1
|
Rigney N, de Vries GJ, Petrulis A. Modulation of social behavior by distinct vasopressin sources. Front Endocrinol (Lausanne) 2023; 14:1127792. [PMID: 36860367 PMCID: PMC9968743 DOI: 10.3389/fendo.2023.1127792] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
The neuropeptide arginine-vasopressin (AVP) is well known for its peripheral effects on blood pressure and antidiuresis. However, AVP also modulates various social and anxiety-related behaviors by its actions in the brain, often sex-specifically, with effects typically being stronger in males than in females. AVP in the nervous system originates from several distinct sources which are, in turn, regulated by different inputs and regulatory factors. Based on both direct and indirect evidence, we can begin to define the specific role of AVP cell populations in social behavior, such as, social recognition, affiliation, pair bonding, parental behavior, mate competition, aggression, and social stress. Sex differences in function may be apparent in both sexually-dimorphic structures as well as ones without prominent structural differences within the hypothalamus. The understanding of how AVP systems are organized and function may ultimately lead to better therapeutic interventions for psychiatric disorders characterized by social deficits.
Collapse
Affiliation(s)
- Nicole Rigney
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | | | | |
Collapse
|
2
|
Gillette R, Dias M, Reilly MP, Thompson LM, Castillo NJ, Vasquez EL, Crews D, Gore AC. Two Hits of EDCs Three Generations Apart: Effects on Social Behaviors in Rats, and Analysis by Machine Learning. TOXICS 2022; 10:toxics10010030. [PMID: 35051072 PMCID: PMC8779176 DOI: 10.3390/toxics10010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/12/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023]
Abstract
All individuals are directly exposed to extant environmental endocrine-disrupting chemicals (EDCs), and indirectly exposed through transgenerational inheritance from our ancestors. Although direct and ancestral exposures can each lead to deficits in behaviors, their interactions are not known. Here we focused on social behaviors based on evidence of their vulnerability to direct or ancestral exposures, together with their importance in reproduction and survival of a species. Using a novel "two hits, three generations apart" experimental rat model, we investigated interactions of two classes of EDCs across six generations. PCBs (a weakly estrogenic mixture Aroclor 1221, 1 mg/kg), Vinclozolin (antiandrogenic, 1 mg/kg) or vehicle (6% DMSO in sesame oil) were administered to pregnant rat dams (F0) to directly expose the F1 generation, with subsequent breeding through paternal or maternal lines. A second EDC hit was given to F3 dams, thereby exposing the F4 generation, with breeding through the F6 generation. Approximately 1200 male and female rats from F1, F3, F4 and F6 generations were run through tests of sociability and social novelty as indices of social preference. We leveraged machine learning using DeepLabCut to analyze nuanced social behaviors such as nose touching with accuracy similar to a human scorer. Surprisingly, social behaviors were affected in ancestrally exposed but not directly exposed individuals, particularly females from a paternally exposed breeding lineage. Effects varied by EDC: Vinclozolin affected aspects of behavior in the F3 generation while PCBs affected both the F3 and F6 generations. Taken together, our data suggest that specific aspects of behavior are particularly vulnerable to heritable ancestral exposure of EDC contamination, that there are sex differences, and that lineage is a key factor in transgenerational outcomes.
Collapse
Affiliation(s)
- Ross Gillette
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.G.); (M.D.); (M.P.R.); (L.M.T.); (N.J.C.); (E.L.V.)
| | - Michelle Dias
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.G.); (M.D.); (M.P.R.); (L.M.T.); (N.J.C.); (E.L.V.)
| | - Michael P. Reilly
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.G.); (M.D.); (M.P.R.); (L.M.T.); (N.J.C.); (E.L.V.)
| | - Lindsay M. Thompson
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.G.); (M.D.); (M.P.R.); (L.M.T.); (N.J.C.); (E.L.V.)
| | - Norma J. Castillo
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.G.); (M.D.); (M.P.R.); (L.M.T.); (N.J.C.); (E.L.V.)
| | - Erin L. Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.G.); (M.D.); (M.P.R.); (L.M.T.); (N.J.C.); (E.L.V.)
| | - David Crews
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Andrea C. Gore
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (R.G.); (M.D.); (M.P.R.); (L.M.T.); (N.J.C.); (E.L.V.)
- Correspondence:
| |
Collapse
|
3
|
Rigney N, Whylings J, de Vries GJ, Petrulis A. Sex Differences in the Control of Social Investigation and Anxiety by Vasopressin Cells of the Paraventricular Nucleus of the Hypothalamus. Neuroendocrinology 2021; 111:521-535. [PMID: 32541145 PMCID: PMC7736187 DOI: 10.1159/000509421] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022]
Abstract
The neuropeptide arginine-vasopressin (AVP) has long been implicated in the regulation of social behavior and communication in diverse taxa, but the source of AVP release relevant for behavior has not been precisely determined. Potential sources include hypothalamic cell populations such as the paraventricular (PVN), supraoptic, and suprachiasmatic nuclei, as well as extrahypothalamic cell groups in the extended amygdala. To address if AVP-expressing cells in the PVN are important for mouse social communication, we deleted PVN AVP-expressing cells using viral-mediated delivery of Cre-dependent caspase-9 cell death construct into the PVN of AVP-Cre-positive mice (expressing Cre-recombinase under the control of the AVP promoter) or AVP-Cre-negative littermate controls, and assessed their levels of social investigation, social communication, anxiety, sex behavior, and aggressive behavior. We found that these lesions increased social investigation in females, but not in males. However, in males but not in females, these lesions increased non-social anxiety-related behaviors in the elevated-plus maze. These results therefore point at differential involvement of PVN AVP-expressing cells in the context of social and emotional behavior in the two sexes, which may contribute to sex differences in social communication and anxiety disorders.
Collapse
Affiliation(s)
- Nicole Rigney
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA,
| | - Jack Whylings
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Geert J de Vries
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Aras Petrulis
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Powers KG, Ma XM, Eipper BA, Mains RE. Cell-type specific knockout of peptidylglycine α-amidating monooxygenase reveals specific behavioral roles in excitatory forebrain neurons and cardiomyocytes. GENES BRAIN AND BEHAVIOR 2020; 20:e12699. [PMID: 32902163 DOI: 10.1111/gbb.12699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 01/11/2023]
Abstract
Neuropeptides and peptide hormones play a crucial role in integrating the many factors that affect physiologic and cognitive processes. The potency of many of these peptides requires an amidated amino acid at the C-terminus; a single enzyme, peptidylglycine α-amidating monooxygenase (PAM), catalyzes this modification. Anxiety-like behavior is known to be altered in mice with a single functional Pam allele (Pam+/- ) and in mice unable to express Pam in excitatory forebrain neurons (PamEmx1-cKO/cKO ) or in cardiomyocytes (PamMyh6-cKO/cKO ). Examination of PAM-positive and glutamic acid decarboxylase 67 (GAD)-positive cells in the amygdala of PamEmx1-cKO/cKO mice demonstrated the absence of PAM in pyramidal neurons and its continued presence in GAD-positive interneurons, suggestive of altered excitatory/inhibitory balance. Additional behavioral tests were used to search for functional alterations in these cell-type specific knockout mice. PamEmx1-cKO/cKO mice exhibited a less focused search pattern for the Barnes Maze escape hole than control or PamMyh6-cKO/cKO mice. While wildtype mice favor interacting with novel objects as opposed to familiar objects, both PamEmx1-cKO/cKO and PamMyh6-cKO/cKO mice exhibited significantly less interest in the novel object. Since PAM levels in the central nervous system of PamMyh6-cKO/cKO mice are unaltered, the behavioral effect observed in these mice may reflect their inability to produce atrial granules and the resulting reduction in serum levels of atrial natriuretic peptide. In the sociability test, male mice of all three genotypes spent more time with same-sex stranger mice; while control females showed no preference for stranger mice, female PamEmx1-cKO/cKO mice showed preference for same-sex stranger mice in all trials.
Collapse
Affiliation(s)
- Kathryn G Powers
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Xin-Ming Ma
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Betty A Eipper
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Richard E Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
5
|
Sandhu KV, Demiray YE, Yanagawa Y, Stork O. Dietary phytoestrogens modulate aggression and activity in social behavior circuits of male mice. Horm Behav 2020; 119:104637. [PMID: 31783026 DOI: 10.1016/j.yhbeh.2019.104637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 01/02/2023]
Abstract
Phytoestrogens comprise biologically active constituents of human and animal diet that can impact on systemic and local estrogen functions in the brain. Here we report on the importance of dietary phytoestrogens for maintaining activity in a brain circuit controlling aggressive and social behavior of male mice. After six weeks of low-phytoestrogen chronic diet (diadzein plus genistein <20 μg/g) a reduction of intermale aggression and altered territorial marking behavior could be observed, compared to littermates on a standard soy-bean based diet (300 μg/g). Further, mice on low-phyto diet displayed a decrease in sociability and a reduced preference for social odors, indicating a general disturbance of social behavior. Underlying circuits were investigated by analysing the induction of the activity marker c-Fos upon social encounter. Low-phyto diet led to a markedly reduced c-Fos induction in the medial as well as the cortical amygdala, the lateral septum, medial preoptic area and bed nucleus of the stria terminalis. No difference between groups was observed in the olfactory bulb. Together our data suggest that dietary phytoestrogens critically modulate social behavior circuits in the male mouse brain.
Collapse
Affiliation(s)
- Kiran Veer Sandhu
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Yunus Emre Demiray
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Yuchio Yanagawa
- Department of Genetic and Behavioural Neuroscience, Gunma University Graduate School of Medicine and JST, CREST, Maebashi 371-8511, Japan
| | - Oliver Stork
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; Center for Behavioural Brain Sciences, Magdeburg, 39120 Magdeburg, Germany.
| |
Collapse
|
6
|
Early life stress induces submissive behavior in adult rats. Behav Brain Res 2019; 372:112025. [DOI: 10.1016/j.bbr.2019.112025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 04/18/2019] [Accepted: 06/08/2019] [Indexed: 12/16/2022]
|
7
|
Lenz KM, Pickett LA, Wright CL, Galan A, McCarthy MM. Prenatal Allergen Exposure Perturbs Sexual Differentiation and Programs Lifelong Changes in Adult Social and Sexual Behavior. Sci Rep 2019; 9:4837. [PMID: 30886382 PMCID: PMC6423032 DOI: 10.1038/s41598-019-41258-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/05/2019] [Indexed: 12/27/2022] Open
Abstract
Sexual differentiation is the early life process by which the brain is prepared for male or female typical behaviors, and is directed by sex chromosomes, hormones and early life experiences. We have recently found that innate immune cells residing in the brain, including microglia and mast cells, are more numerous in the male than female rat brain. Neuroimmune cells are also key participants in the sexual differentiation process, specifically organizing the synaptic development of the preoptic area and leading to male-typical sexual behavior in adulthood. Mast cells are known for their roles in allergic responses, thus in this study we sought to determine if exposure to an allergic response of the pregnant female in utero would alter the sexual differentiation of the preoptic area of offspring and resulting sociosexual behavior in later life. Pregnant rats were sensitized to ovalbumin (OVA), bred, and challenged intranasally with OVA on gestational day 15, which produced robust allergic inflammation, as measured by elevated immunoglobulin E. Offspring of these challenged mother rats were assessed relative to control rats in the early neonatal period for mast cell and microglia activation within their brains, downstream dendritic spine patterning on POA neurons, or grown to adulthood to assess behavior and dendritic spines. In utero exposure to allergic inflammation increased mast cell and microglia activation in the neonatal brain, and led to masculinization of dendritic spine density in the female POA. In adulthood, OVA-exposed females showed an increase in male-typical mounting behavior relative to control females. In contrast, OVA-exposed males showed evidence of dysmasculinization, including reduced microglia activation, reduced neonatal dendritic spine density, decreased male-typical copulatory behavior, and decreased olfactory preference for female-typical cues. Together these studies show that early life allergic events may contribute to natural variations in both male and female sexual behavior, potentially via underlying effects on brain-resident mast cells.
Collapse
Affiliation(s)
- Kathryn M Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA.
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, 43210, USA.
| | - Lindsay A Pickett
- Department of Pharmacology, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Program in Neuroscience, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Christopher L Wright
- Department of Pharmacology, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Program in Neuroscience, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Anabel Galan
- Department of Psychology, The Ohio State University, Columbus, OH, 43210, USA
| | - Margaret M McCarthy
- Department of Pharmacology, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Program in Neuroscience, The University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
8
|
Jager A, Maas DA, Fricke K, de Vries RB, Poelmans G, Glennon JC. Aggressive behavior in transgenic animal models: A systematic review. Neurosci Biobehav Rev 2018; 91:198-217. [DOI: 10.1016/j.neubiorev.2017.09.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/10/2017] [Accepted: 09/19/2017] [Indexed: 11/25/2022]
|
9
|
Church JS, Tijerina PB, Emerson FJ, Coburn MA, Blum JL, Zelikoff JT, Schwartzer JJ. Perinatal exposure to concentrated ambient particulates results in autism-like behavioral deficits in adult mice. Neurotoxicology 2018; 65:231-240. [PMID: 29104007 PMCID: PMC5857220 DOI: 10.1016/j.neuro.2017.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/19/2017] [Accepted: 10/28/2017] [Indexed: 11/15/2022]
Abstract
Exposure to fine ambient particulates (PM2.5) during gestation or neonatally has potent neurotoxic effects. While biological and behavioral data indicate a vulnerability to environmental pollutants across distinct neurodevelopmental windows, the behavioral consequences following exposure across the entire developmental period remain unknown. Moreover, several epidemiological studies support a link between developmental exposure to air pollution and an increased risk of later receiving a diagnosis of autism spectrum disorders (ASD), a neurodevelopmental disorder that persists throughout life. In the current study we sought to determine whether perinatal exposure to PM2.5 would reduce sociability and increase repetitive deficits in mice, two hallmark characteristics of ASD. Pregnant female B6C3F1 mice were exposed daily to concentrated ambient PM2.5 (CAPs) (135.8μg/m3) or filtered air (3.1μg/m3) throughout gestation followed by additional exposures to both dams and their litters from days 2-10 postpartum. Adult offspring were subsequently assessed for social and repetitive behaviors at 20 weeks of age. Daily perinatal exposure to CAPs significantly decreased sociability in male and female mice as measured by the social approach task; however, reductions in reciprocal social interaction and increased grooming behavior were only present in male offspring exposed to CAPs. These findings demonstrate that exposure to particulate air pollutants throughout early neurodevelopment induces long lasting behavioral deficits in a sex-dependent manner and may be an underlying cause of neurodevelopmental disorders such as ASD.
Collapse
Affiliation(s)
- Jamie S Church
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Pamella B Tijerina
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Felicity J Emerson
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Morgan A Coburn
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Jason L Blum
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Judith T Zelikoff
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA.
| | - Jared J Schwartzer
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA.
| |
Collapse
|
10
|
Ujjainwala AL, Courtney CD, Rhoads SG, Rhodes JS, Christian CA. Genetic loss of diazepam binding inhibitor in mice impairs social interest. GENES BRAIN AND BEHAVIOR 2017; 17:e12442. [PMID: 29193847 DOI: 10.1111/gbb.12442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 01/21/2023]
Abstract
Neuropsychiatric disorders in which reduced social interest is a common symptom, such as autism, depression, and anxiety, are frequently associated with genetic mutations affecting γ-aminobutyric acid (GABA)ergic transmission. Benzodiazepine treatment, acting via GABA type-A receptors, improves social interaction in male mouse models with autism-like features. The protein diazepam binding inhibitor (DBI) can act as an endogenous benzodiazepine, but a role for DBI in social behavior has not been described. Here, we investigated the role of DBI in the social interest and recognition behavior of mice. The responses of DBI wild-type and knockout male and female mice to ovariectomized female wild-type mice (a neutral social stimulus) were evaluated in a habituation/dishabituation task. Both male and female knockout mice exhibited reduced social interest, and DBI knockout mice lacked the sex difference in social interest levels observed in wild-type mice, in which males showed higher social interest levels than females. The ability to discriminate between familiar and novel stimulus mice (social recognition) was not impaired in DBI-deficient mice of either sex. DBI knockouts could learn a rotarod motor task, and could discriminate between social and nonsocial odors. Both sexes of DBI knockout mice showed increased repetitive grooming behavior, but not in a manner that would account for the decrease in social investigation time. Genetic loss of DBI did not alter seminal vesicle weight, indicating that the social interest phenotype of males lacking DBI is not due to reduced circulating testosterone. Together, these studies show a novel role of DBI in driving social interest and motivation.
Collapse
Affiliation(s)
- A L Ujjainwala
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - C D Courtney
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - S G Rhoads
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - J S Rhodes
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - C A Christian
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
11
|
Outbred CD1 mice are as suitable as inbred C57BL/6J mice in performing social tasks. Neurosci Lett 2016; 637:142-147. [PMID: 27871995 DOI: 10.1016/j.neulet.2016.11.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/01/2016] [Accepted: 11/15/2016] [Indexed: 11/21/2022]
Abstract
Inbred mouse strains have been used preferentially for behavioral testing over outbred counterparts, even though outbred mice reflect the genetic diversity in the human population better. Here, we compare the sociability of widely available outbred CD1 mice with the commonly used inbred C57BL/6J (C57) mice in the one-chamber social interaction test and the three-chamber sociability test. In the one-chamber task, intra-strain pairs of juvenile, non-littermate, male CD1 or C57 mice display a series of social and aggressive behaviors. While CD1 and C57 pairs spend equal amount of time socializing, CD1 pairs spend significantly more time engaged in aggressive behaviors than C57 mice. In the three-chamber task, sociability of C57 mice was less dependent on acclimation paradigms than CD1 mice. Following acclimation to all three chambers, both groups of age-matched male mice spent more time in the chamber containing a stranger mouse than in the empty chamber, suggesting that CD1 mice are sociable like C57 mice. However, the observed power suggests that it is easier to achieve statistical significance with C57 than CD1 mice. Because the stranger mouse could be considered as a novel object, we assessed for a novelty effect by adding an object. CD1 mice spend more time in the chamber with a stranger mouse than that a novel object, suggesting that their preference is social in nature. Thus, outbred CD1 mice are as appropriate as inbred C57 mice for studying social behavior using either the single or the three-chamber test using a specific acclimation paradigm.
Collapse
|
12
|
Ilchibaeva TV, Tsybko AS, Kozhemyakina RV, Naumenko VS. Expression of apoptosis genes in the brain of rats with genetically defined fear-induced aggression. Mol Biol 2016. [DOI: 10.1134/s0026893316030079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Karlsson SA, Studer E, Kettunen P, Westberg L. Neural Androgen Receptors Modulate Gene Expression and Social Recognition But Not Social Investigation. Front Behav Neurosci 2016; 10:41. [PMID: 27014003 PMCID: PMC4792870 DOI: 10.3389/fnbeh.2016.00041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/22/2016] [Indexed: 12/02/2022] Open
Abstract
The role of sex and androgen receptors (ARs) for social preference and social memory is rather unknown. In this study of mice we compared males, females and males lacking ARs specifically in the nervous system, ARNesDel, with respect to social preference, assessed with the three-chambered apparatus test, and social recognition, assessed with the social discrimination procedure. In the social discrimination test we also evaluated the tentative importance of the sex of the stimulus animal. Novel object recognition and olfaction were investigated to complement the results from the social tests. Gene expression analysis was performed to reveal molecules involved in the effects of sex and androgens on social behaviors. All three test groups showed social preference in the three-chambered apparatus test. In both social tests an AR-independent sexual dimorphism was seen in the persistence of social investigation of female conspecifics, whereas the social interest toward male stimuli mice was similar in all groups. Male and female controls recognized conspecifics independent of their sex, whereas ARNesDel males recognized female but not male stimuli mice. Moreover, the non-social behaviors were not affected by AR deficiency. The gene expression analyses of hypothalamus and amygdala indicated that Oxtr, Cd38, Esr1, Cyp19a1, Ucn3, Crh, and Gtf2i were differentially expressed between the three groups. In conclusion, our results suggest that ARs are required for recognition of male but not female conspecifics, while being dispensable for social investigation toward both sexes. In addition, the AR seems to regulate genes related to oxytocin, estrogen and William’s syndrome.
Collapse
Affiliation(s)
- Sara A Karlsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Erik Studer
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Lars Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| |
Collapse
|
14
|
Swift-Gallant A, Coome LA, Ramzan F, Monks DA. Nonneural Androgen Receptors Affect Sexual Differentiation of Brain and Behavior. Endocrinology 2016; 157:788-98. [PMID: 26636184 DOI: 10.1210/en.2015-1355] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Testosterone, acting via estrogenic and androgenic pathways, is the major endocrine mechanism promoting sexual differentiation of the mammalian nervous system and behavior, but we have an incomplete knowledge of which cells and tissues mediate these effects. To distinguish between neural and nonneural actions of androgens in sexual differentiation of brain and behavior, we generated a loxP-based transgenic mouse, which overexpresses androgen receptors (ARs) when activated by Cre. We used this transgene to overexpress AR globally in all tissues using a cytomegalovirus (CMV)-Cre driver (CMV-AR), and we used a Nestin-Cre driver to overexpress AR only in neural tissue (Nes-AR). We then examined whether neural or global AR overexpression can affect socio-sexual behaviors using a resident-intruder paradigm. We found that both neural and global AR overexpression resulted in decreased aggressive behaviors and increased thrusting during mounting of intruders, consistent with a neural site of action. Global, but not neural, AR overexpression in males led to an increase in same-sex anogenital investigation. Together, these results suggest novel roles for nonneural AR in sexual differentiation of mice, and indicate that excess AR can lead to a paradoxical reduction of male-typical behavior.
Collapse
Affiliation(s)
- Ashlyn Swift-Gallant
- Departments of Psychology (A.S.-G., L.A.C., F.R., D.A.M.), Neuroscience (L.A.C., F.R., D.A.M.), and Cells and Systems Biology (D.A.M.), University of Toronto, Toronto, Ontario, Canada M5S 3G3; and Department of Psychology (A.S.-G., L.A.C., F.R., D.A.M.), University of Toronto, Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Lindsay A Coome
- Departments of Psychology (A.S.-G., L.A.C., F.R., D.A.M.), Neuroscience (L.A.C., F.R., D.A.M.), and Cells and Systems Biology (D.A.M.), University of Toronto, Toronto, Ontario, Canada M5S 3G3; and Department of Psychology (A.S.-G., L.A.C., F.R., D.A.M.), University of Toronto, Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Firyal Ramzan
- Departments of Psychology (A.S.-G., L.A.C., F.R., D.A.M.), Neuroscience (L.A.C., F.R., D.A.M.), and Cells and Systems Biology (D.A.M.), University of Toronto, Toronto, Ontario, Canada M5S 3G3; and Department of Psychology (A.S.-G., L.A.C., F.R., D.A.M.), University of Toronto, Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - D Ashley Monks
- Departments of Psychology (A.S.-G., L.A.C., F.R., D.A.M.), Neuroscience (L.A.C., F.R., D.A.M.), and Cells and Systems Biology (D.A.M.), University of Toronto, Toronto, Ontario, Canada M5S 3G3; and Department of Psychology (A.S.-G., L.A.C., F.R., D.A.M.), University of Toronto, Mississauga, Mississauga, Ontario, Canada L5L 1C6
| |
Collapse
|
15
|
Karlsson SA, Haziri K, Hansson E, Kettunen P, Westberg L. Effects of sex and gonadectomy on social investigation and social recognition in mice. BMC Neurosci 2015; 16:83. [PMID: 26608570 PMCID: PMC4660658 DOI: 10.1186/s12868-015-0221-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/17/2015] [Indexed: 01/02/2023] Open
Abstract
Background An individual’s ability to recognise and pay attention to others is crucial in order to behave appropriately in various social situations. Studies in humans have shown a sex bias in sociability as well as social memory, indicating that females have better face memory and gaze more at the eyes of others, but information about the factors that underpin these differences is sparse. Our aim was therefore to investigate if sociability and social recognition differ between female and male mice, and if so, to what extent gonadal hormones may be involved. Intact and gonadectomised male and female mice were assessed for sociability and social recognition using the three-chambered sociability paradigm, as well as the social discrimination test. Furthermore, we conducted a novel object recognition test, a locomotor activity test and an odour habituation/dishabituation test. Results The present study showed that the ability to recognise other individuals is intact in males with and without gonads, as well as in intact females, whereas it is hampered in gonadectomised females. Additionally, intact male mice displayed more persistent investigatory behaviour compared to the other groups, although the intact females showed elevated basal locomotor activity. In addition, all groups had intact object memory and habituated to odours. Conclusions Our results suggest that intact male mice investigate conspecifics more than females do, and these differences seem to depend upon circulating hormones released from the testis. As these results seem to contrast what is known from human studies, they should be taken into consideration when using the three-chambered apparatus, and similar paradigms as animal models of social deficits in e.g. autism. Other behavioural tests, and animal models, may be more suitable for translational studies between patients and experimental animals.
Collapse
Affiliation(s)
- Sara A Karlsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Kaltrina Haziri
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Evelyn Hansson
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Lars Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
16
|
De Felice A, Venerosi A, Ricceri L, Sabbioni M, Scattoni ML, Chiarotti F, Calamandrei G. Sex-dimorphic effects of gestational exposure to the organophosphate insecticide chlorpyrifos on social investigation in mice. Neurotoxicol Teratol 2014; 46:32-9. [DOI: 10.1016/j.ntt.2014.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 12/12/2022]
|
17
|
Dumais KM, Bredewold R, Mayer TE, Veenema AH. Sex differences in oxytocin receptor binding in forebrain regions: correlations with social interest in brain region- and sex- specific ways. Horm Behav 2013; 64:693-701. [PMID: 24055336 DOI: 10.1016/j.yhbeh.2013.08.012] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/20/2013] [Accepted: 08/23/2013] [Indexed: 12/22/2022]
Abstract
Social interest reflects the motivation to approach a conspecific for the assessment of social cues and is measured in rats by the amount of time spent investigating conspecifics. Virgin female rats show lower social interest towards unfamiliar juvenile conspecifics than virgin male rats. We hypothesized that the neuropeptide oxytocin (OT) may modulate sex differences in social interest because of the involvement of OT in pro-social behaviors. We determined whether there are sex differences in OT system parameters in the brain and whether these parameters would correlate with social interest. We also determined whether estrus phase or maternal experience would alter low social interest and whether this would correlate with changes in OT system parameters. Our results show that regardless of estrus phase, females have significantly lower OT receptor (OTR) binding densities than males in the majority of forebrain regions analyzed, including the nucleus accumbens, caudate putamen, lateral septum, bed nucleus of the stria terminalis, medial amygdala, and ventromedial hypothalamus. Interestingly, male social interest correlated positively with OTR binding densities in the medial amygdala, while female social interest correlated negatively with OTR binding densities in the central amygdala. Proestrus/estrus females showed similar social interest to non-estrus females despite increased OTR binding densities in several forebrain areas. Maternal experience had no immediate or long-lasting effects on social interest or OT brain parameters except for higher OTR binding in the medial amygdala in primiparous females. Together, these findings demonstrate that there are robust sex differences in OTR binding densities in multiple forebrain regions of rats and that OTR binding densities correlate with social interest in brain region- and sex-specific ways.
Collapse
Affiliation(s)
- Kelly M Dumais
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA.
| | | | | | | |
Collapse
|
18
|
Altered anxiety and defensive behaviors in Bax knockout mice. Behav Brain Res 2012; 239:115-20. [PMID: 23142367 DOI: 10.1016/j.bbr.2012.10.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/29/2012] [Accepted: 10/30/2012] [Indexed: 01/23/2023]
Abstract
Developmental neuronal cell death is critically regulated by the pro-death protein Bax. Bax-/- mice exhibit increased neuron number, the elimination of several neural sex differences, and altered socio-sexual behaviors. Here we examined the effects of Bax gene deletion on anxiety and defensive behaviors by comparing the responses of male and female wildtype and Bax-/- mice to two different tests. On the elevated plus maze, Bax-/- mice of both sexes made more entries into and spent more time in the outer portion of open arms, indicating decreased anxiety compared to wildtype animals. Next, we exposed mice to two odors: trimethylthiazoline (TMT), an olfactory component of fox feces that rodents find aversive, and butyric acid (BA), an aversive odor without ecological significance. Each odor was presented individually and all animals were tested with both odors in a counterbalanced design. TMT was consistently more aversive than BA across a variety of behaviors (e.g., mice spent less time close to the odor source). Overall, Bax -/- mice showed fewer stretch approaches to both TMT and BA than wildtypes, but they avoided the odor source more (e.g., fewer contacts and less time spent in proximity). Finally, no effect of genotype was seen in baseline olfactory behavior; all mice were able to locate a buried food item, demonstrating that Bax-/- mice do not have impaired olfaction per se. Collectively, these data suggest a change in strategy with anxiety and defensive behaviors in Bax-/- mice, indicating that alterations in cell number affect more general mechanisms of fear and anxiety in addition to behaviors directly related to reproduction.
Collapse
|
19
|
Nesher E, Gross M, Lisson S, Tikhonov T, Yadid G, Pinhasov A. Differential responses to distinct psychotropic agents of selectively bred dominant and submissive animals. Behav Brain Res 2012; 236:225-235. [PMID: 22982068 DOI: 10.1016/j.bbr.2012.08.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 08/24/2012] [Accepted: 08/26/2012] [Indexed: 12/14/2022]
Abstract
Dominance and submissiveness are two opposite poles of behavior representing important functional elements in the development of social interactions. We previously demonstrated the inheritability of these traits by selective breeding based upon the dominant-submissive relationships (DSR) food competition paradigm. Continued multigenerational behavioral selection of Sabra mice yielded animal populations with strong and stable features of dominance and submissiveness. We found that these animals react differentially to stressogenic triggers, antidepressants and mood stabilizing agents. The anxiolytic compound diazepam (1.5mg/kg, i.p.) reduced anxiety-like behavior of submissive animals, but showed anxiogenic effects among dominant animals. In the Forced Swim test, the antidepressant paroxetine (1, 3 and 10mg/kg, i.p.) markedly reduced immobility of submissive animals, demonstrating antidepressant-like effect. In contrast, when administered to dominant animals, paroxetine caused extreme (frenetic) activity. The mood stabilizer lithium (0.4%, p.o.) selectively influenced dominant mice, without affecting the behavior of submissive animals. In summary, we describe here two distinct animal populations possessing strong dominant and submissive phenotypes. We suggest that these populations hold potential as tools for studying the molecular basis and pharmacogenetics of dominant and submissive behavior.
Collapse
Affiliation(s)
- Elimelech Nesher
- Department of Molecular Biology, Ariel University Center, Ariel, Israel; Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Moshe Gross
- Department of Molecular Biology, Ariel University Center, Ariel, Israel; Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Serah Lisson
- Department of Molecular Biology, Ariel University Center, Ariel, Israel; Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Tatiana Tikhonov
- Department of Molecular Biology, Ariel University Center, Ariel, Israel
| | - Gal Yadid
- Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Albert Pinhasov
- Department of Molecular Biology, Ariel University Center, Ariel, Israel.
| |
Collapse
|
20
|
Abstract
We examined the role of the androgen receptor (AR) in the investigatory behaviour of conspecifics using mice carrying the testicular feminisation mutation (X(Tfm) Y). Responses to members of the same and opposite sex were evaluated in a habituation/dishabituation task. Adult mice were gonadectomised and treated with oestradiol (E(2) ) or testosterone. After E(2) treatment, regardless of the sex of the stimulus mouse, wild-type (WT) males engaged in significantly more investigation than WT females. X(Tfm) Y males treated with E(2) showed 'male-like' behaviour in response to a male but behaved 'female-like' when the stimulus was a female. Because WT and X(Tfm) Y males behaved the same in response to another male, we used two additional mouse models to ask whether sex chromosomes were responsible for this phenomenon. Regardless of sex chromosome complement, gonadal males displayed high levels of investigation. When mice were treated with testosterone, investigation by WT females was enhanced, which eliminated the sex differences. Most strikingly, X(Tfm) Y males receiving testosterone-treatment increased the investigation of females to levels equal to those shown by WT mice. Given that testosterone, but not its metabolite E(2) , caused X(Tfm) Y males to investigate female conspecifics at high levels, it is plausible that nonclassical actions of AR, and/or activation of a novel AR, may be involved in this behaviour. Taken together, our data show that AR activation during adulthood is not required for males to investigate mice of either sex. However, 'male-like' levels of investigation of a female stimulus may depend on neonatal activation of the classic nuclear AR.
Collapse
Affiliation(s)
- L D Tejada
- Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
21
|
Dhakar MB, Rich ME, Reno EL, Lee HJ, Caldwell HK. Heightened aggressive behavior in mice with lifelong versus postweaning knockout of the oxytocin receptor. Horm Behav 2012; 62:86-92. [PMID: 22609339 DOI: 10.1016/j.yhbeh.2012.05.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 05/09/2012] [Accepted: 05/10/2012] [Indexed: 11/30/2022]
Abstract
Previous work implicating the neuropeptide oxytocin (Oxt) in the neural regulation of aggression in males has been limited. However, there are reports of heightened aggression in Oxt knockout and Oxt receptor (Oxtr) knockout male mice when they are born to null mutant mothers; suggesting that intrauterine exposure to Oxt may be important to normal aggression in adulthood. To explore this, we examined aggression in two lines of Oxtr mice, a total knockout (Oxtr-/-), in which the Oxtr gene is absent from the time of conception, and a predominantly forebrain specific knockout (Oxtr FB/FB), in which the Oxtr gene is not excised until approximately 21-28days postnatally. Aggression was measured in males from both lines, as well as control littermates, using a resident-intruder behavioral test. Consistent with previous reports, male Oxtr-/- mice had elevated levels of aggression relative to controls. Oxtr FB/FB mice on the other hand displayed levels of aggression similar to control animals. In addition, following a resident-intruder test, Oxtr+/+ mice that displayed aggression had less c-fos immunoreactivity in the ventral portion of the lateral septum than those that did not. Further, Oxtr-/- mice had increased c-fos immunoreactivity in the medial amygdala relative to controls. These data suggest that Oxt may play an important role during development in the organization of the neural circuits that underlie aggressive behavior in adulthood, with its absence resulting in heightened aggression.
Collapse
Affiliation(s)
- Monica B Dhakar
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | | | | | | | | |
Collapse
|
22
|
Gilmore RF, Varnum MM, Forger NG. Effects of blocking developmental cell death on sexually dimorphic calbindin cell groups in the preoptic area and bed nucleus of the stria terminalis. Biol Sex Differ 2012; 3:5. [PMID: 22336348 PMCID: PMC3305593 DOI: 10.1186/2042-6410-3-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/15/2012] [Indexed: 01/01/2023] Open
Abstract
Background Calbindin-D28 has been used as a marker for the sexually dimorphic nucleus of the preoptic area (SDN-POA). Males have a distinct cluster of calbindin-immunoreactive (ir) cells in the medial preoptic area (CALB-SDN) that is reduced or absent in females. However, it is not clear whether the sex difference is due to the absolute number of calbindin-ir cells or to cell position (that is, spread), and the cellular mechanisms underlying the sex difference are not known. We examined the number of cells in the CALB-SDN and surrounding regions of C57Bl/6 mice and used mice lacking the pro-death gene, Bax, to test the hypothesis that observed sex differences are due to cell death. Methods Experiment 1 compared the number of cells in the CALB-SDN and surrounding regions in adult males, females, and females injected with estradiol benzoate on the day of birth. In experiment 2, cell number in the CALB-SDN and adjacent regions were compared in wild-type and Bax knockout mice of both sexes. In addition, calbindin-ir cells were quantified within the principal nucleus of the bed nucleus of the stria terminalis (BNSTp), a nearby region that is larger in males due to Bax-dependent cell death. Results Males had more cells in the CALB-SDN as well as in surrounding regions than did females, and estradiol treatment of females at birth masculinized both measures. Bax deletion had no effect on cell number in the CALB-SDN or surrounding regions but increased calbindin-ir cell number in the BNSTp. Conclusions The sex difference in the CALB-SDN of mice results from an estrogen-dependent difference in cell number with no evidence found for greater spread of cells in females. Blocking Bax-dependent cell death does not prevent sex differences in calbindin-ir cell number in the BNST or CALB-SDN but increases calbindin-ir cell number in the BNSTp of both sexes.
Collapse
Affiliation(s)
- Richard F Gilmore
- Department of Psychology and Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | |
Collapse
|