-Fu Feng
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China; Institute of Traumatic Medicine, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China.
| |
Collapse
|
15
|
Schneider DK, Galloway R, Bazarian JJ, Diekfuss JA, Dudley J, Leach JL, Mannix R, Talavage TM, Yuan W, Myer GD. Diffusion Tensor Imaging in Athletes Sustaining Repetitive Head Impacts: A Systematic Review of Prospective Studies. J Neurotrauma 2019; 36:2831-2849. [PMID: 31062655 DOI: 10.1089/neu.2019.6398] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Daniel K. Schneider
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Medical Education, Riverside Methodist Hospital, Columbus, Ohio
| | - Ryan Galloway
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Duke University School of Medicine, Durham, North Carolina
| | - Jeffrey J. Bazarian
- Department of Emergency Medicine, University of Rochester School of Medicine, Rochester, New York
| | - Jed A. Diekfuss
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jon Dudley
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - James L. Leach
- Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Thomas M. Talavage
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Weihong Yuan
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Gregory D. Myer
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Departments of Pediatrics and Orthopaedic Surgery, University of Cincinnati, Cincinnati, Ohio
- The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts
| |
Collapse
|
16
|
Yin B, Li DD, Huang H, Gu CH, Bai GH, Hu LX, Zhuang JF, Zhang M. Longitudinal Changes in Diffusion Tensor Imaging Following Mild Traumatic Brain Injury and Correlation With Outcome. Front Neural Circuits 2019; 13:28. [PMID: 31133818 PMCID: PMC6514143 DOI: 10.3389/fncir.2019.00028] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/01/2019] [Indexed: 11/13/2022] Open
Abstract
The chronic consequences of traumatic brain injury (TBI) may contribute to the increased risk for early cognitive decline and dementia, primarily due to diffusion axonal injury. Previous studies in mild TBI (mTBI) have been controversial in describing the white matter tract integrity changes occurring at acute and subacute post-injury. In this prospective longitudinal study, we aim to investigate the longitudinal changes of white matter (WM) using diffusion tensor imaging (DTI) and their correlations with neuropsychological tests. Thirty-three patients with subacute mTBI and 31 matched healthy controls were studied with an extensive imaging and clinical battery. Neuroimaging was obtained within 7 days post-injury for acute scans and repeated at 1 and 3 months post-injury. Using a region-of-interest-based approach, tract-based spatial statistics was used to conduct voxel-wise analysis on diffusion changes in mTBI and was compared to those of healthy matched controls, scanned during the same time period and rescanned with an interval similar to that of patients. We found decreased fractional anisotropy (FA) values in the left anterior limb of internal capsule (ALIC) and right inferior fronto-occipital fasciculus (IFOF) during the 7 days post-injury, which showed longitudinal evidence of recovery following 1 month post-injury. Increased FA values in these two tracts at 1 month post-injury were positively associated with better performance on cognitive information processing speed at initial assessment. By contrast, there were also some tracts (right anterior corona radiata, forceps major, and body of corpus callosum) exhibiting the continuing loss of integrity sustaining even beyond 3 months, which can predict the persisting post-concussion syndromes. Continuing loss of structural integrity in some tracts may contribute to the persistent post-concussion syndromes in mTBI patients, suggesting certain tracts providing an objective biomarker for tracking the pathological recovery process following mTBI.
Collapse
Affiliation(s)
- Bo Yin
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dan-Dong Li
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huan Huang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cheng-Hui Gu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guang-Hui Bai
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liu-Xun Hu
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jin-Fei Zhuang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ming Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
17
|
Huang GH, Chen K, Sun YY, Zhu L, Sun ZL, Feng DF. 4-Phenylbutyrate Ameliorates Anxiety Disorder by Inhibiting Endoplasmic Reticulum Stress after Diffuse Axonal Injury. J Neurotrauma 2019; 36:1856-1868. [PMID: 30582423 DOI: 10.1089/neu.2018.6048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Diffuse axonal injury (DAI) is accompanied frequently by adverse sequelae and psychiatric disorders, such as anxiety, leading to a decreased quality of life, social isolation, and poor outcomes in patients. The mechanisms regulating psychiatric disorders post-DAI are not well elucidated, however. Previous studies showed that endoplasmic reticulum (ER) stress functions as a pivotal factor in neurodegeneration disease. In this study, we showed that DAI can trigger ER stress and unfolded protein response (UPR) activation in both the acute and chronic periods, leading to cell death and anxiety disorder. Treatment with 4-phenylbutyrate (4-PBA) is able to inhibit the UPR and cell apoptosis and relieve the anxiety disorder in our DAI model. Later (14 days post-DAI) 4-PBA treatment, however, can restore only the related gene expression of ER stress and UPR but not the psychiatric disorder. Therefore, the early (5 min after DAI) administration of 4-PBA might be a therapeutic approach for blocking the ER stress/UPR-induced cell death and anxiety disorder after DAI.
Collapse
Affiliation(s)
- Guo-Hui Huang
- 1 Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kui Chen
- 1 Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Yu Sun
- 1 Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Zhu
- 1 Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhao-Liang Sun
- 1 Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Fu Feng
- 1 Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,2 Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Song T, Zhu Y, Zhang P, Zhao M, Zhao D, Ding S, Zhu S, Li J. Integrated Proteomics and Metabolomic Analyses of Plasma Injury Biomarkers in a Serious Brain Trauma Model in Rats. Int J Mol Sci 2019; 20:ijms20040922. [PMID: 30791599 PMCID: PMC6412711 DOI: 10.3390/ijms20040922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022] Open
Abstract
Diffuse axonal injury (DAI) is a prevalent and serious brain injury with significant morbidity and disability. However, the underlying pathogenesis of DAI remains largely unclear, and there are still no objective laboratory-based tests available for clinicians to make an early diagnosis of DAI. An integrated analysis of metabolomic data and proteomic data may be useful to identify all of the molecular mechanisms of DAI and novel potential biomarkers. Therefore, we established a rat model of DAI, and applied an integrated UPLC-Q-TOF/MS-based metabolomics and isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis to obtain unbiased profiling data. Differential analysis identified 34 metabolites and 43 proteins in rat plasma of the injury group. Two metabolites (acetone and 4-Hydroxybenzaldehyde) and two proteins (Alpha-1-antiproteinase and Alpha-1-acid glycoprotein) were identified as potential biomarkers for DAI, and all may play important roles in the pathogenesis of DAI. Our study demonstrated the feasibility of integrated metabolomics and proteomics method to uncover the underlying molecular mechanisms of DAI, and may help provide clinicians with some novel diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Tao Song
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
- Department of Forensic Medicine, Hainan Medical University, Haikou 571199, China.
| | - Ying Zhu
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Zhang
- Department of Forensic Medicine, Hainan Medical University, Haikou 571199, China.
| | - Minzhu Zhao
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Dezhang Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Shisheng Zhu
- Faculty of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China.
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing 401331, China.
| | - Jianbo Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
19
|
Martinez BI, Stabenfeldt SE. Current trends in biomarker discovery and analysis tools for traumatic brain injury. J Biol Eng 2019; 13:16. [PMID: 30828380 PMCID: PMC6381710 DOI: 10.1186/s13036-019-0145-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/06/2019] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) affects 1.7 million people in the United States each year, causing lifelong functional deficits in cognition and behavior. The complex pathophysiology of neural injury is a primary barrier to developing sensitive and specific diagnostic tools, which consequentially has a detrimental effect on treatment regimens. Biomarkers of other diseases (e.g. cancer) have provided critical insight into disease emergence and progression that lend to developing powerful clinical tools for intervention. Therefore, the biomarker discovery field has recently focused on TBI and made substantial advancements to characterize markers with promise of transforming TBI patient diagnostics and care. This review focuses on these key advances in neural injury biomarkers discovery, including novel approaches spanning from omics-based approaches to imaging and machine learning as well as the evolution of established techniques.
Collapse
Affiliation(s)
- Briana I. Martinez
- School of Life Sciences, Arizona State University, Tempe, AZ USA
- School of Biological and Health Systems Engineering, Ira A. Fulton School of Engineering, Arizona State University, PO Box 879709, Tempe, AZ 85287-9709 USA
| | - Sarah E. Stabenfeldt
- School of Biological and Health Systems Engineering, Ira A. Fulton School of Engineering, Arizona State University, PO Box 879709, Tempe, AZ 85287-9709 USA
| |
Collapse
|
20
|
Myer GD, Barber Foss K, Thomas S, Galloway R, DiCesare CA, Dudley J, Gadd B, Leach J, Smith D, Gubanich P, Meehan Iii WP, Altaye M, Lavin P, Yuan W. Altered brain microstructure in association with repetitive subconcussive head impacts and the potential protective effect of jugular vein compression: a longitudinal study of female soccer athletes. Br J Sports Med 2018; 53:1539-1551. [PMID: 30323056 DOI: 10.1136/bjsports-2018-099571] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2018] [Indexed: 12/28/2022]
Abstract
PURPOSE To (1) quantify white matter (WM) alterations in female high school athletes during a soccer season and characterise the potential for normalisation during the off-season rest period, (2) determine the association between WM alterations and exposure to repetitive subconcussive head impacts, and (3) evaluate the efficacy of a jugular vein compression collar to prevent WM alterations associated with head impact exposure. METHODS Diffusion tensor imaging (DTI) data were prospectively collected from high school female soccer participants (14-18 years) at up to three time points over 9 months. Head impacts were monitored using accelerometers during all practices and games. Participants were assigned to a collar (n=24) or non-collar group (n=22). The Tract-Based Spatial Statistics approach was used in the analysis of within-group longitudinal change and between-group comparisons. RESULTS DTI analyses revealed significant pre-season to post-season WM changes in the non-collar group in mean diffusivity (2.83%±2.46%), axial diffusivity (2.58%±2.34%) and radial diffusivity (3.52%±2.60%), but there was no significant change in the collar group despite similar head impact exposure. Significant correlation was found between head impact exposure and pre-season to post-season DTI changes in the non-collar group. WM changes in the non-collar group partially resolved at 3 months off-season follow-up. DISCUSSION Microstructural changes in WM occurred during a season of female high school soccer among athletes who did not wear the collar device. In comparison, there were no changes in players who wore the collar, suggesting a potential prophylactic effect of the collar device in preventing changes associated with repetitive head impacts. In those without collar use, the microstructural changes showed a reversal towards normal over time in the off-season follow-up period.
Collapse
Affiliation(s)
- Gregory D Myer
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Departments of Pediatrics and Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts, USA.,Duke University School of Medicine, Durham, North Carolina, USA
| | - Kim Barber Foss
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Staci Thomas
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ryan Galloway
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Christopher A DiCesare
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jonathan Dudley
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Brooke Gadd
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - James Leach
- Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - David Smith
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Paul Gubanich
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Mekibib Altaye
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Philip Lavin
- Boston Biostatistics Research Foundation, Framingham, Massachusetts, USA
| | - Weihong Yuan
- University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
21
|
Wang ML, Yu MM, Yang DX, Liu YL, Wei XE, Li WB. Diffusion Kurtosis Imaging Characterizes Brain Microstructural Changes Associated with Cognitive Impairment in a Rat Model of Chronic Traumatic Brain Injury. Neuroscience 2018; 392:180-189. [PMID: 30278249 DOI: 10.1016/j.neuroscience.2018.09.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/19/2018] [Accepted: 09/22/2018] [Indexed: 01/26/2023]
Abstract
This study aims to investigate the value of diffusion kurtosis imaging (DKI) in assessing microstructural changes associated with cognitive impairment in chronic traumatic brain injury (TBI). At 7 months, six TBI rats and six control rats underwent Morris water maze (MWM) tests, followed by DKI examinations. DKI parameters were measured in bilateral cortex, hippocampus, and callosum. Brain immunohistochemistry (IHC) analysis of neuron [neuron-specific nuclear protein (NeuN)], astroglia [glial fibrillary acidic protein (GFAP)], microglia [ionized calcium binding adaptor molecule 1 (Iba-1)], and myelin [myelin basic protein (MBP)] was performed in the same area as DKI parameter. The DKI parameters, IHC results, and MWM results were compared between TBI and control groups. Correlation analysis was performed to analyze the relationship between DKI parameters and IHC and MWM results. TBI group had worse performance in MWM test. DKI showed higher mean diffusion (MD) in all ipsilateral regions of interest (ROIs), and lower mean kurtosis (MK) in ipsilateral cortex and callosum in TBI group (P < 0.05). TBI group also showed lower IHC staining of NeuN, and higher staining of Iba-1 and MBP in all ipsilateral ROIs (P < 0.05). Further correlational study showed a positive relationship between MK and NeuN, MD and MBP in ipsilateral cortex, and a negative relationship between MK and Iba-1, MBP in ipsilateral cortex and hippocampus (P < 0.05). The MK in ipsilateral cortex and hippocampus were also correlated with MWM test results (P < 0.05). Our study suggests that DKI could be used to assess the microstructural changes associated with cognitive impairment in chronic TBI.
Collapse
Affiliation(s)
- Ming-Liang Wang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yi Shan Road, Shanghai 200233, China
| | - Meng-Meng Yu
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yi Shan Road, Shanghai 200233, China
| | - Dian-Xu Yang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yi Shan Road, Shanghai 200233, China
| | - Ying-Liang Liu
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yi Shan Road, Shanghai 200233, China
| | - Xiao-Er Wei
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yi Shan Road, Shanghai 200233, China
| | - Wen-Bin Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yi Shan Road, Shanghai 200233, China; Imaging Center, Kashgar Prefecture Second People's Hospital, No. 1 Jiankang Road, Kashgar 844000, China.
| |
Collapse
|
22
|
Hutchinson EB, Schwerin SC, Radomski KL, Sadeghi N, Komlosh ME, Irfanoglu MO, Juliano SL, Pierpaoli C. Detection and Distinction of Mild Brain Injury Effects in a Ferret Model Using Diffusion Tensor MRI (DTI) and DTI-Driven Tensor-Based Morphometry (D-TBM). Front Neurosci 2018; 12:573. [PMID: 30174584 PMCID: PMC6107703 DOI: 10.3389/fnins.2018.00573] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/30/2018] [Indexed: 12/25/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is highly prevalent but lacks both research tools with adequate sensitivity to detect cellular alterations that accompany mild injury and pre-clinical models that are able to robustly mimic hallmark features of human TBI. To address these related challenges, high-resolution diffusion tensor MRI (DTI) analysis was performed in a model of mild TBI in the ferret - a species that, unlike rodents, share with humans a gyrencephalic cortex and high white matter (WM) volume. A set of DTI image analysis tools were optimized and implemented to explore key features of DTI alterations in ex vivo adult male ferret brains (n = 26), evaluated 1 day to 16 weeks after mild controlled cortical impact (CCI). Using template-based ROI analysis, lesion overlay mapping and DTI-driven tensor-based morphometry (D-TBM) significant differences in DTI and morphometric values were found and their dependence on time after injury evaluated. These observations were also qualitatively compared with immunohistochemistry staining of neurons, astrocytes, and microglia in the same tissue. Focal DTI abnormalities including reduced cortical diffusivity were apparent in 12/13 injured brains with greatest lesion extent found acutely following CCI by ROI overlay maps and reduced WM FA in the chronic period was observed near to the CCI site (ANOVA for FA in focal WM: time after CCI p = 0.046, brain hemisphere p = 0.0012) often in regions without other prominent MRI abnormalities. Global abnormalities were also detected, especially for WM regions, which demonstrated reduced diffusivity (ANOVA for Trace: time after CCI p = 0.007) and atrophy that appeared to become more extensive and bilateral with longer time after injury (ANOVA for D-TBM Log of the Jacobian values: time after CCI p = 0.007). The findings of this study extend earlier work in rodent models especially by evaluation of focal WM abnormalities that are not influenced by partial volume effects in the ferret. There is also substantial overlap between DTI and morphometric findings in this model and those from human studies of mTBI implying that the combination of DTI tools with a human-similar model system can provide an advantageous and informative approach for mTBI research.
Collapse
Affiliation(s)
- Elizabeth B. Hutchinson
- Section on Quantitative Medical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, United States
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Susan C. Schwerin
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Kryslaine L. Radomski
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Neda Sadeghi
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Michal E. Komlosh
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - M. O. Irfanoglu
- Section on Quantitative Medical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, United States
| | - Sharon L. Juliano
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Carlo Pierpaoli
- Section on Quantitative Medical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
23
|
Zhang P, Zhu S, Zhao M, Zhao P, Zhao H, Deng J, Li J. Identification of plasma biomarkers for diffuse axonal injury in rats by iTRAQ-coupled LC-MS/MS and bioinformatics analysis. Brain Res Bull 2018; 142:224-232. [PMID: 30077728 DOI: 10.1016/j.brainresbull.2018.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/30/2022]
Abstract
DAI is a serious and complex brain injury associated with significant morbidity and mortality. The lack of reliable objective diagnostic modalities for DAI delays administration of therapeutic interventions. Hence, identifying reliable biomarkers is urgently needed to enable early DAI diagnosis in the clinic. Herein, we established a rat model of DAI and applied an isobaric tags for a relative and absolute quantification (iTRAQ) coupled with nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) proteomics approach to screen differentially expressed plasma proteins associated with DAI. A total of 58 proteins were found to be significantly modulated in blood plasma samples of the injury group in at least one time point compared to controls. Bioinformatics analysis of the differentially expressed proteins revealed that the pathogenesis of axonal injury underlying DAI is multi-stage biological process involved. Two significantly changed proteins, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and hemopexin (Hpx), were identified as potential diagnostic biomarkers for DAI, and were successfully confirmed by further western blot analysis. This proteomic profiling study not only identified novel plasma biomarkers that may facilitate the development of clinically diagnostic for DAI, but also provided enhanced understanding of the molecular mechanisms underlying DAI.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Forensic Medicine, Hainan Medical University, Haikou 571199, China
| | - Shisheng Zhu
- Faculty of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Minzhu Zhao
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Peng Zhao
- Faculty of Basic Medical Sciences, Zunyi Medical And Pharmaceutical College, Zunyi 563006, China
| | - Haiyi Zhao
- Genecreate Biological Engineering Co., Ltd., National Bio-Industry Base, Wuhan, 430075, China
| | - Jianqiang Deng
- Department of Forensic Medicine, Hainan Medical University, Haikou 571199, China
| | - Jianbo Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
24
|
Zhang P, Zhu S, Zhao M, Dai Y, Zhang L, Ding S, Zhao P, Li J. Integration of 1H NMR- and UPLC-Q-TOF/MS-based plasma metabonomics study to identify diffuse axonal injury biomarkers in rat. Brain Res Bull 2018; 140:19-27. [DOI: 10.1016/j.brainresbull.2018.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 12/30/2022]
|
25
|
Manivannan S, Makwana M, Ahmed AI, Zaben M. Profiling biomarkers of traumatic axonal injury: From mouse to man. Clin Neurol Neurosurg 2018; 171:6-20. [PMID: 29803093 DOI: 10.1016/j.clineuro.2018.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/05/2018] [Accepted: 05/14/2018] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) poses a major public health problem on a global scale. Its burden results from high mortality and significant morbidity in survivors. This stems, in part, from an ongoing inadequacy in diagnostic and prognostic indicators despite significant technological advances. Traumatic axonal injury (TAI) is a key driver of the ongoing pathological process following TBI, causing chronic neurological deficits and disability. The science underpinning biomarkers of TAI has been a subject of many reviews in recent literature. However, in this review we provide a comprehensive account of biomarkers from animal models to clinical studies, bridging the gap between experimental science and clinical medicine. We have discussed pathogenesis, temporal kinetics, relationships to neuro-imaging, and, most importantly, clinical applicability in order to provide a holistic perspective of how this could improve TBI diagnosis and predict clinical outcome in a real-life setting. We conclude that early and reliable identification of axonal injury post-TBI with the help of body fluid biomarkers could enhance current care of TBI patients by (i) increasing speed and accuracy of diagnosis, (ii) providing invaluable prognostic information, (iii) allow efficient allocation of rehabilitation services, and (iv) provide potential therapeutic targets. The optimal model for assessing TAI is likely to involve multiple components, including several blood biomarkers and neuro-imaging modalities, at different time points.
Collapse
Affiliation(s)
- Susruta Manivannan
- Department of Neurosurgery, University Hospital of Wales, Heath Park, Cardiff, CF14 4XN, United Kingdom
| | - Milan Makwana
- Department of Neurosurgery, University Hospital of Wales, Heath Park, Cardiff, CF14 4XN, United Kingdom
| | - Aminul Islam Ahmed
- Clinical Neurosciences, University of Southampton, Southampton, SO16 6YD, United Kingdom; Wessex Neurological Centre, University Hospitals Southampton, Southampton, SO16 6YD, United Kingdom
| | - Malik Zaben
- Department of Neurosurgery, University Hospital of Wales, Heath Park, Cardiff, CF14 4XN, United Kingdom; Brain Repair & Intracranial Neurotherapeutics (BRAIN) Unit, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, United Kingdom.
| |
Collapse
|
26
|
Fidan E, Foley LM, New LA, Alexander H, Kochanek PM, Hitchens TK, Bayır H. Metabolic and Structural Imaging at 7 Tesla After Repetitive Mild Traumatic Brain Injury in Immature Rats. ASN Neuro 2018; 10:1759091418770543. [PMID: 29741097 PMCID: PMC5944144 DOI: 10.1177/1759091418770543] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/03/2018] [Accepted: 03/20/2018] [Indexed: 11/15/2022] Open
Abstract
Mild traumatic brain injury (mTBI) in children is a common and serious public health problem. Traditional neuroimaging findings in children who sustain mTBI are often normal, putting them at risk for repeated mTBI (rmTBI). There is a need for more sensitive imaging techniques capable of detecting subtle neurophysiological alterations after injury. We examined neurochemical and white matter changes using diffusion tensor imaging of the whole brain and proton magnetic resonance spectroscopy of the hippocampi at 7 Tesla in 18-day-old male rats at 7 days after mTBI and rmTBI. Traumatic axonal injury was assessed by beta-amyloid precursor protein accumulation using immunohistochemistry. A significant decrease in fractional anisotropy and increase in axial and radial diffusivity were observed in several brain regions, especially in white matter regions, after a single mTBI versus sham and more prominently after rmTBI. In addition, we observed accumulation of beta-amyloid precursor protein in the external capsule after mTBI and rmTBI. mTBI and rmTBI reduced the N-acetylaspartate/creatine ratio (NAA/Cr) and increased the myoinositol/creatine ratio (Ins/Cr) versus sham. rmTBI exacerbated the reduction in NAA/Cr versus mTBI. The choline/creatine (Cho/Cr) and (lipid/Macro Molecule 1)/creatine (Lip/Cr) ratios were also decreased after rmTBI versus sham. Diffusion tensor imaging findings along with the decrease in Cho and Lip after rmTBI may reflect damage to axonal membrane. NAA and Ins are altered at 7 days after mTBI and rmTBI likely reflecting neuro-axonal damage and glial response, respectively. These findings may be relevant to understanding the extent of disability following mTBI and rmTBI in the immature brain and may identify possible therapeutic targets.
Collapse
Affiliation(s)
- Emin Fidan
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, PA, USA
| | - Lesley M. Foley
- Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, PA, USA
- Animal Imaging Center, University of Pittsburgh, PA, USA
| | - Lee Ann New
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, PA, USA
| | - Henry Alexander
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, PA, USA
| | - Patrick M. Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, PA, USA
| | - T. Kevin Hitchens
- Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, PA, USA
- Animal Imaging Center, University of Pittsburgh, PA, USA
| | - Hülya Bayır
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh, PA, USA
- Children's Neuroscience Institute
| |
Collapse
|
27
|
Krakauer K, Ebdrup BH, Glenthøj BY, Raghava JM, Nordholm D, Randers L, Rostrup E, Nordentoft M. Patterns of white matter microstructure in individuals at ultra-high-risk for psychosis: associations to level of functioning and clinical symptoms. Psychol Med 2017; 47:2689-2707. [PMID: 28464976 DOI: 10.1017/s0033291717001210] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Individuals at ultra-high-risk (UHR) for psychosis present with emerging symptoms and decline in functioning. Previous univariate analyses have indicated widespread white matter (WM) aberrations in multiple brain regions in UHR individuals and patients with schizophrenia. Using multivariate statistics, we investigated whole brain WM microstructure and associations between WM, clinical symptoms, and level of functioning in UHR individuals. METHODS Forty-five UHR individuals and 45 matched healthy controls (HCs) underwent magnetic resonance diffusion tensor imaging (DTI) at 3 Tesla. UHR individuals were assessed with the Comprehensive Assessment of At-Risk Mental States, Scale for the Assessment of Negative Symptoms, and Social and Occupational Functioning Assessment Scale. Partial least-squares correlation analysis (PLSC) was used as statistical method. RESULTS PLSC group comparisons revealed one significant latent variable (LV) accounting for 52% of the cross-block covariance. This LV indicated a pattern of lower fractional anisotropy (FA), axial diffusivity (AD), and mode of anisotropy (MO) concomitant with higher radial diffusivity (RD) in widespread brain regions in UHR individuals compared with HCs. Within UHR individuals, PLSC revealed five significant LVs associated with symptoms and level of functioning. The first LV accounted for 31% of the cross-block covariance and indicated a pattern where higher symptom score and lower level of functioning correlated to lower FA, AD, MO, and higher RD. CONCLUSIONS UHR individuals demonstrate complex brain patterns of WM abnormalities. Despite the subtle psychopathology of UHR individuals, aberrations in WM appear associated with positive and negative symptoms as well as level of functioning.
Collapse
Affiliation(s)
- K Krakauer
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| | - B H Ebdrup
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS,DK-2600 Glostrup,Denmark
| | - B Y Glenthøj
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS,DK-2600 Glostrup,Denmark
| | - J M Raghava
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS,DK-2600 Glostrup,Denmark
| | - D Nordholm
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| | - L Randers
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| | - E Rostrup
- Functional Imaging Unit,Clinical Physiology,Nuclear Medicine and PET,Copenhagen University Hospital Rigshospitalet,DK-2600 Glostrup,Denmark
| | - M Nordentoft
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| |
Collapse
|
28
|
Li J, Zhao C, Rao JS, Yang FX, Wang ZJ, Lei JF, Yang ZY, Li XG. Structural and metabolic changes in the traumatically injured rat brain: high-resolution in vivo proton magnetic resonance spectroscopy at 7 T. Neuroradiology 2017; 59:1203-1212. [PMID: 28856389 DOI: 10.1007/s00234-017-1915-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/22/2017] [Indexed: 11/28/2022]
Abstract
PURPOSE The understanding of microstructural and metabolic changes in the post-traumatic brain injury is the key to brain damage suppression and repair in clinics. METHODS Ten female Wistar rats were traumatically injured in the brain CA1 region and above the cortex. Next, diffusion tensor magnetic resonance imaging (DTI) and proton magnetic resonance spectroscopy (1H MRS) were used to analyze the microstructural and metabolic changes in the brain within the following 2 weeks. RESULTS Anisotropy fraction (FA) and axial diffusivity (AD) of the corpus callosum (CC) began to decrease significantly at day 1, whereas radial diffusivity (RD) significantly increased immediately after injury, reflecting the loss of white matter integrity. Compared with day 3, RD decreased significantly at day 7, implicating the angioedema reduction. In the hippocampus, FA significantly increased at day 7; the choline-containing compounds (Cho) and myo-inositol (MI) remarkably increased at day 7 compared with those at day 3, indicating the proliferation of astrocytes and radial glial cells after day 7. No significant differences between DTI and 1H MRS parameters were observed between day 1 and day 3. CONCLUSION Day 1-3 after traumatic brain injury (TBI) may serve as a relatively appropriate time window for treatment planning and the following nerve repair.
Collapse
Affiliation(s)
- Jing Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Can Zhao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Fei-Xiang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhan-Jing Wang
- Medical Experiment and Test Center, Capital Medical University, Beijing, 100069, China
| | - Jian-Feng Lei
- Medical Experiment and Test Center, Capital Medical University, Beijing, 100069, China
| | - Zhao-Yang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiao-Guang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China. .,Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
29
|
Hutchinson EB, Schwerin SC, Avram AV, Juliano SL, Pierpaoli C. Diffusion MRI and the detection of alterations following traumatic brain injury. J Neurosci Res 2017; 96:612-625. [PMID: 28609579 PMCID: PMC5729069 DOI: 10.1002/jnr.24065] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/14/2017] [Accepted: 03/22/2017] [Indexed: 12/18/2022]
Abstract
This article provides a review of brain tissue alterations that may be detectable using diffusion magnetic resonance imaging MRI (dMRI) approaches and an overview and perspective on the modern dMRI toolkits for characterizing alterations that follow traumatic brain injury (TBI). Noninvasive imaging is a cornerstone of clinical treatment of TBI and has become increasingly used for preclinical and basic research studies. In particular, quantitative MRI methods have the potential to distinguish and evaluate the complex collection of neurobiological responses to TBI arising from pathology, neuroprotection, and recovery. dMRI provides unique information about the physical environment in tissue and can be used to probe physiological, architectural, and microstructural features. Although well‐established approaches such as diffusion tensor imaging are known to be highly sensitive to changes in the tissue environment, more advanced dMRI techniques have been developed that may offer increased specificity or new information for describing abnormalities. These tools are promising, but incompletely understood in the context of TBI. Furthermore, model dependencies and relative limitations may impact the implementation of these approaches and the interpretation of abnormalities in their metrics. The objective of this paper is to present a basic review and comparison across dMRI methods as they pertain to the detection of the most commonly observed tissue and cellular alterations following TBI.
Collapse
Affiliation(s)
- Elizabeth B Hutchinson
- Quantitative Medical Imaging Section, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland.,Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland
| | - Susan C Schwerin
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland.,Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Alexandru V Avram
- Quantitative Medical Imaging Section, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland.,Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Sharon L Juliano
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Carlo Pierpaoli
- Quantitative Medical Imaging Section, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
30
|
Abstract
There is a paucity of accurate and reliable biomarkers to detect traumatic brain injury, grade its severity, and model post-traumatic brain injury (TBI) recovery. This gap could be addressed via advances in brain mapping which define injury signatures and enable tracking of post-injury trajectories at the individual level. Mapping of molecular and anatomical changes and of modifications in functional activation supports the conceptual paradigm of TBI as a disorder of large-scale neural connectivity. Imaging approaches with particular relevance are magnetic resonance techniques (diffusion weighted imaging, diffusion tensor imaging, susceptibility weighted imaging, magnetic resonance spectroscopy, functional magnetic resonance imaging, and positron emission tomographic methods including molecular neuroimaging). Inferences from mapping represent unique endophenotypes which have the potential to transform classification and treatment of patients with TBI. Limitations of these methods, as well as future research directions, are highlighted.
Collapse
|
31
|
Herrera JJ, Bockhorst K, Kondraganti S, Stertz L, Quevedo J, Narayana PA. Acute White Matter Tract Damage after Frontal Mild Traumatic Brain Injury. J Neurotrauma 2016; 34:291-299. [PMID: 27138134 DOI: 10.1089/neu.2016.4407] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Our understanding of mild traumatic brain injury (mTBI) is still in its infancy and to gain a greater understanding, relevant animal models should replicate many of the features seen in human mTBI. These include changes to diffusion tensor imaging (DTI) parameters, absence of anatomical lesions on conventional neuroimaging, and neurobehavioral deficits. The Maryland closed head TBI model causes anterior-posterior plus sagittal rotational acceleration of the brain, frequently observed with motor vehicle and sports-related TBI injuries. The injury reflects a concussive injury model without skull fracture. The goal of our study was to characterize the acute (72 h) pathophysiological changes occurring following a single mTBI using magnetic resonance imaging (MRI), behavioral assays, and histology. We assessed changes in fractional anisotropy (FA), mean (MD), longitudinal (LD), and radial (RD) diffusivities relative to pre-injury baseline measures. Significant differences were observed in both the longitudinal and radial diffusivities in the fimbria compared with baseline. A significant difference in radial diffusivity was also observed in the splenium of the corpus callosum compared with baseline. The exploratory activity of the mTBI animals was also assessed using computerized activity monitoring. A significant decrease was observed in ambulatory distance, average velocity, stereotypic counts, and vertical counts compared with baseline. Histological examination of the mTBI brain sections indicated a significant decrease in the expression of myelin basic protein in the fimbria, splenium, and internal capsule. Our findings demonstrate the vulnerability of the white matter tracts, specifically the fimbria and splenium, and the ability of DTI to identify changes to the integrity of the white matter tracts following mTBI.
Collapse
Affiliation(s)
- Juan J Herrera
- 1 Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston (UTHealth) , McGovern Medical School, Houston, Texas
| | - Kurt Bockhorst
- 1 Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston (UTHealth) , McGovern Medical School, Houston, Texas
| | - Shakuntala Kondraganti
- 1 Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston (UTHealth) , McGovern Medical School, Houston, Texas
| | - Laura Stertz
- 2 Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) , McGovern Medical School, Houston, Texas
| | - João Quevedo
- 2 Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) , McGovern Medical School, Houston, Texas.,3 Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) , McGovern Medical School, Houston, Texas
| | - Ponnada A Narayana
- 1 Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston (UTHealth) , McGovern Medical School, Houston, Texas
| |
Collapse
|
32
|
Edlow BL, Copen WA, Izzy S, van der Kouwe A, Glenn MB, Greenberg SM, Greer DM, Wu O. Longitudinal Diffusion Tensor Imaging Detects Recovery of Fractional Anisotropy Within Traumatic Axonal Injury Lesions. Neurocrit Care 2016; 24:342-52. [PMID: 26690938 PMCID: PMC4884487 DOI: 10.1007/s12028-015-0216-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Traumatic axonal injury (TAI) may be reversible, yet there are currently no clinical imaging tools to detect axonal recovery in patients with traumatic brain injury (TBI). We used diffusion tensor imaging (DTI) to characterize serial changes in fractional anisotropy (FA) within TAI lesions of the corpus callosum (CC). We hypothesized that recovery of FA within a TAI lesion correlates with better functional outcome. METHODS Patients who underwent both an acute DTI scan (≤day 7) and a subacute DTI scan (day 14 to inpatient rehabilitation discharge) at a single institution were retrospectively analyzed. TAI lesions were manually traced on the acute diffusion-weighted images. Fractional anisotropy (FA), apparent diffusion coefficient (ADC), axial diffusivity (AD), and radial diffusivity (RD) were measured within the TAI lesions at each time point. FA recovery was defined by a longitudinal increase in CC FA that exceeded the coefficient of variation for FA based on values from healthy controls. Acute FA, ADC, AD, and RD were compared in lesions with and without FA recovery, and correlations were tested between lesional FA recovery and functional recovery, as determined by disability rating scale score at discharge from inpatient rehabilitation. RESULTS Eleven TAI lesions were identified in 7 patients. DTI detected FA recovery within 2 of 11 TAI lesions. Acute FA, ADC, AD, and RD did not differ between lesions with and without FA recovery. Lesional FA recovery did not correlate with disability rating scale scores. CONCLUSIONS In this retrospective longitudinal study, we provide initial evidence that FA can recover within TAI lesions. However, FA recovery did not correlate with improved functional outcomes. Prospective histopathological and clinical studies are needed to further elucidate whether lesional FA recovery indicates axonal healing and has prognostic significance.
Collapse
Affiliation(s)
- Brian L Edlow
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 175 Cambridge Street - Suite 300, Boston, MA, 02114, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
| | - William A Copen
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Saef Izzy
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 175 Cambridge Street - Suite 300, Boston, MA, 02114, USA
| | - Andre van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mel B Glenn
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 175 Cambridge Street - Suite 300, Boston, MA, 02114, USA
| | - David M Greer
- Department of Neurology, Yale-New Haven Hospital, Yale School of Medicine, New Haven, CT, USA
| | - Ona Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Tu TW, Williams RA, Lescher JD, Jikaria N, Turtzo LC, Frank JA. Radiological-pathological correlation of diffusion tensor and magnetization transfer imaging in a closed head traumatic brain injury model. Ann Neurol 2016; 79:907-20. [PMID: 27230970 DOI: 10.1002/ana.24641] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Metrics of diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI) can detect diffuse axonal injury in traumatic brain injury (TBI). The relationship between the changes in these imaging measures and the underlying pathologies is still relatively unknown. This study investigated the radiological-pathological correlation between these imaging techniques and immunohistochemistry using a closed head rat model of TBI. METHODS TBI was performed on female rats followed longitudinally by magnetic resonance imaging (MRI) out to 30 days postinjury, with a subset of animals selected for histopathological analyses. A MRI-based finite element analysis was generated to characterize the pattern of the mechanical insult and estimate the extent of brain injury to direct the pathological correlation with imaging findings. RESULTS DTI axial diffusivity and fractional anisotropy (FA) were sensitive to axonal integrity, whereas radial diffusivity showed significant correlation to the myelin compactness. FA was correlated with astrogliosis in the gray matter, whereas mean diffusivity was correlated with increased cellularity. Secondary inflammatory responses also partly affected the changes of these DTI metrics. The magnetization transfer ratio (MTR) at 3.5ppm demonstrated a strong correlation with both axon and myelin integrity. Decrease in MTR at 20ppm correlated with the extent of astrogliosis in both gray and white matter. INTERPRETATION Although conventional T2-weighted MRI did not detect abnormalities following TBI, DTI and MTI afforded complementary insight into the underlying pathologies reflecting varying injury states over time, and thus may substitute for histology to reveal diffusive axonal injury pathologies in vivo. This correlation of MRI and histology furthers understanding of the microscopic pathology underlying DTI and MTI changes in TBI. Ann Neurol 2016;79:907-920.
Collapse
Affiliation(s)
- Tsang-Wei Tu
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Rashida A Williams
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Jacob D Lescher
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Neekita Jikaria
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD
| | - L Christine Turtzo
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD.,Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Joseph A Frank
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD.,National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD
| |
Collapse
|
34
|
Tu TW, Lescher JD, Williams RA, Jikaria N, Turtzo LC, Frank JA. Abnormal Injury Response in Spontaneous Mild Ventriculomegaly Wistar Rat Brains: A Pathological Correlation Study of Diffusion Tensor and Magnetization Transfer Imaging in Mild Traumatic Brain Injury. J Neurotrauma 2016; 34:248-256. [PMID: 26905805 DOI: 10.1089/neu.2015.4355] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spontaneous mild ventriculomegaly (MVM) was previously reported in ∼43% of Wistar rats in association with vascular anomalies without phenotypic manifestation. This mild traumatic brain injury (TBI) weight drop model study investigates whether MVM rats (n = 15) have different injury responses that could inadvertently complicate the interpretation of imaging studies compared with normal rats (n = 15). Quantitative MRI, including diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI), and immunohistochemistry (IHC) analysis were used to examine the injury pattern up to 8 days post-injury in MVM and normal rats. Prior to injury, the MVM brain showed significant higher mean diffusivity, axial diffusivity, and radial diffusivity, and lower fractional anisotropy (FA) and magnetization transfer ratio (MTR) in the corpus callosum than normal brain (p < 0.05). Following TBI, normal brains exhibited significant decreases of FA in the corpus callosum, whereas MVM brains demonstrated insignificant changes in FA, suggesting less axonal injury. At day 8 after mild TBI, MTR of the normal brains significantly decreased whereas the MTR of the MVM brains significantly increased. IHC staining substantiated the MRI findings, demonstrating limited axonal injury with significant increase of microgliosis and astrogliosis in MVM brain compared with normal animals. The radiological-pathological correlation data showed that both DTI and MTI were sensitive in detecting mild diffuse brain injury, although DTI metrics were more specific in correlating with histologically identified pathologies. Compared with the higher correlation levels reflecting axonal injury pathology in the normal rat mild TBI, the DTI and MTR metrics were more affected by the increased inflammation in the MVM rat mild TBI. Because MVM Wistar rats appear normal, there was a need to screen rats prior to TBI research to rule out the presence of ventriculomegaly, which may complicate the interpretation of imaging and IHC observations.
Collapse
Affiliation(s)
- Tsang-Wei Tu
- 1 Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health , Bethesda, Maryland
| | - Jacob D Lescher
- 1 Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health , Bethesda, Maryland
| | - Rashida A Williams
- 1 Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health , Bethesda, Maryland
| | - Neekita Jikaria
- 1 Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health , Bethesda, Maryland
| | - L Christine Turtzo
- 2 Acute Studies Core, National Institute of Neurological Disorders and Stroke, National Institutes of Health , Bethesda, Maryland
| | - Joseph A Frank
- 1 Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health , Bethesda, Maryland.,3 National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
35
|
Edlow BL, Copen WA, Izzy S, Bakhadirov K, van der Kouwe A, Glenn MB, Greenberg SM, Greer DM, Wu O. Diffusion tensor imaging in acute-to-subacute traumatic brain injury: a longitudinal analysis. BMC Neurol 2016; 16:2. [PMID: 26754948 PMCID: PMC4707723 DOI: 10.1186/s12883-015-0525-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 12/31/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Diffusion tensor imaging (DTI) may have prognostic utility in patients with traumatic brain injury (TBI), but the optimal timing of DTI data acquisition is unknown because of dynamic changes in white matter water diffusion during the acute and subacute stages of TBI. We aimed to characterize the direction and magnitude of early longitudinal changes in white matter fractional anisotropy (FA) and to determine whether acute or subacute FA values correlate more reliably with functional outcomes after TBI. METHODS From a prospective TBI outcomes database, 11 patients who underwent acute (≤7 days) and subacute (8 days to rehabilitation discharge) DTI were retrospectively analyzed. Longitudinal changes in FA were measured in 11 white matter regions susceptible to traumatic axonal injury. Correlations were assessed between acute FA, subacute FA and the disability rating scale (DRS) score, which was ascertained at discharge from inpatient rehabilitation. RESULTS FA declined from the acute-to-subacute period in the genu of the corpus callosum (0.70 ± 0.02 vs. 0.55 ± 0.11, p < 0.05) and inferior longitudinal fasciculus (0.54+/-0.07 vs. 0.49+/-0.07, p < 0.01). Acute correlations between FA and DRS score were variable: higher FA in the body (R = -0.78, p = 0.02) and splenium (R = -0.83, p = 0.003) of the corpus callosum was associated with better outcomes (i.e. lower DRS scores), whereas higher FA in the genu of the corpus callosum (R = 0.83, p = 0.02) corresponded with worse outcomes (i.e. higher DRS scores). In contrast, in the subacute period higher FA in the splenium correlated with better outcomes (R = -0.63, p < 0.05) and no inverse correlations were observed. CONCLUSIONS White matter FA declined during the acute-to-subacute stages of TBI. Variability in acute FA correlations with outcome suggests that the optimal timing of DTI for TBI prognostication may be in the subacute period.
Collapse
Affiliation(s)
- Brian L Edlow
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
| | - William A Copen
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Saef Izzy
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Khamid Bakhadirov
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Andre van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
| | - Mel B Glenn
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA.
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - David M Greer
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Neurology, Yale-New Haven Hospital, Yale School of Medicine, New Haven, CT, USA.
| | - Ona Wu
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
36
|
Zhang P, Zhu S, Li Y, Zhao M, Liu M, Gao J, Ding S, Li J. Quantitative proteomics analysis to identify diffuse axonal injury biomarkers in rats using iTRAQ coupled LC-MS/MS. J Proteomics 2015; 133:93-99. [PMID: 26710722 DOI: 10.1016/j.jprot.2015.12.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/17/2015] [Accepted: 12/17/2015] [Indexed: 01/04/2023]
Abstract
Diffuse axonal injury (DAI) is fairly common during a traumatic brain injury (TBI) and is associated with high mortality. Making an early diagnosis, appropriate therapeutic decisions, and an accurate prognostic evaluation of patients with DAI still pose difficulties for clinicians. The detailed mechanisms of axonal injury after head trauma have yet to be clearly defined and no reliable biomarkers are available for early DAI diagnosis. Therefore, this study employed an established DAI animal model in conjunction with an isobaric tag for relative and absolute quantification (iTRAQ)-based protein identification/quantification approach. Alterations in rat cerebral protein expression were quantified using iTRAQ coupled LC-MS/MS, with differentially expressed proteins between the control groups, sham and sham-injured, and the injury groups, animals that died immediately post-injury and those sacrificed at 1h, 6h, 1d, 3d and 7d post-injury, identified. A total of 1858 proteins were identified and quantified and comparative analysis identified ten candidate proteins that warranted further examination. Of the ten candidate DAI biomarkers, four proteins, citrate synthase (CS), synaptosomal-associated protein 25 (Snap25), microtubule-associated protein 1B (MAP1B) and Rho-associated protein kinase 2 (Rock2), were validated by subsequent Western blot and immunohistochemistry analyses. Our studies not only identified several novel biomarkers that may provide insight into the pathophysiological mechanisms of DAI, but also demonstrated the feasibility of iTRAQ-based quantitative proteomic analysis in cerebral tissue research.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Shisheng Zhu
- Faculty of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Yongguo Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing 400016, China
| | - Minzhu Zhao
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing 400016, China
| | - Meng Liu
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing 400016, China
| | - Jun Gao
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing 400016, China
| | - Shijia Ding
- Chongqing Engineering Research Center for Criminal Investigation Technology, Chongqing 400016, China; Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jianbo Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
37
|
Jing G, Yao X, Li Y, Xie Y, Li WXA, Liu K, Jing Y, Li B, Lv Y, Ma B. Mild hypothermia for treatment of diffuse axonal injury: a quantitative analysis of diffusion tensor imaging. Neural Regen Res 2015; 9:190-7. [PMID: 25206800 PMCID: PMC4146157 DOI: 10.4103/1673-5374.125348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2013] [Indexed: 12/25/2022] Open
Abstract
Fractional anisotropy values in diffusion tensor imaging can quantitatively reflect the consistency of nerve fibers after brain damage, where higher values generally indicate less damage to nerve fibers. Therefore, we hypothesized that diffusion tensor imaging could be used to evaluate the effect of mild hypothermia on diffuse axonal injury. A total of 102 patients with diffuse axonal injury were randomly divided into two groups: normothermic and mild hypothermic treatment groups. Patient's modified Rankin scale scores 2 months after mild hypothermia were significantly lower than those for the normothermia group. The difference in average fractional anisotropy value for each region of interest before and after mild hypothermia was 1.32-1.36 times higher than the value in the normothermia group. Quantitative assessment of diffusion tensor imaging indicates that mild hypothermia therapy may be beneficial for patients with diffuse axonal injury.
Collapse
Affiliation(s)
- Guojie Jing
- Department of Neurosurgery, Huizhou First People's Hospital, Huizhou, Guangdong Province, China ; Huizhou Neurosurgery Institute, Huizhou, Guangdong Province, China
| | - Xiaoteng Yao
- Department of Neurosurgery, Huizhou First People's Hospital, Huizhou, Guangdong Province, China ; Huizhou Neurosurgery Institute, Huizhou, Guangdong Province, China
| | - Yiyi Li
- Department of Neurosurgery, Huizhou First People's Hospital, Huizhou, Guangdong Province, China ; Huizhou Neurosurgery Institute, Huizhou, Guangdong Province, China
| | - Yituan Xie
- Department of Neurosurgery, Huizhou First People's Hospital, Huizhou, Guangdong Province, China ; Huizhou Neurosurgery Institute, Huizhou, Guangdong Province, China
| | - Wang X2019 An Li
- Department of Neurosurgery, Huizhou First People's Hospital, Huizhou, Guangdong Province, China ; Huizhou Neurosurgery Institute, Huizhou, Guangdong Province, China
| | - Kejun Liu
- Department of Neurosurgery, Huizhou First People's Hospital, Huizhou, Guangdong Province, China ; Huizhou Neurosurgery Institute, Huizhou, Guangdong Province, China
| | - Yingchao Jing
- Department of Neurosurgery, Huizhou First People's Hospital, Huizhou, Guangdong Province, China ; Huizhou Neurosurgery Institute, Huizhou, Guangdong Province, China
| | - Baisheng Li
- Department of Neurosurgery, Huizhou Central People's Hospital, Huizhou, Guangdong Province, China
| | - Yifan Lv
- Department of Neurosurgery, Huizhou First People's Hospital, Huizhou, Guangdong Province, China ; Huizhou Neurosurgery Institute, Huizhou, Guangdong Province, China
| | - Baoxin Ma
- Department of Neurosurgery, Huizhou First People's Hospital, Huizhou, Guangdong Province, China ; Huizhou Neurosurgery Institute, Huizhou, Guangdong Province, China
| |
Collapse
|
38
|
Zhang J, Liu L, Mu J, Yang T, Zheng N, Dong H. Chemical Analysis in the Corpus Callosum Following Traumatic Axonal Injury using Fourier Transform Infrared Microspectroscopy: A Pilot Study. J Forensic Sci 2015; 60:1488-94. [PMID: 26272718 DOI: 10.1111/1556-4029.12871] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/27/2014] [Accepted: 11/30/2014] [Indexed: 11/29/2022]
Abstract
Evaluating traumatic axonal injury remains challenging in clinical and forensic sciences as its identification is difficult using routine diagnostic methods. This study used Fourier transform infrared microspectroscopy to detect TAI within the corpus callosum in an animal model. Protein conformational analysis revealed significantly increased β-sheet and β-turn contents paralleled by a decrease in α-helix content at 24 h postinjury, while the antiparallel β-sheet content was decreased at 12 h postinjury. Compared with the control group, the lipid/protein ratio was significantly reduced in all of the injured groups. At 24 h postinjury, there were increases in the olefinic=CH and CH3 group of lipids accompanied by the decreased CH2 group, but the results at 12 and 72 h were contrary to that at 24 h. Our study showed that FTIRM could differentiate injured from normal white matter at different time points following TBI via examination of these infrared spectral parameters.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Forensic Medicine, Xi'an Jiaotong University, 74 West Yanta Road, Xi'an, Shanxi, China
| | - Liang Liu
- Department of Forensic Medicine, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, China
| | - Jiao Mu
- Department of Forensic Medicine, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, China
| | - Tiantong Yang
- Collaborative Innovation Center of Judicial Civilization, Key Laboratory of Evidence Science, China Univerisy of Political Science and Law, 116 Lugu Road, Beijing, China
| | - Na Zheng
- Department of Pathophysiology, Shenzhen Univeristy, 1688 Nanhai Road, Shenzhen, China
| | - Hongmei Dong
- Department of Forensic Medicine, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, China
| |
Collapse
|
39
|
Magnoni S, Mac Donald CL, Esparza TJ, Conte V, Sorrell J, Macrì M, Bertani G, Biffi R, Costa A, Sammons B, Snyder AZ, Shimony JS, Triulzi F, Stocchetti N, Brody DL. Quantitative assessments of traumatic axonal injury in human brain: concordance of microdialysis and advanced MRI. Brain 2015; 138:2263-77. [PMID: 26084657 DOI: 10.1093/brain/awv152] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/09/2015] [Indexed: 11/14/2022] Open
Abstract
Axonal injury is a major contributor to adverse outcomes following brain trauma. However, the extent of axonal injury cannot currently be assessed reliably in living humans. Here, we used two experimental methods with distinct noise sources and limitations in the same cohort of 15 patients with severe traumatic brain injury to assess axonal injury. One hundred kilodalton cut-off microdialysis catheters were implanted at a median time of 17 h (13-29 h) after injury in normal appearing (on computed tomography scan) frontal white matter in all patients, and samples were collected for at least 72 h. Multiple analytes, such as the metabolic markers glucose, lactate, pyruvate, glutamate and tau and amyloid-β proteins, were measured every 1-2 h in the microdialysis samples. Diffusion tensor magnetic resonance imaging scans at 3 T were performed 2-9 weeks after injury in 11 patients. Stability of diffusion tensor imaging findings was verified by repeat scans 1-3 years later in seven patients. An additional four patients were scanned only at 1-3 years after injury. Imaging abnormalities were assessed based on comparisons with five healthy control subjects for each patient, matched by age and sex (32 controls in total). No safety concerns arose during either microdialysis or scanning. We found that acute microdialysis measurements of the axonal cytoskeletal protein tau in the brain extracellular space correlated well with diffusion tensor magnetic resonance imaging-based measurements of reduced brain white matter integrity in the 1-cm radius white matter-masked region near the microdialysis catheter insertion sites. Specifically, we found a significant inverse correlation between microdialysis measured levels of tau 13-36 h after injury and anisotropy reductions in comparison with healthy controls (Spearman's r = -0.64, P = 0.006). Anisotropy reductions near microdialysis catheter insertion sites were highly correlated with reductions in multiple additional white matter regions. We interpret this result to mean that both microdialysis and diffusion tensor magnetic resonance imaging accurately reflect the same pathophysiological process: traumatic axonal injury. This cross-validation increases confidence in both methods for the clinical assessment of axonal injury. However, neither microdialysis nor diffusion tensor magnetic resonance imaging have been validated versus post-mortem histology in humans. Furthermore, future work will be required to determine the prognostic significance of these assessments of traumatic axonal injury when combined with other clinical and radiological measures.
Collapse
Affiliation(s)
- Sandra Magnoni
- 1 Department of Anaesthesiology and Intensive Care, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milano, Italy
| | - Christine L Mac Donald
- 2 Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA
| | - Thomas J Esparza
- 3 Department of Neurology, Washington University, St Louis, MO, USA
| | - Valeria Conte
- 1 Department of Anaesthesiology and Intensive Care, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milano, Italy
| | - James Sorrell
- 3 Department of Neurology, Washington University, St Louis, MO, USA
| | | | - Giulio Bertani
- 5 Department of Neurosurgery, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milano, Italy
| | - Riccardo Biffi
- 6 Department of Neuroradiology, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milano, Italy
| | - Antonella Costa
- 6 Department of Neuroradiology, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milano, Italy
| | - Brian Sammons
- 3 Department of Neurology, Washington University, St Louis, MO, USA
| | - Abraham Z Snyder
- 7 Mallinckrodt Institute of Radiology, Washington University, St Louis, MO, USA
| | - Joshua S Shimony
- 7 Mallinckrodt Institute of Radiology, Washington University, St Louis, MO, USA
| | - Fabio Triulzi
- 6 Department of Neuroradiology, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milano, Italy
| | - Nino Stocchetti
- 1 Department of Anaesthesiology and Intensive Care, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milano, Italy 4 Milan University, Milano, Italy
| | - David L Brody
- 3 Department of Neurology, Washington University, St Louis, MO, USA 8 Hope Centre for Neurological Disorders, Washington University, St Louis, MO, USA
| |
Collapse
|
40
|
Edlow BL, Rosenthal ES. Diagnostic, Prognostic, and Advanced Imaging in Severe Traumatic Brain Injury. CURRENT TRAUMA REPORTS 2015. [DOI: 10.1007/s40719-015-0018-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
41
|
Dodd AB, Epstein K, Ling JM, Mayer AR. Diffusion tensor imaging findings in semi-acute mild traumatic brain injury. J Neurotrauma 2015; 31:1235-48. [PMID: 24779720 DOI: 10.1089/neu.2014.3337] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The past 10 years have seen a rapid increase in the use of diffusion tensor imaging to identify biomarkers of traumatic brain injury (TBI). Although the literature generally indicates decreased anisotropic diffusion at more chronic injury periods and in more severe injuries, considerable debate remains regarding the direction (i.e., increased or decreased) of anisotropic diffusion in the acute to semi-acute phase (here defined as less than 3 months post-injury) of mild TBI (mTBI). A systematic review of the literature was therefore performed to (1) determine the prevalence of different anisotropic diffusion findings (increased, decreased, bidirectional, or null) during the semi-acute injury phase of mTBI and to (2) identify clinical (e.g., age of injury, post-injury scan time, etc.) and experimental factors (e.g., number of unique directions, field strength) that may influence these findings. Results from the literature review indicated 31 articles with independent samples of semi-acute mTBI patients, with 13 studies reporting decreased anisotropic diffusion, 11 reporting increased diffusion, 2 reporting bidirectional findings, and 5 reporting null findings. Chi-squared analyses indicated that the total number of diffusion-weighted (DW) images was significantly associated with findings of either increased (DW ≥ 30) versus decreased (DW ≤ 25) anisotropic diffusion. Other clinical and experimental factors were not statistically significant for direction of anisotropic diffusion, but these results may have been limited by the relatively small number of studies within each domain (e.g., pediatric studies). In summary, current results indicate roughly equivalent number of studies reporting increased versus decreased anisotropic diffusion during semi-acute mTBI, with the number of unique diffusion images being statistically associated with the direction of findings.
Collapse
Affiliation(s)
- Andrew B Dodd
- 1 The Mind Research Network/Lovelace Biomedical and Environmental Research Institute , Albuquerque, New Mexico
| | | | | | | |
Collapse
|
42
|
Begonia M, Prabhu R, Liao J, Whittington W, Claude A, Willeford B, Wardlaw J, Wu R, Zhang S, Williams L. Quantitative analysis of brain microstructure following mild blunt and blast trauma. J Biomech 2014; 47:3704-11. [DOI: 10.1016/j.jbiomech.2014.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 07/15/2014] [Accepted: 09/19/2014] [Indexed: 01/22/2023]
|
43
|
Imagawa KK, Hamilton A, Ceschin R, Tokar E, Pham P, Bluml S, Wisnowski J, Panigrahy A. Characterization of microstructural injury: a novel approach in infant abusive head trauma-initial experience. J Neurotrauma 2014; 31:1632-8. [PMID: 24831582 DOI: 10.1089/neu.2013.3228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abusive head trauma (AHT) is the leading cause of morbidity and mortality among abused children, yet the neuroanatomical underpinnings of AHT outcome is incompletely understood. The aim of this study was to characterize white matter (WM) abnormalities in infants with AHT using diffusion tensor imaging (DTI) and determine which microstructural abnormalities are associated with poor outcome. Retrospective DTI data from 17 infants (>3 months) with a diagnosis of AHT and a comparison cohort of 34 term infants of similar post-conceptual age (PCA) were compared using a voxel-based DTI analysis of cerebral WM. AHT cases were dichotomously classified into mild/moderate versus severe outcome. Clinical variables and conventional imaging findings were also analyzed in relation to outcome. Outcomes were classified in accordance with the Pediatric Cerebral Performance Category Score (PCPCS). Reduced axial diffusivity (AD) was shown in widespread WM regions in the AHT infants compared with controls as well as in the AHT severe outcome group compared with the AHT mild/moderate outcome group. Reduced mean diffusivity (MD) was also associated with severe outcome. Radial diffusivity (RD), conventional magnetic resonance findings, brain metric measurements, and clinical/laboratory variables (with the exception of Glascow Coma Scale) did not differ among AHT outcome groups. Findings support the unique role of DTI techniques, beyond conventional imaging, in the evaluation of microstructural WM injury of AHT. Reduced AD (likely reflecting axonal damage) and MD were associated with poor clinical outcome. DTI abnormalities may uniquely reflect AHT patterns of axonal injury that are not characterized by conventional imaging, which may have both therapeutic and prognostic implications.
Collapse
Affiliation(s)
- Karen Kay Imagawa
- 1 Department of Pediatrics, Children's Hospital Los Angeles , Los Angeles, California
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Sprooten E, Knowles EE, McKay DR, Göring HH, Curran JE, Kent JW, Carless MA, Dyer TD, Drigalenko EI, Olvera RL, Fox PT, Almasy L, Duggirala R, Kochunov P, Blangero J, Glahn DC. Common genetic variants and gene expression associated with white matter microstructure in the human brain. Neuroimage 2014; 97:252-61. [PMID: 24736177 DOI: 10.1016/j.neuroimage.2014.04.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/29/2014] [Accepted: 04/07/2014] [Indexed: 12/29/2022] Open
Abstract
Identifying genes that contribute to white matter microstructure should provide insights into the neurobiological processes that regulate white matter development, plasticity and pathology. We detected five significant SNPs using genome-wide association analysis on a global measure of fractional anisotropy in 776 individuals from large extended pedigrees. Genetic correlations and genome-wide association results indicated that the genetic signal was largely homogeneous across white matter regions. Using RNA transcripts derived from lymphocytes in the same individuals, we identified two genes (GNA13 and CCDC91) that are likely to be cis-regulated by top SNPs, and whose expression levels were also genetically correlated with fractional anisotropy. A transcript of HTR7 was phenotypically associated with FA, and was associated with an intronic genome-wide significant SNP. These results encourage further research in the mechanisms by which GNA13, HTR7 and CCDC91 influence brain structure, and emphasize a role for g-protein signaling in the development and maintenance of white matter microstructure in health and disease.
Collapse
Affiliation(s)
- Emma Sprooten
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA; Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, 200 Retreat Avenue, CT, USA.
| | - Emma E Knowles
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA; Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, 200 Retreat Avenue, CT, USA
| | - D Reese McKay
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA; Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, 200 Retreat Avenue, CT, USA
| | - Harald H Göring
- Department of Genetics, Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX, USA
| | - Joanne E Curran
- Department of Genetics, Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX, USA
| | - Jack W Kent
- Department of Genetics, Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX, USA
| | - Melanie A Carless
- Department of Genetics, Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX, USA
| | - Thomas D Dyer
- Department of Genetics, Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX, USA
| | - Eugene I Drigalenko
- Department of Genetics, Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX, USA
| | - Rene L Olvera
- Department of Psychiatry, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center San Antonio, 8403 Floyd Curl Drive, San Antonio, TX, USA; South Texas Veterans Health System, 7400 Merton Minter, San Antonio, TX 78229, USA
| | - Laura Almasy
- Department of Genetics, Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX, USA
| | - Ravi Duggirala
- Department of Genetics, Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - John Blangero
- Department of Genetics, Texas Biomedical Research Institute, PO Box 760549, San Antonio, TX, USA
| | - David C Glahn
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA; Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, 200 Retreat Avenue, CT, USA
| |
Collapse
|
45
|
Donovan V, Kim C, Anugerah AK, Coats JS, Oyoyo U, Pardo AC, Obenaus A. Repeated mild traumatic brain injury results in long-term white-matter disruption. J Cereb Blood Flow Metab 2014; 34:715-23. [PMID: 24473478 PMCID: PMC3982100 DOI: 10.1038/jcbfm.2014.6] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 12/18/2013] [Accepted: 12/23/2013] [Indexed: 01/17/2023]
Abstract
Mild traumatic brain injury (mTBI) is an increasing public health concern as repetitive injuries can exacerbate existing neuropathology and result in increased neurologic deficits. In contrast to other models of repeated mTBI (rmTBI), our study focused on long-term white-matter abnormalities after bilateral mTBIs induced 7 days apart. A controlled cortical impact (CCI) was used to induce an initial mTBI to the right cortex of Single and rmTBI Sprague Dawley rats, followed by a second injury to the left cortex of rmTBI animals. Shams received only a craniectomy. Ex vivo diffusion tensor imaging (DTI), transmission electron microscopy (TEM), and histology were performed on the anterior corpus callosum at 60 days after injury. The rmTBI animals showed a significant bilateral increase in radial diffusivity (myelin), while only modest changes in axial diffusivity (axonal) were seen between the groups. Further, the rmTBI group showed an increased g-ratio and axon caliber in addition to myelin sheath abnormalities using TEM. Our DTI results indicate ongoing myelin changes, while the TEM data show continuing axonal changes at 60 days after rmTBI. These data suggest that bilateral rmTBI induced 7 days apart leads to progressive alterations in white matter that are not observed after a single mTBI.
Collapse
Affiliation(s)
- Virginia Donovan
- Cell, Molecular and Developmental Biology Program, University of California, Riverside, California, USA
| | - Claudia Kim
- School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Ariana K Anugerah
- School of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Jacqueline S Coats
- Department of Pediatrics, Loma Linda University, Loma Linda, California, USA
| | - Udochuwku Oyoyo
- Department of Radiology, Loma Linda University, Loma Linda, California, USA
| | - Andrea C Pardo
- Department of Pediatrics, Loma Linda University, Loma Linda, California, USA
| | - Andre Obenaus
- Cell, Molecular and Developmental Biology Program, University of California, Riverside, California, USA
- Department of Pediatrics, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
46
|
Sprooten E, Brumbaugh MS, Knowles EE, McKay DR, Lewis J, Barrett J, Landau S, Cyr L, Kochunov P, Winkler AM, Pearlson GD, Glahn DC. Reduced white matter integrity in sibling pairs discordant for bipolar disorder. Am J Psychiatry 2013; 170:1317-25. [PMID: 24185242 PMCID: PMC4119087 DOI: 10.1176/appi.ajp.2013.12111462] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Several lines of evidence indicate that white matter integrity is compromised in bipolar disorder, but the nature, extent, and biological causes remain elusive. To determine the extent to which white matter deficits in bipolar disorder are familial, the authors investigated white matter integrity in a large sample of bipolar patients, unaffected siblings, and healthy comparison subjects. METHOD The authors collected diffusion imaging data for 64 adult bipolar patients, 60 unaffected siblings (including 54 discordant sibling pairs), and 46 demographically matched comparison subjects. Fractional anisotropy was compared between the groups using voxel-wise tract-based spatial statistics and by extracting mean fractional anisotropy from 10 regions of interest. Additionally, intraclass correlation coefficients were calculated between the sibling pairs as an index of familiality. RESULTS Widespread fractional anisotropy reductions in bipolar patients (>40,000 voxels) and more subtle reductions in their siblings, mainly restricted to the corpus callosum, posterior thalamic radiations, and left superior longitudinal fasciculus (>2,000 voxels) were observed. Similarly, region-of-interest analysis revealed significant reductions in most white matter regions in patients. In siblings, fractional anisotropy in the posterior thalamic radiation and the forceps was nominally reduced. Significant between-sibling correlations were found for mean fractional anisotropy across the tract-based spatial statistic skeleton, within significant clusters, and within nearly all regions of interest. CONCLUSIONS These findings emphasize the relevance of white matter to neuropathology and familiality of bipolar disorder and encourage further use of white matter integrity markers as endophenotypes in genetic studies.
Collapse
|
47
|
Aung WY, Mar S, Benzinger TL. Diffusion tensor MRI as a biomarker in axonal and myelin damage. ACTA ACUST UNITED AC 2013; 5:427-440. [PMID: 24795779 DOI: 10.2217/iim.13.49] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diffusion tensor imaging has been used extensively as a research tool to understand the structural changes associated with white matter pathology. Using water diffusion as the basis to construct anatomic details, diffusion tensor imaging offers the potential to identify structural and functional adaptations before gross anatomical changes, such as lesions and tumors, become apparent on conventional MRI. Over the past 10 years, further parameters, such as axial and radial diffusivity, have been developed to characterize white matter changes specific to axons and myelin. In this paper, the potential application and outstanding issues on the use of diffusion tensor imaging directional diffusivity as a biomarker in axonal and myelin damage in neurological disorders will be reviewed.
Collapse
Affiliation(s)
- Wint Yan Aung
- Department of Radiology, Washington University, School of Medicine, 510 South Kingshighway Boulevard, St Louis, MO 63110, USA
| | - Soe Mar
- Department of Pediatric & Developmental Neurology, Washington University School of Medicine, St Louis, MO, USA
| | - Tammie Ls Benzinger
- Department of Radiology, Washington University, School of Medicine, 510 South Kingshighway Boulevard, St Louis, MO 63110, USA ; Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
48
|
Li J, Gu L, Feng DF, Ding F, Zhu G, Rong J. Exploring temporospatial changes in glucose metabolic disorder, learning, and memory dysfunction in a rat model of diffuse axonal injury. J Neurotrauma 2013; 29:2635-46. [PMID: 22880625 DOI: 10.1089/neu.2012.2411] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Diffuse axonal injury (DAI) is the predominant effect of severe traumatic brain injury and contributes significantly to cognitive deficits. The mechanisms underlying these cognitive deficits are often associated with complex metabolic alterations. However, the relationships between temporospatial alterations in cerebral glucose metabolism and the pathophysiology of DAI-related learning and memory dysfunction are not yet completely understood. We used a small animal positron emission tomography (PET) scanner with 2-[F-18]-fluoro-2-deoxy-D-glucose (¹⁸F-FDG) as a molecular probe to evaluate temporospatial glucose metabolism in vulnerable areas of rats with DAI. The Morris water maze (MWM) was used to evaluate the development and progression of learning and memory dysfunction. Compared to the sham-treated group, PET-MRI fusion images showed that glucose metabolism was reduced in animals with DAI. In addition, the standardized uptake value (SUV) of ¹⁸F-FDG was significantly decreased in the sensorimotor cortex, hippocampus, corpus callosum, caudate putamen, brain stem, and cerebellum at days 1, 3, and 7 after injury. SUV returned to baseline levels by 30 days after injury. The escape latency of the injured group was significantly increased, and the percentages of distance travelled and time spent in the target quadrant were significantly decreased 1 month after injury. These effects persisted for 3 months. SUVs in the hippocampus at the acute stage were significantly correlated with MWM performance during the recovery stage of DAI. These results demonstrate that microstructural injury-induced hypometabolism in the hippocampus at the acute stage are all significantly correlated with learning and memory dysfunctions during the recovery stage of DAI.
Collapse
Affiliation(s)
- Jia Li
- Department of Neurosurgery, No. 3 People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | | | | | | | | | | |
Collapse
|
49
|
Detection of white matter lesions in the acute stage of diffuse axonal injury predicts long-term cognitive impairments: a clinical diffusion tensor imaging study. J Trauma Acute Care Surg 2013; 74:242-7. [PMID: 23064612 DOI: 10.1097/ta.0b013e3182684fe8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND White matter disruption is known to contribute to neurocognitive deficits after diffuse axonal injury (DAI). This study evaluated the relationship between white matter integrity using diffusion tensor imaging in the early stage and cognitions in the chronic stage. METHODS Diffusion tensor imaging was performed in 15 patients with DAI within 7 days of injury and in 15 patients in the control group. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated within regions of interest, including the posterior limb of the internal capsule, uncinate fasciculus (UF), anterior corona radiate (ACR), superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF), genu of the corpus callosum, body of the corpus callosum, and splenium of the corpus callosum and cingulum bundle (CB). The patients with DAI and the patients in the control group also underwent neuropsychological testing during the chronic stage after DAI. RESULTS The region-of-interest analysis showed significantly reduced FA and AD values in all nine regions within 7 days of injury as well as increased MD values in the corpus callosum among patients in the DAI group. The patients demonstrated significantly poorer performance on the working memory tests and attention test. In patients, working memory function was positively correlated with the AD value in the UF and with the FA value in the CB, UF, SLF, and ILF. Working memory function was inversely correlated with the RD value in the CB, SLF, and ILF and with the MD value in the SLF and ILF. In addition, the attention function demonstrated a positive correlation with the RD value in the ACR, SLF, and ILF and with the MD value in the ACR, SLF, and ILF. In addition, attention was inversely correlated with the FA values for the posterior limb of the internal capsule, ACR, SLF, and ILF. CONCLUSION The results indicated that the presence of white matter changes during the early stage of DAI may be helpful for predicting cognitive dysfunction over the long term. LEVEL OF EVIDENCE Prognostic study, level III.
Collapse
|
50
|
Adamson C, Yuan W, Babcock L, Leach JL, Seal ML, Holland SK, Wade SL. Diffusion tensor imaging detects white matter abnormalities and associated cognitive deficits in chronic adolescent TBI. Brain Inj 2013; 27:454-63. [PMID: 23472581 DOI: 10.3109/02699052.2012.750756] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PRIMARY OBJECTIVE This study examined long-term alterations in white matter microstructure following TBI in adolescence using diffusion tensor imaging (DTI). It was hypothesized that white matter integrity would be compromised in adolescents with TBI and would correlate with measures of executive functioning and cognitive abilities. RESEARCH DESIGN This study employed whole-brain, voxel-wise, statistical comparison of DTI indices in youth of 12-17 years old (mean = 15.06) with TBI vs an age- and gender-matched cohort (mean age = 15.37). METHODS AND PROCEDURES This study scanned 17 adolescents with complicated-mild-to-severe TBI, 1-3 years after injury, and 13 healthy adolescents. Tract-Based Spatial Statistics (TBSS) was employed for DTI analysis. MAIN OUTCOMES AND RESULTS Overall diffusivity elevations were found in the TBI group with increases in axial diffusivity in the right hemisphere. White matter integrity was associated with word reading, planning and processing times in the TBI group, but not healthy controls. CONCLUSIONS The detected abnormalities in axial diffusivity may reflect neuronal regeneration and cerebral reorganization after injury. These findings provide tentative evidence of persistent white matter alteration following TBI in adolescence. Associations of DTI indices with cognitive performance following TBI provide tentative support for links between white matter integrity and performance post-TBI.
Collapse
Affiliation(s)
- Chris Adamson
- Developmental Imaging, Murdoch Childrens Research Institute , Parkville, Australia
| | | | | | | | | | | | | |
Collapse
|