1
|
Jiang Y, Shi J, Tai J, Yan L. Circadian Regulation in Diurnal Mammals: Neural Mechanisms and Implications in Translational Research. BIOLOGY 2024; 13:958. [PMID: 39765625 PMCID: PMC11727363 DOI: 10.3390/biology13120958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 01/15/2025]
Abstract
Diurnal and nocturnal mammals have evolved unique behavioral and physiological adaptations to optimize survival for their day- or night-active lifestyle. The mechanisms underlying the opposite activity patterns are not fully understood but likely involve the interplay between the circadian time-keeping system and various arousal- or sleep-promoting factors, e.g., light or melatonin. Although the circadian systems between the two chronotypes share considerable similarities, the phase relationships between the principal and subordinate oscillators are chronotype-specific. While light promotes arousal and wakefulness in diurnal species like us, it induces sleep in nocturnal ones. Similarly, melatonin, the hormone of darkness, is commonly used as a hypnotic in humans but is secreted in the active phase of nocturnal animals. Thus, the difference between the two chronotypes is more complex than a simple reversal, as the physiological and neurological processes in diurnal mammals during the day are not equivalent to that of nocturnal ones at night. Such chronotype differences could present a significant translational gap when applying research findings obtained from nocturnal rodents to diurnal humans. The potential advantages of diurnal models are being discussed in a few sleep-related conditions including familial natural short sleep (FNSS), obstructive sleep apnea (OSA), and Smith-Magenis syndrome (SMS). Considering the difference in chronotype, a diurnal model will be more adequate for revealing the physiology and physiopathology pertaining to human health and disease, especially in conditions in which circadian rhythm disruption, altered photic response, or melatonin secretion is involved. We hope the recent advances in gene editing in diurnal rodents will promote greater utility of the diurnal models in basic and translational research.
Collapse
Affiliation(s)
- Yirun Jiang
- Department of Otolaryngology, Head and Neck Surgery, Capital Institute of Pediatrics, Beijing 100020, China; (Y.J.); (J.T.)
| | - Jiaming Shi
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA;
| | - Jun Tai
- Department of Otolaryngology, Head and Neck Surgery, Capital Institute of Pediatrics, Beijing 100020, China; (Y.J.); (J.T.)
| | - Lily Yan
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA;
- Neuroscience Program, Interdisciplinary Science & Technology Building (ISTB), Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
van Rosmalen L, Deota S, Maier G, Le HD, Lin T, Ramasamy RK, Hut RA, Panda S. Energy balance drives diurnal and nocturnal brain transcriptome rhythms. Cell Rep 2024; 43:113951. [PMID: 38508192 PMCID: PMC11330649 DOI: 10.1016/j.celrep.2024.113951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Plasticity in daily timing of activity has been observed in many species, yet the underlying mechanisms driving nocturnality and diurnality are unknown. By regulating how much wheel-running activity will be rewarded with a food pellet, we can manipulate energy balance and switch mice to be nocturnal or diurnal. Here, we present the rhythmic transcriptome of 21 tissues, including 17 brain regions, sampled every 4 h over a 24-h period from nocturnal and diurnal male CBA/CaJ mice. Rhythmic gene expression across tissues comprised different sets of genes with minimal overlap between nocturnal and diurnal mice. We show that non-clock genes in the suprachiasmatic nucleus (SCN) change, and the habenula was most affected. Our results indicate that adaptive flexibility in daily timing of behavior is supported by gene expression dynamics in many tissues and brain regions, especially in the habenula, which suggests a crucial role for the observed nocturnal-diurnal switch.
Collapse
Affiliation(s)
- Laura van Rosmalen
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shaunak Deota
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Geraldine Maier
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hiep D Le
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Terry Lin
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ramesh K Ramasamy
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Roelof A Hut
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, the Netherlands.
| | - Satchidananda Panda
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
Yaodong C, Zhang Y, Feng G, Lei Y, Liu Q, Liu Y. Light therapy for sleep disturbance comorbid depression in relation to neural circuits and interactive hormones-A systematic review. PLoS One 2023; 18:e0286569. [PMID: 37768984 PMCID: PMC10538739 DOI: 10.1371/journal.pone.0286569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/19/2023] [Indexed: 09/30/2023] Open
Abstract
AIM To provide an overview of the evidence on the effect of light therapy on sleep disturbance and depression, identify the light-active neural and hormonal correlates of the effect of light therapy on sleep disturbance comorbid depression (SDCD), and construct the mechanism by which light therapy alleviates SDCD. METHODS Articles published between 1981 and 2021 in English were accessed using Science Direct, Elsevier, and Google Scholar following a three-step searching process via evolved keywords. The evidence level, reliability, and credibility of the literature were evaluated using the evidence pyramid method, which considers the article type, impact factor, and journal citation report (JCR) partition. RESULTS A total of 372 articles were collected, of which 129 articles fit the inclusion criteria and 44% were at the top of the evidence pyramid hierarchy; 50% were in the first quarter of the JCR partitions. 114 articles provided specific neural and hormonal evidence of light therapy and were further divided into three groups: 37% were related to circadian regulation circuits, 27% were related to emotional regulation circuits, and 36% were related to hormones. CONCLUSIONS First, neural and hormonal light-active pathways for alleviating sleep disturbance or depression were identified, based on which the neural correlates of SDCD were located. Second, the light responses and interactions of hormones were reviewed and summarized, which also provided a way to alleviate SDCD. Finally, the light-active LHb and SCN exert extensive regulation impacts on the circadian and emotional circuits and hormones, forming a dual-core system for alleviating SDCD.
Collapse
Affiliation(s)
- Chen Yaodong
- School of Architecture, Southwest JiaoTong University, Chengdu, China
| | - Yingzi Zhang
- School of Architecture, Southwest JiaoTong University, Chengdu, China
| | - Guo Feng
- Psychological Research and Counseling Center, Southwest Jiaotong Univerisity, Chengdu, China
| | - Yuanfang Lei
- School of Architecture, Southwest JiaoTong University, Chengdu, China
| | - Qiuping Liu
- School of Architecture, Southwest JiaoTong University, Chengdu, China
| | - Yang Liu
- School of Architecture, Southwest JiaoTong University, Chengdu, China
| |
Collapse
|
4
|
Li Y, Zhang X, Li Y, Li Y, Xu H. Activation of Ventral Pallidum CaMKIIa-Expressing Neurons Promotes Wakefulness. Neurochem Res 2023:10.1007/s11064-023-03915-x. [PMID: 37017890 DOI: 10.1007/s11064-023-03915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/11/2023] [Accepted: 03/15/2023] [Indexed: 04/06/2023]
Abstract
The ventral pallidum (VP) is involved in the regulation of a variety of behaviors such as motor, reward, and behavioral motivation, and the ability to perform these functions properly is dependent on a high degree of wakefulness. It is unknown whether VP CaMKIIa-expression (VPCaMKIIa) neurons also have a role in sleep-wake regulation and related neuronal circuit mechanisms. In the present experiment, we first used in vivo fiber photometry to find the population activity of VPCaMKIIa neurons which increased during the transitions from non-rapid-eye movement (NREM) sleep to wakefulness and NREM sleep to rapid-eye-movement (REM) sleep, with decreased during the transitions from wakefulness to NREM sleep. Then chemogenetic activation of VPCaMKIIa neurons induced an increase in wakefulness that lasted for 2 h. Mice that were exposed to short-term optogenetic stimulation woke up quickly from stable NREM sleep, and long-term optogenetic stimulation maintained wakefulness. In addition, optogenetic activation of the axons of VPCaMKIIa neurons in the lateral habenula (LHb) also facilitated the initiation and maintenance of wakefulness and mediated anxiety-like behavior. Finally, the method of chemogenetic inhibition was employed to suppress VPCaMKIIa neurons, and yet, inhibition of VPCaMKIIa neuronal activity did not result in an increase in NREM sleep and a decrease in wakefulness. Overall, our data illustrate that the activation of VPCaMKIIa neurons is of great importance for promoting wakefulness.
Collapse
Affiliation(s)
- Yue Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Xuefen Zhang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Ying Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Yidan Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
5
|
Ables JL, Park K, Ibañez-Tallon I. Understanding the habenula: A major node in circuits regulating emotion and motivation. Pharmacol Res 2023; 190:106734. [PMID: 36933754 PMCID: PMC11081310 DOI: 10.1016/j.phrs.2023.106734] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Over the last decade, the understanding of the habenula has rapidly advanced from being an understudied brain area with the Latin name 'habena" meaning "little rein", to being considered a "major rein" in the control of key monoaminergic brain centers. This ancient brain structure is a strategic node in the information flow from fronto-limbic brain areas to brainstem nuclei. As such, it plays a crucial role in regulating emotional, motivational, and cognitive behaviors and has been implicated in several neuropsychiatric disorders, including depression and addiction. This review will summarize recent findings on the medial (MHb) and lateral (LHb) habenula, their topographical projections, cell types, and functions. Additionally, we will discuss contemporary efforts that have uncovered novel molecular pathways and synaptic mechanisms with a focus on MHb-Interpeduncular nucleus (IPN) synapses. Finally, we will explore the potential interplay between the habenula's cholinergic and non-cholinergic components in coordinating related emotional and motivational behaviors, raising the possibility that these two pathways work together to provide balanced roles in reward prediction and aversion, rather than functioning independently.
Collapse
Affiliation(s)
- Jessica L Ables
- Psychiatry Department, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kwanghoon Park
- The Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Inés Ibañez-Tallon
- The Laboratory of Molecular Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
6
|
Lecourtier L, Durieux L, Mathis V. Alteration of Lateral Habenula Function Prevents the Proper Exploration of a Novel Environment. Neuroscience 2023; 514:56-66. [PMID: 36716915 DOI: 10.1016/j.neuroscience.2023.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 01/30/2023]
Abstract
The lateral habenula (LHb) is an epithalamic brain region viewed as a converging hub, integrating information from a large connectome and then projecting to few critical midbrain monoaminergic systems. Numerous studies have explored the roles of the LHb, notably in aversion and avoidance. An important recurring finding when manipulating the LHb is the induction of anxiety-related behaviours. However, its exact role in such behaviours remains poorly understood. In the present study, we used two pharmacological approaches altering LHb activity, intra-LHb infusion of either the GABA-A receptor agonist, Muscimol, or the glutamatergic AMPA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and exposed rats to three consecutive open field (OF) sessions. We found that both pharmacological treatments prevented rats to explore the centre of the OF, considered as the most anxiogenic part of the apparatus, across the three OF sessions. In addition, during the first, but not the two consecutive sessions, both treatments prevented a thorough exploration of the OF. Altogether, these results confirm the crucial role played by the LHb in anxiety-related behaviours and further suggest its implication in the exploration of new anxiogenic environments.
Collapse
Affiliation(s)
- Lucas Lecourtier
- Université de Strasbourg, Centre National de La Recherche Scientifique, Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364 Strasbourg, France
| | - Laura Durieux
- Université de Strasbourg, Centre National de La Recherche Scientifique, Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364 Strasbourg, France
| | - Victor Mathis
- Université de Strasbourg, Centre National de La Recherche Scientifique, Laboratoire de Neurosciences Cognitives et Adaptatives, UMR 7364 Strasbourg, France.
| |
Collapse
|
7
|
Post RJ, Bulkin DA, Ebitz RB, Lee V, Han K, Warden MR. Tonic activity in lateral habenula neurons acts as a neutral valence brake on reward-seeking behavior. Curr Biol 2022; 32:4325-4336.e5. [PMID: 36049479 PMCID: PMC9613558 DOI: 10.1016/j.cub.2022.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 12/16/2021] [Accepted: 08/09/2022] [Indexed: 11/16/2022]
Abstract
Survival requires both the ability to persistently pursue goals and the ability to determine when it is time to stop, an adaptive balance of perseverance and disengagement. Neural activity in the lateral habenula (LHb) has been linked to negative valence, but its role in regulating the balance between engaged reward seeking and disengaged behavioral states remains unclear. Here, we show that LHb neural activity is tonically elevated during minutes-long periods of disengagement from reward-seeking behavior, both when due to repeated reward omission (negative valence) and when sufficient reward has been consumed (positive valence). Furthermore, we show that LHb inhibition extends ongoing reward-seeking behavioral states but does not prompt task re-engagement. We find no evidence for similar tonic activity changes in ventral tegmental area dopamine neurons. Our findings support a framework in which tonic activity in LHb neurons suppresses engagement in reward-seeking behavior in response to both negatively and positively valenced factors.
Collapse
Affiliation(s)
- Ryan J Post
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA
| | - David A Bulkin
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA
| | - R Becket Ebitz
- Department of Neuroscience, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Vladlena Lee
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Kasey Han
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Melissa R Warden
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
8
|
Hones VI, Mizumori SJY. Response Flexibility: The Role of the Lateral Habenula. Front Behav Neurosci 2022; 16:852235. [PMID: 35444521 PMCID: PMC9014270 DOI: 10.3389/fnbeh.2022.852235] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/01/2022] [Indexed: 01/13/2023] Open
Abstract
The ability to make appropriate decisions that result in an optimal outcome is critical for survival. This process involves assessing the environment as well as integrating prior knowledge about the environment with information about one's current internal state. There are many neural structures that play critical roles in mediating these processes, but it is not yet known how such information coalesces to influence behavioral output. The lateral habenula (LHb) has often been cited as a structure critical for adaptive and flexible responding when environmental contexts and internal state changes. A challenge, however, has been understanding how LHb promotes response flexibility. In this review, we hypothesize that the LHb enables flexible responding following the integration of context memory and internal state information by signaling downstream brainstem structures known to drive hippocampal theta. In this way, animals respond more flexibly in a task situation not because the LHb selects a particular action, but rather because LHb enhances a hippocampal neural state that is often associated with greater attention, arousal, and exploration. In freely navigating animals, these are essential conditions that are needed to discover and implement appropriate alternative choices and behaviors. As a corollary to our hypothesis, we describe short- and intermediate-term functions of the LHb. Finally, we discuss the effects on the behavior of LHb dysfunction in short- and intermediate-timescales, and then suggest that new therapies may act on the LHb to alleviate the behavioral impairments following long-term LHb disruption.
Collapse
Affiliation(s)
- Victoria I. Hones
- Department of Psychology, University of Washington, Seattle, WA, United States
| | - Sheri J. Y. Mizumori
- Department of Psychology, University of Washington, Seattle, WA, United States
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States
| |
Collapse
|
9
|
Young CJ, Lyons D, Piggins HD. Circadian Influences on the Habenula and Their Potential Contribution to Neuropsychiatric Disorders. Front Behav Neurosci 2022; 15:815700. [PMID: 35153695 PMCID: PMC8831701 DOI: 10.3389/fnbeh.2021.815700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
The neural circadian system consists of the master circadian clock in the hypothalamic suprachiasmatic nuclei (SCN) communicating time of day cues to the rest of the body including other brain areas that also rhythmically express circadian clock genes. Over the past 16 years, evidence has emerged to indicate that the habenula of the epithalamus is a candidate extra-SCN circadian oscillator. When isolated from the SCN, the habenula sustains rhythms in clock gene expression and neuronal activity, with the lateral habenula expressing more robust rhythms than the adjacent medial habenula. The lateral habenula is responsive to putative SCN output factors as well as light information conveyed to the perihabenula area. Neuronal activity in the lateral habenula is altered in depression and intriguingly disruptions in circadian rhythms can elevate risk of developing mental health disorders including depression. In this review, we will principally focus on how circadian and light signals affect the lateral habenula and evaluate the possibility that alteration in these influences contribute to mental health disorders.
Collapse
|
10
|
Melamed S, Politi B, Grauer E, Achdout H, Aftalion M, Gur D, Tamir H, Yahalom-Ronen Y, Maimon S, Yitzhak E, Weiss S, Rosner A, Erez N, Yitzhaki S, Shapira SC, Paran N, Mamroud E, Vagima Y, Israely T. Monitoring Group Activity of Hamsters and Mice as a Novel Tool to Evaluate COVID-19 Progression, Convalescence, and rVSV-ΔG-Spike Vaccination Efficacy. Front Bioeng Biotechnol 2021; 9:737627. [PMID: 34660558 PMCID: PMC8517107 DOI: 10.3389/fbioe.2021.737627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/17/2021] [Indexed: 01/17/2023] Open
Abstract
The COVID-19 pandemic initiated a worldwide race toward the development of treatments and vaccines. Small animal models included the Syrian golden hamster and the K18-hACE2 mice infected with SARS-CoV-2 to display a disease state with some aspects of human COVID-19. A group activity of animals in their home cage continuously monitored by the HCMS100 (Home cage Monitoring System 100) was used as a sensitive marker of disease, successfully detecting morbidity symptoms of SARS-CoV-2 infection in hamsters and in K18-hACE2 mice. COVID-19 convalescent hamsters rechallenged with SARS-CoV-2 exhibited minor reduction in group activity compared to naive hamsters. To evaluate the rVSV-ΔG-spike vaccination efficacy against SARS-CoV-2, we used the HCMS100 to monitor the group activity of hamsters in their home cage. A single-dose rVSV-ΔG-spike vaccination of the immunized group showed a faster recovery than the nonimmunized infected hamsters, substantiating the efficacy of rVSV-ΔG-spike vaccine. HCMS100 offers nonintrusive, hands-free monitoring of a number of home cages of hamsters or mice modeling COVID-19.
Collapse
Affiliation(s)
- Sharon Melamed
- Israel Institute for Biological Research (IIBR), Ness-Ziona, Israel
| | - Boaz Politi
- Israel Institute for Biological Research (IIBR), Ness-Ziona, Israel
| | - Ettie Grauer
- Israel Institute for Biological Research (IIBR), Ness-Ziona, Israel
| | - Hagit Achdout
- Israel Institute for Biological Research (IIBR), Ness-Ziona, Israel
| | - Moshe Aftalion
- Israel Institute for Biological Research (IIBR), Ness-Ziona, Israel
| | - David Gur
- Israel Institute for Biological Research (IIBR), Ness-Ziona, Israel
| | - Hadas Tamir
- Israel Institute for Biological Research (IIBR), Ness-Ziona, Israel
| | | | - Shlomy Maimon
- Israel Institute for Biological Research (IIBR), Ness-Ziona, Israel
| | - Efi Yitzhak
- Israel Institute for Biological Research (IIBR), Ness-Ziona, Israel
| | - Shay Weiss
- Israel Institute for Biological Research (IIBR), Ness-Ziona, Israel
| | - Amir Rosner
- Israel Institute for Biological Research (IIBR), Ness-Ziona, Israel
| | - Noam Erez
- Israel Institute for Biological Research (IIBR), Ness-Ziona, Israel
| | - Shmuel Yitzhaki
- Israel Institute for Biological Research (IIBR), Ness-Ziona, Israel
| | - Shmuel C Shapira
- Israel Institute for Biological Research (IIBR), Ness-Ziona, Israel
| | - Nir Paran
- Israel Institute for Biological Research (IIBR), Ness-Ziona, Israel
| | | | - Yaron Vagima
- Israel Institute for Biological Research (IIBR), Ness-Ziona, Israel
| | - Tomer Israely
- Israel Institute for Biological Research (IIBR), Ness-Ziona, Israel
| |
Collapse
|
11
|
Freudenmacher L, Twickel AV, Walkowiak W. Input of sensory, limbic, basal ganglia and pallial/cortical information into the ventral/lateral habenula: Functional principles in anuran amphibians. Brain Res 2021; 1766:147506. [PMID: 33930373 DOI: 10.1016/j.brainres.2021.147506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/11/2021] [Accepted: 04/23/2021] [Indexed: 11/29/2022]
Abstract
The habenula - a phylogenetically old brain structure present in all vertebrates - is involved in pain processing, reproductive behaviors, sleep-wake cycles, stress responses, reward, and learning. We performed intra- and extracellular recordings of ventral habenula (VHb) neurons in the isolated brain of anurans and revealed similar cell and response properties to those reported for the lateral habenula of mammals. We identified tonic regular, tonic irregular, rhythmic firing, and silent VHb neurons. Transitions between these firing patterns were observed during spontaneous activity. Electrical stimulation of various brain areas demonstrated VHb input of auditory, optic, limbic, basal ganglia, and pallial information. This resulted in three different response behaviors in VHb neurons: excitation, inhibition, or alternating facilitation and suppression of neuronal activity. Spontaneously changing activity patterns were observed to modulate, reset, or suppress the response behavior of VHb neurons, indicating a gating mechanism. This could be a network status or context dependent selection mechanism for which information are transmitted to task relevant brain areas (i.e., sensory system, limbic system, basal ganglia). Furthermore, alternating facilitation and suppression sequences upon auditory nerve stimulation correlated positively fictive motor activities recorded via the compound potential of the vagal nerve. Stimulation of the auditory nerve or the habenula led to facilitation, suppression, or alternating facilitation and suppression of neuronal activity in putative dopaminergic neurons. Due to complex habenula feedback loops with basal ganglia, limbic, and sensory systems, the habenula involvement in a variety of functions might therefore be explained by a modulatory effect on a task-relevant input stream.
Collapse
Affiliation(s)
- Lars Freudenmacher
- Institute for Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany; Institute for Anatomy I, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Arndt von Twickel
- Institute for Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Wolfgang Walkowiak
- Institute for Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| |
Collapse
|
12
|
Liu Y, McNally GP. Dopamine and relapse to drug seeking. J Neurochem 2021; 157:1572-1584. [PMID: 33486769 DOI: 10.1111/jnc.15309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/04/2021] [Accepted: 01/13/2021] [Indexed: 12/29/2022]
Abstract
The actions of dopamine are essential to relapse to drug seeking but we still lack a precise understanding of how dopamine achieves these effects. Here we review recent advances from animal models in understanding how dopamine controls relapse to drug seeking. These advances have been enabled by important developments in understanding the basic neurochemical, molecular, anatomical, physiological and functional properties of the major dopamine pathways in the mammalian brain. The literature shows that although different forms of relapse to seeking different drugs of abuse each depend on dopamine, there are distinct dopamine mechanisms for relapse. Different circuit-level mechanisms, different populations of dopamine neurons and different activity profiles within these dopamine neurons, are important for driving different forms of relapse. This diversity highlights the need to better understand when, where and how dopamine contributes to relapse behaviours.
Collapse
Affiliation(s)
- Yu Liu
- School of Psychology, UNSW Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
13
|
London E, Wester JC, Bloyd M, Bettencourt S, McBain CJ, Stratakis CA. Loss of habenular Prkar2a reduces hedonic eating and increases exercise motivation. JCI Insight 2020; 5:141670. [PMID: 33141766 PMCID: PMC7714411 DOI: 10.1172/jci.insight.141670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/28/2020] [Indexed: 01/25/2023] Open
Abstract
The habenula (Hb) is a bilateral, evolutionarily conserved epithalamic structure connecting forebrain and midbrain structures that has gained attention for its roles in depression, addiction, rewards processing, and motivation. Of its 2 major subdivisions, the medial Hb (MHb) and lateral Hb (LHb), MHb circuitry and function are poorly understood relative to those of the LHb. Prkar2a codes for cAMP-dependent protein kinase (PKA) regulatory subunit IIα (RIIα), a component of the PKA holoenzyme at the center of one of the major cell-signaling pathways conserved across systems and species. Type 2 regulatory subunits (RIIα, RIIβ) determine the subcellular localization of PKA, and unlike other PKA subunits, Prkar2a has minimal brain expression except in the MHb. We previously showed that RIIα-knockout (RIIα-KO) mice resist diet-induced obesity. In the present study, we report that RIIα-KO mice have decreased consumption of palatable, “rewarding” foods and increased motivation for voluntary exercise. Prkar2a deficiency led to decreased habenular PKA enzymatic activity and impaired dendritic localization of PKA catalytic subunits in MHb neurons. Reexpression of Prkar2a in the Hb rescued this phenotype, confirming differential roles for Prkar2a in regulating the drives for palatable foods and voluntary exercise. Our findings show that in the MHb decreased PKA signaling and dendritic PKA activity decrease motivation for palatable foods, while enhancing the motivation for exercise, a desirable combination of behaviors. Decreased habenular PKA signaling and altered localization of PKA catalytic subunits in medial habenula dendrites caused by Prkar2a deletion led to increased voluntary running and decreased sucrose solution intake in mice.
Collapse
Affiliation(s)
| | - Jason C Wester
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver, National Institute for Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | | | | | - Chris J McBain
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver, National Institute for Child Health and Human Development, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
14
|
Yan L, Smale L, Nunez AA. Circadian and photic modulation of daily rhythms in diurnal mammals. Eur J Neurosci 2020; 51:551-566. [PMID: 30269362 PMCID: PMC6441382 DOI: 10.1111/ejn.14172] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/02/2018] [Accepted: 08/16/2018] [Indexed: 12/22/2022]
Abstract
The temporal niche that an animal occupies includes a coordinated suite of behavioral and physiological processes that set diurnal and nocturnal animals apart. The daily rhythms of the two chronotypes are regulated by both the circadian system and direct responses to light, a process called masking. Here we review the literature on circadian regulations and masking responses in diurnal mammals, focusing on our work using the diurnal Nile grass rat (Arvicanthis niloticus) and comparing our findings with those derived from other diurnal and nocturnal models. There are certainly similarities between the circadian systems of diurnal and nocturnal mammals, especially in the phase and functioning of the principal circadian oscillator within the hypothalamic suprachiasmatic nucleus (SCN). However, the downstream pathways, direct or indirect from the SCN, lead to drastic differences in the phase of extra-SCN oscillators, with most showing a complete reversal from the phase seen in nocturnal species. This reversal, however, is not universal and in some cases the phases of extra-SCN oscillators are only a few hours apart between diurnal and nocturnal species. The behavioral masking responses in general are opposite between diurnal and nocturnal species, and are matched by differential responses to light and dark in several retinorecipient sites in their brain. The available anatomical and functional data suggest that diurnal brains are not simply a phase-reversed version of nocturnal ones, and work with diurnal models contribute significantly to a better understanding of the circadian and photic modulation of daily rhythms in our own diurnal species.
Collapse
Affiliation(s)
- Lily Yan
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Laura Smale
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| | - Antonio A. Nunez
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
15
|
Paul JR, Davis JA, Goode LK, Becker BK, Fusilier A, Meador-Woodruff A, Gamble KL. Circadian regulation of membrane physiology in neural oscillators throughout the brain. Eur J Neurosci 2019; 51:109-138. [PMID: 30633846 DOI: 10.1111/ejn.14343] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022]
Abstract
Twenty-four-hour rhythmicity in physiology and behavior are driven by changes in neurophysiological activity that vary across the light-dark and rest-activity cycle. Although this neural code is most prominent in neurons of the primary circadian pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus, there are many other regions in the brain where region-specific function and behavioral rhythmicity may be encoded by changes in electrical properties of those neurons. In this review, we explore the existing evidence for molecular clocks and/or neurophysiological rhythms (i.e., 24 hr) in brain regions outside the SCN. In addition, we highlight the brain regions that are ripe for future investigation into the critical role of circadian rhythmicity for local oscillators. For example, the cerebellum expresses rhythmicity in over 2,000 gene transcripts, and yet we know very little about how circadian regulation drives 24-hr changes in the neural coding responsible for motor coordination. Finally, we conclude with a discussion of how our understanding of circadian regulation of electrical properties may yield insight into disease mechanisms which may lead to novel chronotherapeutic strategies in the future.
Collapse
Affiliation(s)
- Jodi R Paul
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer A Davis
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lacy K Goode
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bryan K Becker
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Allison Fusilier
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Aidan Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
16
|
Grigsby KB, Kelty TJ, Booth FW. Medial habenula maturational deficits associate with low motivation for voluntary physical activity. Brain Res 2018; 1698:187-194. [PMID: 30118717 DOI: 10.1016/j.brainres.2018.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 11/25/2022]
Abstract
The habenula is a small, diencephalic structure comprised of distinct subnuclei which receives inputs from the limbic forebrain and sends projections to various regions in the midbrain, making this region well positioned to influence reward and motivation. Genetic ablation of the dorsal medial habenula is known to decrease voluntary wheel-running in mice. However, the extent to which the medial habenula (MHb) mediates wheel-running motivation in the context of high or low motivation for voluntary physical activity remains to be determined. In so, we utilized 5-week-old female rats selectively bred to voluntarily run high (HVR) or low (LVR) distances in order to determine if inherent differences in medial habenula maturation accompany inherent differences in wheel-running motivation. We report a significantly higher expression of genes associated with MHb development (Brn3a, Nurr1, Tac1, and Kcnip) in HVR versus LVR rats. Furthermore, there was a positive correlation between Brn3a and Nurr1 expression and run distance in HVR, but not LVR rats. Similarly, NeuN and Synapsin 1, markers of neuronal maturation, were higher in HVR compared to LVR rats. Lastly, dendritic density was determined to be higher in the MHb of HVR versus LVR rats, while LVR rats showed a higher percentage of thin spines, suggesting a higher prevalence of immature dendrites in LVR rats. Taken together, the above findings highlight the involvement of MHb in driving the motivation to be physically active. Given pandemic levels of global physical inactivity, the role of the MHb offers a novel potential to improve our global health.
Collapse
Affiliation(s)
- Kolter B Grigsby
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States.
| | - Taylor J Kelty
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
17
|
Distributions of GABAergic and glutamatergic neurons in the brains of a diurnal and nocturnal rodent. Brain Res 2018; 1700:152-159. [PMID: 30153458 DOI: 10.1016/j.brainres.2018.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/25/2018] [Accepted: 08/17/2018] [Indexed: 12/26/2022]
Abstract
Light influences the daily patterning of activity by both synchronizing internal clocks to environmental light-dark cycles and acutely modulating arousal states, a process known as masking. Masking responses are completely reversed in diurnal and nocturnal species. In nocturnal rodents, masking is mediated through a subset of intrinsically photosensitive retinal ganglion cells (ipRGCs) whose projections are similar in diurnal and nocturnal rodents. This raises the possibility that differences in responsivity to signals that these cells release might underlie chronotype differences in masking. We explored one aspect of this hypothesis by examining the distribution of excitatory and inhibitory neuronal populations in many ipRGC target areas of a diurnal species (Nile grass rat) and a nocturnal one (Norway rat). We discovered that while many of these regions were very similar in these two species, there were striking differences in the ventral lateral geniculate nucleus (vLGN; higher density of glutamate cells in Norway rats) and in the lateral habenula (LHb; GABAeric cells present in grass rats, but not Norway rats). These patterns raise the possibility that the vLGN and LHb contribute to differences in masking and/or circadian regulation of diurnal and nocturnal species.
Collapse
|
18
|
Castillo-Ruiz A, Indic P, Schwartz WJ. Time management in a co-housed social rodent species (Arvicanthis niloticus). Sci Rep 2018; 8:1202. [PMID: 29352256 PMCID: PMC5775316 DOI: 10.1038/s41598-018-19365-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/29/2017] [Indexed: 11/08/2022] Open
Abstract
Sociality has beneficial effects on fitness, and timing the activities of animals may be critical. Social cues could influence daily rhythmic activities via direct effects on the circadian clock or on processes that bypass it (masking), but these possibilities remain incompletely addressed. We investigated the effects of social cues on the circadian body temperature (Tb) rhythms in pairs of co-housed and isolated grass rats, Arvicanthis niloticus (a social species), in constant darkness (DD). Cohabitation did not induce synchronization of circadian Tb rhythms. However, socio-sexual history did affect circadian properties: accelerating the clock in sexually experienced males and females in DD and advancing rhythm phase in the females in a light-dark cycle. To address whether synchronization occurs at an ultradian scale, we analyzed Tb and activity rhythms in pairs of co-housed sisters or couples in DD. Regardless of pair type, co-housing doubled the percentage of time individuals were simultaneously active without increasing individual activity levels, suggesting that activity bouts were synchronized by redistribution over 24 h. Together, our laboratory findings show that social cues affect individual "time allocation" budgets via mechanisms at multiple levels of biological organization. We speculate that in natural settings these effects could be adaptive, especially for group-living animals.
Collapse
Affiliation(s)
- Alexandra Castillo-Ruiz
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA.
| | - Premananda Indic
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
- Department of Electrical Engineering, College of Engineering, University of Texas, Tyler, TX, 75799, USA
| | - William J Schwartz
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
- Department of Neurology, Dell Medical School, University of Texas, Austin, TX, 78701, USA
| |
Collapse
|
19
|
Hsu YWA, Gile JJ, Perez JG, Morton G, Ben-Hamo M, Turner EE, de la Iglesia HO. The Dorsal Medial Habenula Minimally Impacts Circadian Regulation of Locomotor Activity and Sleep. J Biol Rhythms 2017; 32:444-455. [PMID: 28954569 DOI: 10.1177/0748730417730169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In nocturnal rodents, voluntary wheel-running activity (WRA) represents a self-reinforcing behavior. We have previously demonstrated that WRA is markedly reduced in mice with a region-specific deletion of the transcription factor Pou4f1 (Brn3a), which leads to an ablation of the dorsal medial habenula (dMHb). The decrease in WRA in these dMHb-lesioned (dMHbCKO) mice suggests that the dMHb constitutes a critical center for conveying reinforcement by exercise. However, WRA also represents a prominent output of the circadian system, and the possibility remains that the dMHb is a source of input to the master circadian pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus. To test this hypothesis, we assessed the integrity of the circadian system in dMHbCKO mice. Here we show that the developmental lesion of the dMHb reduces WRA under both a light-dark cycle and constant darkness, increases the circadian period of WRA, but has no effect on the circadian amplitude or period of home cage activity or the daily amplitude of sleep stages, suggesting that the lengthening of period is a result of the decreased WRA in the mutant mice. Polysomnographic sleep recordings show that dMHbCKO mice have an overall unaltered daily amplitude of sleep stages but have fragmented sleep and an overall increase in total rapid eye movement (REM) sleep. Photoresponsiveness is intact in dMHbCKO mice, but compared with control animals, they reentrain faster to a 6-h abrupt phase delay protocol. Circadian changes in WRA of dMHbCKO mice do not appear to emerge within the central pacemaker, as circadian expression of the clock genes Per1 and Per2 within the SCN is normal. We do find some evidence for fragmented sleep and an overall increase in total REM sleep, supporting a model in which the dMHb is part of the neural circuitry encoding motivation and involved in the manifestation of some of the symptoms of depression.
Collapse
Affiliation(s)
- Yun-Wei A Hsu
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Jennifer J Gile
- Department of Biology and Graduate Program in Neuroscience, University of Washington, Seattle, Washington
| | - Jazmine G Perez
- Department of Biology and Graduate Program in Neuroscience, University of Washington, Seattle, Washington
| | - Glenn Morton
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Miriam Ben-Hamo
- Department of Biology and Graduate Program in Neuroscience, University of Washington, Seattle, Washington
| | - Eric E Turner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington
| | - Horacio O de la Iglesia
- Department of Biology and Graduate Program in Neuroscience, University of Washington, Seattle, Washington
| |
Collapse
|
20
|
Mendoza J. Circadian neurons in the lateral habenula: Clocking motivated behaviors. Pharmacol Biochem Behav 2017; 162:55-61. [PMID: 28666896 DOI: 10.1016/j.pbb.2017.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/30/2017] [Accepted: 06/26/2017] [Indexed: 12/31/2022]
Abstract
The main circadian clock in mammals is located in the hypothalamic suprachiasmatic nucleus (SCN), however, central timing mechanisms are also present in other brain structures beyond the SCN. The lateral habenula (LHb), known for its important role in the regulation of the monoaminergic system, contains such a circadian clock whose molecular and cellular mechanisms as well as functional role are not well known. However, since monoaminergic systems show circadian activity, it is possible that the LHb-clock's role is to modulate the rhythmic activity of the dopamine, serotonin and norephinephrine systems, and associated behaviors. Moreover, the LHb is involved in different pathological states such as depression, addiction and schizophrenia, states in which sleep and circadian alterations have been reported. Thus, perturbations of circadian activity in the LHb might, in part, be a cause of these rhythmic alterations in psychiatric ailments. In this review the current state of the LHb clock and its possible implications in the control of monoaminergic systems rhythms, motivated behaviors (e.g., feeding, drug intake) and depression (with circadian disruptions and altered motivation) will be discussed.
Collapse
Affiliation(s)
- Jorge Mendoza
- Institute of Cellular and Integrative Neuroscience, CNRS-UPR 3212 Strasbourg France, 5 rue Blaise Pascal, 67084 cedex Strasbourg, France.
| |
Collapse
|
21
|
Abstract
Over the past 20years, substantive research has firmly implicated the lateral habenula in myriad neural processes including addiction, depression, and sleep. More recently, evidence has emerged suggesting that the lateral habenula is a component of the brain's intrinsic daily or circadian timekeeping system. This system centers on the master circadian pacemaker in the suprachiasmatic nuclei of the hypothalamus that is synchronized to the external world through environmental light information received directly from the eye. Rhythmic clock gene expression in suprachiasmatic neurons drives variation in their electrical activity enabling communication of temporal information, and the organization of circadian rhythms in downstream targets. Here, we review the evidence implicating the lateral habenula as part of an extended neural circadian system. We consider findings suggesting that the lateral habenula is a recipient of circadian signals from the suprachiasmatic nuclei as well as light information from the eye. Further we examine the proposition that the lateral habenula itself expresses intrinsic clock gene and neuronal rhythms. We then speculate on how circadian information communicated from the lateral habenula could influence activity and function in downstream targets such as the ventral tegmental area and raphe nuclei.
Collapse
Affiliation(s)
| | - Hugh D Piggins
- Faculty of Biology, Medicine and Health, University of Manchester, M13 9PT, UK.
| |
Collapse
|
22
|
Salaberry NL, Mateo M, Mendoza J. The Clock Gene Rev-Erbα Regulates Methamphetamine Actions on Circadian Timekeeping in the Mouse Brain. Mol Neurobiol 2016; 54:5327-5334. [PMID: 27581301 DOI: 10.1007/s12035-016-0076-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/23/2016] [Indexed: 12/21/2022]
Abstract
Circadian rhythms are strongly affected by drugs. In rodents, chronic methamphetamine (METH) intake changes circadian activity rhythms, mainly by altering light synchronization that generates the expression of a free-running rhythm with a period longer than 24 h and a second behavioral component that is independent of the main suprachiasmatic (SCN) clock. Although a number of clock genes do not appear to be involved in the effects of METH on circadian behavior, the molecular clockwork controlling these changes is still unclear. Therefore, we investigated the role of the clock gene Rev-Erbα in METH-induced behavioral and molecular responses using knockout mice and their wild-type littermates. Chronic intake of METH alters period circadian behavior of wild-type mice. However, in mice lacking the clock gene Rev-Erbα METH had no effect on their behavioral rhythms. Furthermore, PER2 bioluminescence rhythms in two extra-SCN brain oscillators, the dorsomedial hypothalamus and the habenula, were altered by METH in wild type but not in KO mice. Together, the present results implicate Rev-Erbα in the modulation of the circadian responses to METH and may provide a better comprehension into the mechanisms underlying circadian alterations provoked by drug addiction.
Collapse
Affiliation(s)
- Nora L Salaberry
- CNRS UPR-3212, Institute of Cellular and Integrative Neurosciences, 5 rue Blaise Pascal, 67084, Strasbourg, Cedex, France
| | - Maria Mateo
- CNRS UPR-3212, Institute of Cellular and Integrative Neurosciences, 5 rue Blaise Pascal, 67084, Strasbourg, Cedex, France
| | - Jorge Mendoza
- CNRS UPR-3212, Institute of Cellular and Integrative Neurosciences, 5 rue Blaise Pascal, 67084, Strasbourg, Cedex, France.
| |
Collapse
|
23
|
Zhao Z, Xu H, Liu Y, Mu L, Xiao J, Zhao H. Diurnal Expression of the Per2 Gene and Protein in the Lateral Habenular Nucleus. Int J Mol Sci 2015. [PMID: 26213916 PMCID: PMC4581166 DOI: 10.3390/ijms160816740] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The suprachiasmatic nucleus plays an important role in generating circadian rhythms in mammals. The lateral habenular nucleus (LHb) is closely linked to this structure. Interestingly, the LHb shows a rhythmic firing rate in vivo and in vitro, and sustained oscillation of rhythmic genes in vitro. However, under the in vivo condition, whether rhythmic gene expression in the LHb has circadian rhythms remains unknown. In this study, we examined LHb tissue in rats to determine Period2 (Per2) gene and protein expression at six zeitgeber time points (ZT2, ZT6, ZT10, ZT14, ZT18, and ZT22) in a 12-h light and 12-h dark (LD) environment. We found that in the LD environment, Per2 gene expression and PER2 protein levels in the LHb were higher in the day and lower in the night, showing periodic oscillation, with a peak at ZT10 and a trough at ZT22 (Per2 mRNA) and ZT18 (PER2 protein). We conclude that Per2 expression and PER2 protein levels in the LHb have rhythmic oscillation in vivo. This study provides a basis for further study on the role of the LHb in the circadian rhythm system.
Collapse
Affiliation(s)
- Zhigong Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China.
| | - Haiyan Xu
- Department of Physiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China.
| | - Yongmao Liu
- Department of Physiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China.
| | - Li Mu
- Department of Physiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China.
| | - Jinyu Xiao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China.
| | - Hua Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China.
| |
Collapse
|
24
|
Salaberry NL, Mendoza J. Insights into the Role of the Habenular Circadian Clock in Addiction. Front Psychiatry 2015; 6:179. [PMID: 26779042 PMCID: PMC4700272 DOI: 10.3389/fpsyt.2015.00179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/07/2015] [Indexed: 12/15/2022] Open
Abstract
Drug addiction is a brain disease involving alterations in anatomy and functional neural communication. Drug intake and toxicity show daily rhythms in both humans and rodents. Evidence concerning the role of clock genes in drug intake has been previously reported. However, the implication of a timekeeping brain locus is much less known. The epithalamic lateral habenula (LHb) is now emerging as a key nucleus in drug intake and addiction. This brain structure modulates the activity of dopaminergic neurons from the ventral tegmental area, a central part of the reward system. Moreover, the LHb has circadian properties: LHb cellular activity (i.e., firing rate and clock genes expression) oscillates in a 24-h range, and the nucleus is affected by photic stimulation and has anatomical connections with the main circadian pacemaker, the suprachiasmatic nucleus. Here, we describe the current insights on the role of the LHb as a circadian oscillator and its possible implications on the rhythmic regulation of the dopaminergic activity and drug intake. These data could inspire new strategies to treat drug addiction, considering circadian timing as a principal factor.
Collapse
Affiliation(s)
- Nora L Salaberry
- CNRS UPR-3212, Institute of Cellular and Integrative Neurosciences, University of Strasbourg , Strasbourg , France
| | - Jorge Mendoza
- CNRS UPR-3212, Institute of Cellular and Integrative Neurosciences, University of Strasbourg , Strasbourg , France
| |
Collapse
|
25
|
Role of the dorsal medial habenula in the regulation of voluntary activity, motor function, hedonic state, and primary reinforcement. J Neurosci 2014; 34:11366-84. [PMID: 25143617 DOI: 10.1523/jneurosci.1861-14.2014] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The habenular complex in the epithalamus consists of distinct regions with diverse neuronal populations. Past studies have suggested a role for the habenula in voluntary exercise motivation and reinforcement of intracranial self-stimulation but have not assigned these effects to specific habenula subnuclei. Here, we have developed a genetic model in which neurons of the dorsal medial habenula (dMHb) are developmentally eliminated, via tissue-specific deletion of the transcription factor Pou4f1 (Brn3a). Mice with dMHb lesions perform poorly in motivation-based locomotor behaviors, such as voluntary wheel running and the accelerating rotarod, but show only minor abnormalities in gait and balance and exhibit normal levels of basal locomotion. These mice also show deficits in sucrose preference, but not in the forced swim test, two measures of depression-related phenotypes in rodents. We have also used Cre recombinase-mediated expression of channelrhodopsin-2 and halorhodopsin to activate dMHb neurons or silence their output in freely moving mice, respectively. Optical activation of the dMHb in vivo supports intracranial self-stimulation, showing that dMHb activity is intrinsically reinforcing, whereas optical silencing of dMHb outputs is aversive. Together, our findings demonstrate that the dMHb is involved in exercise motivation and the regulation of hedonic state, and is part of an intrinsic reinforcement circuit.
Collapse
|
26
|
Morin LP, Studholme KM. Retinofugal projections in the mouse. J Comp Neurol 2014; 522:3733-53. [PMID: 24889098 PMCID: PMC4142087 DOI: 10.1002/cne.23635] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 12/24/2022]
Abstract
The laboratory mouse is increasingly a subject for visual system investigation, but there has been no comprehensive evaluation of this species' visual projections. Here, projections were visualized and mapped following intraocular injection of cholera toxin B subunit. Tissue was processed using standard procedures applied to 30 μm free-floating sections with diaminobenzidine as the chromogen. The mouse retina projects to ~46 brain regions, including 14 not previously described in this species. These include two amygdaloid nuclei, the horizontal limb of the diagonal band, the paraventricular hypothalamic nucleus, several visual thalamic nuclei, the paranigral nucleus, several pretectal nuclei, and the dorsal cortex of the inferior colliculus. Dense retinal patches were also observed in a narrow portion of the ipsilateral intermediate layer of the superior colliculus. The superior fasciculus of the accessory optic tract, which innervates the medial terminal nucleus, was also determined to be a terminal zone throughout its length. The results are compared with previous descriptions of projections from mouse intrinsically photoreceptive retinal ganglion cells, and with data from the hamster, Nile grass rat, and laboratory rat. The retinal projection patterns are similar in all four species, although there are many differences with respect to the details. The specific visual functions of most retinorecipient areas are unknown, but there is substantial convergence of retinal projections onto regions concerned with olfaction and audition.
Collapse
Affiliation(s)
- Lawrence P Morin
- Department of Psychiatry, Stony Brook University Medical Center, Stony Brook, NY, 11794-8101; Graduate Program in Neuroscience, Stony Brook University Medical Center, Stony Brook, NY, 11794-8101
| | | |
Collapse
|
27
|
Acute effects of light on the brain and behavior of diurnal Arvicanthis niloticus and nocturnal Mus musculus. Physiol Behav 2014; 138:75-86. [PMID: 25447482 DOI: 10.1016/j.physbeh.2014.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/06/2014] [Accepted: 09/30/2014] [Indexed: 01/17/2023]
Abstract
Photic cues influence daily patterns of activity via two complementary mechanisms: (1) entraining the internal circadian clock and (2) directly increasing or decreasing activity, a phenomenon referred to as "masking". The direction of this masking response is dependent on the temporal niche an organism occupies, as nocturnal animals often decrease activity when exposed to light, while the opposite response is more likely to be seen in diurnal animals. Little is known about the neural mechanisms underlying these differences. Here, we examined the masking effects of light on behavior and the activation of several brain regions by that light, in diurnal Arvicanthis niloticus (Nile grass rats) and nocturnal Mus musculus (mice). Each species displayed the expected behavioral response to a 1h pulse of light presented 2h after lights-off, with the diurnal grass rats and nocturnal mice increasing and decreasing their activity, respectively. In grass rats light induced an increase in cFOS in all retinorecipient areas examined, which included the suprachiasmatic nucleus (SCN), the ventral subparaventricular zone (vSPZ), intergeniculate leaflet (IGL), lateral habenula (LH), olivary pretectal nucleus (OPT) and the dorsal lateral geniculate (DLG). In mice, light led to an increase in cFOS in one of these regions (SCN), no change in others (vSPZ, IGL and LH) and a decrease in two (OPT and DLG). In addition, light increased cFOS expression in three arousal-related brain regions (the lateral hypothalamus, dorsal raphe, and locus coeruleus) and in one sleep-promoting region (the ventrolateral preoptic area) in grass rats. In mice, light had no effect on cFOS in these four regions. Taken together, these results highlight several brain regions whose responses to light suggest that they may play a role in masking, and that the possibility that they contribute to species-specific patterns of behavioral responses to light should be explored in future.
Collapse
|
28
|
Mendoza J, Challet E. Circadian insights into dopamine mechanisms. Neuroscience 2014; 282:230-42. [PMID: 25281877 DOI: 10.1016/j.neuroscience.2014.07.081] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 07/22/2014] [Accepted: 07/24/2014] [Indexed: 01/11/2023]
Abstract
Almost every physiological or behavioral process in mammals follows rhythmic patterns, which depend mainly on a master circadian clock located in the hypothalamic suprachiasmatic nucleus (SCN). The dopaminergic (DAergic) system in the brain is principally implicated in motor functions, motivation and drug intake. Interestingly, DA-related parameters and behaviors linked to the motivational and arousal states, show daily rhythms that could be regulated by the SCN or by extra-SCN circadian oscillator(s) modulating DAergic systems. Here we examine what is currently understood about the anatomical and functional central multi-oscillatory circadian system, highlighting how the main SCN clock communicates timing information with other brain clocks to regulate the DAergic system and conversely, how DAergic cues may have feedback effects on the SCN. These studies give new insights into the role of the brain circadian system in DA-related neurologic pathologies, such as Parkinson's disease, attention deficit/hyperactive disorder and drug addiction.
Collapse
Affiliation(s)
- J Mendoza
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, University of Strasbourg, 5 rue Blaise Pascal, 67084 Strasbourg cedex, France.
| | - E Challet
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, University of Strasbourg, 5 rue Blaise Pascal, 67084 Strasbourg cedex, France
| |
Collapse
|
29
|
Ramkisoensing A, Gu C, van Engeldorp Gastelaars HMD, Michel S, Deboer T, Rohling JHT, Meijer JH. Enhanced phase resetting in the synchronized suprachiasmatic nucleus network. J Biol Rhythms 2014; 29:4-15. [PMID: 24492878 DOI: 10.1177/0748730413516750] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The suprachiasmatic nucleus (SCN) adapts to both the external light-dark (LD) cycle and seasonal changes in day length. In short photoperiods, single-cell activity patterns are tightly synchronized (i.e., in phase); in long photoperiods, these patterns are relatively dispersed, causing lower amplitude rhythms. The limit cycle oscillator has been used to describe the SCN's circadian rhythmicity and predicts that following a given perturbation, high-amplitude SCN rhythms will shift less than low-amplitude rhythms. Some studies reported, however, that phase delays are larger when animals are entrained to a short photoperiod. Because phase advances and delays are mediated by partially distinct (i.e., nonoverlapping) biochemical pathways, we investigated the effect of a 4-h phase advance of the LD cycle in mice housed in either short (LD 8:16) or long (LD 16:8) photoperiods. In vitro recordings revealed a significantly larger phase advance in the SCN of mice entrained to short as compared to long photoperiods (4.2 ± 0.3 h v. 1.4 ± 0.9 h, respectively). Surprisingly, in mice with long photoperiods, the behavioral phase shift was larger than the phase shift of the SCN (3.7 ± 0.4 h v. 1.4 ± 0.9 h, respectively). To exclude a confounding influence of running-wheel activity on the magnitude of the shifts of the SCN, we repeated the experiments in the absence of running wheels and found similar shifts in the SCN in vitro in short and long days (3.0 ± 0.5 h v. 0.4 ± 0.9 h, respectively). Interestingly, removal of the running wheel reduced the phase-shifting capacity of mice in long days, leading to similar behavioral shifts in short and long photoperiods (1.0 ± 0.1 h v. 1.0 ± 0.4 h). As the behavioral shifts in the presence of wheels were larger than the shift of the SCN, it is suggested that additional, non-SCN neuronal networks in the brain are involved in regulating the timing of behavioral activity. On the basis of the phase shifts observed in vitro, we conclude that highly synchronized SCN networks with high-amplitude rhythms show a larger phase-shifting capacity than desynchronized networks of low amplitude.
Collapse
Affiliation(s)
- Ashna Ramkisoensing
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
30
|
Sakhi K, Wegner S, Belle MDC, Howarth M, Delagrange P, Brown TM, Piggins HD. Intrinsic and extrinsic cues regulate the daily profile of mouse lateral habenula neuronal activity. J Physiol 2014; 592:5025-45. [PMID: 25194046 DOI: 10.1113/jphysiol.2014.280065] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The epithalamic lateral habenula (LHb) is implicated as part of the mammalian brain's circadian system. Anatomical evidence suggests that the LHb receives extrinsic circadian timing cues from retinal ganglion cells and the master clock in the suprachiasmatic nuclei (SCN). Intriguingly, some LHb neurones contain the molecular circadian clock, but it is unclear if and how intrinsic and extrinsic circadian processes influence neuronal activity in the mouse LHb. Here, using an in vitro brain slice preparation isolating the LHb from the SCN, we show through whole-cell patch-clamp recordings that LHb neurones exhibit heterogeneity in their resting state, but the majority spontaneously fire action potentials (APs). Discharge rate of APs varied from low firing in the early day to higher firing later in the day and was absent in LHb brain slices prepared from Cry1(-/-)Cry2(-/-) mice that lack a functional molecular clock. Low amplitude circadian oscillations in the molecular circadian clock were also monitored in LHb brain slices, but were absent in Cry1(-/-)Cry2(-/-) LHb brain tissue. A putative neurochemical output signal of the SCN, prokineticin 2 (PK2), inhibited some LHb neurones by elevating the frequency of GABA release in the LHb. Using multi-electrode recordings in vivo, we found that LHb neurones sluggishly respond to retinal illumination, suggesting that they receive such information through polysynaptic processes. In summary, our results show for the first time that intrinsic circadian signals are important for regulating LHb neuronal state, while the SCN-derived signal PK2 is less influential. Moreover, we demonstrate that mouse LHb neurones have access to and can respond to visual input, but such signals are unlikely to be directly communicated to the LHb. Broadly, these findings raise the possibility that intrinsic circadian signals are likely to be influential in shaping LHb contributions to cognition and emotionality.
Collapse
Affiliation(s)
- Kanwal Sakhi
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Sven Wegner
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Mino D C Belle
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Michael Howarth
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Philippe Delagrange
- Unité de Recherches et Découvertes en Neurosciences, Institut de Recherches Servier, 78290, Croissy-sur-Seine, France
| | - Timothy M Brown
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Hugh D Piggins
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
31
|
Maternal pravastatin prevents altered fetal brain development in a preeclamptic CD-1 mouse model. PLoS One 2014; 9:e100873. [PMID: 24963809 PMCID: PMC4071009 DOI: 10.1371/journal.pone.0100873] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/30/2014] [Indexed: 12/14/2022] Open
Abstract
Objective Using an animal model, we have previously shown that preeclampsia results in long-term adverse neuromotor outcomes in the offspring, and this phenotype was prevented by antenatal treatment with pravastatin. This study aims to localize the altered neuromotor programming in this animal model and to evaluate the role of pravastatin in its prevention. Materials and Methods For the preeclampsia model, pregnant CD-1 mice were randomly allocated to injection of adenovirus carrying sFlt-1 or its control virus carrying mFc into the tail vein. Thereafter they received pravastatin (sFlt-1-pra “experimental group”) or water (sFlt-1 “positive control”) until weaning. The mFc group (“negative control”) received water. Offspring at 6 months of age were sacrificed, and whole brains underwent magnetic resonance imaging (MRI). MRIs were performed using an 11.7 Tesla vertical bore MRI scanner. T2 weighted images were acquired to evaluate the volumes of 28 regions of interest, including areas involved in adaptation and motor, spatial and sensory function. Cytochemistry and cell quantification was performed using neuron-specific Nissl stain. One-way ANOVA with multiple comparison testing was used for statistical analysis. Results Compared with control offspring, male sFlt-1 offspring have decreased volumes in the fimbria, periaquaductal gray, stria medullaris, and ventricles and increased volumes in the lateral globus pallidus and neocortex; however, female sFlt-1 offspring showed increased volumes in the ventricles, stria medullaris, and fasciculus retroflexus and decreased volumes in the inferior colliculus, thalamus, and lateral globus pallidus. Neuronal quantification via Nissl staining exhibited decreased cell counts in sFlt-1 offspring neocortex, more pronounced in males. Prenatal pravastatin treatment prevented these changes. Conclusion Preeclampsia alters brain development in sex-specific patterns, and prenatal pravastatin therapy prevents altered neuroanatomic programming in this animal model.
Collapse
|
32
|
Sakhi K, Belle MDC, Gossan N, Delagrange P, Piggins HD. Daily variation in the electrophysiological activity of mouse medial habenula neurones. J Physiol 2013; 592:587-603. [PMID: 24247982 PMCID: PMC3934703 DOI: 10.1113/jphysiol.2013.263319] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AbstractIntrinsic daily or circadian rhythms arise through the outputs of the master circadian clock in the brain's suprachiasmatic nuclei (SCN) as well as circadian oscillators in other brain sites and peripheral tissues. SCN neurones contain an intracellular molecular clock that drives these neurones to exhibit pronounced day–night differences in their electrical properties. The epithalamic medial habenula (MHb) expresses clock genes, but little is known about the bioelectric properties of mouse MHb neurones and their potential circadian characteristics. Therefore, in this study we used a brain slice preparation containing the MHb to determine the basic electrical properties of mouse MHb neurones with whole-cell patch clamp electrophysiology, and investigated whether these vary across the day–night cycle. MHb neurones (n = 230) showed heterogeneity in electrophysiological state, ranging from highly depolarised cells (∼ −25 to −30 mV) that are silent with no membrane activity or display depolarised low-amplitude membrane oscillations, to neurones that were moderately hyperpolarised (∼40 mV) and spontaneously discharging action potentials. These electrical states were largely intrinsically regulated and were influenced by the activation of small-conductance calcium-activated potassium channels. When considered as one population, MHb neurones showed significant circadian variation in their spontaneous firing rate and resting membrane potential. However, in recordings of MHb neurones from mice lacking the core molecular circadian clock, these temporal differences in MHb activity were absent, indicating that circadian clock signals actively regulate the timing of MHb neuronal states. These observations add to the extracellularly recorded rhythms seen in other brain areas and establish that circadian mechanisms can influence the membrane properties of neurones in extra-SCN sites. Collectively, the results of this study indicate that the MHb may function as an intrinsic secondary circadian oscillator in the brain, which can shape daily information flow in key brain processes, such as reward and addiction.
Collapse
Affiliation(s)
- Kanwal Sakhi
- AV Hill 2.016, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | | | |
Collapse
|
33
|
Lee YA, Goto Y. Habenula and ADHD: Convergence on time. Neurosci Biobehav Rev 2013; 37:1801-9. [DOI: 10.1016/j.neubiorev.2013.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/27/2013] [Accepted: 07/11/2013] [Indexed: 12/11/2022]
|
34
|
deCarvalho TN, Akitake CM, Thisse C, Thisse B, Halpern ME. Aversive cues fail to activate fos expression in the asymmetric olfactory-habenula pathway of zebrafish. Front Neural Circuits 2013; 7:98. [PMID: 23734103 PMCID: PMC3659297 DOI: 10.3389/fncir.2013.00098] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 05/02/2013] [Indexed: 11/17/2022] Open
Abstract
The dorsal habenular nuclei of the zebrafish epithalamus have become a valuable model for studying the development of left-right (L-R) asymmetry and its function in the vertebrate brain. The bilaterally paired dorsal habenulae exhibit striking differences in size, neuroanatomical organization, and molecular properties. They also display differences in their efferent connections with the interpeduncular nucleus (IPN) and in their afferent input, with a subset of mitral cells distributed on both sides of the olfactory bulb innervating only the right habenula. Previous studies have implicated the dorsal habenulae in modulating fear/anxiety responses in juvenile and adult zebrafish. It has been suggested that the asymmetric olfactory-habenula pathway (OB-Ha), revealed by selective labeling from an lhx2a:YFP transgene, mediates fear behaviors elicited by alarm pheromone. Here we show that expression of the fam84b gene demarcates a unique region of the right habenula that is the site of innervation by lhx2a:YFP-labeled olfactory axons. Upon ablation of the parapineal, which normally promotes left habenular identity; the fam84b domain is present in both dorsal habenulae and lhx2a:YFP-labeled olfactory bulb neurons form synapses on the left and the right side. To explore the relevance of the asymmetric olfactory projection and how it might influence habenular function, we tested activation of this pathway using odorants known to evoke behaviors. We find that alarm substance or other aversive odors, and attractive cues, activate fos expression in subsets of cells in the olfactory bulb but not in the lhx2a:YFP expressing population. Moreover, neither alarm pheromone nor chondroitin sulfate elicited fos activation in the dorsal habenulae. The results indicate that L-R asymmetry of the epithalamus sets the directionality of olfactory innervation, however, the lhx2a:YFP OB-Ha pathway does not appear to mediate fear responses to aversive odorants.
Collapse
Affiliation(s)
- Tagide N deCarvalho
- Department of Embryology, Carnegie Institution for Science Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
35
|
Charra R, Datiche F, Gigot V, Schaal B, Coureaud G. Pheromone-induced odor learning modifies Fos expression in the newborn rabbit brain. Behav Brain Res 2012; 237:129-40. [PMID: 23000352 DOI: 10.1016/j.bbr.2012.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/08/2012] [Accepted: 09/13/2012] [Indexed: 12/24/2022]
Abstract
Associative learning contributes crucially to adjust the behavior of neonates to the permanently changing environment. In the European rabbit, the mammary pheromone (MP) excreted in milk triggers sucking behavior in newborns, and additionally promotes very rapid learning of initially neutral odor cues. Such stimuli become then as active as the MP itself to elicit the orocephalic motor responses involved in suckling. In this context, the rabbit is an interesting model to address the question of brain circuits early engaged by learning and memory. Here, we evaluated the brain activation (olfactory bulb and central regions) induced in 4-day-old pups by an odorant (ethyl acetoacetate, EAA) after single pairing with the MP and its subsequent acquired ability to elicit sucking-related behavior (conditioned group) or after mere exposure to EAA alone (unconditioned group). The brain-wide mapping of c-Fos expression was used to compare neural activation patterns in both groups. Evidence of high immunostaining to odorant EAA occurred in the mitral+granule cells layer of the main olfactory bulb in pups previously exposed to EAA in association with the MP. These pups also showed higher expression of Fos in the piriform cortex, the hypothalamic lateral preoptic area and the amygdala (cortical and basal nuclei). Thus, MP-induced odor learning induces rapid brain modifications in rabbit neonates. The cerebral framework supporting the acquisition appears however different compared to the circuit involved in the processing of the MP itself.
Collapse
Affiliation(s)
- R Charra
- Developmental Ethology and Cognitive Psychology Group and Brain, Sensoriality and Metabolism Group, Centre des Sciences du Goût et de l'Alimentation, UMR 6265 CNRS, 1324 INRA, Université de Bourgogne, Dijon, France
| | | | | | | | | |
Collapse
|
36
|
Watanabe N, Itoh K, Mogi M, Fujinami Y, Shimizu D, Hashimoto H, Uji S, Yokoi H, Suzuki T. Circadian pacemaker in the suprachiasmatic nuclei of teleost fish revealed by rhythmic period2 expression. Gen Comp Endocrinol 2012; 178:400-7. [PMID: 22732079 DOI: 10.1016/j.ygcen.2012.06.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/08/2012] [Accepted: 06/12/2012] [Indexed: 01/06/2023]
Abstract
In mammals, the role of the suprachiasmatic nucleus (SCN) as the primary circadian clock that coordinates the biological rhythms of peripheral oscillators is well known. However, in teleosts, it remains unclear whether the SCN also functions as a circadian pacemaker. We used in situ hybridization (ISH) techniques to demonstrate that the molecular clock gene, per2, is expressed in the SCN of flounder (Paralichthys olivaceus) larvae during the day and down-regulated at night, demonstrating that a circadian pacemaker exists in the SCN of this teleost. The finding that per2 expression in the SCN was also observed in the amberjack (Seriola dumerili), but not in medaka (Oryzias latipes), implies that interspecific variation exists in the extent to which the SCN controls the circadian rhythms of fish species, presumably reflecting their lifestyle. Rhythmic per2 expression was also detected in the pineal gland and pituitary, and aperiodic per2 expression was observed in the habenula, which is known to exhibit circadian rhythms in rodents. Since the ontogeny of per2 expression in the brain of early flounder larvae can be monitored by whole mount ISH, it is possible to investigate the effects of drugs and environmental conditions on the functional development of circadian clocks in the brain of fish larvae. In addition, flounder would be a good model for understanding the rhythmicity of marine fish. Our findings open a new frontier for investigating the role of the SCN in teleost circadian rhythms.
Collapse
Affiliation(s)
- Nanako Watanabe
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Morin LP. Neuroanatomy of the extended circadian rhythm system. Exp Neurol 2012; 243:4-20. [PMID: 22766204 DOI: 10.1016/j.expneurol.2012.06.026] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/19/2012] [Accepted: 06/24/2012] [Indexed: 01/09/2023]
Abstract
The suprachiasmatic nucleus (SCN), site of the primary clock in the circadian rhythm system, has three major afferent connections. The most important consists of a retinohypothalamic projection through which photic information, received by classical rod/cone photoreceptors and intrinsically photoreceptive retinal ganglion cells, gains access to the clock. This information influences phase and period of circadian rhythms. The two other robust afferent projections are the median raphe serotonergic pathway and the geniculohypothalamic (GHT), NPY-containing pathway from the thalamic intergeniculate leaflet (IGL). Beyond this simple framework, the number of anatomical routes that could theoretically be involved in rhythm regulation is enormous, with the SCN projecting to 15 regions and being directly innervated by about 35. If multisynaptic afferents to the SCN are included, the number expands to approximately brain 85 areas providing input to the SCN. The IGL, a known contributor to circadian rhythm regulation, has a still greater level of complexity. This nucleus connects abundantly throughout the brain (to approximately 100 regions) by pathways that are largely bilateral and reciprocal. Few of these sites have been evaluated for their contributions to circadian rhythm regulation, although most have a theoretical possibility of doing so via the GHT. The anatomy of IGL connections suggests that one of its functions may be regulation of eye movements during sleep. Together, neural circuits of the SCN and IGL are complex and interconnected. As yet, few have been tested with respect to their involvement in rhythm regulation.
Collapse
Affiliation(s)
- Lawrence P Morin
- Department of Psychiatry, Stony Brook University Medical Center, Stony Brook, NY 11794-8101, USA.
| |
Collapse
|
38
|
Shelton L, Pendse G, Maleki N, Moulton EA, Lebel A, Becerra L, Borsook D. Mapping pain activation and connectivity of the human habenula. J Neurophysiol 2012; 107:2633-48. [PMID: 22323632 DOI: 10.1152/jn.00012.2012] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The habenula, located in the posterior thalamus, is implicated in a wide array of functions. Animal anatomical studies have indicated that the structure receives inputs from a number of brain regions (e.g., frontal areas, hypothalamic, basal ganglia) and sends efferent connections predominantly to the brain stem (e.g., periaqueductal gray, raphe, interpeduncular nucleus). The role of the habenula in pain and its anatomical connectivity are well-documented in animals but not in humans. In this study, for the first time, we show how high-field magnetic resonance imaging can be used to detect habenula activation to noxious heat. Functional maps revealed significant, localized, and bilateral habenula responses. During pain processing, functional connectivity analysis demonstrated significant functional correlations between the habenula and the periaqueductal gray and putamen. Probabilistic tractography was used to assess connectivity of afferent (e.g., putamen) and efferent (e.g., periaqueductal gray) pathways previously reported in animals. We believe that this study is the first report of habenula activation by experimental pain in humans. Since the habenula connects forebrain structures with brain stem structures, we suggest that the findings have important implications for understanding sensory and emotional processing in the brain during both acute and chronic pain.
Collapse
Affiliation(s)
- L Shelton
- P.a.i.n. Group, Children's Hospital Boston, Waltham, MA 02453, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Shelton L, Becerra L, Borsook D. Unmasking the mysteries of the habenula in pain and analgesia. Prog Neurobiol 2012; 96:208-19. [PMID: 22270045 PMCID: PMC3465722 DOI: 10.1016/j.pneurobio.2012.01.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 11/01/2011] [Accepted: 01/06/2012] [Indexed: 02/06/2023]
Abstract
The habenula is a small bilateral structure in the posterior-medial aspect of the dorsal thalamus that has been implicated in a remarkably wide range of behaviors including olfaction, ingestion, mating, endocrine and reward function, pain and analgesia. Afferent connections from forebrain structures send inputs to the lateral and medial habenula where efferents are mainly projected to brainstem regions that include well-known pain modulatory regions such as the periaqueductal gray and raphe nuclei. A convergence of preclinical data implicates the region in multiple behaviors that may be considered part of the pain experience including a putative role in pain modulation, affective, and motivational processes. The habenula seems to play a role as an evaluator, acting as a major point of convergence where external stimuli is received, evaluated, and redirected for motivation of appropriate behavioral response. Here, we review the role of the habenula in pain and analgesia, consider its potential role in chronic pain, and review more recent clinical and functional imaging data of the habenula from animals and humans. Even through the habenula is a small brain structure, advances in structural and functional imaging in humans should allow for further advancement of our understanding of its role in pain and analgesia.
Collapse
Affiliation(s)
- L. Shelton
- Center for Pain and the Brain, Harvard Medical School, United States
- Children’s Hospital Boston, Harvard Medical School, United States
| | - L. Becerra
- Center for Pain and the Brain, Harvard Medical School, United States
- Children’s Hospital Boston, Harvard Medical School, United States
- McLean Hospital, Harvard Medical School, United States
- Massachusetts General Hospital, Harvard Medical School, United States
| | - D. Borsook
- Center for Pain and the Brain, Harvard Medical School, United States
- Children’s Hospital Boston, Harvard Medical School, United States
- McLean Hospital, Harvard Medical School, United States
- Massachusetts General Hospital, Harvard Medical School, United States
| |
Collapse
|