1
|
Chakroborty NK, Leboulle, Einspanier R, Menzel R. Behavioral and genetic correlates of heterogeneity in learning performance in individual honeybees, Apis mellifera. PLoS One 2024; 19:e0304563. [PMID: 38865313 PMCID: PMC11168654 DOI: 10.1371/journal.pone.0304563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Learning an olfactory discrimination task leads to heterogeneous results in honeybees with some bees performing very well and others at low rates. Here we investigated this behavioral heterogeneity and asked whether it was associated with particular gene expression patterns in the bee's brain. Bees were individually conditioned using a sequential conditioning protocol involving several phases of olfactory learning and retention tests. A cumulative score was used to differentiate the tested bees into high and low performers. The rate of CS+ odor learning was found to correlate most strongly with a cumulative performance score extracted from all learning and retention tests. Microarray analysis of gene expression in the mushroom body area of the brains of these bees identified a number of differentially expressed genes between high and low performers. These genes are associated with diverse biological functions, such as neurotransmission, memory formation, cargo trafficking and development.
Collapse
Affiliation(s)
- Neloy Kumar Chakroborty
- Institute Biology, Neurobiology, Freie Universität Berlin, Königin Luisestr, Berlin, Germany
| | - Leboulle
- Institute Biology, Neurobiology, Freie Universität Berlin, Königin Luisestr, Berlin, Germany
| | - Ralf Einspanier
- Department of Veterinary Medicine, Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg, Berlin, Germany
| | - Randolf Menzel
- Institute Biology, Neurobiology, Freie Universität Berlin, Königin Luisestr, Berlin, Germany
| |
Collapse
|
2
|
Pírez N, Klappenbach M, Locatelli FF. Experience-dependent tuning of the olfactory system. CURRENT OPINION IN INSECT SCIENCE 2023; 60:101117. [PMID: 37741614 DOI: 10.1016/j.cois.2023.101117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Insects rely on their sense of smell to navigate complex environments and make decisions regarding food and reproduction. However, in natural settings, the odors that convey this information may come mixed with environmental odors that can obscure their perception. Therefore, recognizing the presence of informative odors involves generalization and discrimination processes, which can be facilitated when there is a high contrast between stimuli, or the internal representation of the odors of interest outcompetes that of concurrent ones. The first two layers of the olfactory system, which involve the detection of odorants by olfactory receptor neurons and their encoding by the first postsynaptic partners in the antennal lobe, are critical for achieving such optimal representation. In this review, we summarize evidence indicating that experience-dependent changes adjust these two levels of the olfactory system. These changes are discussed in the context of the advantages they provide for detection of informative odors.
Collapse
Affiliation(s)
- Nicolás Pírez
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, C1428EHA Buenos Aires, Argentina
| | - Martín Klappenbach
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, C1428EHA Buenos Aires, Argentina
| | - Fernando F Locatelli
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET, C1428EHA Buenos Aires, Argentina.
| |
Collapse
|
3
|
Finke V, Scheiner R, Giurfa M, Avarguès-Weber A. Individual consistency in the learning abilities of honey bees: cognitive specialization within sensory and reinforcement modalities. Anim Cogn 2023; 26:909-928. [PMID: 36609813 PMCID: PMC10066154 DOI: 10.1007/s10071-022-01741-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023]
Abstract
The question of whether individuals perform consistently across a variety of cognitive tasks is relevant for studies of comparative cognition. The honey bee (Apis mellifera) is an appropriate model to study cognitive consistency as its learning can be studied in multiple elemental and non-elemental learning tasks. We took advantage of this possibility and studied if the ability of honey bees to learn a simple discrimination correlates with their ability to solve two tasks of higher complexity, reversal learning and negative patterning. We performed four experiments in which we varied the sensory modality of the stimuli (visual or olfactory) and the type (Pavlovian or operant) and complexity (elemental or non-elemental) of conditioning to examine if stable correlated performances could be observed across experiments. Across all experiments, an individual's proficiency to learn the simple discrimination task was positively and significantly correlated with performance in both reversal learning and negative patterning, while the performances in reversal learning and negative patterning were positively, yet not significantly correlated. These results suggest that correlated performances across learning paradigms represent a distinct cognitive characteristic of bees. Further research is necessary to examine if individual cognitive consistency can be found in other insect species as a common characteristic of insect brains.
Collapse
Affiliation(s)
- Valerie Finke
- Zoologie II, Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany. .,Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062, Toulouse, France.
| | - Ricarda Scheiner
- Zoologie II, Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Martin Giurfa
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062, Toulouse, France.,Institut Universitaire de France, Paris, France
| | - Aurore Avarguès-Weber
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
4
|
Menzel R. In Search for the Retrievable Memory Trace in an Insect Brain. Front Syst Neurosci 2022; 16:876376. [PMID: 35757095 PMCID: PMC9214861 DOI: 10.3389/fnsys.2022.876376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
The search strategy for the memory trace and its semantics is exemplified for the case of olfactory learning in the honeybee brain. The logic of associative learning is used to guide the experimental approach into the brain by identifying the anatomical and functional convergence sites of the conditioned stimulus and unconditioned stimulus pathways. Two of the several convergence sites are examined in detail, the antennal lobe as the first-order sensory coding area, and the input region of the mushroom body as a higher order integration center. The memory trace is identified as the pattern of associative changes on the level of synapses. The synapses are recruited, drop out, and change the transmission properties for both specifically associated stimulus and the non-associated stimulus. Several rules extracted from behavioral studies are found to be mirrored in the patterns of synaptic change. The strengths and the weaknesses of the honeybee as a model for the search for the memory trace are addressed in a comparison with Drosophila. The question is discussed whether the memory trace exists as a hidden pattern of change if it is not retrieved and whether an external reading of the content of the memory trace may ever be possible. Doubts are raised on the basis that the retrieval circuits are part of the memory trace. The concept of a memory trace existing beyond retrieval is defended by referring to two well-documented processes also in the honeybee, memory consolidation during sleep, and transfer of memory across brain areas.
Collapse
Affiliation(s)
- Randolf Menzel
- Institute Biology - Neurobiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
5
|
Klappenbach M, Lara AE, Locatelli FF. Honey bees can store and retrieve independent memory traces after complex experiences that combine appetitive and aversive associations. J Exp Biol 2022; 225:275573. [PMID: 35485192 DOI: 10.1242/jeb.244229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022]
Abstract
Real-world experiences do often mix appetitive and aversive events. Understanding the ability of animals to extract, store and use this information is an important issue in neurobiology. We used honey bees as model organism to study learning and memory after a differential conditioning that combines appetitive and aversive training trials. First of all, we describe an aversive conditioning paradigm that constitutes a clear opposite of the well known appetitive olfactory conditioning of the proboscis extension response. A neutral odour is presented paired with the bitter substance quinine. Aversive memory is evidenced later as an odour-specific impairment in appetitive conditioning. Then we tested the effect of mixing appetitive and aversive conditioning trials distributed along the same training session. Differential conditioning protocols like this were used before to study the ability to discriminate odours, however they were not focused on whether appetitive and aversive memories are formed. We found that after a differential conditioning, honey bees establish independent appetitive and aversive memories that do not interfere with each other during acquisition or storage. Finally, we moved the question forward to retrieval and memory expression to evaluate what happens when appetitive and the aversive learned odours are mixed during test. Interestingly, opposite memories compete in a way that they do not cancel each other out. Honey bees showed the ability to switch from expressing appetitive to aversive memory depending on their satiation level.
Collapse
Affiliation(s)
- Martín Klappenbach
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires-CONICET), Ciudad Universitaria, Buenos Aires, Argentina
| | - Agustín E Lara
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires-CONICET), Ciudad Universitaria, Buenos Aires, Argentina
| | - Fernando F Locatelli
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires-CONICET), Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
6
|
Fahad Raza M, Anwar M, Husain A, Rizwan M, Li Z, Nie H, Hlaváč P, Ali MA, Rady A, Su S. Differential gene expression analysis following olfactory learning in honeybee (Apis mellifera L.). PLoS One 2022; 17:e0262441. [PMID: 35139088 PMCID: PMC8827436 DOI: 10.1371/journal.pone.0262441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/26/2021] [Indexed: 11/19/2022] Open
Abstract
Insects change their stimulus-response through the perception of associating these stimuli with important survival events such as rewards, threats, and mates. Insects develop strong associations and relate them to their experiences through several behavioral procedures. Among the insects, Apis species, Apis mellifera ligustica are known for their outstanding ability to learn with tremendous economic importance. Apis mellifera ligustica has a strong cognitive ability and promising model species for investigating the neurobiological basis of remarkable olfactory learning abilities. Here we evaluated the olfactory learning ability of A. mellifera by using the proboscis extension reflex (PER) protocol. The brains of the learner and failed-learner bees were examined for comparative transcriptome analysis by RNA-Seq to explain the difference in the learning capacity. In this study, we used an appetitive olfactory learning paradigm in the same age of A. mellifera bees to examine the differential gene expression in the brain of the learner and failed-learner. Bees that respond in 2nd and 3rd trials or only responded to 3rd trials were defined as learned bees, failed-learner individuals were those bees that did not respond in all learning trials The results indicate that the learning ability of learner bees was significantly higher than failed-learner bees for 12 days. We obtained approximately 46.7 and 46.4 million clean reads from the learner bees failed-learner bees, respectively. Gene expression profile between learners' bees and failed-learners bees identified 74 differentially expressed genes, 57 genes up-regulated in the brains of learners and 17 genes were down-regulated in the brains of the bees that fail to learn. The qRT-PCR validated the differently expressed genes. Transcriptome analyses revealed that specific genes in learner and failed-learner bees either down-regulated or up-regulated play a crucial role in brain development and learning behavior. Our finding suggests that down-regulated genes of the brain involved in the integumentary system, storage proteins, brain development, sensory processing, and neurodegenerative disorder may result in reduced olfactory discrimination and olfactory sensitivity in failed-learner bees. This study aims to contribute to a better understanding of the olfactory learning behavior and gene expression information, which opens the door for understanding of the molecular mechanism of olfactory learning behavior in honeybees.
Collapse
Affiliation(s)
- Muhammad Fahad Raza
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Arif Husain
- Department of Soil and Environmental Sciences, Faculty of Agricultural Sciences, Ghazi University Dera Ghazi Khan, Dera Ghazi Khan, Pakistan
| | - Muhmmad Rizwan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiguo Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongyi Nie
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pavol Hlaváč
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - M. Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Rady
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Songkun Su
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
7
|
Smith MAY, Honegger KS, Turner G, de Bivort B. Idiosyncratic learning performance in flies. Biol Lett 2022; 18:20210424. [PMID: 35104427 PMCID: PMC8807056 DOI: 10.1098/rsbl.2021.0424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/21/2021] [Indexed: 11/18/2022] Open
Abstract
Individuals vary in their innate behaviours, even when they have the same genome and have been reared in the same environment. The extent of individuality in plastic behaviours, like learning, is less well characterized. Also unknown is the extent to which intragenotypic differences in learning generalize: if an individual performs well in one assay, will it perform well in other assays? We investigated this using the fruit fly Drosophila melanogaster, an organism long-used to study the mechanistic basis of learning and memory. We found that isogenic flies, reared in identical laboratory conditions, and subject to classical conditioning that associated odorants with electric shock, exhibit clear individuality in their learning responses. Flies that performed well when an odour was paired with shock tended to perform well when the odour was paired with bitter taste or when other odours were paired with shock. Thus, individuality in learning performance appears to be prominent in isogenic animals reared identically, and individual differences in learning performance generalize across some aversive sensory modalities. Establishing these results in flies opens up the possibility of studying the genetic and neural circuit basis of individual differences in learning in a highly suitable model organism.
Collapse
Affiliation(s)
- Matthew A.-Y. Smith
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Kyle S. Honegger
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Glenn Turner
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Benjamin de Bivort
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
8
|
Marachlian E, Klappenbach M, Locatelli F. Learning-dependent plasticity in the antennal lobe improves discrimination and recognition of odors in the honeybee. Cell Tissue Res 2021; 383:165-175. [PMID: 33511470 DOI: 10.1007/s00441-020-03396-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022]
Abstract
Honeybees are extensively used to study olfactory learning and memory processes thanks to their ability to discriminate and remember odors and because of their advantages for optophysiological recordings of the circuits involved in memory and odor perception. There are evidences that the encoding of odors in areas of primary sensory processing is not rigid, but undergoes changes caused by olfactory experience. The biological meaning of these changes is focus of intense discussions. Along this review, we present evidences of plasticity related to different forms of learning and discuss its function in the context of olfactory challenges that honeybees have to solve. So far, results in honeybees are consistent with a model in which changes in early olfactory processing contributes to the ability of an animal to recognize the presence of relevant odors and facilitates the discrimination of odors in a way adjusted to its own experience.
Collapse
Affiliation(s)
- Emiliano Marachlian
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
| | - Martin Klappenbach
- Departamento de Fisiología, Biología Molecular y Celular e Instituto de Fisiología, Facultad de Ciencias Exactas y Naturales, Biología Molecular y Neurociencias, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
| | - Fernando Locatelli
- Departamento de Fisiología, Biología Molecular y Celular e Instituto de Fisiología, Facultad de Ciencias Exactas y Naturales, Biología Molecular y Neurociencias, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Abstract
With less than a million neurons, the western honeybee Apis mellifera is capable of complex olfactory behaviors and provides an ideal model for investigating the neurophysiology of the olfactory circuit and the basis of olfactory perception and learning. Here, we review the most fundamental aspects of honeybee's olfaction: first, we discuss which odorants dominate its environment, and how bees use them to communicate and regulate colony homeostasis; then, we describe the neuroanatomy and the neurophysiology of the olfactory circuit; finally, we explore the cellular and molecular mechanisms leading to olfactory memory formation. The vastity of histological, neurophysiological, and behavioral data collected during the last century, together with new technological advancements, including genetic tools, confirm the honeybee as an attractive research model for understanding olfactory coding and learning.
Collapse
Affiliation(s)
- Marco Paoli
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, 31062, Toulouse, France.
| | - Giovanni C Galizia
- Department of Neuroscience, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
10
|
Anton S, Rössler W. Plasticity and modulation of olfactory circuits in insects. Cell Tissue Res 2020; 383:149-164. [PMID: 33275182 PMCID: PMC7873004 DOI: 10.1007/s00441-020-03329-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
Olfactory circuits change structurally and physiologically during development and adult life. This allows insects to respond to olfactory cues in an appropriate and adaptive way according to their physiological and behavioral state, and to adapt to their specific abiotic and biotic natural environment. We highlight here findings on olfactory plasticity and modulation in various model and non-model insects with an emphasis on moths and social Hymenoptera. Different categories of plasticity occur in the olfactory systems of insects. One type relates to the reproductive or feeding state, as well as to adult age. Another type of plasticity is context-dependent and includes influences of the immediate sensory and abiotic environment, but also environmental conditions during postembryonic development, periods of adult behavioral maturation, and short- and long-term sensory experience. Finally, plasticity in olfactory circuits is linked to associative learning and memory formation. The vast majority of the available literature summarized here deals with plasticity in primary and secondary olfactory brain centers, but also peripheral modulation is treated. The described molecular, physiological, and structural neuronal changes occur under the influence of neuromodulators such as biogenic amines, neuropeptides, and hormones, but the mechanisms through which they act are only beginning to be analyzed.
Collapse
Affiliation(s)
- Sylvia Anton
- IGEPP, INRAE, Institut Agro, Univ Rennes, INRAE, 49045, Angers, France.
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
11
|
Wycke MA, Coureaud G, Thomas-Danguin T, Sandoz JC. Configural perception of a binary olfactory mixture in honey bees, as in humans, rodents and newborn rabbits. J Exp Biol 2020; 223:jeb227611. [PMID: 33046568 DOI: 10.1242/jeb.227611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/06/2020] [Indexed: 11/20/2022]
Abstract
How animals perceive and learn complex stimuli, such as mixtures of odorants, is a difficult problem, for which the definition of general rules across the animal kingdom remains elusive. Recent experiments conducted in human and rodent adults as well as newborn rabbits suggested that these species process particular odor mixtures in a similar, configural manner. Thus, the binary mixture of ethyl isobutyrate (EI) and ethyl maltol (EM) induces configural processing in humans, who perceive a mixture odor quality (pineapple) that is distinct from the quality of each component (strawberry and caramel). Similarly, rabbit neonates treat the mixture differently, at least in part, from its components. In the present study, we asked whether the properties of the EI.EM mixture extend to an influential invertebrate model, the honey bee Apis mellifera. We used appetitive conditioning of the proboscis extension response to evaluate how bees perceive the EI.EM mixture. In a first experiment, we measured perceptual similarity between this mixture and its components in a generalization protocol. In a second experiment, we measured the ability of bees to differentiate between the mixture and both of its components in a negative patterning protocol. In each experimental series, the performance of bees with this mixture was compared with that obtained with four other mixtures, chosen from previous work in humans, newborn rabbits and bees. Our results suggest that when having to differentiate mixture and components, bees treat the EI.EM in a robust configural manner, similarly to mammals, suggesting the existence of common perceptual rules across the animal kindgdom.
Collapse
Affiliation(s)
- Marie-Anne Wycke
- Evolution, Genomes, Behavior and Ecology, CNRS, Université Paris-Saclay, IRD, 91190 Gif-sur-Yvette, France
| | - Gérard Coureaud
- Centre de Recherche en Neurosciences de Lyon, Equipe Codage et Mémoire Olfactive, CNRS/INSERM/UCBL1, 69500 Bron, France
| | - Thierry Thomas-Danguin
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, CNRS, Université Paris-Saclay, IRD, 91190 Gif-sur-Yvette, France
| |
Collapse
|
12
|
Arican C, Bulk J, Deisig N, Nawrot MP. Cockroaches Show Individuality in Learning and Memory During Classical and Operant Conditioning. Front Physiol 2020; 10:1539. [PMID: 31969831 PMCID: PMC6960104 DOI: 10.3389/fphys.2019.01539] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/05/2019] [Indexed: 12/05/2022] Open
Abstract
Animal personality and individuality are intensively researched in vertebrates and both concepts are increasingly applied to behavioral science in insects. However, only few studies have looked into individuality with respect to performance in learning and memory tasks. In vertebrates, individual learning capabilities vary considerably with respect to learning speed and learning rate. Likewise, honeybees express individual learning abilities in a wide range of classical conditioning protocols. Here, we study individuality in the learning and memory performance of cockroaches, both in classical and operant conditioning tasks. We implemented a novel classical (olfactory) conditioning paradigm where the conditioned response is established in the maxilla-labia response (MLR). Operant spatial learning was investigated in a forced two-choice task using a T-maze. Our results confirm individual learning abilities in classical conditioning of cockroaches that was reported for honeybees and vertebrates but contrast long-standing reports on stochastic learning behavior in fruit flies. In our experiments, most learners expressed a correct behavior after only a single learning trial showing a consistent high performance during training and test. We can further show that individual learning differences in insects are not limited to classical conditioning but equally appear in operant conditioning of the cockroach.
Collapse
Affiliation(s)
| | | | - Nina Deisig
- Department of Computational Systems Neuroscience, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Martin Paul Nawrot
- Department of Computational Systems Neuroscience, Institute of Zoology, University of Cologne, Cologne, Germany
| |
Collapse
|
13
|
Groh C, Rössler W. Analysis of Synaptic Microcircuits in the Mushroom Bodies of the Honeybee. INSECTS 2020; 11:insects11010043. [PMID: 31936165 PMCID: PMC7023465 DOI: 10.3390/insects11010043] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 01/18/2023]
Abstract
Mushroom bodies (MBs) are multisensory integration centers in the insect brain involved in learning and memory formation. In the honeybee, the main sensory input region (calyx) of MBs is comparatively large and receives input from mainly olfactory and visual senses, but also from gustatory/tactile modalities. Behavioral plasticity following differential brood care, changes in sensory exposure or the formation of associative long-term memory (LTM) was shown to be associated with structural plasticity in synaptic microcircuits (microglomeruli) within olfactory and visual compartments of the MB calyx. In the same line, physiological studies have demonstrated that MB-calyx microcircuits change response properties after associative learning. The aim of this review is to provide an update and synthesis of recent research on the plasticity of microcircuits in the MB calyx of the honeybee, specifically looking at the synaptic connectivity between sensory projection neurons (PNs) and MB intrinsic neurons (Kenyon cells). We focus on the honeybee as a favorable experimental insect for studying neuronal mechanisms underlying complex social behavior, but also compare it with other insect species for certain aspects. This review concludes by highlighting open questions and promising routes for future research aimed at understanding the causal relationships between neuronal and behavioral plasticity in this charismatic social insect.
Collapse
|
14
|
Jernigan CM, Halby R, Gerkin RC, Sinakevitch I, Locatelli F, Smith BH. Experience-dependent tuning of early olfactory processing in the adult honey bee, Apis mellifera. ACTA ACUST UNITED AC 2020; 223:jeb.206748. [PMID: 31767739 DOI: 10.1242/jeb.206748] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/19/2019] [Indexed: 11/20/2022]
Abstract
Experience-dependent plasticity in the central nervous system allows an animal to adapt its responses to stimuli over different time scales. In this study, we explored the impacts of adult foraging experience on early olfactory processing by comparing naturally foraging honey bees, Apis mellifera, with those that experienced a chronic reduction in adult foraging experience. We placed age-matched sets of sister honey bees into two different olfactory conditions, in which animals were allowed to forage ad libitum In one condition, we restricted foraging experience by placing honey bees in a tent in which both sucrose and pollen resources were associated with a single odor. In the second condition, honey bees were allowed to forage freely and therefore encounter a diversity of naturally occurring resource-associated olfactory experiences. We found that honey bees with restricted foraging experiences had altered antennal lobe development. We measured the glomerular responses to odors using calcium imaging in the antennal lobe, and found that natural olfactory experience also enhanced the inter-individual variation in glomerular response profiles to odors. Additionally, we found that honey bees with adult restricted foraging experience did not distinguish relevant components of an odor mixture in a behavioral assay as did their freely foraging siblings. This study highlights the impacts of individual experience on early olfactory processing at multiple levels.
Collapse
Affiliation(s)
| | - Rachael Halby
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Richard C Gerkin
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Irina Sinakevitch
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Fernando Locatelli
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Brian H Smith
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
15
|
Neupert S, Hornung M, Grenwille Millar J, Kleineidam CJ. Learning Distinct Chemical Labels of Nestmates in Ants. Front Behav Neurosci 2018; 12:191. [PMID: 30210320 PMCID: PMC6123487 DOI: 10.3389/fnbeh.2018.00191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 08/06/2018] [Indexed: 12/04/2022] Open
Abstract
Colony coherence is essential for eusocial insects because it supports the inclusive fitness of colony members. Ants quickly and reliably recognize who belongs to the colony (nestmates) and who is an outsider (non-nestmates) based on chemical recognition cues (cuticular hydrocarbons: CHCs) which as a whole constitute a chemical label. The process of nestmate recognition often is described as matching a neural template with the label. In this study, we tested the prevailing view that ants use commonalities in the colony odor that are present in the CHC profile of all individuals of a colony or whether different CHC profiles are learned independently. We created and manipulated sub-colonies by adding one or two different hydrocarbons that were not present in the original colony odor of our Camponotus floridanus colony and later tested workers of the sub-colonies in one-on-one encounters for aggressive responses. We found that workers adjust their nestmate recognition by learning novel, manipulated CHC profiles, but still accept workers with the previous CHC profile. Workers from a sub-colony with two additional components showed aggression against workers with only one of the two components added to their CHC profile. Thus, additional components as well as the lack of a component can alter a label as “non-nestmate.” Our results suggest that ants have multiple-templates to recognize nestmates carrying distinct labels. This finding is in contrast to what previously has been proposed, i.e., a widening of the acceptance range of one template. We conclude that nestmate recognition in ants is a partitioned (multiple-template) process of the olfactory system that allows discrimination and categorization of nestmates by differences in their CHC profiles. Our findings have strong implications for our understanding of the underlying mechanisms of colony coherence and task allocation because they illustrate the importance of individual experience and task associated differences in the CHC profiles that can be instructive for the organization of insect societies.
Collapse
Affiliation(s)
- Stefanie Neupert
- Department of Neurobiology/Zoology, Universität Konstanz, Konstanz, Germany
| | - Manuel Hornung
- Department of Neurobiology/Zoology, Universität Konstanz, Konstanz, Germany
| | | | | |
Collapse
|
16
|
Neural Correlates of Odor Learning in the Presynaptic Microglomerular Circuitry in the Honeybee Mushroom Body Calyx. eNeuro 2018; 5:eN-NWR-0128-18. [PMID: 29938214 PMCID: PMC6011417 DOI: 10.1523/eneuro.0128-18.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/16/2018] [Accepted: 05/28/2018] [Indexed: 11/21/2022] Open
Abstract
The mushroom body (MB) in insects is known as a major center for associative learning and memory, although exact locations for the correlating memory traces remain to be elucidated. Here, we asked whether presynaptic boutons of olfactory projection neurons (PNs) in the main input site of the MB undergo neuronal plasticity during classical odor-reward conditioning and correlate with the conditioned behavior. We simultaneously measured Ca2+ responses in the boutons and conditioned behavioral responses to learned odors in honeybees. We found that the absolute amount of the neural change for the rewarded but not for the unrewarded odor was correlated with the behavioral learning rate across individuals. The temporal profile of the induced changes matched with odor response dynamics of the MB-associated inhibitory neurons, suggestive of activity modulation of boutons by this neural class. We hypothesize the circuit-specific neural plasticity relates to the learned value of the stimulus and underlies the conditioned behavior of the bees.
Collapse
|
17
|
Strube-Bloss MF, Nawrot MP, Menzel R. Neural correlates of side-specific odour memory in mushroom body output neurons. Proc Biol Sci 2017; 283:rspb.2016.1270. [PMID: 27974514 DOI: 10.1098/rspb.2016.1270] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/10/2016] [Indexed: 11/12/2022] Open
Abstract
Humans and other mammals as well as honeybees learn a unilateral association between an olfactory stimulus presented to one side and a reward. In all of them, the learned association can be behaviourally retrieved via contralateral stimulation, suggesting inter-hemispheric communication. However, the underlying neuronal circuits are largely unknown and neural correlates of across-brain-side plasticity have yet not been demonstrated. We report neural plasticity that reflects lateral integration after side-specific odour reward conditioning. Mushroom body output neurons that did not respond initially to contralateral olfactory stimulation developed a unique and stable representation of the rewarded compound stimulus (side and odour) predicting its value during memory retention. The encoding of the reward-associated compound stimulus is delayed by about 40 ms compared with unrewarded neural activity, indicating an increased computation time for the read-out after lateral integration.
Collapse
Affiliation(s)
- Martin F Strube-Bloss
- Department of Behavioral Physiology and Sociobiology, Theodor-Boveri-Institute of Bioscience, Biocenter University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin P Nawrot
- Martin Paul Nawrot, Computational Systems Neuroscience, Institute for Zoology, Department of Biology, University of Cologne, Biocenter University of Cologne, Zülpicher Straße 47b, 50674 Cologne, Germany
| | - Randolf Menzel
- Randolf Menzel, Institut für Biologie-Neurobiologie, Freie Universität Berlin, Königin-Luise-Str. 28/30, 14195 Berlin, Germany
| |
Collapse
|
18
|
Andrione M, Timberlake BF, Vallortigara G, Antolini R, Haase A. Morphofunctional experience-dependent plasticity in the honeybee brain. ACTA ACUST UNITED AC 2017; 24:622-629. [PMID: 29142057 PMCID: PMC5688957 DOI: 10.1101/lm.046243.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/11/2017] [Indexed: 11/25/2022]
Abstract
Repeated or prolonged exposure to an odorant without any positive or negative reinforcement produces experience-dependent plasticity, which results in habituation and latent inhibition. In the honeybee (Apis mellifera), it has been demonstrated that, even if the absolute neural representation of an odor in the primary olfactory center, the antennal lobe (AL), is not changed by repeated presentations, its relative representation with respect to unfamiliar stimuli is modified. In particular, the representation of a stimulus composed of a 50:50 mixture of a familiar and a novel odorant becomes more similar to that of the novel stimulus after repeated stimulus preexposure. In a calcium-imaging study, we found that the same functional effect develops following prolonged odor exposure. By analyzing the brains of the animals subjected to this procedure, we found that such functional changes are accompanied by morphological changes in the AL (i.e., a decrease in volume in specific glomeruli). The AL glomeruli that exhibited structural plasticity also modified their functional responses to the three stimuli (familiar odor, novel odor, binary mixture). We suggest a model in which rebalancing inhibition within the AL glomeruli may be sufficient to elicit structural and functional correlates of experience-dependent plasticity.
Collapse
Affiliation(s)
- Mara Andrione
- Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy
| | | | | | - Renzo Antolini
- Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy.,Department of Physics, University of Trento, 38120 Trento, Italy
| | - Albrecht Haase
- Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy.,Department of Physics, University of Trento, 38120 Trento, Italy
| |
Collapse
|
19
|
MaBouDi H, Shimazaki H, Giurfa M, Chittka L. Olfactory learning without the mushroom bodies: Spiking neural network models of the honeybee lateral antennal lobe tract reveal its capacities in odour memory tasks of varied complexities. PLoS Comput Biol 2017. [PMID: 28640825 PMCID: PMC5480824 DOI: 10.1371/journal.pcbi.1005551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The honeybee olfactory system is a well-established model for understanding functional mechanisms of learning and memory. Olfactory stimuli are first processed in the antennal lobe, and then transferred to the mushroom body and lateral horn through dual pathways termed medial and lateral antennal lobe tracts (m-ALT and l-ALT). Recent studies reported that honeybees can perform elemental learning by associating an odour with a reward signal even after lesions in m-ALT or blocking the mushroom bodies. To test the hypothesis that the lateral pathway (l-ALT) is sufficient for elemental learning, we modelled local computation within glomeruli in antennal lobes with axons of projection neurons connecting to a decision neuron (LHN) in the lateral horn. We show that inhibitory spike-timing dependent plasticity (modelling non-associative plasticity by exposure to different stimuli) in the synapses from local neurons to projection neurons decorrelates the projection neurons' outputs. The strength of the decorrelations is regulated by global inhibitory feedback within antennal lobes to the projection neurons. By additionally modelling octopaminergic modification of synaptic plasticity among local neurons in the antennal lobes and projection neurons to LHN connections, the model can discriminate and generalize olfactory stimuli. Although positive patterning can be accounted for by the l-ALT model, negative patterning requires further processing and mushroom body circuits. Thus, our model explains several-but not all-types of associative olfactory learning and generalization by a few neural layers of odour processing in the l-ALT. As an outcome of the combination between non-associative and associative learning, the modelling approach allows us to link changes in structural organization of honeybees' antennal lobes with their behavioural performances over the course of their life.
Collapse
Affiliation(s)
- HaDi MaBouDi
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | | | - Martin Giurfa
- Research Centre on Animal Cognition, Center for Integrative Biology, CNRS, University of Toulouse, Toulouse, France
| | - Lars Chittka
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Biergans SD, Claudianos C, Reinhard J, Galizia CG. DNA methylation mediates neural processing after odor learning in the honeybee. Sci Rep 2017; 7:43635. [PMID: 28240742 PMCID: PMC5378914 DOI: 10.1038/srep43635] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/26/2017] [Indexed: 01/04/2023] Open
Abstract
DNA methyltransferases (Dnmts) - epigenetic writers catalyzing the transfer of methyl-groups to cytosine (DNA methylation) - regulate different aspects of memory formation in many animal species. In honeybees, Dnmt activity is required to adjust the specificity of olfactory reward memories and bees' relearning capability. The physiological relevance of Dnmt-mediated DNA methylation in neural networks, however, remains unknown. Here, we investigated how Dnmt activity impacts neuroplasticity in the bees' primary olfactory center, the antennal lobe (AL) an equivalent of the vertebrate olfactory bulb. The AL is crucial for odor discrimination, an indispensable process in forming specific odor memories. Using pharmacological inhibition, we demonstrate that Dnmt activity influences neural network properties during memory formation in vivo. We show that Dnmt activity promotes fast odor pattern separation in trained bees. Furthermore, Dnmt activity during memory formation increases both the number of responding glomeruli and the response magnitude to a novel odor. These data suggest that Dnmt activity is necessary for a form of homoeostatic network control which might involve inhibitory interneurons in the AL network.
Collapse
Affiliation(s)
- Stephanie D Biergans
- Queensland Brain Institute, The University of Queensland, Australia.,Neurobiologie, Universität Konstanz, Germany
| | - Charles Claudianos
- Queensland Brain Institute, The University of Queensland, Australia.,Monash Institute of Cognitive and Clinical Neuroscience, Faculty of Medicine, Nursing Health and Sciences, Monash University, Australia
| | - Judith Reinhard
- Queensland Brain Institute, The University of Queensland, Australia
| | | |
Collapse
|
21
|
Avarguès-Weber A, Mota T. Advances and limitations of visual conditioning protocols in harnessed bees. ACTA ACUST UNITED AC 2016; 110:107-118. [PMID: 27998810 DOI: 10.1016/j.jphysparis.2016.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/06/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022]
Abstract
Bees are excellent invertebrate models for studying visual learning and memory mechanisms, because of their sophisticated visual system and impressive cognitive capacities associated with a relatively simple brain. Visual learning in free-flying bees has been traditionally studied using an operant conditioning paradigm. This well-established protocol, however, can hardly be combined with invasive procedures for studying the neurobiological basis of visual learning. Different efforts have been made to develop protocols in which harnessed honey bees could associate visual cues with reinforcement, though learning performances remain poorer than those obtained with free-flying animals. Especially in the last decade, the intention of improving visual learning performances of harnessed bees led many authors to adopt distinct visual conditioning protocols, altering parameters like harnessing method, nature and duration of visual stimulation, number of trials, inter-trial intervals, among others. As a result, the literature provides data hardly comparable and sometimes contradictory. In the present review, we provide an extensive analysis of the literature available on visual conditioning of harnessed bees, with special emphasis on the comparison of diverse conditioning parameters adopted by different authors. Together with this comparative overview, we discuss how these diverse conditioning parameters could modulate visual learning performances of harnessed bees.
Collapse
Affiliation(s)
- Aurore Avarguès-Weber
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Theo Mota
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais - UFMG, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
22
|
Abramson CI, Dinges CW, Wells H. Operant Conditioning in Honey Bees (Apis mellifera L.): The Cap Pushing Response. PLoS One 2016; 11:e0162347. [PMID: 27626797 PMCID: PMC5023167 DOI: 10.1371/journal.pone.0162347] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/22/2016] [Indexed: 11/27/2022] Open
Abstract
The honey bee has been an important model organism for studying learning and memory. More recently, the honey bee has become a valuable model to understand perception and cognition. However, the techniques used to explore psychological phenomena in honey bees have been limited to only a few primary methodologies such as the proboscis extension reflex, sting extension reflex, and free flying target discrimination-tasks. Methods to explore operant conditioning in bees and other invertebrates are not as varied as with vertebrates. This may be due to the availability of a suitable response requirement. In this manuscript we offer a new method to explore operant conditioning in honey bees: the cap pushing response (CPR). We used the CPR to test for difference in learning curves between novel auto-shaping and more traditional explicit-shaping. The CPR protocol requires bees to exhibit a novel behavior by pushing a cap to uncover a food source. Using the CPR protocol we tested the effects of both explicit-shaping and auto-shaping techniques on operant conditioning. The goodness of fit and lack of fit of these data to the Rescorla-Wagner learning-curve model, widely used in classical conditioning studies, was tested. The model fit well to both control and explicit-shaping results, but only for a limited number of trials. Learning ceased rather than continuing to asymptotically approach the physiological most accurate possible. Rate of learning differed between shaped and control bee treatments. Learning rate was about 3 times faster for shaped bees, but for all measures of proficiency control and shaped bees reached the same level. Auto-shaped bees showed one-trial learning rather than the asymptotic approach to a maximal efficiency. However, in terms of return-time, the auto-shaped bees’ learning did not carry over to the covered-well test treatments.
Collapse
Affiliation(s)
- Charles I. Abramson
- Laboratory of Comparative Psychology and Behavioral Biology, Oklahoma State University, Stillwater, Oklahoma, United States of America
- * E-mail:
| | - Christopher W. Dinges
- Laboratory of Comparative Psychology and Behavioral Biology, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Harrington Wells
- Department of Biology, University of Tulsa, Tulsa, Oklahoma, United States of America
| |
Collapse
|
23
|
Reisenman CE, Lei H, Guerenstein PG. Neuroethology of Olfactory-Guided Behavior and Its Potential Application in the Control of Harmful Insects. Front Physiol 2016; 7:271. [PMID: 27445858 PMCID: PMC4928593 DOI: 10.3389/fphys.2016.00271] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/16/2016] [Indexed: 11/26/2022] Open
Abstract
Harmful insects include pests of crops and storage goods, and vectors of human and animal diseases. Throughout their history, humans have been fighting them using diverse methods. The fairly recent development of synthetic chemical insecticides promised efficient crop and health protection at a relatively low cost. However, the negative effects of those insecticides on human health and the environment, as well as the development of insect resistance, have been fueling the search for alternative control tools. New and promising alternative methods to fight harmful insects include the manipulation of their behavior using synthetic versions of "semiochemicals", which are natural volatile and non-volatile substances involved in the intra- and/or inter-specific communication between organisms. Synthetic semiochemicals can be used as trap baits to monitor the presence of insects, so that insecticide spraying can be planned rationally (i.e., only when and where insects are actually present). Other methods that use semiochemicals include insect annihilation by mass trapping, attract-and- kill techniques, behavioral disruption, and the use of repellents. In the last decades many investigations focused on the neural bases of insect's responses to semiochemicals. Those studies help understand how the olfactory system detects and processes information about odors, which could lead to the design of efficient control tools, including odor baits, repellents or ways to confound insects. Here we review our current knowledge about the neural mechanisms controlling olfactory responses to semiochemicals in harmful insects. We also discuss how this neuroethology approach can be used to design or improve pest/vector management strategies.
Collapse
Affiliation(s)
- Carolina E. Reisenman
- Department of Molecular and Cell Biology and Essig Museum of Entomology, University of California, BerkeleyBerkeley, CA, USA
| | - Hong Lei
- Department of Neuroscience, University of ArizonaTucson, AZ, USA
| | - Pablo G. Guerenstein
- Lab. de Estudio de la Biología de Insectos, CICyTTP-CONICETDiamante, Argentina
- Facultad de Ingeniería, Universidad Nacional de Entre RíosOro Verde, Argentina
| |
Collapse
|
24
|
Carcaud J, Giurfa M, Sandoz JC. Parallel Olfactory Processing in the Honey Bee Brain: Odor Learning and Generalization under Selective Lesion of a Projection Neuron Tract. Front Integr Neurosci 2016; 9:75. [PMID: 26834589 PMCID: PMC4717326 DOI: 10.3389/fnint.2015.00075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/22/2015] [Indexed: 11/30/2022] Open
Abstract
The function of parallel neural processing is a fundamental problem in Neuroscience, as it is found across sensory modalities and evolutionary lineages, from insects to humans. Recently, parallel processing has attracted increased attention in the olfactory domain, with the demonstration in both insects and mammals that different populations of second-order neurons encode and/or process odorant information differently. Among insects, Hymenoptera present a striking olfactory system with a clear neural dichotomy from the periphery to higher-order centers, based on two main tracts of second-order (projection) neurons: the medial and lateral antennal lobe tracts (m-ALT and l-ALT). To unravel the functional role of these two pathways, we combined specific lesions of the m-ALT tract with behavioral experiments, using the classical conditioning of the proboscis extension response (PER conditioning). Lesioned and intact bees had to learn to associate an odorant (1-nonanol) with sucrose. Then the bees were subjected to a generalization procedure with a range of odorants differing in terms of their carbon chain length or functional group. We show that m-ALT lesion strongly affects acquisition of an odor-sucrose association. However, lesioned bees that still learned the association showed a normal gradient of decreasing generalization responses to increasingly dissimilar odorants. Generalization responses could be predicted to some extent by in vivo calcium imaging recordings of l-ALT neurons. The m-ALT pathway therefore seems necessary for normal classical olfactory conditioning performance.
Collapse
Affiliation(s)
- Julie Carcaud
- Evolution, Genomes, Behavior and Ecology, Centre National de la Recherche Scientifique, Univ Paris-Sud, IRD, Université Paris-SaclayGif-sur-Yvette, France; Research Center on Animal Cognition, Université Toulouse III - Paul SabatierToulouse, France; Research Center on Animal Cognition, Centre National de la Recherche ScientifiqueToulouse, France
| | - Martin Giurfa
- Research Center on Animal Cognition, Université Toulouse III - Paul SabatierToulouse, France; Research Center on Animal Cognition, Centre National de la Recherche ScientifiqueToulouse, France
| | - Jean Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, Centre National de la Recherche Scientifique, Univ Paris-Sud, IRD, Université Paris-Saclay Gif-sur-Yvette, France
| |
Collapse
|
25
|
Urlacher E, Soustelle L, Parmentier ML, Verlinden H, Gherardi MJ, Fourmy D, Mercer AR, Devaud JM, Massou I. Honey Bee Allatostatins Target Galanin/Somatostatin-Like Receptors and Modulate Learning: A Conserved Function? PLoS One 2016; 11:e0146248. [PMID: 26741132 PMCID: PMC4704819 DOI: 10.1371/journal.pone.0146248] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/15/2015] [Indexed: 12/21/2022] Open
Abstract
Sequencing of the honeybee genome revealed many neuropeptides and putative neuropeptide receptors, yet functional characterization of these peptidic systems is scarce. In this study, we focus on allatostatins, which were first identified as inhibitors of juvenile hormone synthesis, but whose role in the adult honey bee (Apis mellifera) brain remains to be determined. We characterize the bee allatostatin system, represented by two families: allatostatin A (Apime-ASTA) and its receptor (Apime-ASTA-R); and C-type allatostatins (Apime-ASTC and Apime-ASTCC) and their common receptor (Apime-ASTC-R). Apime-ASTA-R and Apime-ASTC-R are the receptors in bees most closely related to vertebrate galanin and somatostatin receptors, respectively. We examine the functional properties of the two honeybee receptors and show that they are transcriptionally expressed in the adult brain, including in brain centers known to be important for learning and memory processes. Thus we investigated the effects of exogenously applied allatostatins on appetitive olfactory learning in the bee. Our results show that allatostatins modulate learning in this insect, and provide important insights into the evolution of somatostatin/allatostatin signaling.
Collapse
Affiliation(s)
- Elodie Urlacher
- Department of Zoology, Dunedin, Otago, New Zealand
- Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale (UMR 5169), Toulouse, France
- Université de Toulouse, UPS Centre de Recherches sur la Cognition Animale (UMR 5169), Toulouse, France
- * E-mail:
| | - Laurent Soustelle
- CNRS, UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM, U1191, Montpellier, France
- Université de Montpellier, UMR 5203, Montpellier, France
| | - Marie-Laure Parmentier
- CNRS, UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM, U1191, Montpellier, France
- Université de Montpellier, UMR 5203, Montpellier, France
| | - Heleen Verlinden
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Leuven, Belgium
| | - Marie-Julie Gherardi
- EA 4552 Réceptorologie et ciblage thérapeutique en cancérologie, Université de Toulouse, UPS, Toulouse, France
| | - Daniel Fourmy
- EA 4552 Réceptorologie et ciblage thérapeutique en cancérologie, Université de Toulouse, UPS, Toulouse, France
| | | | - Jean-Marc Devaud
- Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale (UMR 5169), Toulouse, France
- Université de Toulouse, UPS Centre de Recherches sur la Cognition Animale (UMR 5169), Toulouse, France
| | - Isabelle Massou
- Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale (UMR 5169), Toulouse, France
- Université de Toulouse, UPS Centre de Recherches sur la Cognition Animale (UMR 5169), Toulouse, France
| |
Collapse
|
26
|
Rigosi E, Haase A, Rath L, Anfora G, Vallortigara G, Szyszka P. Asymmetric neural coding revealed by in vivo calcium imaging in the honey bee brain. Proc Biol Sci 2015; 282:20142571. [PMID: 25673679 DOI: 10.1098/rspb.2014.2571] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Left-right asymmetries are common properties of nervous systems. Although lateralized sensory processing has been well studied, information is lacking about how asymmetries are represented at the level of neural coding. Using in vivo functional imaging, we identified a population-level left-right asymmetry in the honey bee's primary olfactory centre, the antennal lobe (AL). When both antennae were stimulated via a frontal odour source, the inter-odour distances between neural response patterns were higher in the right than in the left AL. Behavioural data correlated with the brain imaging results: bees with only their right antenna were better in discriminating a target odour in a cross-adaptation paradigm. We hypothesize that the differences in neural odour representations in the two brain sides serve to increase coding capacity by parallel processing.
Collapse
Affiliation(s)
- Elisa Rigosi
- CIMeC, Center for Mind/Brain Sciences, University of Trento, Corso Bettini 31, 38068 Rovereto, Italy Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Albrecht Haase
- CIMeC, Center for Mind/Brain Sciences, University of Trento, Corso Bettini 31, 38068 Rovereto, Italy Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy
| | - Lisa Rath
- Department of Biology, Neurobiology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Gianfranco Anfora
- Research and Innovation Center, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele a/A, Trento, Italy
| | - Giorgio Vallortigara
- CIMeC, Center for Mind/Brain Sciences, University of Trento, Corso Bettini 31, 38068 Rovereto, Italy
| | - Paul Szyszka
- Department of Biology, Neurobiology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
27
|
Dnmts and Tet target memory-associated genes after appetitive olfactory training in honey bees. Sci Rep 2015; 5:16223. [PMID: 26531238 PMCID: PMC4632027 DOI: 10.1038/srep16223] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/08/2015] [Indexed: 11/09/2022] Open
Abstract
DNA methylation and demethylation are epigenetic mechanisms involved in memory formation. In honey bees DNA methyltransferase (Dnmt) function is necessary for long-term memory to be stimulus specific (i.e. to reduce generalization). So far, however, it remains elusive which genes are targeted and what the time-course of DNA methylation is during memory formation. Here, we analyse how DNA methylation affects memory retention, gene expression, and differential methylation in stimulus-specific olfactory long-term memory formation. Out of 30 memory-associated genes investigated here, 9 were upregulated following Dnmt inhibition in trained bees. These included Dnmt3 suggesting a negative feedback loop for DNA methylation. Within these genes also the DNA methylation pattern changed during the first 24 hours after training. Interestingly, this was accompanied by sequential activation of the DNA methylation machinery (i.e. Dnmts and Tet). In sum, memory formation involves a temporally complex epigenetic regulation of memory-associated genes that facilitates stimulus specific long-term memory in the honey bee.
Collapse
|
28
|
Neural substrate for higher-order learning in an insect: Mushroom bodies are necessary for configural discriminations. Proc Natl Acad Sci U S A 2015; 112:E5854-62. [PMID: 26460021 DOI: 10.1073/pnas.1508422112] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Learning theories distinguish elemental from configural learning based on their different complexity. Although the former relies on simple and unambiguous links between the learned events, the latter deals with ambiguous discriminations in which conjunctive representations of events are learned as being different from their elements. In mammals, configural learning is mediated by brain areas that are either dispensable or partially involved in elemental learning. We studied whether the insect brain follows the same principles and addressed this question in the honey bee, the only insect in which configural learning has been demonstrated. We used a combination of conditioning protocols, disruption of neural activity, and optophysiological recording of olfactory circuits in the bee brain to determine whether mushroom bodies (MBs), brain structures that are essential for memory storage and retrieval, are equally necessary for configural and elemental olfactory learning. We show that bees with anesthetized MBs distinguish odors and learn elemental olfactory discriminations but not configural ones, such as positive and negative patterning. Inhibition of GABAergic signaling in the MB calyces, but not in the lobes, impairs patterning discrimination, thus suggesting a requirement of GABAergic feedback neurons from the lobes to the calyces for nonelemental learning. These results uncover a previously unidentified role for MBs besides memory storage and retrieval: namely, their implication in the acquisition of ambiguous discrimination problems. Thus, in insects as in mammals, specific brain regions are recruited when the ambiguity of learning tasks increases, a fact that reveals similarities in the neural processes underlying the elucidation of ambiguous tasks across species.
Collapse
|
29
|
Abstract
Honey bees have a rich repertoire of olfactory learning behaviors, and they therefore are an excellent model to study plasticity in olfactory circuits. Recent behavioral, physiological, and molecular evidence suggested that the antennal lobe, the first relay of the olfactory system in insects and analog to the olfactory bulb in vertebrates, is involved in associative and nonassociative olfactory learning. Here we use calcium imaging to reveal how responses across antennal lobe projection neurons change after association of an input odor with appetitive reinforcement. After appetitive conditioning to 1-hexanol, the representation of an odor mixture containing 1-hexanol becomes more similar to this odor and less similar to the background odor acetophenone. We then apply computational modeling to investigate how changes in synaptic connectivity can account for the observed plasticity. Our study suggests that experience-dependent modulation of inhibitory interactions in the antennal lobe aids perception of salient odor components mixed with behaviorally irrelevant background odors.
Collapse
|
30
|
Schubert M, Sandoz JC, Galizia G, Giurfa M. Odourant dominance in olfactory mixture processing: what makes a strong odourant? Proc Biol Sci 2015; 282:20142562. [PMID: 25652840 PMCID: PMC4344151 DOI: 10.1098/rspb.2014.2562] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/07/2015] [Indexed: 11/12/2022] Open
Abstract
The question of how animals process stimulus mixtures remains controversial as opposing views propose that mixtures are processed analytically, as the sum of their elements, or holistically, as unique entities different from their elements. Overshadowing is a widespread phenomenon that can help decide between these alternatives. In overshadowing, an individual trained with a binary mixture learns one element better at the expense of the other. Although element salience (learning success) has been suggested as a main explanation for overshadowing, the mechanisms underlying this phenomenon remain unclear. We studied olfactory overshadowing in honeybees to uncover the mechanisms underlying olfactory-mixture processing. We provide, to our knowledge, the most comprehensive dataset on overshadowing to date based on 90 experimental groups involving more than 2700 bees trained either with six odourants or with their resulting 15 binary mixtures. We found that bees process olfactory mixtures analytically and that salience alone cannot predict overshadowing. After normalizing learning success, we found that an unexpected feature, the generalization profile of an odourant, was determinant for overshadowing. Odourants that induced less generalization enhanced their distinctiveness and became dominant in the mixture. Our study thus uncovers features that determine odourant dominance within olfactory mixtures and allows the referring of this phenomenon to differences in neural activity both at the receptor and the central level in the insect nervous system.
Collapse
Affiliation(s)
- Marco Schubert
- Research Center on Animal Cognition, Université de Toulouse, 118 Route de Narbonne, Toulouse Cedex 9 31062, France Research Center on Animal Cognition, CNRS, 118 Route de Narbonne, Toulouse Cedex 9 31062, France
| | - Jean-Christophe Sandoz
- Research Center on Animal Cognition, Université de Toulouse, 118 Route de Narbonne, Toulouse Cedex 9 31062, France Research Center on Animal Cognition, CNRS, 118 Route de Narbonne, Toulouse Cedex 9 31062, France Evolution Genomes and Speciation Lab, UPR 9034, CNRS, Avenue de la Terrasse, Bâtiment 13, Boite Postale 1, Gif sur Yvette 91198, France
| | - Giovanni Galizia
- Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Martin Giurfa
- Research Center on Animal Cognition, Université de Toulouse, 118 Route de Narbonne, Toulouse Cedex 9 31062, France Research Center on Animal Cognition, CNRS, 118 Route de Narbonne, Toulouse Cedex 9 31062, France
| |
Collapse
|
31
|
Pamir E, Szyszka P, Scheiner R, Nawrot MP. Rapid learning dynamics in individual honeybees during classical conditioning. Front Behav Neurosci 2014; 8:313. [PMID: 25309366 PMCID: PMC4164006 DOI: 10.3389/fnbeh.2014.00313] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 08/26/2014] [Indexed: 01/08/2023] Open
Abstract
Associative learning in insects has been studied extensively by a multitude of classical conditioning protocols. However, so far little emphasis has been put on the dynamics of learning in individuals. The honeybee is a well-established animal model for learning and memory. We here studied associative learning as expressed in individual behavior based on a large collection of data on olfactory classical conditioning (25 datasets, 3298 animals). We show that the group-averaged learning curve and memory retention score confound three attributes of individual learning: the ability or inability to learn a given task, the generally fast acquisition of a conditioned response (CR) in learners, and the high stability of the CR during consecutive training and memory retention trials. We reassessed the prevailing view that more training results in better memory performance and found that 24 h memory retention can be indistinguishable after single-trial and multiple-trial conditioning in individuals. We explain how inter-individual differences in learning can be accommodated within the Rescorla–Wagner theory of associative learning. In both data-analysis and modeling we demonstrate how the conflict between population-level and single-animal perspectives on learning and memory can be disentangled.
Collapse
Affiliation(s)
- Evren Pamir
- Bernstein Center for Computational Neuroscience Berlin, Germany ; Neuroinformatics and Theoretical Neuroscience, Institute of Biology, Freie Universität Berlin Germany ; Department Genetics of Learning and Memory, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Paul Szyszka
- Department of Biology, University of Konstanz Konstanz, Germany
| | - Ricarda Scheiner
- Department of Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg Würzburg, Germany
| | - Martin P Nawrot
- Bernstein Center for Computational Neuroscience Berlin, Germany ; Neuroinformatics and Theoretical Neuroscience, Institute of Biology, Freie Universität Berlin Germany
| |
Collapse
|
32
|
Locatelli FF, Rela L. Mosaic activity patterns and their relation to perceptual similarity: open discussions on the molecular basis and circuitry of odor recognition. J Neurochem 2014; 131:546-53. [PMID: 25123415 DOI: 10.1111/jnc.12931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 02/04/2023]
Abstract
Enormous advances have been made in the recent years in regard to the mechanisms and neural circuits by which odors are sensed and perceived. Part of this understanding has been gained from parallel studies in insects and rodents that show striking similarity in the mechanisms they use to sense, encode, and perceive odors. In this review, we provide a short introduction to the functioning of olfactory systems from transduction of odorant stimuli into electrical signals in sensory neurons to the anatomical and functional organization of the networks involved in neural representation of odors in the central nervous system. We make emphasis on the functional and anatomical architecture of the first synaptic relay of the olfactory circuit, the olfactory bulb in vertebrates and the antennal lobe in insects. We discuss how the exquisite and conserved architecture of this structure is established and how different odors are encoded in mosaic activity patterns. Finally, we discuss the validity of methods used to compare activation patterns in relation to perceptual similarity.
Collapse
Affiliation(s)
- Fernando F Locatelli
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE-CONICET, Argentina
| | | |
Collapse
|
33
|
Abstract
The ability of organisms to seamlessly ignore familiar, inconsequential stimuli improves their selective attention and response to salient features of the environment. Here, I propose that this fundamental but unexplained phenomenon substantially derives from the ability of any pattern of neural excitation to create an enhanced inhibitory (or "negative") image of itself through target-specific scaling of inhibitory inputs onto active excitatory neurons. Familiar stimuli encounter strong negative images and are therefore less likely to be transmitted to higher brain centers. Integrating historical and recent observations, the negative-image model described here provides a mechanistic framework for understanding habituation, which is connected to ideas on dynamic predictive coding. In addition, it suggests insights for understanding autism spectrum disorders.
Collapse
|
34
|
Muscedere ML, Gronenberg W, Moreau CS, Traniello JFA. Investment in higher order central processing regions is not constrained by brain size in social insects. Proc Biol Sci 2014; 281:20140217. [PMID: 24741016 DOI: 10.1098/rspb.2014.0217] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The extent to which size constrains the evolution of brain organization and the genesis of complex behaviour is a central, unanswered question in evolutionary neuroscience. Advanced cognition has long been linked to the expansion of specific brain compartments, such as the neocortex in vertebrates and the mushroom bodies in insects. Scaling constraints that limit the size of these brain regions in small animals may therefore be particularly significant to behavioural evolution. Recent findings from studies of paper wasps suggest miniaturization constrains the size of central sensory processing brain centres (mushroom body calyces) in favour of peripheral, sensory input centres (antennal and optic lobes). We tested the generality of this hypothesis in diverse eusocial hymenopteran species (ants, bees and wasps) exhibiting striking variation in body size and thus brain size. Combining multiple neuroanatomical datasets from these three taxa, we found no universal size constraint on brain organization within or among species. In fact, small-bodied ants with miniscule brains had mushroom body calyces proportionally as large as or larger than those of wasps and bees with brains orders of magnitude larger. Our comparative analyses suggest that brain organization in ants is shaped more by natural selection imposed by visual demands than intrinsic design limitations.
Collapse
Affiliation(s)
- Mario L Muscedere
- Undergraduate Program in Neuroscience, Boston University, , 2 Cummington Mall, Boston, MA 02215, USA, Department of Neuroscience, University of Arizona, , 611 Gould-Simpson Science Building, Tucson, AZ 85721, USA, Department of Science and Education, Field Museum of Natural History, , 1400 South Lake Shore Drive, Chicago, IL 60605, USA, Department of Biology, Boston University, , 5 Cummington Mall, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
35
|
Galizia CG. Olfactory coding in the insect brain: data and conjectures. Eur J Neurosci 2014; 39:1784-95. [PMID: 24698302 PMCID: PMC4237541 DOI: 10.1111/ejn.12558] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 11/28/2022]
Abstract
Much progress has been made recently in understanding how olfactory coding works in insect brains. Here, I propose a wiring diagram for the major steps from the first processing network (the antennal lobe) to behavioral readout. I argue that the sequence of lateral inhibition in the antennal lobe, non-linear synapses, threshold-regulating gated spring network, selective lateral inhibitory networks across glomeruli, and feedforward inhibition to the lateral protocerebrum cover most of the experimental results from different research groups and model species. I propose that the main difference between mushroom bodies and the lateral protocerebrum is not about learned vs. innate behavior. Rather, mushroom bodies perform odor identification, whereas the lateral protocerebrum performs odor evaluation (both learned and innate). I discuss the concepts of labeled line and combinatorial coding and postulate that, under restrictive experimental conditions, these networks lead to an apparent existence of 'labeled line' coding for special odors. Modulatory networks are proposed as switches between different evaluating systems in the lateral protocerebrum. A review of experimental data and theoretical conjectures both contribute to this synthesis, creating new hypotheses for future research.
Collapse
|
36
|
Claudianos C, Lim J, Young M, Yan S, Cristino AS, Newcomb RD, Gunasekaran N, Reinhard J. Odor memories regulate olfactory receptor expression in the sensory periphery. Eur J Neurosci 2014; 39:1642-54. [PMID: 24628891 DOI: 10.1111/ejn.12539] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/28/2014] [Accepted: 02/03/2014] [Indexed: 12/22/2022]
Abstract
Odor learning induces structural and functional modifications throughout the olfactory system, but it is currently unknown whether this plasticity extends to the olfactory receptors (Or) in the sensory periphery. Here, we demonstrate that odor learning induces plasticity in olfactory receptor expression in the honeybee, Apis mellifera. Using quantitative RT-PCR analysis, we show that six putative floral scent receptors were differentially expressed in the bee antennae depending on the scent environment that the bees experienced. Or151, which we characterized using an in vitro cell expression system as a broadly tuned receptor binding floral odorants such as linalool, and Or11, the specific receptor for the queen pheromone 9-oxo-decenoic acid, were significantly down-regulated after honeybees were conditioned with the respective odorants in an olfactory learning paradigm. Electroantennogram recordings showed that the neural response of the antenna was similarly reduced after odor learning. Long-term odor memory was essential for inducing these changes, suggesting that the molecular mechanisms involved in olfactory memory also regulate olfactory receptor expression. Our study demonstrates for the first time that olfactory receptor expression is experience-dependent and modulated by scent conditioning, providing novel insight into how molecular regulation at the periphery contributes to plasticity in the olfactory system.
Collapse
Affiliation(s)
- Charles Claudianos
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Capurro A, Baroni F, Kuebler LS, Kárpáti Z, Dekker T, Lei H, Hansson BS, Pearce TC, Olsson SB. Temporal features of spike trains in the moth antennal lobe revealed by a comparative time-frequency analysis. PLoS One 2014; 9:e84037. [PMID: 24465391 PMCID: PMC3896344 DOI: 10.1371/journal.pone.0084037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 11/11/2013] [Indexed: 12/24/2022] Open
Abstract
The discrimination of complex sensory stimuli in a noisy environment is an immense computational task. Sensory systems often encode stimulus features in a spatiotemporal fashion through the complex firing patterns of individual neurons. To identify these temporal features, we have developed an analysis that allows the comparison of statistically significant features of spike trains localized over multiple scales of time-frequency resolution. Our approach provides an original way to utilize the discrete wavelet transform to process instantaneous rate functions derived from spike trains, and select relevant wavelet coefficients through statistical analysis. Our method uncovered localized features within olfactory projection neuron (PN) responses in the moth antennal lobe coding for the presence of an odor mixture and the concentration of single component odorants, but not for compound identities. We found that odor mixtures evoked earlier responses in biphasic response type PNs compared to single components, which led to differences in the instantaneous firing rate functions with their signal power spread across multiple frequency bands (ranging from 0 to 45.71 Hz) during a time window immediately preceding behavioral response latencies observed in insects. Odor concentrations were coded in excited response type PNs both in low frequency band differences (2.86 to 5.71 Hz) during the stimulus and in the odor trace after stimulus offset in low (0 to 2.86 Hz) and high (22.86 to 45.71 Hz) frequency bands. These high frequency differences in both types of PNs could have particular relevance for recruiting cellular activity in higher brain centers such as mushroom body Kenyon cells. In contrast, neurons in the specialized pheromone-responsive area of the moth antennal lobe exhibited few stimulus-dependent differences in temporal response features. These results provide interesting insights on early insect olfactory processing and introduce a novel comparative approach for spike train analysis applicable to a variety of neuronal data sets.
Collapse
Affiliation(s)
- Alberto Capurro
- Department of Engineering, University of Leicester, Leicester, United Kingdom
| | - Fabiano Baroni
- School of Psychology and Psychiatry, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- NeuroEngineering Laboratory, Department of Electrical & Electronic Engineering, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Neural Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Linda S. Kuebler
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Zsolt Kárpáti
- Department of Zoology, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Teun Dekker
- Division of Chemical Ecology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Hong Lei
- Department of Neuroscience, School of Mind, Brain and Behavior, University of Arizona, Tucson, Arizona, United States of America
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Timothy C. Pearce
- Department of Engineering, University of Leicester, Leicester, United Kingdom
| | - Shannon B. Olsson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- * E-mail:
| |
Collapse
|
38
|
Szyszka P, Stierle JS. Mixture processing and odor-object segregation in insects. PROGRESS IN BRAIN RESEARCH 2014; 208:63-85. [PMID: 24767479 DOI: 10.1016/b978-0-444-63350-7.00003-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
When enjoying the scent of grinded coffee or cut grass, most of us are unaware that these scents consist of up to hundreds of volatile substances. We perceive these odorant mixtures as a unitary scent rather than a combination of multiple odorants. The olfactory system processes odor mixtures into meaningful odor objects to provide animals with information that is relevant in everyday tasks, such as habitat localization, foraging, social communication, reproduction, and orientation. For example, odor objects can be a particular flower species on which a bee feeds or the receptive female moth which attracts males by its specific pheromone blend. Using odor mixtures as cues for odor-driven behavior rather than single odorants allows unambiguous identification of a potentially infinite number of odor objects. When multiple odor objects are present at the same time, they form a temporally complex mixture. In order to segregate this mixture into its meaningful constituents, animals must have evolved odor-object segregation mechanisms which are robust against the interference by background odors. In this review, we describe how insects use information of the olfactory environment to either bind odorants into unitary percepts or to segregate them from each other.
Collapse
Affiliation(s)
- Paul Szyszka
- Department of Biology-Neurobiology, University of Konstanz, Konstanz, Germany.
| | - Jacob S Stierle
- Department of Biology-Neurobiology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
39
|
Jones BM, Leonard AS, Papaj DR, Gronenberg W. Plasticity of the worker bumblebee brain in relation to age and rearing environment. BRAIN, BEHAVIOR AND EVOLUTION 2013; 82:250-61. [PMID: 24281415 DOI: 10.1159/000355845] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 09/18/2013] [Indexed: 02/03/2023]
Abstract
The environment experienced during development can dramatically affect the brain, with possible implications for sensory processing, learning, and memory. Although the effects of single sensory modalities on brain development have been repeatedly explored, the additive or interactive effects of multiple modalities have been less thoroughly investigated. We asked how experience with multisensory stimuli affected brain development in the bumblebee Bombus impatiens. First, to establish the timeline of brain development during early adulthood, we estimated regional brain volumes across a range of ages. We discovered significant age-related volume changes in nearly every region of the brain. Next, to determine whether these changes were dependent upon certain environmental stimuli, we manipulated the visual and olfactory stimuli available to newly emerged bumblebee workers in a factorial manner. Newly emerged bumblebees were maintained in the presence or absence of supplemental visual and/or olfactory stimuli for 7 days, after which the volumes of several brain regions were estimated. We found that the volumes of the mushroom body lobes and calyces were larger in the absence of visual stimuli. Additionally, visual deprivation was associated with the expression of larger antennal lobes, the primary olfactory processing regions of the brain. In contrast, exposure to plant-derived olfactory stimuli did not have a significant effect on brain region volumes. This study is the first to explore the separate and interactive effects of visual and olfactory stimuli on bee brain development. Assessing the timing and sensitivity of brain development is a first step toward understanding how different rearing environments differentially affect regional brain volumes in this species. Our findings suggest that environmental factors experienced during the first week of adulthood can modify bumblebee brain development in many subtle ways.
Collapse
Affiliation(s)
- Beryl M Jones
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Ariz., USA
| | | | | | | |
Collapse
|
40
|
Strauch M, Müthing C, Broeg MP, Szyszka P, Münch D, Laudes T, Deussen O, Galizia CG, Merhof D. The looks of an odour--visualising neural odour response patterns in real time. BMC Bioinformatics 2013; 14 Suppl 19:S6. [PMID: 24564474 PMCID: PMC3980292 DOI: 10.1186/1471-2105-14-s19-s6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Calcium imaging in insects reveals the neural response to odours, both at the receptor level on the antenna and in the antennal lobe, the first stage of olfactory information processing in the brain. Changes of intracellular calcium concentration in response to odour presentations can be observed by employing calcium-sensitive, fluorescent dyes. The response pattern across all recorded units is characteristic for the odour. METHOD Previously, extraction of odour response patterns from calcium imaging movies was performed offline, after the experiment. We developed software to extract and to visualise odour response patterns in real time. An adaptive algorithm in combination with an implementation for the graphics processing unit enables fast processing of movie streams. Relying on correlations between pixels in the temporal domain, the calcium imaging movie can be segmented into regions that correspond to the neural units. RESULTS We applied our software to calcium imaging data recorded from the antennal lobe of the honeybee Apis mellifera and from the antenna of the fruit fly Drosophila melanogaster. Evaluation on reference data showed results comparable to those obtained by previous offline methods while computation time was significantly lower. Demonstrating practical applicability, we employed the software in a real-time experiment, performing segmentation of glomeruli--the functional units of the honeybee antennal lobe--and visualisation of glomerular activity patterns. CONCLUSIONS Real-time visualisation of odour response patterns expands the experimental repertoire targeted at understanding information processing in the honeybee antennal lobe. In interactive experiments, glomeruli can be selected for manipulation based on their present or past activity, or based on their anatomical position. Apart from supporting neurobiology, the software allows for utilising the insect antenna as a chemosensor, e.g. to detect or to classify odours.
Collapse
Affiliation(s)
- Martin Strauch
- Interdisciplinary Center for Interactive Data Analysis, Modelling and Visual Exploration (INCIDE), University of Konstanz, 78457 Konstanz, Germany
- Neurobiology, University of Konstanz, 78457 Konstanz, Germany
| | - Clemens Müthing
- Interdisciplinary Center for Interactive Data Analysis, Modelling and Visual Exploration (INCIDE), University of Konstanz, 78457 Konstanz, Germany
| | - Marc P Broeg
- Interdisciplinary Center for Interactive Data Analysis, Modelling and Visual Exploration (INCIDE), University of Konstanz, 78457 Konstanz, Germany
| | - Paul Szyszka
- Neurobiology, University of Konstanz, 78457 Konstanz, Germany
| | - Daniel Münch
- Neurobiology, University of Konstanz, 78457 Konstanz, Germany
| | - Thomas Laudes
- Neurobiology, University of Konstanz, 78457 Konstanz, Germany
| | - Oliver Deussen
- Interdisciplinary Center for Interactive Data Analysis, Modelling and Visual Exploration (INCIDE), University of Konstanz, 78457 Konstanz, Germany
| | | | - Dorit Merhof
- Interdisciplinary Center for Interactive Data Analysis, Modelling and Visual Exploration (INCIDE), University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
41
|
Strauch M, Rein J, Lutz C, Galizia CG. Signal extraction from movies of honeybee brain activity: the ImageBee plugin for KNIME. BMC Bioinformatics 2013; 14 Suppl 18:S4. [PMID: 24564238 PMCID: PMC3817809 DOI: 10.1186/1471-2105-14-s18-s4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background In the antennal lobe, a dedicated olfactory center of the honeybee brain, odours are encoded as activity patterns of coding units, the so-called glomeruli. Optical imaging with calcium-sensitive dyes allows us to record these activity patterns and to gain insight into olfactory information processing in the brain. Method We introduce ImageBee, a plugin for the data analysis platform KNIME. ImageBee provides a variety of tools for processing optical imaging data. The main algorithm behind ImageBee is a matrix factorisation approach. Motivated by a data-specific, non-negative mixture model, the algorithm aims to select the generating extreme vectors of a convex cone that contains the data. It approximates the movie matrix by non-negative combinations of the extreme vectors. These correspond to pure glomerular signals that are not mixed with neighbour signals. Results Evaluation shows that the proposed algorithm can identify the relevant biological signals on imaging data from the honeybee AL, as well as it can recover implanted source signals from artificial data. Conclusions ImageBee enables automated data processing and visualisation for optical imaging data from the insect AL. The modular implementation for KNIME offers a flexible platform for data analysis projects, where modules can be rearranged or added depending on the particular application. Availability ImageBee can be installed via the KNIME update service. Installation instructions are available at http://tech.knime.org/imagebee-analysing-imaging-data-from-the-honeybee-brain.
Collapse
|
42
|
Arenas A, Ramírez GP, Balbuena MS, Farina WM. Behavioral and neural plasticity caused by early social experiences: the case of the honeybee. Front Physiol 2013; 4:41. [PMID: 23986708 PMCID: PMC3750948 DOI: 10.3389/fphys.2013.00041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/17/2013] [Indexed: 11/29/2022] Open
Abstract
Cognitive experiences during the early stages of life play an important role in shaping future behavior. Behavioral and neural long-term changes after early sensory and associative experiences have been recently reported in the honeybee. This invertebrate is an excellent model for assessing the role of precocious experiences on later behavior due to its extraordinarily tuned division of labor based on age polyethism. These studies are mainly focused on the role and importance of experiences occurred during the first days of the adult lifespan, their impact on foraging decisions, and their contribution to coordinate food gathering. Odor-rewarded experiences during the first days of honeybee adulthood alter the responsiveness to sucrose, making young hive bees more sensitive to assess gustatory features about the nectar brought back to the hive and affecting the dynamic of the food transfers and the propagation of food-related information within the colony. Early olfactory experiences lead to stable and long-term associative memories that can be successfully recalled after many days, even at foraging ages. Also they improve memorizing of new associative learning events later in life. The establishment of early memories promotes stable reorganization of the olfactory circuits inducing structural and functional changes in the antennal lobe (AL). Early rewarded experiences have relevant consequences at the social level too, biasing dance and trophallaxis partner choice and affecting recruitment. Here, we revised recent results in bees' physiology, behavior, and sociobiology to depict how the early experiences affect their cognition abilities and neural-related circuits.
Collapse
Affiliation(s)
| | | | | | - Walter M. Farina
- Grupo de Estudio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, IFIBYNE-CONICET, Universidad de Buenos AiresBuenos Aires, Argentina
| |
Collapse
|
43
|
Tedjakumala SR, Giurfa M. Rules and mechanisms of punishment learning in honey bees: the aversive conditioning of the sting extension response. J Exp Biol 2013; 216:2985-97. [DOI: 10.1242/jeb.086629] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Honeybees constitute established model organisms for the study of appetitive learning and memory. In recent years, the establishment of the technique of olfactory conditioning of the sting extension response (SER) has yielded new insights into the rules and mechanisms of aversive learning in insects. In olfactory SER conditioning, a harnessed bee learns to associate an olfactory stimulus as the conditioned stimulus with the noxious stimulation of an electric shock as the unconditioned stimulus. Here, we review the multiple aspects of honeybee aversive learning that have been uncovered using Pavlovian conditioning of the SER. From its behavioral principles and sensory variants to its cellular bases and implications for understanding social organization, we present the latest advancements in the study of punishment learning in bees and discuss its perspectives in order to define future research avenues and necessary improvements. The studies presented here underline the importance of studying honeybee learning not only from an appetitive but also from an aversive perspective, in order to uncover behavioral and cellular mechanisms of individual and social plasticity.
Collapse
Affiliation(s)
- Stevanus Rio Tedjakumala
- Université de Toulouse, UPS, Research Centre for Animal Cognition, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
- Centre national de la recherche scientifique (CNRS), Research Centre for Animal Cognition, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Martin Giurfa
- Université de Toulouse, UPS, Research Centre for Animal Cognition, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
- Centre national de la recherche scientifique (CNRS), Research Centre for Animal Cognition, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| |
Collapse
|
44
|
Burger H, Ayasse M, Dötterl S, Kreissl S, Galizia CG. Perception of floral volatiles involved in host-plant finding behaviour: comparison of a bee specialist and generalist. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:751-61. [DOI: 10.1007/s00359-013-0835-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 11/25/2022]
|
45
|
Octopamine modulates activity of neural networks in the honey bee antennal lobe. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:947-62. [PMID: 23681219 PMCID: PMC3825135 DOI: 10.1007/s00359-013-0805-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 01/02/2023]
Abstract
Neuronal plasticity allows an animal to respond to environmental changes by modulating its response to stimuli. In the honey bee (Apis mellifera), the biogenic amine octopamine plays a crucial role in appetitive odor learning, but little is known about how octopamine affects the brain. We investigated its effect in the antennal lobe, the first olfactory center in the brain, using calcium imaging to record background activity and odor responses before and after octopamine application. We show that octopamine increases background activity in olfactory output neurons, while reducing average calcium levels. Odor responses were modulated both upwards and downwards, with more odor response increases in glomeruli with negative or weak odor responses. Importantly, the octopamine effect was variable across glomeruli, odorants, odorant concentrations and animals, suggesting that the octopaminergic network is shaped by plasticity depending on an individual animal's history and possibly other factors. Using RNA interference, we show that the octopamine receptor AmOA1 (homolog of the Drosophila OAMB receptor) is involved in the octopamine effect. We propose a network model in which octopamine receptors are plastic in their density and located on a subpopulation of inhibitory neurons in a disinhibitory pathway. This would improve odor-coding of behaviorally relevant, previously experienced odors.
Collapse
|
46
|
Okle O, Rath L, Galizia CG, Dietrich DR. The cyanobacterial neurotoxin β-N-methylamino-l-alanine (BMAA) induces neuronal and behavioral changes in honeybees. Toxicol Appl Pharmacol 2013; 270:9-15. [PMID: 23591064 DOI: 10.1016/j.taap.2013.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 10/27/2022]
Abstract
The cyanobacterially produced neurotoxin beta-N-methylamino-l-alanine (BMAA) is thought to induce amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC)-like symptoms. However, its mechanism of action and its pathway of intoxication are yet unknown. In vivo animal models suitable for investigating the neurotoxic effect of BMAA with applicability to the human are scarce. Hence, we used the honeybee (Apis mellifera) since its nervous system is relatively simple, yet having cognitive capabilities. Bees fed with BMAA-spiked sugar water had an increased mortality rate and a reduced ability to learn odors in a classical conditioning paradigm. Using (14)C-BMAA we demonstrated that BMAA is biologically available to the bee, and is found in the head, thorax and abdomen with little to no excretion. BMAA is also transferred from one bee to the next via trophallaxis resulting in an exposure of the whole beehive. BMAA bath application directly onto the brain leads to an altered Ca(2+) homeostasis and to generation of reactive oxygen species. These behavioral and physiological observations suggest that BMAA may have effects on bee brains similar to those assumed to occur in humans. Therefore the bee could serve as a surrogate model system for investigating the neurological effects of BMAA.
Collapse
Affiliation(s)
- Oliver Okle
- Human and Environmental Toxicology, University of Konstanz, Jacob-Burckhardt-Strasse 25, 78457 Konstanz, Germany.
| | | | | | | |
Collapse
|
47
|
Strube-Bloss MF, Herrera-Valdez MA, Smith BH. Ensemble response in mushroom body output neurons of the honey bee outpaces spatiotemporal odor processing two synapses earlier in the antennal lobe. PLoS One 2012; 7:e50322. [PMID: 23209711 PMCID: PMC3510213 DOI: 10.1371/journal.pone.0050322] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/18/2012] [Indexed: 11/19/2022] Open
Abstract
Neural representations of odors are subject to computations that involve sequentially convergent and divergent anatomical connections across different areas of the brains in both mammals and insects. Furthermore, in both mammals and insects higher order brain areas are connected via feedback connections. In order to understand the transformations and interactions that this connectivity make possible, an ideal experiment would compare neural responses across different, sequential processing levels. Here we present results of recordings from a first order olfactory neuropile – the antennal lobe (AL) – and a higher order multimodal integration and learning center – the mushroom body (MB) – in the honey bee brain. We recorded projection neurons (PN) of the AL and extrinsic neurons (EN) of the MB, which provide the outputs from the two neuropils. Recordings at each level were made in different animals in some experiments and simultaneously in the same animal in others. We presented two odors and their mixture to compare odor response dynamics as well as classification speed and accuracy at each neural processing level. Surprisingly, the EN ensemble significantly starts separating odor stimuli rapidly and before the PN ensemble has reached significant separation. Furthermore the EN ensemble at the MB output reaches a maximum separation of odors between 84–120 ms after odor onset, which is 26 to 133 ms faster than the maximum separation at the AL output ensemble two synapses earlier in processing. It is likely that a subset of very fast PNs, which respond before the ENs, may initiate the rapid EN ensemble response. We suggest therefore that the timing of the EN ensemble activity would allow retroactive integration of its signal into the ongoing computation of the AL via centrifugal feedback.
Collapse
Affiliation(s)
- Martin F Strube-Bloss
- Max Planck Institute for Chemical Ecology, Department of Evolutionary, Neuroethology, Jena, Germany.
| | | | | |
Collapse
|
48
|
Locatelli FF, Fernandez PC, Villareal F, Muezzinoglu K, Huerta R, Galizia CG, Smith BH. Nonassociative plasticity alters competitive interactions among mixture components in early olfactory processing. Eur J Neurosci 2012; 37:63-79. [PMID: 23167675 DOI: 10.1111/ejn.12021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 09/07/2012] [Accepted: 09/13/2012] [Indexed: 11/30/2022]
Abstract
Experience-related plasticity is an essential component of networks involved in early olfactory processing. However, the mechanisms and functions of plasticity in these neural networks are not well understood. We studied nonassociative plasticity by evaluating responses to two pure odors (A and X) and their binary mixture using calcium imaging of odor-elicited activity in output neurons of the honey bee antennal lobe. Unreinforced exposure to A or X produced no change in the neural response elicited by the pure odors. However, exposure to one odor (e.g. A) caused the response to the mixture to become more similar to that of the other component (X). We also show in behavioral analyses that unreinforced exposure to A caused the mixture to become perceptually more similar to X. These results suggest that nonassociative plasticity modifies neural networks in such a way that it affects local competitive interactions among mixture components. We used a computational model to evaluate the most likely targets for modification. Hebbian modification of synapses from inhibitory local interneurons to projection neurons most reliably produced the observed shift in response to the mixture. These results are consistent with a model in which the antennal lobe acts to filter olfactory information according to its relevance for performing a particular task.
Collapse
Affiliation(s)
- Fernando F Locatelli
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Girardin CC, Kreissl S, Galizia CG. Inhibitory connections in the honeybee antennal lobe are spatially patchy. J Neurophysiol 2012; 109:332-43. [PMID: 23100135 DOI: 10.1152/jn.01085.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The olfactory system is a classical model for studying sensory processing. The first olfactory brain center [the olfactory bulb of vertebrates and the antennal lobe (AL) of insects] contains spherical neuropiles called glomeruli. Each glomerulus receives the information from one olfactory receptor type. Interglomerular computation is accomplished by lateral connectivity via interneurons. However, the spatial and functional organization of these lateral connections is not completely understood. Here we studied the spatial logic in the AL of the honeybee. We combined topical application of neurotransmitters, olfactory stimulations, and in vivo calcium imaging to visualize the arrangement of lateral connections. Suppression of activity in a single glomerulus with γ-aminobutyric acid (GABA) while presenting an odor reveals the existence of inhibitory interactions. Stimulating a glomerulus with acetylcholine (ACh) activates inhibitory interglomerular connections that can reduce odor-evoked responses. We show that this lateral network is patchy, in that individual glomeruli inhibit other glomeruli with graded strength, but in a spatially discontinuous manner. These results suggest that processing of olfactory information requires combinatorial activity patterns with complex topologies across the AL.
Collapse
|
50
|
Strauch M, Ditzen M, Galizia CG. Keeping their distance? Odor response patterns along the concentration range. Front Syst Neurosci 2012; 6:71. [PMID: 23087621 PMCID: PMC3474990 DOI: 10.3389/fnsys.2012.00071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 09/28/2012] [Indexed: 11/30/2022] Open
Abstract
We investigate the interplay of odor identity and concentration coding in the antennal lobe (AL) of the honeybee Apis mellifera. In this primary olfactory center of the honeybee brain, odors are encoded by the spatio-temporal response patterns of olfactory glomeruli. With rising odor concentration, further glomerular responses are recruited into the patterns, which affects distances between the patterns. Based on calcium-imaging recordings, we found that such pattern broadening renders distances between glomerular response patterns closer to chemical distances between the corresponding odor molecules. Our results offer an explanation for the honeybee's improved odor discrimination performance at higher odor concentrations.
Collapse
Affiliation(s)
- Martin Strauch
- Department of Neurobiology, University of Konstanz Konstanz, Germany ; Bioinformatics and Information Mining, University of Konstanz Konstanz, Germany
| | | | | |
Collapse
|