1
|
Chen M, Yang J, Xue C, Tu T, Su Z, Feng H, Shi M, Zeng G, Zhang D, Qian X. Community composition of phytopathogenic fungi significantly influences ectomycorrhizal fungal communities during subtropical forest succession. Appl Microbiol Biotechnol 2024; 108:99. [PMID: 38204135 PMCID: PMC10781812 DOI: 10.1007/s00253-023-12992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 11/21/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Ectomycorrhizal fungi (EMF) can form symbiotic relationships with plants, aiding in plant growth by providing access to nutrients and defense against phytopathogenic fungi. In this context, factors such as plant assemblages and soil properties can impact the interaction between EMF and phytopathogenic fungi in forest soil. However, there is little understanding of how these fungal interactions evolve as forests move through succession stages. In this study, we used high-throughput sequencing to investigate fungal communities in young, intermediate, and old subtropical forests. At the genus level, EMF communities were dominated by Sebacina, Russula, and Lactarius, while Mycena was the most abundant genus in pathogenic fungal communities. The relative abundances of EMF and phytopathogenic fungi in different stages showed no significant difference with the regulation of different factors. We discovered that interactions between phytopathogenic fungi and EMF maintained a dynamic balance under the influence of the differences in soil quality attributed to each forest successional stage. The community composition of phytopathogenic fungi is one of the strong drivers in shaping EMF communities over successions. In addition, the EMF diversity was significantly related to plant diversity, and these relationships varied among successional stages. Despite the regulation of various factors, the positive relationship between the diversity of phytopathogenic fungi and EMF remained unchanged. However, there is no significant difference in the ratio of the abundance of EMF and phytopathogenic fungi over the course of successions. These results will advance our understanding of the biodiversity-ecosystem functioning during forest succession. KEY POINTS: •Community composition of both EMF and phytopathogenic fungi changed significantly over forest succession. •Phytopathogenic fungi is a key driver in shaping EMF community. •The effect of plant Shannon's diversity on EMF communities changed during the forest aging process.
Collapse
Affiliation(s)
- Meirong Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiazhi Yang
- Guangdong Forestry Survey and Planning Institute, Guangzhou, China
| | - Chunquan Xue
- Guangdong Forestry Survey and Planning Institute, Guangzhou, China.
| | - Tieyao Tu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiyao Su
- South China Agriculture University, Guangzhou, China
| | - Hanhua Feng
- Guangdong Forestry Survey and Planning Institute, Guangzhou, China
| | - Miaomiao Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Gui Zeng
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Dianxiang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| | - Xin Qian
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
2
|
Chen J, Cui Y, Xiao Q, Lin K, Wang B, Zhou J, Li X. Difference in microbial community structure along a gradient of crater altitude: insights from the Nushan volcano. Appl Environ Microbiol 2024; 90:e0075324. [PMID: 39028194 PMCID: PMC11337807 DOI: 10.1128/aem.00753-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
The variation in the soil microbial community along the altitude gradient has been widely documented. However, the structure and function of the microbial communities distributed along the altitude gradient in the crater still need to be determined. We gathered soil specimens from different elevations within the Nushan volcano crater to bridge this knowledge gap. We investigated the microbial communities of bacteria and fungi in the soil. It is noteworthy that the microbial alpha diversity peaks in the middle of the crater. However, network analysis shows that bacterial (nodes 760 vs 613 vs 601) and fungal (nodes 328 vs 224 vs 400) communities are most stable at the bottom and top of the crater, respectively. Furthermore, the soil microbial network exhibited a decline, followed by an increase across varying altitudes. The core microorganisms displayed the highest correlation with pH and alkaline phosphatase (AP, as determined through redundancy analysis (RDA) and Mantel tests for correlation analysis. The fungal community has a higher number of core microorganisms, while the bacterial core microorganisms demonstrate greater susceptibility to environmental factors. In conclusion, we utilized Illumina sequencing techniques to assess the disparities in the structure and function of bacteria and fungi in the soil.IMPORTANCEThese findings serve as a foundation for future investigations on microbial communities present in volcanic soil.
Collapse
Affiliation(s)
- Jin Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Stress Resistance and High-Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Ye Cui
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Stress Resistance and High-Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Qingchen Xiao
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Stress Resistance and High-Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Keqin Lin
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Stress Resistance and High-Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Boyan Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Stress Resistance and High-Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Jing Zhou
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Stress Resistance and High-Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Xiaoyu Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Stress Resistance and High-Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| |
Collapse
|
3
|
Chen L, Yu Z, Zhao M, Kerfahi D, Li N, Shi L, Qi X, Lee CB, Dong K, Lee HI, Lee SS. Elevational Variation in and Environmental Determinants of Fungal Diversity in Forest Ecosystems of Korean Peninsula. J Fungi (Basel) 2024; 10:556. [PMID: 39194882 DOI: 10.3390/jof10080556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Exploring species diversity along elevational gradients is important for understanding the underlying mechanisms. Our study focused on analyzing the species diversity of fungal communities and their subcommunities at different trophic and taxonomic levels across three high mountains of the Korean Peninsula, each situated in a different climatic zone. Using high-throughput sequencing, we aimed to assess fungal diversity patterns and investigate the primary environmental factors influencing fungal diversity. Our results indicate that soil fungal diversity exhibits different elevational distribution patterns on different mountains, highlighting the combined effects of climate, soil properties, and geographic topology. Notably, the total and available phosphorus contents in the soil emerged as key determinants in explaining the differences in diversity attributed to soil properties. Despite the varied responses of fungal diversity to elevational gradients among different trophic guilds and taxonomic levels, their primary environmental determinants remained remarkably consistent. In particular, total and available phosphorus contents showed significant correlations with the diversity of the majority of the trophic guilds and taxonomic levels. Our study reveals the absence of a uniform diversity pattern along elevational gradients, underscoring the general sensitivity of fungi to soil conditions. By enriching our understanding of fungal diversity dynamics, this research enhances our comprehension of the formation and maintenance of elevational fungal diversity and the response of microbial communities in mountain ecosystems to climate change. This study provides valuable insights for future ecological studies of similar biotic communities.
Collapse
Affiliation(s)
- Lei Chen
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Zhi Yu
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Mengchen Zhao
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dorsaf Kerfahi
- Department of Biological Sciences, School of Natural Sciences, Keimyung University, Daegu 42601, Republic of Korea
| | - Nan Li
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Department of Oceanography, Key Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524091, China
| | - Lingling Shi
- Department of Geosciences, Geo-Biosphere Interactions, Faculty of Sciences, University of Tuebingen, 72074 Tuebingen, Germany
| | - Xiwu Qi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Chang-Bae Lee
- Biodiversity and Ecosystem Functioning Major, Department of Climate Technology Convergence, Forest Carbon Graduate School, Kookmin University, Seoul 02707, Republic of Korea
- Department of Forestry, Environment and Systems, College of Science and Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Ke Dong
- Department of Biological Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| | - Hae-In Lee
- Biodiversity and Ecosystem Functioning Major, Department of Climate Technology Convergence, Forest Carbon Graduate School, Kookmin University, Seoul 02707, Republic of Korea
| | - Sang-Seob Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
4
|
Feng Y, Xu T, Wang W, Sun S, Zhang M, Song F. Nitrogen addition changed soil fungal community structure and increased the biomass of functional fungi in Korean pine plantations in temperate northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172349. [PMID: 38615770 DOI: 10.1016/j.scitotenv.2024.172349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Nitrogen (N) deposition is a global environmental issue that can have significant impacts on the community structure and function in ecosystems. Fungi play a key role in soil biogeochemical cycles and their community structures are tightly linked to the health and productivity of forest ecosystems. Based on high-throughput sequencing and ergosterol extraction, we examined the changes in community structure, composition, and biomass of soil ectomycorrhizal (ECM) and saprophytic (SAP) fungi in 0-10 cm soil layer after 8 years of continuous N addition and their driving factors in a temperate Korean pine plantation in northeast China. Our results showed that N addition increased fungal community richness, with the highest richness and Chao1 index under the low N treatment (LN: 20 kg N ha-1 yr-1). Based on the FUN Guild database, we found that the relative abundance of ECM and SAP fungi increased first and then decreased with increasing N deposition concentration. The molecular ecological network analysis showed that the interaction between ECM and SAP fungi was enhanced by N addition, and the interaction was mainly positive in the ECM fungal network. N addition increased fungal biomass, and the total fungal biomass (TFB) was the highest under the MN treatment (6.05 ± 0.3 mg g-1). Overall, we concluded that N addition changed soil biochemical parameters, increased fungal activity, and enhanced functional fungal interactions in the Korean pine plantation over an 8-year simulated N addition. We need to consider the effects of complex soil conditions on soil fungi and emphasize the importance of regulating soil fungal community structure and biomass for managing forest ecosystems. These findings could deepen our understanding of the effects of increased N deposition on soil fungi in temperate forests in northern China, which can provide the theoretical basis for reducing the effects of increased N deposition on forest soil.
Collapse
Affiliation(s)
- Yuhan Feng
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Tianle Xu
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Wei Wang
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Simiao Sun
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China; Heilongjiang Academy of Black Soil Conservation & Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Mengmeng Zhang
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Fuqiang Song
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
5
|
F K, L B, M EM, M R B, N F, R B, F B, A DS, C D, M N F, G G, M J G, M L, A L, W L M, A N, A S, G S, E I V, K V, L V, B Z, L A, D D, M B. "Ectomycorrhizal exploration type" could be a functional trait explaining the spatial distribution of tree symbiotic fungi as a function of forest humus forms. MYCORRHIZA 2024; 34:203-216. [PMID: 38700516 DOI: 10.1007/s00572-024-01146-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/15/2024] [Indexed: 06/12/2024]
Abstract
In European forests, most tree species form symbioses with ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) fungi. The EM fungi are classified into different morphological types based on the development and structure of their extraradical mycelium. These structures could be root extensions that help trees to acquire nutrients. However, the relationship between these morphological traits and functions involved in soil nutrient foraging is still under debate.We described the composition of mycorrhizal fungal communities under 23 tree species in a wide range of climates and humus forms in Europe and investigated the exploratory types of EM fungi. We assessed the response of this tree extended phenotype to humus forms, as an indicator of the functioning and quality of forest soils. We found a significant relationship between the relative proportion of the two broad categories of EM exploration types (short- or long-distance) and the humus form, showing a greater proportion of long-distance types in the least dynamic soils. As past land-use and host tree species are significant factors structuring fungal communities, we showed this relationship was modulated by host trait (gymnosperms versus angiosperms), soil depth and past land use (farmland or forest).We propose that this potential functional trait of EM fungi be used in future studies to improve predictive models of forest soil functioning and tree adaptation to environmental nutrient conditions.
Collapse
Affiliation(s)
- Khalfallah F
- Université de Lorraine, INRAE, IAM, Nancy, F-54000, France
- INRAE, BEF, Nancy, F-54000, France
| | - Bon L
- INRAE, ISPA, Bordeaux Sciences Agro, Villenave d'Ornon, F-33140, France
| | - El Mazlouzi M
- INRAE, ISPA, Bordeaux Sciences Agro, Villenave d'Ornon, F-33140, France
- IEES, Université Paris Est Créteil, CNRS, INRAE, IRD, Créteil, 94010, 94010, France
| | - Bakker M R
- INRAE, ISPA, Bordeaux Sciences Agro, Villenave d'Ornon, F-33140, France
| | - Fanin N
- INRAE, ISPA, Bordeaux Sciences Agro, Villenave d'Ornon, F-33140, France
| | - Bellanger R
- INRAE, Site de la Villa Thuret, Antibes, 1353 UEVT, 06600, France
| | - Bernier F
- INRAE, Domaine de l'Hermitage, Cestas Pierroton, 0570 UEFP, 33610, France
| | - De Schrijver A
- Departement Biowetenschappen en Industriële Technologie, AgroFoodNature HOGENT, Melle, 9090, Belgium
| | - Ducatillon C
- INRAE, Site de la Villa Thuret, Antibes, 1353 UEVT, 06600, France
| | - Fotelli M N
- Forest Research Institute Hellenic Agricultural Organization Dimitra, Vassilika, Thessaloniki, 57006, Greece
| | - Gateble G
- INRAE, Site de la Villa Thuret, Antibes, 1353 UEVT, 06600, France
| | - Gundale M J
- Department of Forest Ecology and Management, Swedish Univ. of Agricultural Sciences, Umeå, 901-83, Sweden
| | - Larsson M
- Department of Forest Ecology and Management, Swedish Univ. of Agricultural Sciences, Umeå, 901-83, Sweden
| | - Legout A
- INRAE, BEF, Nancy, F-54000, France
| | - Mason W L
- Forest Research, Northern Research Station, Roslin, Midlothian, EH25 9SY, Scotland, UK
| | - Nordin A
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, 901-83, Sweden
| | - Smolander A
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, Helsinki, 00790, Finland
| | - Spyroglou G
- Forest Research Institute Hellenic Agricultural Organization Dimitra, Vassilika, Thessaloniki, 57006, Greece
| | - Vanguelova E I
- Forest Research, Alice Holt, Alice Holt Lodge, Farnham, GU10 4LH, UK
| | - Verheyen K
- Forest & Nature Lab, Ghent University, Gontrode, Melle, 9090, Belgium
| | - Vesterdal L
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, 1958, Denmark
| | - Zeller B
- INRAE, BEF, Nancy, F-54000, France
| | - Augusto L
- INRAE, ISPA, Bordeaux Sciences Agro, Villenave d'Ornon, F-33140, France.
| | | | - Buée M
- Université de Lorraine, INRAE, IAM, Nancy, F-54000, France.
| |
Collapse
|
6
|
Peng Z, Johnson NC, Jansa J, Han J, Fang Z, Zhang Y, Jiang S, Xi H, Mao L, Pan J, Zhang Q, Feng H, Fan T, Zhang J, Liu Y. Mycorrhizal effects on crop yield and soil ecosystem functions in a long-term tillage and fertilization experiment. THE NEW PHYTOLOGIST 2024; 242:1798-1813. [PMID: 38155454 DOI: 10.1111/nph.19493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
It is well understood that agricultural management influences arbuscular mycorrhizal (AM) fungi, but there is controversy about whether farmers should manage for AM symbiosis. We assessed AM fungal communities colonizing wheat roots for three consecutive years in a long-term (> 14 yr) tillage and fertilization experiment. Relationships among mycorrhizas, crop performance, and soil ecosystem functions were quantified. Tillage, fertilizers and continuous monoculture all reduced AM fungal richness and shifted community composition toward dominance of a few ruderal taxa. Rhizophagus and Dominikia were depressed by tillage and/or fertilization, and their abundances as well as AM fungal richness correlated positively with soil aggregate stability and nutrient cycling functions across all or no-tilled samples. In the field, wheat yield was unrelated to AM fungal abundance and correlated negatively with AM fungal richness. In a complementary glasshouse study, wheat biomass was enhanced by soil inoculum from unfertilized, no-till plots while neutral to depressed growth was observed in wheat inoculated with soils from fertilized and conventionally tilled plots. This study demonstrates contrasting impacts of low-input and conventional agricultural practices on AM symbiosis and highlights the importance of considering both crop yield and soil ecosystem functions when managing mycorrhizas for more sustainable agroecosystems.
Collapse
Affiliation(s)
- Zhenling Peng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Nancy Collins Johnson
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, 86001, USA
| | - Jan Jansa
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - Jiayao Han
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhou Fang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yali Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Shengjing Jiang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Hao Xi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Lin Mao
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Jianbin Pan
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qi Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huyuan Feng
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tinglu Fan
- Dryland Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Jianjun Zhang
- Dryland Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Yongjun Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
7
|
Wang Z, Solanki MK, Kumar A, Solanki AC, Pang F, Ba ZX, Niu JQ, Ren ZX. Promoting plant resilience against stress by engineering root microenvironment with Streptomyces inoculants. Microbiol Res 2023; 277:127509. [PMID: 37788547 DOI: 10.1016/j.micres.2023.127509] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
Plant growth is directly influenced by biotic and abiotic stress factors resulting from environmental changes. Plant growth-promoting rhizobacteria (PGPR) have become a crucial area of research aimed at addressing these challenges. However, a knowledge gap exists regarding how PGPR impacts the microenvironments surrounding plant roots. The purpose of this study is to elucidate the effects of two distinct PGPR strains, Streptomyces griseorubiginosus BTU6 (known for its resistance to smut disease) and S. chartreusis WZS021, on sugarcane roots. Additionally, we compare the resultant modifications in the physicochemical characteristics of the rhizospheric soil and root architecture. The results reveal that following the inoculation of S. chartreusis WZS021, there was a significant increase in the active chemicals associated with nitrogen metabolism in sugarcane roots. This enhancement led to a substantial enrichment of nitrogen-cycling microbes like Pseudomonas and Gemmatimona. This finding supports earlier research indicating that S. chartreusis WZS021 enhances sugarcane's capacity to utilize nitrogen effectively. Furthermore, after treatment with S. chartreusis, Aspergillus became the predominant strain among endophytic fungi, resulting in alterations to their community structure that conferred drought resistance. In contrast, the relative abundance of Xanthomonas in the root environment decreased following inoculation with S. griseorubiginosus. Instead, Gemmatimona became more prevalent, creating a favorable environment for plants to bolster their resistance against disease. Notably, inoculations with S. chartreusis WZS021 and S. griseorubiginosus BTU6 led to substantial changes in the chemical composition, enzymatic activity, and microbial community composition in the soil surrounding sugarcane roots. However, there were distinct differences in the specific alterations induced by each strain. These findings enhance plant resilience to stress by shedding light on PGPR-mediated modifications in root microenvironments.
Collapse
Affiliation(s)
- Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin 537000, China
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India; Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh 201313, India
| | - Anjali Chandrol Solanki
- Department of Agriculture, Mansarover Global University, Bhopal, Madhya Pradesh 462042, India
| | - Fei Pang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin 537000, China
| | - Zi-Xuan Ba
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin 537000, China
| | - Jun-Qi Niu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin 537000, China.
| | - Zhen-Xin Ren
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Agricultural College, Yulin Normal University, Yulin 537000, China.
| |
Collapse
|
8
|
Li L, Wan SP, Wang Y, Thongklang N, Tang SM, Luo ZL, Li SH. New species of Hydnotrya (Ascomycota, Pezizomycetes) from southwestern China with notes on morphological characteristics of 17 species of Hydnotrya. MycoKeys 2023; 100:49-67. [PMID: 38025584 PMCID: PMC10660436 DOI: 10.3897/mycokeys.100.106709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
More specimens of Hydnotrya have been collected from southwestern China in recent years. Morphological and molecular analyses showed that they belonged to three species of Hydnotrya, of which two are new to science, H.oblongispora and H.zayuensis. The third one was H.laojunshanensis, previously reported in 2013. The new species are described, and their relationship to other species of Hydnotrya is discussed. H.laojunshanensis is re-described in more detail. The main morphological characters of 17 species of Hydnotrya are compared and a key to them is provided as well.
Collapse
Affiliation(s)
- Lin Li
- College of Agriculture and Biological Science, Dali University, Dali 671003, Yunnan, ChinaDali UniversityDaliChina
- School of Science, Mae Fah Luang University, Chiang Rai 57100, ThailandMae Fah Luang UniversityChiang RaiChina
| | - Shan-Ping Wan
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, ThailandYunnan Agricultural UniversityKunmingChina
| | - Yun Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, ChinaNew Zealand Institute for Crop and Food Research Limited, Invermay Agricultural CentreMosgielNew Zealand
| | - Naritsada Thongklang
- New Zealand Institute for Crop and Food Research Limited, Invermay Agricultural Centre, Private Bag 50034, Mosgiel, New ZealandMae Fah Luang UniversityChiang RaiThailand
| | - Song-Ming Tang
- New Zealand Institute for Crop and Food Research Limited, Invermay Agricultural Centre, Private Bag 50034, Mosgiel, New ZealandMae Fah Luang UniversityChiang RaiThailand
| | - Zong-Long Luo
- College of Agriculture and Biological Science, Dali University, Dali 671003, Yunnan, ChinaDali UniversityDaliChina
| | - Shu-Hong Li
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, Yunnan, ChinaBiotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural SciencesKunmingChina
| |
Collapse
|
9
|
Park KH, Oh SY, Cho Y, Seo CW, Kim JS, Yoo S, Lim J, Kim CS, Lim YW. Mycorrhizal Fungal Diversity Associated with Six Understudied Ectomycorrhizal Trees in the Republic of Korea. J Microbiol 2023; 61:729-739. [PMID: 37665554 DOI: 10.1007/s12275-023-00073-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 09/05/2023]
Abstract
Mycorrhizal fungi are key components of forest ecosystems and play essential roles in host health. The host specificity of mycorrhizal fungi is variable and the mycorrhizal fungi composition for the dominant tree species is largely known but remains unknown for the less common tree species. In this study, we collected soil samples from the roots of six understudied ectomycorrhizal tree species from a preserved natural park in the Republic of Korea over four seasons to investigate the host specificity of mycorrhizal fungi in multiple tree species, considering the abiotic factors. We evaluated the mycorrhizal fungal composition in each tree species using a metabarcoding approach. Our results revealed that each host tree species harbored unique mycorrhizal communities, despite close localization. Most mycorrhizal taxa belonged to ectomycorrhizal fungi, but a small proportion of ericoid mycorrhizal fungi and arbuscular mycorrhizal fungi were also detected. While common mycorrhizal fungi were shared between the plant species at the genus or higher taxonomic level, we found high host specificity at the species/OTU (operational taxonomic unit) level. Moreover, the effects of the seasons and soil properties on the mycorrhizal communities differed by tree species. Our results indicate that mycorrhizal fungi feature host-specificity at lower taxonomic levels.
Collapse
Affiliation(s)
- Ki Hyeong Park
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung-Yoon Oh
- Department of Biology and Chemistry, Changwon National University, Changwon, 51140, Republic of Korea
| | - Yoonhee Cho
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang Wan Seo
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji Seon Kim
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Shinnam Yoo
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jisun Lim
- RetiMark Co. Ltd, Seoul, 04387, Republic of Korea
| | - Chang Sun Kim
- Forest Biodiversity Division, Korea National Arboretum, Pocheon, 11186, Republic of Korea
| | - Young Woon Lim
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
10
|
Wang XC, Yang ZL, Chen SL, Bau T, Li TH, Li L, Fan L, Zhuang WY. Phylogeny and Taxonomic Revision of the Family Discinaceae ( Pezizales, Ascomycota). Microbiol Spectr 2023; 11:e0020723. [PMID: 37102868 PMCID: PMC10269896 DOI: 10.1128/spectrum.00207-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/20/2023] [Indexed: 04/28/2023] Open
Abstract
Species of Discinaceae are common macrofungi with a worldwide distribution. Some of them are commercially consumed, while a few others are reported as poisonous. Two genera were accepted in the family: the epigeous Gyromitra with discoid, cerebriform to saddle-shaped ascomata and the hypogeous Hydnotrya with globose or tuberous ascomata. However, due to discrepancies in their ecological behaviors, a comprehensive investigation of their relationship was not thoroughly explored. In this study, phylogenies of Discinaceae were reconstructed using sequence analyses of combined and separate three gene partitions (internal transcribed spacer [ITS], large subunit ribosomal DNA [LSU], and translation elongation factor [TEF]) with a matrix containing 116 samples. As a result, the taxonomy of the family was renewed. Eight genera were recognized: two of them (Gyromitra and Hydnotrya) were retained, three (Discina, Paradiscina, and Pseudorhizina) were revived, and three (Paragyromitra, Pseudodiscina, and Pseudoverpa) were newly established. Nine new combinations were made in four genera. Two new species in Paragyromitra and Pseudodiscina and an un-named taxon of Discina were described and illustrated in detail based on the materials collected from China. Furthermore, a key to the genera of the family was also provided. IMPORTANCE Taxonomy of the fungal family Discinaceae (Pezizales, Ascomycota) was significantly renewed on the basis of sequence analyses of internal transcribed spacer (ITS), large subunit ribosomal DNA (LSU), and translation elongation factor (TEF). Eight genera were accepted, including three new genera; two new species were described; and nine new combinations were made. A key to the accepted genera of the family is provided. The aim of this study is to deepen the understanding of the phylogenetic relationships among genera of the group, as well as the associated generic concepts.
Collapse
Affiliation(s)
- Xin-Cun Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhu-Liang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shuang-Lin Chen
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Tolgor Bau
- Key Laboratory of Edible Fungi Resources and Utilization (North), Ministry of Agriculture and Rural Affairs, Jilin Agricultural University, Changchun, Jilin, China
| | - Tai-Hui Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Lin Li
- College of Agronomy and Biosciences, Dali University, Dali, China
| | - Li Fan
- College of Life Science, Capital Normal University, Beijing, China
| | - Wen-Ying Zhuang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Kang Y, Wu H, Zhang Y, Wu Q, Guan Q, Lu K, Lin Y. Differential distribution patterns and assembly processes of soil microbial communities under contrasting vegetation types at distinctive altitudes in the Changbai Mountain. Front Microbiol 2023; 14:1152818. [PMID: 37333641 PMCID: PMC10272400 DOI: 10.3389/fmicb.2023.1152818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/29/2023] [Indexed: 06/20/2023] Open
Abstract
Diversity patterns and community assembly of soil microorganisms are essential for understanding soil biodiversity and ecosystem processes. Investigating the impacts of environmental factors on microbial community assembly is crucial for comprehending the functions of microbial biodiversity and ecosystem processes. However, these issues remain insufficiently investigated in related studies despite their fundamental significance. The present study aimed to assess the diversity and assembly of soil bacterial and fungal communities to altitude and soil depth variations in mountain ecosystems by using 16S and ITS rRNA gene sequence analyses. In addition, the major roles of environmental factors in determining soil microbial communities and assembly processes were further investigated. The results showed a U-shaped pattern of the soil bacterial diversity at 0-10 cm soil depth along altitudes, reaching a minimum value at 1800 m, while the fungal diversity exhibited a monotonically decreasing trend with increasing altitude. At 10-20 cm soil depth, the soil bacterial diversity showed no apparent changes along altitudinal gradients, while the fungal Chao1 and phylogenetic diversity (PD) indices exhibited hump-shaped patterns with increasing altitude, reaching a maximum value at 1200 m. Soil bacterial and fungal communities were distinctively distributed with altitude at the same depth of soil, and the spatial turnover rates in fungi was greater than in bacteria. Mantel tests suggested soil physiochemical and climate variables significantly correlated with the β diversity of microbial community at two soil depths, suggesting both soil and climate heterogeneity contributed to the variation of bacterial and fungal community. Correspondingly, a novel phylogenetic null model analysis demonstrated that the community assembly of soil bacterial and fungal communities were dominated by deterministic and stochastic processes, respectively. The assembly processes of bacterial community were significantly related to the soil DOC and C:N ratio, while the fungal community assembly processes were significantly related to the soil C:N ratio. Our results provide a new perspective to assess the responses of soil microbial communities to variations with altitude and soil depth.
Collapse
Affiliation(s)
- Yujuan Kang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Haitao Wu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yifan Zhang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Tourism and Geography Sciences, Jilin Normal University, Siping, China
| | - Qiong Wu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Tourism and Geography Sciences, Jilin Normal University, Siping, China
| | - Qiang Guan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Kangle Lu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yiling Lin
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
12
|
Artificial Cultivation Changes Foliar Endophytic Fungal Community of the Ornamental Plant Lirianthe delavayi. Microorganisms 2023; 11:microorganisms11030775. [PMID: 36985348 PMCID: PMC10059682 DOI: 10.3390/microorganisms11030775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Many wild ornamental plant species have been introduced to improve the landscape of cities; however, until now, no study has been performed to explore the composition and function of foliar endophytes associated with cultivated rare plants in cities after their introduction. In this study, we collected the leaves of the healthy ornamental plant Lirianthe delavayi from wild and artificially cultivated habitats in Yunnan and compared their diversity, species composition, and functional predictions of their foliar endophytic fungal community based on high-throughput sequencing technology. In total, 3125 ASVs of fungi were obtained. The alpha diversity indices of wild L. delavayi populations are similar to those of cultivated samples; however, the species compositions of endophytic fungal ASVs were significantly varied in the two habitats. The dominant phylum is Ascomycota, accounting for more than 90% of foliar endophytes in both populations; relatively, artificial cultivation trends to increase the frequency of common phytopathogens of L. delavayi, such as Alternaria, Erysiphe. The relative abundance of 55 functional predictions is different between wild and cultivated L. delavayi leaves (p < 0.05); in particular, chromosome, purine metabolism, and peptidases are significantly increased in wild samples, while flagellar assembly, bacterial chemotaxis, and fatty acid metabolism are significantly enhanced in cultivated samples. Our results indicated that artificial cultivation can greatly change the foliar endophytic fungal community of L. delavayi, which is valuable for understanding the influence of the domestication process on the foliar fungal community associated with rare ornamental plants in urban environments.
Collapse
|
13
|
Xie L, Li W, Pang X, Liu Q, Yin C. Soil properties and root traits are important factors driving rhizosphere soil bacterial and fungal community variations in alpine Rhododendron nitidulum shrub ecosystems along an altitudinal gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161048. [PMID: 36563760 DOI: 10.1016/j.scitotenv.2022.161048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/02/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Both soil properties and plant root traits are pivotal factors affecting microbial communities. However, there is still limited information about their importance in shaping rhizosphere soil microbial communities, particularly in less-studied alpine shrub ecosystems. To investigate the effects of altitude (3300, 3600, 3900, and 4200 m) on the diversity and composition of rhizosphere soil bacterial and fungal communities, as well as the factors shaping rhizosphere soil microbial communities, we conducted this study in alpine Rhododendron nitidulum shrub ecosystems from the Zheduo mountain of the eastern Tibetan Plateau. Results demonstrated that bacterial community diversity and richness decreased to the lowest value at 3600 m and then increased at higher altitudes compared with 3300 m; whereas fungal richness at 3300 m was much lower than at other altitudes, and was closely related to soil properties and root traits. The composition of rhizosphere soil bacterial and fungal communities at the low altitude (3300 m) was different from that at high altitudes. Permutational multivariate analysis of variance and redundancy analysis indicated that soil properties (soil water content, pH, NO3--N, and available phosphorus) and root traits (surface area, and maximum depth) were the major factors explaining the variations of rhizosphere soil bacterial and fungal communities. Specific bacterial and fungal taxa along altitudes were identified. The bacterial taxa Planctomycetota was dominant at 3300 and 3600 m with low soil nutrient availability and high root surface area, whereas the fungal taxa Mortierellomycota was abundant at 3900 and 4200 m with high soil nutrient availability and low root surface area. These results suggested that different soil microbes can respond differently to altitude. This study provides a novel insight into factors driving rhizosphere soil bacterial and fungal community variations, which could improve our understanding of microbial ecology in alpine R. nitidulum shrub ecosystems along altitude.
Collapse
Affiliation(s)
- Lulu Xie
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Wanting Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Xueyong Pang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China
| | - Qinghua Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China
| | - Chunying Yin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu 610041, PR China.
| |
Collapse
|
14
|
Hicks Pries CE, Lankau R, Ingham GA, Legge E, Krol O, Forrester J, Fitch A, Wurzburger N. Differences in soil organic matter between EcM- and AM-dominated forests depend on tree and fungal identity. Ecology 2023; 104:e3929. [PMID: 36424763 DOI: 10.1002/ecy.3929] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 11/27/2022]
Abstract
As global change shifts the species composition of forests, we need to understand which species characteristics affect soil organic matter (SOM) cycling to predict future soil carbon (C) storage. Recently, whether a tree species forms a symbiosis with arbuscular (AM) versus ectomycorrhizal (EcM) fungi has been suggested as a strong predictor of soil C storage, but there is wide variability within EcM systems. In this study, we investigated how mycorrhizal associations and the species composition of canopy trees and mycorrhizal fungi related to the proportion of soil C and nitrogen (N) in mineral associations and soil C:N across four sites representing distinct climates and tree communities in the eastern US broadleaf forest biome. In two of our sites, we found the expected relationship of declining mineral-associated C and N and increasing soil C:N ratios as the basal area of EcM-associating trees increased. However, across all sites these soil properties strongly correlated with canopy tree and fungal species composition. Sites where the expected pattern with EcM basal area was observed were (1) dominated by trees with lower quality litter in the Pinaceae and Fagaceae families and (2) dominated by EcM fungi with medium-distance exploration type hyphae, melanized tissues, and the potential to produce peroxidases. This observational study demonstrates that differences in SOM between AM and EcM systems are dependent on the taxa of trees and EcM fungi involved. Important information is lost when the rich mycorrhizal symbiosis is reduced to two categories.
Collapse
Affiliation(s)
| | - Richard Lankau
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Eva Legge
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Owen Krol
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Jodi Forrester
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, USA
| | - Amelia Fitch
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Nina Wurzburger
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
15
|
Ma T, Zhang X, Wang R, Liu R, Shao X, Li J, Wei Y. Linkages and key factors between soil bacterial and fungal communities along an altitudinal gradient of different slopes on mount Segrila, Tibet, China. Front Microbiol 2022; 13:1024198. [PMID: 36386611 PMCID: PMC9649828 DOI: 10.3389/fmicb.2022.1024198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/11/2022] [Indexed: 12/04/2022] Open
Abstract
Soil microbes are of great significance to many energy flow and material circulation processes in alpine forest ecosystems. The distribution pattern of soil microbial community along altitudinal gradients is an essential research topic for the Tibetan Plateau. Yet our understanding of linkages between soil microbial communities and key factors along an altitudinal gradient of different slopes remains limited. Here, the diversity, composition and interaction of bacterial and fungal communities and in response to environmental factors were compared across five elevation sites (3,500 m, 3,700 m, 3,900 m, 4,100 m, 4,300 m) on the eastern and western slopes of Mount Segrila, by using Illumina MiSeq sequencing. Our results showed that microbial community composition and diversity were distinct at different elevations, being mainly influenced by soil total nitrogen and carbonate. Structural equation models indicated that elevation had a greater influence than slope upon the soil microbial community. Co-occurrence network analysis suggested that fungi were stable but bacteria contributed more to among interactions of bacterial and fungal communities. Ascomycota was identified as a key hub for the internal interactions of microbial community, which might affect the soil microbial co-occurrence network resilience of alpine forest ecosystems on the Tibetan Plateau.
Collapse
Affiliation(s)
- Tiantian Ma
- Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet, China
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Xinjun Zhang
- Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet, China
- *Correspondence: Xinjun Zhang,
| | - Ruihong Wang
- Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet, China
| | - Rui Liu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Xiaoming Shao
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, China
| | - Yuquan Wei
- Institute of Tibet Plateau Ecology, Tibet Agricultural and Animal Husbandry University, Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Tibet, China
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou, China
- Yuquan Wei,
| |
Collapse
|
16
|
Xi D, Jin S, Wu J. Soil bacterial community is more sensitive than fungal community to canopy nitrogen deposition and understory removal in a Chinese fir plantation. Front Microbiol 2022; 13:1015936. [PMID: 36312973 PMCID: PMC9597510 DOI: 10.3389/fmicb.2022.1015936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
Soil microorganisms are key regulators for plant growth and ecosystem health of forest ecosystem. Although previous research has demonstrated that soil microorganisms are greatly affected by understory nitrogen (N) addition, little is known about the effects of canopy N addition (CNA) and understory management on soil microorganisms in forests. In this study, we conducted a full designed field experiment with four treatments: CNA (25 kg N ha-1 year-1), understory removal (UR), canopy N addition, and understory removal (CNAUR) (25 kg N ha-1 year-1), and control in a Chinese fir plantation. High-throughput sequencing and qPCR techniques were used to determine the abundance, diversity, and composition of bacterial and fungal communities in three soil layers. Our results showed that CNA increased bacterial diversity in the 10-20 cm soil layer but decreased bacterial abundance in the 20-40 cm soil layer and fungal diversity in the 0-10 cm soil layer. UR increased bacterial abundance only in the 20-40 cm soil layer. CNA, not UR significantly altered the compositions of soil bacterial and fungal community compositions, especially in the 0-20 cm soil layer. CNA sharply reduced the relative abundance of copiotrophic taxa (i.e., taxa in the bacterial phylum Proteobacteria and the orders Eurotiales and Helotiales in the fungal phylum Ascomycota) but increased the relative abundance of oligotrophic taxa (i.e., in the bacterial phylum Verrucomicrobia). RDA analysis revealed that soil pH, DON, and DOC were the main factors associated with the variation in bacterial and fungal communities. Our findings suggest that short-term CNA changes both soil bacterial and fungal communities, with stronger responses in the surface and middle soil than in the deep soil layer, and that UR may enhance this effect on the soil bacterial abundance. This study improves our understanding of soil microorganisms in plantations managed with understory removal and that experience increases in N deposition.
Collapse
Affiliation(s)
- Dan Xi
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaofei Jin
- Department of Geography, Minjiang University, Fuzhou, China
| | - Jianping Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, Yunnan University, Kunming, China
- Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| |
Collapse
|
17
|
Yang N, Hua J, Zhang J, Liu D, Bhople P, Li X, Zhang Y, Ruan H, Xing W, Mao L. Soil nutrients and plant diversity affect ectomycorrhizal fungal community structure and functional traits across three subalpine coniferous forests. Front Microbiol 2022; 13:1016610. [PMID: 36274721 PMCID: PMC9583403 DOI: 10.3389/fmicb.2022.1016610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
The symbiotic relationship between ectomycorrhizal fungi (EMF) and the roots of host plants is significantly important in regulating the health and stability of ecosystems, especially of those such as the climate warming affected subalpine forest ecosystems. Therefore, from the coniferous forest systems located in the Southern Qinghai-Tibetan Plateau, root tips from three forest tree species: Pinus wallichiana, Abies spectabilis and Picea spinulosa, were collected to look for the local causes of EMF community composition and diversity patterns. The EMF colonization rate, diversity and taxonomic community structure were determined by morphotyping and sanger sequencing of the fungal ITS gene from the root tip samples. Soil exploration types were identified based on the morphologies of the ectomycorrhizas, coupled with soil properties analysis and plant diversity survey. Contrasting patterns of EMF community and functional diversity were found across the studied three forests types dominated by different coniferous tree species. In terms of associations between soil and EMF properties, the total phosphorus (TP) and nitrate (NO3−) contents in soil negatively correlated with the colonization rate and the Shannon diversity index of EMF in contrast to the positive relationship between TP and EMF richness. The soil total nitrogen (TN), ammonium (NH4+) and plant diversity together caused 57.6% of the total variations in the EMF taxonomic community structure at the three investigated forest systems. Whereas based on the soil exploration types alone, NH4+ and TN explained 74.2% of variance in the EMF community structures. Overall, the findings of this study leverage our understanding of EMF dynamics and local influencing factors in coniferous forests dominated by different tree species within the subalpine climatic zone.
Collapse
Affiliation(s)
- Nan Yang
- Department of Ecology, College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jiani Hua
- Department of Ecology, College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jiangbao Zhang
- Department of Ecology, College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Dong Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Parag Bhople
- Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, Limerick, Ireland
| | - Xiuxiu Li
- Department of Ecology, College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yan Zhang
- Department of Ecology, College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Honghua Ruan
- Department of Ecology, College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Wei Xing
- Jiangsu Academy of Forestry, Nanjing, China
- Yangzhou Urban Forest Ecosystem National Research Station, Jiangsu, Yangzhou, China
- *Correspondence: Wei Xing,
| | - Lingfeng Mao
- Department of Ecology, College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Lingfeng Mao,
| |
Collapse
|
18
|
Phylogeny and species diversity in Hygrophorus section Aurei in China. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01825-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
19
|
Wang J, Gao J, Zhang H, Tang M. Changes in Rhizosphere Soil Fungal Communities of Pinus tabuliformis Plantations at Different Development Stages on the Loess Plateau. Int J Mol Sci 2022; 23:ijms23126753. [PMID: 35743198 PMCID: PMC9223801 DOI: 10.3390/ijms23126753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
The soil fungal community is an important factor in the forest ecosystems, and a better understanding of its composition and dynamic changes will contribute to the maintenance, preservation, and sustainable development of the forest ecosystems. Pinus tabuliformis has been widely planted for local ecological restoration on the Loess Plateau in China in recent decades. However, these plantations have been degraded to different degrees with increasing stand age. Hence, we tried to find the possible causes for the plantation degradation by analyzing soil environmental changes and soil fungal community composition at different stand ages. We collected rhizosphere soil samples from young (10-year-old), middle-aged (20-year-old), and near-mature (30-year-old) P. tabuliformis plantations in this region and characterized their soil properties and soil fungal community diversity and composition. Our results showed that with increasing stand age, the contents of organic carbon, ammonium nitrogen (AN) and nitrate nitrogen (NN) in the soil increased significantly, while the content of available phosphorus (AP) decreased significantly. The main factors affecting the composition of the soil fungal community were the contents of AP, AN, and NN in the soil. In addition, the genus Suillus was the dominant ectomycorrhizal (ECM) fungus in all periods of P. tabuliformis plantations in this region. The results of structural equation modeling showed that the community composition of ECM fungi was significantly correlated with stand age, soil NN, and AP contents, and that of pathogenic (PAG) fungi was significantly correlated with soil AN and AP contents. The decrease in the relative abundance of ECM fungi and the increase in the relative abundance of PAG fungi would exacerbate the degradation of P. tabulaeformis plantation. Our results illustrated that the content of soil AP is not only an important factor limiting the development of plantations, but it also significantly affects the community composition of soil fungi in the rhizosphere of the P. tabuliformis plantation. This study provides a novel insight into the degradation of P. tabuliformis plantations and builds a solid foundation for their subsequent management, restoration, and sustainable development on the Loess Plateau of China.
Collapse
Affiliation(s)
- Jiaxing Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China;
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (J.G.); (H.Z.)
| | - Jing Gao
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (J.G.); (H.Z.)
| | - Haoqiang Zhang
- College of Forestry, Northwest A&F University, Xianyang 712100, China; (J.G.); (H.Z.)
| | - Ming Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China;
- Correspondence:
| |
Collapse
|
20
|
Lin L, Jing X, Lucas-Borja ME, Shen C, Wang Y, Feng W. Rare Taxa Drive the Response of Soil Fungal Guilds to Soil Salinization in the Taklamakan Desert. Front Microbiol 2022; 13:862245. [PMID: 35677905 PMCID: PMC9168468 DOI: 10.3389/fmicb.2022.862245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Salinization poses great threats to soil fungal communities that would cause the losses of ecosystems services. Soil fungal communities are composed of different functional guilds such as saprotrophic, symbiotrophic, and pathotrophic fungi, and each guild includes many rare taxa and a few abundant taxa. Despite of low abundance, rare taxa may be crucial in determining the responses of entire soil fungal communities to salinization. However, it remains poorly understood how rare taxa mediate the impacts of soil salinization on soil fungal community structure. Here, we took advantage of a salinity gradient in a desert ecosystem ranging from 0.60 to 31.09 g kg-1 that was created by a 12-year saline-water irrigation and assessed how the rare vs. abundant taxa of soil saprotrophic, symbiotrophic, and pathotrophic fungi respond to soil salinization through changes in the community biodiversity and composition. We found that the rare taxa of soil saprotrophic, symbiotrophic, and pathographic fungi were more sensitive to changes in soil salinity compared to the abundant taxa. In addition, the community composition of rare taxa of the saprotrophic and pathotrophic fungi not the symbiotrophic fungi was positively associated with soil salinity change. However, the symbiotrophic fungi showed greater variations in the species richness along the salinity gradient. These findings highlight the importance to differentiate rare taxa in predicting how the biodiversity and functional groups of soil fungal communities respond to soil salinization.
Collapse
Affiliation(s)
- Litao Lin
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Xin Jing
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Manuel Esteban Lucas-Borja
- Technical School of Agricultural and Forest Engineering (ETSIAM), University of Castilla-La Mancha (UCLM), Albacete, Spain
| | - Congcong Shen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yugang Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,University of Chinese Academy of Sciences, Beijing, China.,Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, China
| | - Wenting Feng
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
21
|
Unipartite and bipartite mycorrhizal networks of Abies religiosa forests: Incorporating network theory into applied ecology of conifer species and forest management. ECOLOGICAL COMPLEXITY 2022. [DOI: 10.1016/j.ecocom.2022.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Anthony MA, Crowther TW, van der Linde S, Suz LM, Bidartondo MI, Cox F, Schaub M, Rautio P, Ferretti M, Vesterdal L, De Vos B, Dettwiler M, Eickenscheidt N, Schmitz A, Meesenburg H, Andreae H, Jacob F, Dietrich HP, Waldner P, Gessler A, Frey B, Schramm O, van den Bulk P, Hensen A, Averill C. Forest tree growth is linked to mycorrhizal fungal composition and function across Europe. THE ISME JOURNAL 2022; 16:1327-1336. [PMID: 35001085 PMCID: PMC9038731 DOI: 10.1038/s41396-021-01159-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 11/08/2022]
Abstract
Most trees form symbioses with ectomycorrhizal fungi (EMF) which influence access to growth-limiting soil resources. Mesocosm experiments repeatedly show that EMF species differentially affect plant development, yet whether these effects ripple up to influence the growth of entire forests remains unknown. Here we tested the effects of EMF composition and functional genes relative to variation in well-known drivers of tree growth by combining paired molecular EMF surveys with high-resolution forest inventory data across 15 European countries. We show that EMF composition was linked to a three-fold difference in tree growth rate even when controlling for the primary abiotic drivers of tree growth. Fast tree growth was associated with EMF communities harboring high inorganic but low organic nitrogen acquisition gene proportions and EMF which form contact versus medium-distance fringe exploration types. These findings suggest that EMF composition is a strong bio-indicator of underlying drivers of tree growth and/or that variation of forest EMF communities causes differences in tree growth. While it may be too early to assign causality or directionality, our study is one of the first to link fine-scale variation within a key component of the forest microbiome to ecosystem functioning at a continental scale.
Collapse
Affiliation(s)
- Mark A Anthony
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
| | - Thomas W Crowther
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Sietse van der Linde
- Netherlands Food and Consumer Product Safety Authority, National Reference Centre, Wageningen, The Netherlands
| | | | - Martin I Bidartondo
- Royal Botanic Gardens, Kew, TW9 3DS, UK
- Department of Life Sciences, Imperial College London, Ascot, SL5 7PY, UK
| | - Filipa Cox
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Marcus Schaub
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Pasi Rautio
- Natural Resources Institute Finland, Rovaniemi, Finland
| | - Marco Ferretti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Lars Vesterdal
- Department of Geosciences and Natural Resource Management, University of Copenhagen, DK-1958, Frederiksberg C, Denmark
| | - Bruno De Vos
- Environment & Climate Unit, Research Institute for Nature and Forest, Geraardsbergen, Belgium
| | - Mike Dettwiler
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Nadine Eickenscheidt
- State Agency for Nature, Environment and Consumer Protection of North Rhine-Westphalia, 45657, Recklinghausen, Germany
| | - Andreas Schmitz
- State Agency for Nature, Environment and Consumer Protection of North Rhine-Westphalia, 45657, Recklinghausen, Germany
- Thuenen Institut of Forest Ecosystems, 16225, Eberswalde, Germany
| | | | | | - Frank Jacob
- Sachsenforst State Forest, 01796, Pirna OT Graupa, Germany
| | | | - Peter Waldner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Arthur Gessler
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Beat Frey
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Oliver Schramm
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Pim van den Bulk
- The Netherlands Organization for Applied Scientific Research at Petten, 1755LE, Petten, The Netherlands
| | - Arjan Hensen
- The Netherlands Organization for Applied Scientific Research at Petten, 1755LE, Petten, The Netherlands
| | - Colin Averill
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
23
|
Changes in Soil Ectomycorrhizal Fungi Community in Oak Forests along the Urban–Rural Gradient. FORESTS 2022. [DOI: 10.3390/f13050675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The ectomycorrhizal fungi communities of forests are closely correlated with forest health and ecosystem functions. To investigate the structure and composition of ectomycorrhizal fungi communities in oak forest soil and their driving factors along the urban–rural gradient, we set up a Quercus acutissima forest transect and collected samples from the center to the edge of Jinan city (urban, suburban, rural). The results showed that the ectomycorrhizal fungal community composition at the phyla level mainly included Basidiomycota and Ascomycota in three sites. At the genus level, the community compositions of ectomycorrhizal fungi, along the urban–rural gradient, exhibited significant differences. Inocybe, Russula, Scleroderma, Tomentella, Amanita and Tuber were the dominant genera in these Quercus acutissima forests. Additionally, the diversity of ectomycorrhizal fungi was the highest in rural Quercus acutissima forest, followed by urban and suburban areas. Key ectomycorrhizal fungi species, such as Tuber, Russula and Sordariales, were identified among three forests. We also found that pH, soil organic matter and ammonium nitrogen were the main driving factors of the differences in ectomycorrhizal fungi community composition and diversity along the urban–rural gradient. Overall, the differences in composition and diversity in urban–rural gradient forest were driven by the differences in soil physicochemical properties resulting from the forest location.
Collapse
|
24
|
Zhang Y, Heal KV, Shi M, Chen W, Zhou C. Decreasing molecular diversity of soil dissolved organic matter related to microbial community along an alpine elevation gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151823. [PMID: 34808163 DOI: 10.1016/j.scitotenv.2021.151823] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Characterization of soil dissolved organic matter (DOM) and understanding of the interactions between soil microbial communities and DOM molecules along elevation gradients in alpine ecosystems are still limited. To unravel these interactions and how they change along alpine elevation gradients, we sampled topsoil in the Sygera Mountains (Tibet, China) at elevations between 3800 and 4600 m. The molecular characteristics of soil DOM were determined using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and soil microbial composition was identified by high-throughput sequencing. Among the seven components of DOM, the lignins/CRAM (carboxyl-rich alicyclic molecules)-like structure dominated at all elevations, followed by tannins, while the relative abundance of unstable substances, including lipids, aliphatic/protein, and carbohydrates, was lower. As elevation increased, the molecular diversity, degree of oxidation, aromaticity, and unsaturation of soil DOM decreased. The abundance and diversity of soil bacteria and fungi also generally decreased with elevation. Both bacteria and fungi play an important role in the degradation of DOM molecules, but bacteria appear to have greater degradation ability. Among them, Proteobacteria and Bacteroidetes mainly promote the degradation of lignins/CRAM-like structure molecules, while Basidiomycota mainly degrade more unstable substrates. Co-occurrence network analysis revealed complex correlations between specific microbial groups and DOM molecules. Our results suggest that more active cycling of soil DOM could occur in alpine ecosystems due to climate warming, as the result of increased vegetation productivity and litter input in response to rising temperature promoting the relative abundance of microbial groups capable of degrading lignins/CRAM-like structures in soil DOM.
Collapse
Affiliation(s)
- Yanlin Zhang
- Forestry College, Fujian Agriculture and Forestry University, National Positioning Observation Research Station of Red Earth Hilly Ecosystem in Changting, Fujian, 350002, Fujian Province, China
| | - Kate V Heal
- School of GeoSciences, The University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK
| | - Mengjie Shi
- Forestry College, Fujian Agriculture and Forestry University, National Positioning Observation Research Station of Red Earth Hilly Ecosystem in Changting, Fujian, 350002, Fujian Province, China
| | - Wenxin Chen
- Forestry College, Fujian Agriculture and Forestry University, National Positioning Observation Research Station of Red Earth Hilly Ecosystem in Changting, Fujian, 350002, Fujian Province, China
| | - Chuifan Zhou
- Forestry College, Fujian Agriculture and Forestry University, National Positioning Observation Research Station of Red Earth Hilly Ecosystem in Changting, Fujian, 350002, Fujian Province, China.
| |
Collapse
|
25
|
Ouyang L, Du J, Zhang Z, Zhao P, Zhu L, Ni G. Urbanization intensifies tree sap flux but divergently for different tree species groups in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:27832-27844. [PMID: 34981375 DOI: 10.1007/s11356-021-17813-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
In recent years, positive and negative effects of urbanization on forest ecosystem have been reported by many studies, while some uncertainties about the impact of urbanization-induced spatial heterogeneity of environmental factors on forest systems still remain unclear. In this study, we analyzed the urbanization effects on sap flux of a common subtropical evergreen tree species Schima superba along an urban-rural gradient in Guangdong Province, South China, and identified the consistency of these results among different groups (evergreen, deciduous, and coniferous species) using data from 83 previously published studies in China. The mean sap flux density (Fd) of S. superba in Xiaoqingshan (XQS), Heshan (HS), Dinghushan (DHS), and Shimentai (SMT), along the urban-rural gradient was 40.9 g m-2 s-1, 32.1 g m-2 s-1, 17.0 g m-2 s-1, and 17.5 g m-2 s-1, respectively, presenting a decreasing trend with the diminishing urbanization. This pattern in Fd tended to enlarge with tree size and was well confirmed by the enhanced leaf transpiration rate (by 119%) and photosynthetic rate (by 8.8%) for the S. superba in another urbanization gradient from the urban (Hangzhou, denoted as "HZ") to rural sites (Jiande, denoted as "JD") in Zhejiang Province, East China, which has similar climatic condition and urbanization with Guangdong Province. We attributed such positive effects to the decreased sapwood density and specific leaf area (SLA), as well as the increased Huber value (sap wood area/leaf area) and the sap wood specific hydraulic conductivity (KS). We also found that pollutant emission exerted more impact on Fd than climatic factors change, since the variation of the latter was not large enough to cause significant change of Fd under the same climatic zone. In addition, we conducted a principal component analysis (PCA) based on the published 83 studies. Results showed Fd of evergreen tree species was related positively to principle 1 and negatively to principle 2, respectively, whereas the Fd of deciduous broadleaf and coniferous tree species was positively and negatively related to both principles, respectively. This study demonstrated the potential impact of urbanization-related pollutant emission changes on water use of forest trees and the growth among different groups.
Collapse
Affiliation(s)
- Lei Ouyang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Jie Du
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhenzhen Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Ping Zhao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Liwei Zhu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Guangyan Ni
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| |
Collapse
|
26
|
Fox S, Sikes BA, Brown SP, Cripps CL, Glassman SI, Hughes K, Semenova-Nelsen T, Jumpponen A. Fire as a driver of fungal diversity - A synthesis of current knowledge. Mycologia 2022; 114:215-241. [PMID: 35344467 DOI: 10.1080/00275514.2021.2024422] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Fires occur in most terrestrial ecosystems where they drive changes in the traits, composition, and diversity of fungal communities. Fires range from rare, stand-replacing wildfires to frequent, prescribed fires used to mimic natural fire regimes. Fire regime factors, including burn severity, fire intensity, and timing, vary widely and likely determine how fungi respond to fires. Despite the importance of fungi to post-fire plant communities and ecosystem functioning, attempts to identify common fungal responses and their major drivers are lacking. This synthesis addresses this knowledge gap and ranges from fire adaptations of specific fungi to succession and assembly fungal communities as they respond to spatially heterogenous burning within the landscape. Fires impact fungi directly and indirectly through their effects on fungal survival, substrate and habitat modifications, changes in environmental conditions, and/or physiological responses of the hosts with which fungi interact. Some specific pyrophilous, or "fire-loving," fungi often appear after fire. Our synthesis explores whether such taxa can be considered cosmopolitan, and whether they are truly fire-adapted or simply opportunists adapted to rapidly occupy substrates and habitats made available by fires. We also discuss the possible inoculum sources of post-fire fungi and explore existing conceptual models and ecological frameworks that may be useful in generalizing fungal fire responses. We conclude with identifying research gaps and areas that may best transform the current knowledge and understanding of fungal responses to fire.
Collapse
Affiliation(s)
- Sam Fox
- Division of Biology, Kansas State University, Manhattan, Kansas 66506.,Department of Natural Resources and Society, University of Idaho, Moscow, Idaho 83844
| | - Benjamin A Sikes
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045
| | - Shawn P Brown
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee 38152
| | - Cathy L Cripps
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana 59717
| | - Sydney I Glassman
- Department of Microbiology & Plant Pathology, University of California at Riverside, Riverside, California 92521
| | - Karen Hughes
- Department of Ecology and Evolutionary Biology, University of Tennessee at Knoxville, Knoxville, Tennessee 37996
| | - Tatiana Semenova-Nelsen
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan, Kansas 66506
| |
Collapse
|
27
|
Rivera Pérez CA, Janz D, Schneider D, Daniel R, Polle A. Transcriptional Landscape of Ectomycorrhizal Fungi and Their Host Provides Insight into N Uptake from Forest Soil. mSystems 2022; 7:e0095721. [PMID: 35089084 PMCID: PMC8725588 DOI: 10.1128/msystems.00957-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023] Open
Abstract
Mineral nitrogen (N) is a major nutrient showing strong fluctuations in the environment due to anthropogenic activities. The acquisition and translocation of N to forest trees are achieved mainly by highly diverse ectomycorrhizal fungi (EMF) living in symbioses with their host roots. Here, we examined colonized root tips to characterize the entire root-associated fungal community by DNA metabarcoding-Illumina sequencing of the fungal internal transcribed spacer 2 (ITS2) molecular marker and used RNA sequencing to target metabolically active fungi and the plant transcriptome after N application. The study was conducted with beech (Fagus sylvatica L.), a dominant tree species in central Europe, grown in native forest soil. We demonstrate strong enrichment of 15N from nitrate or ammonium in the ectomycorrhizal roots by stable-isotope labeling. The relative abundance of the EMF members in the fungal community was correlated with their transcriptional abundances. The fungal metatranscriptome covered Kyoto Encyclopedia of Genes and Genomes (KEGG) and Eukaryotic Orthologous Groups (KOG) categories similar to those of model fungi and did not reveal significant changes related to N metabolization but revealed species-specific transcription patterns, supporting trait stability. In contrast to the resistance of the fungal metatranscriptome, the transcriptome of the host exhibited dedicated nitrate- or ammonium-responsive changes with the upregulation of transporters and enzymes required for nitrate reduction and a drastic enhancement of glutamine synthetase transcript levels, indicating the channeling of ammonium into the pathway for plant protein biosynthesis. Our results support that naturally assembled fungal communities living in association with the tree roots buffer nutritional signals in their own metabolism but do not shield plants from high environmental N levels. IMPORTANCE Although EMF are well known for their role in supporting tree N nutrition, the molecular mechanisms underlying N flux from the soil solution into the host through the ectomycorrhizal pathway remain widely unknown. Furthermore, ammonium and nitrate availability in the soil solution is subject to frequent oscillations that create a dynamic environment for the tree roots and associated microbes during N acquisition. Therefore, it is important to understand how root-associated mycobiomes and the tree roots handle these fluctuations. We studied the responses of the symbiotic partners by screening their transcriptomes after a sudden environmental flux of nitrate or ammonium. We show that the fungi and the host respond asynchronously, with the fungi displaying resistance to increased nitrate or ammonium and the host dynamically metabolizing the supplied N sources. This study provides insights into the molecular mechanisms of the symbiotic partners operating under N enrichment in a multidimensional symbiotic system.
Collapse
Affiliation(s)
- Carmen Alicia Rivera Pérez
- Forest Botany and Tree Physiology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany
| | - Dennis Janz
- Forest Botany and Tree Physiology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany
| | - Dominik Schneider
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany
| |
Collapse
|
28
|
Host phylogeny is the primary determinant of ectomycorrhizal fungal community composition in the permafrost ecosystem of eastern Siberia at a regional scale. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2021.101117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
29
|
Tuo Y, Rong N, Hu J, Zhao G, Wang Y, Zhang Z, Qi Z, Li Y, Zhang B. Exploring the Relationships between Macrofungi Diversity and Major Environmental Factors in Wunvfeng National Forest Park in Northeast China. J Fungi (Basel) 2022; 8:jof8020098. [PMID: 35205853 PMCID: PMC8880546 DOI: 10.3390/jof8020098] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
In this paper, we analyze the macrofungi communities of five forest types in Wunvfeng National Forest Park (Jilin, China) by collecting fruiting bodies from 2019–2021. Each forest type had three repeats and covered the main habitats of macrofungi. In addition, we evaluate selected environmental variables and macrofungi communities to relate species composition to potential environmental factors. We collected 1235 specimens belonging to 283 species, 116 genera, and 62 families. We found that Amanitaceae, Boletaceae, Russulaceae, and Tricholomataceae were the most diverse family; further, Amanita, Cortinarius, Lactarius, Russula, and Tricholoma were the dominant genera in the area. The macrofungi diversity showed increasing trends from Pinus koraiensis Siebold et Zuccarini forests to Quercus mongolica Fischer ex Ledebour forests. The cumulative species richness was as follows: Q. mongolica forest A > broadleaf mixed forest B > Q. mongolica, P. koraiensis mix forest D (Q. mongolica was the dominant species) > Q. mongolica and P. koraiensis mix forest C (P. koraiensis was the dominant species) > P. koraiensis forest (E). Ectomycorrhizal fungi were the dominant functional group; they were mainly in forest type A and were influenced by soil moisture content and Q. mongolica content (p < 0.05). The wood-rotting fungus showed richer species diversity than other forest types in broadleaf forests A and B. Overall, we concluded that most fungal communities preferred forest types with a relatively high Q. mongolica content. Therefore, the deliberate protection of Q. mongolica forests proves to be a better strategy for maintaining fungal diversity in Wunvfeng National Forest Park.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yu Li
- Correspondence: (Y.L.); (B.Z.)
| | | |
Collapse
|
30
|
|
31
|
Pellitier PT, Zak DR. Ectomycorrhizal fungal decay traits along a soil nitrogen gradient. THE NEW PHYTOLOGIST 2021; 232:2152-2164. [PMID: 34533216 DOI: 10.1111/nph.17734] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
The extent to which ectomycorrhizal (ECM) fungi decay soil organic matter (SOM) has implications for accurately predicting forest ecosystem response to climate change. Investigating the distribution of gene traits associated with SOM decay among ectomycorrhizal fungal communities could improve understanding of SOM dynamics and plant nutrition. We hypothesized that soil inorganic nitrogen (N) availability structures the distribution of ECM fungal genes associated with SOM decay and, specifically, that ECM fungal communities occurring in inorganic N-poor soils have greater SOM decay potential. To test this hypothesis, we paired amplicon and shotgun metagenomic sequencing of 60 ECM fungal communities associating with Quercus rubra along a natural soil inorganic N gradient. Ectomycorrhizal fungal communities occurring in low inorganic N soils were enriched in gene families involved in the decay of lignin, cellulose, and chitin. Ectomycorrhizal fungal community composition was the strongest driver of shifts in metagenomic estimates of fungal decay potential. Our study simultaneously illuminates the identity of key ECM fungal taxa and gene families potentially involved in the decay of SOM, and we link rhizomorphic and medium-distance hyphal morphologies with enhanced SOM decay potential. Coupled shifts in ECM fungal community composition and community-level decay gene frequencies are consistent with outcomes of trait-mediated community assembly processes.
Collapse
Affiliation(s)
- Peter T Pellitier
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Donald R Zak
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
32
|
Tinya F, Kovács B, Bidló A, Dima B, Király I, Kutszegi G, Lakatos F, Mag Z, Márialigeti S, Nascimbene J, Samu F, Siller I, Szél G, Ódor P. Environmental drivers of forest biodiversity in temperate mixed forests - A multi-taxon approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148720. [PMID: 34246131 DOI: 10.1016/j.scitotenv.2021.148720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/03/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Harmonization of timber production and forest conservation is a major challenge of modern silviculture. For the establishment of ecologically sustainable forest management, the management-related environmental drivers of multi-taxon biodiversity should be explored. Our study reveals those environmental variables related to tree species diversity and composition, stand structure, litter and soil conditions, microclimate, landscape, and land-use history that determine species richness and composition of 11 forest-dwelling organism groups. Herbs, woody regeneration, ground-floor and epiphytic bryophytes, epiphytic lichens, terricolous saprotrophic, ectomycorrhizal, and wood-inhabiting macrofungi, spiders, carabid beetles, and birds were sampled in West Hungarian mature mixed forests. The correlations among the diversities and compositions of different organism groups were also evaluated. Drivers of organism groups were principally related to stand structure, tree species diversity and composition, and microclimate, while litter, soil, landscape, and land-use historical variables were less influential. The complex roles of the shrub layer, deadwood, and the size of the trees in determining the diversity and composition of various taxa were revealed. Stands with more tree species sustained higher stand-level species richness of several taxa. Besides, stands with different dominant tree species harbored various species communities of organism groups. Therefore, landscape-scale diversity of dominant tree species may enhance the diversity of forest-dwelling communities at landscape level. The effects of the overstory layer on forest biodiversity manifested in many cases via microclimate conditions. Diversity of organism groups showed weaker relationship with the diversity of other taxa than with environmental variables. According to our results, the most influential drivers of forest biodiversity are under the direct control of the actual silvicultural management. Heterogeneous stand structure and tree species composition promote the different organism groups in various ways. Therefore, the long-term maintenance of the structural and compositional heterogeneity both at stand and landscape scale is an important aspect of ecologically sustainable forest management.
Collapse
Affiliation(s)
- Flóra Tinya
- Institute of Ecology and Botany, Centre for Ecological Research, Alkotmány u. 2-4, H-2163 Vácrátót, Hungary.
| | - Bence Kovács
- Institute of Ecology and Botany, Centre for Ecological Research, Alkotmány u. 2-4, H-2163 Vácrátót, Hungary.
| | - András Bidló
- Department of Forest Site Diagnosis and Classification, University of Sopron, Pf. 132, H-9401 Sopron, Hungary.
| | - Bálint Dima
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary
| | | | - Gergely Kutszegi
- Department of Botany, University of Veterinary Medicine, Pf. 2, H-1400 Budapest, Hungary.
| | - Ferenc Lakatos
- Institute of Silviculture and Forest Protection, University of Sopron, Pf. 132, H-9401 Sopron, Hungary.
| | | | | | - Juri Nascimbene
- Biodiversity & Macroecology Group, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum - University of Bologna, via Irnerio 42, 40126 Bologna, Italy.
| | - Ferenc Samu
- Plant Protection Institute, Centre for Agricultural Research, Herman O. u. 15, H-1022 Budapest, Hungary.
| | - Irén Siller
- Damjanich J. u. 137, H-1154 Budapest, Hungary
| | - Győző Szél
- Department of Zoology, Hungarian Natural History Museum, Baross u. 13, H-1088 Budapest, Hungary
| | - Péter Ódor
- Institute of Ecology and Botany, Centre for Ecological Research, Alkotmány u. 2-4, H-2163 Vácrátót, Hungary.
| |
Collapse
|
33
|
Wang W, Sun J, Zhong Z, Xiao L, Wang Y, Wang H. Relating macrofungal diversity and forest characteristics in boreal forests in China: Conservation effects, inter-forest-type variations, and association decoupling. Ecol Evol 2021; 11:13268-13282. [PMID: 34646468 PMCID: PMC8495802 DOI: 10.1002/ece3.8049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 11/11/2022] Open
Abstract
QUESTION How conservation and forest type affect macrofungal compositional diversity is not well understood. Even less is known about macrofungal associations with plants, soils, and geoclimatic conditions. LOCATION Southern edge of boreal forest distribution in China, named as Huzhong Nature Reserve. METHODS We surveyed a total of 72 plots for recording macrofungi, plants, and topography in 2015 and measured soil organic carbon, nitrogen, and bulk density. Effects of conservation and forest types on macrofungi and plants were compared, and their associations were decoupled by structural equation modeling (SEM) and redundancy ordination (RDA). RESULTS Conservation and forest type largely shaped macrofungal diversity. Most of the macrofungal traits declined with the conservation intensities or peaked at the middle conservation region. Similarly, 91% of macrofungal traits declined or peaked in the middle succession stage of birch-larch forests. Forest conservation resulted in the observation of sparse, larch-dominant, larger tree forests. Moreover, the soil outside the Reserve had more water, higher fertility, and lower bulk density, showing miscellaneous wood forest preference. There is a complex association between conservation site characteristics, soils, plants, and macrofungi. Variation partitioning showed that soil N was the top-one factor explaining the macrofungal variations (10%). As shown in SEM coefficients, conservation effect to macrofungi (1.1-1.2, p < .05) was like those from soils (1.2-1.6, p < .05), but much larger than the effect from plants (0.01-0.14, p > .10). For all tested macrofungal traits, 89%-97% of their variations were from soils, and 5%-21% were from conservation measures, while plants compensated 1%-10% of these effects. Our survey found a total of 207 macrofungal species, and 65 of them are new updates in this Reserve, indicating data shortage for the macrofungi list here. CONCLUSION Our findings provide new data for the joint conservation of macrofungi and plant communities, highlighting the crucial importance of soil matrix for macrofungal conservation in boreal forests.
Collapse
Affiliation(s)
- Wenjie Wang
- Urban Forests and Wetlands groupNortheast Institute of Geography and AgroecologyChinese Academy of ScienceChangchunChina
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
| | - Jingxue Sun
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
| | - Zhaoliang Zhong
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
| | - Lu Xiao
- Urban Forests and Wetlands groupNortheast Institute of Geography and AgroecologyChinese Academy of ScienceChangchunChina
| | - Yuanyuan Wang
- Urban Forests and Wetlands groupNortheast Institute of Geography and AgroecologyChinese Academy of ScienceChangchunChina
| | - Huimei Wang
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
| |
Collapse
|
34
|
Park KH, Yoo S, Park MS, Kim CS, Lim YW. Different patterns of belowground fungal diversity along altitudinal gradients with respect to microhabitat and guild types. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:649-658. [PMID: 34162018 DOI: 10.1111/1758-2229.12976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Fungi are key components of belowground ecosystems with various ecological roles in forests. Although the changes in the richness and composition of belowground fungi across altitudinal gradients have been widely reported, only a few studies have focused on the microhabitat types along altitudinal gradients. Here, we analysed the effect of altitude on the ectomycorrhizal and non-ectomycorrhizal fungal communities in belowground microhabitats. We collected root and soil samples from 16 Pinus densiflora forests at various altitudes across Korea, and measured the soil properties as potential factors. Fungal communities were analysed by high-throughput sequencing of the internal transcribed spacer 2 (ITS2) region. We found that altitude negatively affected the species richness of root-inhabiting fungi but did not influence that of soil-inhabiting fungi. In addition, the composition of ectomycorrhizal (ECM) fungi was less influenced by altitude than non-ECM fungi. Most of the soil properties did not show a significant relationship with altitude, but the effect of soil properties was different across microhabitat types and ecological roles of fungi. Our results reveal that microhabitat types and altitudinal gradients differently affect the richness and composition of fungal communities associated with P. densiflora, providing a better understanding of plant-associated fungal communities.
Collapse
Affiliation(s)
- Ki Hyeong Park
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, South Korea
| | - Shinnam Yoo
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, South Korea
| | - Myung Soo Park
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, South Korea
| | - Chang Sun Kim
- Forest Biodiversity Division, Korea National Arboretum, Pocheon, South Korea
| | - Young Woon Lim
- School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul, South Korea
| |
Collapse
|
35
|
Long-Term Nitrogen Deposition Alters Ectomycorrhizal Community Composition and Function in a Poplar Plantation. J Fungi (Basel) 2021; 7:jof7100791. [PMID: 34682213 PMCID: PMC8541514 DOI: 10.3390/jof7100791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/11/2021] [Accepted: 09/21/2021] [Indexed: 11/17/2022] Open
Abstract
The continuous upsurge in soil nitrogen (N) enrichment has had strong impacts on the structure and function of ecosystems. Elucidating how plant ectomycorrhizal fungi (EMF) mutualists respond to this additional N will facilitate the rapid development and implementation of more broadly applicable management and remediation strategies. For this study, we investigated the responses of EMF communities to increased N, and how other abiotic environmental factors impacted them. Consequently, we conducted an eight-year N addition experiment in a poplar plantation in coastal eastern China that included five N addition levels: 0 (N0), 50 (N1), 100 (N2), 150 (N3), and 300 (N4) kg N ha−1 yr−1. We observed that excessive N inputs reduced the colonization rate and species richness of EMF, and altered its community structure and functional traits. The total carbon content of the humus layer and available phosphorus in the mineral soil were important drivers of EMF abundance, while the content of ammonium in the humus layer and mineral soil determined the variations in the EMF community structure and mycelium foraging type. Our findings indicated that long-term N addition induced soil nutrient imbalances that resulted in a severe decline in EMF abundance and loss of functional diversity in poplar plantations.
Collapse
|
36
|
Suz LM, Bidartondo MI, van der Linde S, Kuyper TW. Ectomycorrhizas and tipping points in forest ecosystems. THE NEW PHYTOLOGIST 2021; 231:1700-1707. [PMID: 34110018 DOI: 10.1111/nph.17547] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
The resilience of forests is compromised by human-induced environmental influences pushing them towards tipping points and resulting in major shifts in ecosystem state that might be difficult to reverse, are difficult to predict and manage, and can have vast ecological, economic and social consequences. The literature on tipping points has grown rapidly, but almost exclusively based on aquatic and aboveground systems. So far little effort has been made to make links to soil systems, where change is not as drastically apparent, timescales may differ and recovery may be slower. Predicting belowground ecosystem state transitions and recovery, and their impacts on aboveground systems, remains a major scientific, practical and policy challenge. Recently observed major changes in aboveground tree condition across European forests are probably causally linked to ectomycorrhizal (EM) fungal changes belowground. Based on recent breakthroughs in data collection and analysis, we apply tipping point theory to forests, including their belowground component, focusing on EM fungi; link environmental thresholds for EM fungi with nutrient imbalances in forest trees; explore the role of phenotypic plasticity in EM fungal adaptation to, and recovery from, environmental change; and propose major positive feedback mechanisms to understand, address and predict forest ecosystem tipping points.
Collapse
Affiliation(s)
| | - Martin I Bidartondo
- Royal Botanic Gardens, Kew, TW9 3DS, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Sietse van der Linde
- Netherlands Food and Consumer Product Safety Authority, National Reference Centre, Wageningen, 6706 EA, the Netherlands
| | - Thomas W Kuyper
- Soil Biology Group, Wageningen University & Research, Wageningen, 6700 AA, the Netherlands
| |
Collapse
|
37
|
Downie J, Taylor AFS, Iason G, Moore B, Silvertown J, Cavers S, Ennos R. Location, but not defensive genotype, determines ectomycorrhizal community composition in Scots pine ( Pinus sylvestris L.) seedlings. Ecol Evol 2021; 11:4826-4842. [PMID: 33976851 PMCID: PMC8093658 DOI: 10.1002/ece3.7384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/01/2021] [Accepted: 02/12/2021] [Indexed: 11/28/2022] Open
Abstract
For successful colonization of host roots, ectomycorrhizal (EM) fungi must overcome host defense systems, and defensive phenotypes have previously been shown to affect the community composition of EM fungi associated with hosts. Secondary metabolites, such as terpenes, form a core part of these defense systems, but it is not yet understood whether variation in these constitutive defenses can result in variation in the colonization of hosts by specific fungal species.We planted seedlings from twelve maternal families of Scots pine (Pinus sylvestris) of known terpene genotype reciprocally in the field in each of six sites. After 3 months, we characterized the mycorrhizal fungal community of each seedling using a combination of morphological categorization and molecular barcoding, and assessed the terpene chemodiversity for a subset of the seedlings. We examined whether parental genotype or terpene chemodiversity affected the diversity or composition of a seedling's mycorrhizal community.While we found that terpene chemodiversity was highly heritable, we found no evidence that parental defensive genotype or a seedling's terpene chemodiversity affected associations with EM fungi. Instead, we found that the location of seedlings, both within and among sites, was the only determinant of the diversity and makeup of EM communities.These results show that while EM community composition varies within Scotland at both large and small scales, variation in constitutive defensive compounds does not determine the EM communities of closely cohabiting pine seedlings. Patchy distributions of EM fungi at small scales may render any genetic variation in associations with different species unrealizable in field conditions. The case for selection on traits mediating associations with specific fungal species may thus be overstated, at least in seedlings.
Collapse
Affiliation(s)
- Jim Downie
- Ashworth LaboratoriesInstitute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
- Centre for Ecology and HydrologyPenicuikUK
- School of Natural SciencesBangor UniversityWalesUK
| | - Andy F. S. Taylor
- The James Hutton InstituteAberdeenUK
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenUK
| | | | - Ben Moore
- The James Hutton InstituteAberdeenUK
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSWAustralia
| | - Jonathan Silvertown
- Ashworth LaboratoriesInstitute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
| | | | - Richard Ennos
- Ashworth LaboratoriesInstitute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
| |
Collapse
|
38
|
Marupakula S, Mahmood S, Clemmensen KE, Jacobson S, Högbom L, Finlay RD. Root associated fungi respond more strongly than rhizosphere soil fungi to N fertilization in a boreal forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142597. [PMID: 33077205 DOI: 10.1016/j.scitotenv.2020.142597] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Nitrogen (N) fertilization is a routine practice in boreal forests but its effects on fungal functional guilds in Pinus sylvestris forests are still incompletely understood. Sampling is often restricted to the upper organic horizons and based on DNA extracted from mixtures of soil and roots without explicitly analysing different spatial niches. Fungal community structure in soil and roots of an 85-y-old Pinus sylvestris forest was investigated using high throughput sequencing. Fertilized plots had been treated with a single dose of N fertilizer, 15 months prior to sampling. Species richness of fungi colonizing roots was reduced in all horizons by N fertilization. In contrast, species richness of soil fungi in the organic horizon was increased by N fertilization, but unaffected in the mineral horizons. Community composition of fungi colonizing roots differed from that of soil fungi, and both communities were significantly influenced by soil horizon and N. The ectomycorrhizal community composition in both roots and soil was significantly affected by N fertilization but no significant effect was found on saprotrophic fungi. The results highlight the importance of analysing the rhizosphere soil and root compartments separately since the fungal communities in these two niches appear to respond differently to environmental perturbations involving the addition of nitrogen.
Collapse
Affiliation(s)
- Srisailam Marupakula
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Shahid Mahmood
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden.
| | - Karina E Clemmensen
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden.
| | | | - Lars Högbom
- Skogforsk, Uppsala Science Park, SE-751 83 Uppsala, Sweden.
| | - Roger D Finlay
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden.
| |
Collapse
|
39
|
Zhang X, Xing J, Zhu X, Zhao B, Liu C, Dong J, Hong L, Liu Y, Chen Y, Wen Z. Diversity and community structure of ectomycorrhizal fungi in Pinus thunbergii coastal forests bordering the Yellow Sea of China. Braz J Microbiol 2021; 52:801-809. [PMID: 33813730 DOI: 10.1007/s42770-021-00486-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/29/2021] [Indexed: 11/29/2022] Open
Abstract
Ectomycorrhizas play a fundamental role in the function of forest ecosystems, being essential for plant nutrition absorption and soil quality. Many afforestation and reforestation programmes have begun to recover and maintain coastal forests in China, using pine species including Pinus thunbergii. We investigated the ectomycorrhizal colonization status of P. thunbergii in coastal pine forests of the Yellow Sea of China. We identified a total of 53 ectomycorrhizal fungal species in 74 soil samples collected from three sites and found that Thelephoraceae (10 spp.) and Russulaceae (8 spp.) were the most species-rich ectomycorrhizal fungal lineages. Russula sp. 1 was the most abundant species, accounting for 15.3% of the total ectomycorrhizal tips identified. Most of the remaining species were rare. At this small scale, host identity had no significant effect on the ectomycorrhizal fungal community composition (A = 0.036, P = 0.258), but sampling sites did (A = 0.135, P = 0.041). In addition, Na+ and K+ content and soil pH had significant effects on the ectomycorrhizal fungal community. The ectomycorrhizal fungal community associated with different host plants will become an important new direction for research, as ectomycorrhiza may have the potential to improve host capacity to establish in salt-stressed environments. This will provide a theoretical basis and technical support for saline soil reforestation and rehabilitation using pine species with compatible, native ectomycorrhizal fungi in Yellow Sea coastal areas.
Collapse
Affiliation(s)
- Xinzhe Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jincheng Xing
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, 224002, Jiangsu, China
| | - Xiaomei Zhu
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, 224002, Jiangsu, China
| | - Baoquan Zhao
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, 224002, Jiangsu, China
| | - Chong Liu
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, 224002, Jiangsu, China
| | - Jing Dong
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, 224002, Jiangsu, China
| | - Lizhou Hong
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, 224002, Jiangsu, China
| | - Yunfen Liu
- College of Food and Biological Engineering/Institute of Food Science and Engineering Technology, Hezhou University, Hezhou, 542899, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Zhugui Wen
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, 224002, Jiangsu, China.
| |
Collapse
|
40
|
Wang YL, Zhang X, Xu Y, Babalola BJ, Xiang SM, Zhao YL, Fan YJ. Fungal Diversity and Community Assembly of Ectomycorrhizal Fungi Associated With Five Pine Species in Inner Mongolia, China. Front Microbiol 2021; 12:646821. [PMID: 33796093 PMCID: PMC8008119 DOI: 10.3389/fmicb.2021.646821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Ectomycorrhizal (EM) fungi play vital roles in ensuring host plants' health, plant diversity, and the functionality of the ecosystem. However, EM fungal diversity, community composition, and underlying assembly processes in Inner Mongolia, China, where forests are typically semiarid and cold-temperate zones, attract less attention. In this study, we investigated EM fungal communities from 63 root samples of five common pine plants in Inner Mongolia across 1,900 km using Illumina Miseq sequencing of the fungal internal transcribed spacer 2 region. We evaluated the impact of host plant phylogeny, soil, climatic, and spatial variables on EM fungal diversity and community turnover. Deterministic vs. stochastic processes for EM fungal community assembly were quantified using β-nearest taxon index scores. In total, we identified 288 EM fungal operational taxonomic units (OTUs) belonging to 31 lineages, of which the most abundant lineages were Tomentella-Thelephora, Wilcoxina, Tricholoma, and Suillus-Rhizopogon. Variations in EM fungal OTU richness and community composition were significantly predicted by host phylogeny, soil (total nitrogen, phosphorus, nitrogen-phosphorus ratio, and magnesium), climate, and spatial distance, with the host plant being the most important factor. β-nearest taxon index demonstrated that both deterministic and stochastic processes jointly determined the community assembly of EM fungi, with the predominance of stochastic processes. At the Saihanwula site selected for preference analysis, all plant species (100%) presented significant preferences for EM fungi, 54% of abundant EM fungal OTUs showed significant preferences for host plants, and 26% of pairs of plant species and abundant fungal OTUs exhibited remarkably strong preferences. Overall, we inferred that the high diversity and distinctive community composition of EM fungi associated with natural pine species in Inner Mongolia and the stochastic processes prevailed in determining the community assembly of EM fungi. Our study shed light on the diversity and community assembly of EM fungi associated with common pine species in semiarid and cold temperate forests in Inner Mongolia, China, for the first time and provided a better understanding of the ecological processes underlying the community assembly of mutualistic fungi.
Collapse
Affiliation(s)
- Yong-Long Wang
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Xuan Zhang
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Ying Xu
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Busayo Joshua Babalola
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Si-Min Xiang
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Yan-Ling Zhao
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Yong-Jun Fan
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| |
Collapse
|
41
|
Arraiano-Castilho R, Bidartondo MI, Niskanen T, Clarkson JJ, Brunner I, Zimmermann S, Senn-Irlet B, Frey B, Peintner U, Mrak T, Suz LM. Habitat specialisation controls ectomycorrhizal fungi above the treeline in the European Alps. THE NEW PHYTOLOGIST 2021; 229:2901-2916. [PMID: 33107606 DOI: 10.1111/nph.17033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Alpine habitats are one of the most vulnerable ecosystems to environmental change, however, little information is known about the drivers of plant-fungal interactions in these ecosystems and their resilience to climate change. We investigated the influence of the main drivers of ectomycorrhizal (EM) fungal communities along elevation and environmental gradients in the alpine zone of the European Alps and measured their degree of specialisation using network analysis. We sampled ectomycorrhizas of Dryas octopetala, Bistorta vivipara and Salix herbacea, and soil fungal communities at 28 locations across five countries, from the treeline to the nival zone. We found that: (1) EM fungal community composition, but not richness, changes along elevation, (2) there is no strong evidence of host specialisation, however, EM fungal networks in the alpine zone and within these, EM fungi associated with snowbed communities, are more specialised than in other alpine habitats, (3) plant host population structure does not influence EM fungal communities, and (4) most variability in EM fungal communities is explained by fine-scale changes in edaphic properties, like soil pH and total nitrogen. The higher specialisation and narrower ecological niches of these plant-fungal interactions in snowbed habitats make these habitats particularly vulnerable to environmental change in alpine ecosystems.
Collapse
Affiliation(s)
- Ricardo Arraiano-Castilho
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Martin I Bidartondo
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Tuula Niskanen
- Identification and Naming, Royal Botanic Gardens, Kew, TW9 3DS, UK
| | - James J Clarkson
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
| | - Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Stephan Zimmermann
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Beatrice Senn-Irlet
- Biodiversity and Conservation Biology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, 8903, Switzerland
| | - Ursula Peintner
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, Innsbruck, 6020, Austria
| | - Tanja Mrak
- Slovenian Forestry Institute, Večna pot 2, Ljubljana, 1000, Slovenia
| | - Laura M Suz
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK
| |
Collapse
|
42
|
Moparthi S, Burrows M, Mgbechi-Ezeri J, Agindotan B. Fusarium spp. Associated With Root Rot of Pulse Crops and Their Cross-Pathogenicity to Cereal Crops in Montana. PLANT DISEASE 2021; 105:548-557. [PMID: 32870113 DOI: 10.1094/pdis-04-20-0800-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Root rot caused by Fusarium species is a major problem in the pulse growing regions of Montana. Fusarium isolates (n = 112) were obtained from seeds and roots of chickpea, dry pea, and lentil. Isolates were identified by comparing the sequences of the internal transcribed spacer region and the translation elongation factor 1-α in Fusarium-ID database. Fusarium avenaceum was the most abundant species (28%), followed by F. acuminatum (21%), F. poae (13%), F. oxysporum (8%), F. culmorum (6%), F. redolens (6%), F. sporotrichioides (6%), F. solani (4%), F. graminearum (2%), F. torulosum (2%), and F. tricinctum (0.9%). The aggressiveness of a subset of 50 isolates that represent various sources of isolation was tested on three pulse crops and two cereal crops. Nonparametric analysis of variance conducted on ranks of disease severity indicated that F. avenaceum and F. solani isolates were highly aggressive on pea and chickpea. In lentil, F. avenaceum and F. culmorum were highly aggressive. In barley, F. avenaceum, F. solani, F. culmorum, and F. graminearum were highly aggressive. In wheat, F. avenaceum, F. graminearum, and F. culmorum were highly aggressive. Two F. avenaceum isolates were highly aggressive across all the crops tested and found to be cross-pathogenic. One isolate of F. culmorum and an isolate of F. graminearum obtained from chickpea and lentil seed were highly aggressive on barley and wheat. The results indicate that multiple Fusarium spp. from seeds and roots can cause root rot on both pulse and cereal crops. Rotating these crops may still lead to an increase in inoculum levels, making crop rotation limited in efficacy as a disease management strategy.
Collapse
Affiliation(s)
- Swarnalatha Moparthi
- Department of Plant Sciences & Plant Pathology, Montana State University, Bozeman, MT 59717
| | - Mary Burrows
- Department of Plant Sciences & Plant Pathology, Montana State University, Bozeman, MT 59717
| | | | - Bright Agindotan
- Science & Technology Beltsville Laboratory, USDA APHIS PPQ, Beltsville, MD 20705
| |
Collapse
|
43
|
Boeraeve M, Everts T, Vandekerkhove K, De Keersmaeker L, Van de Kerckhove P, Jacquemyn H. Partner turnover and changes in ectomycorrhizal fungal communities during the early life stages of European beech (Fagus sylvatica L.). MYCORRHIZA 2021; 31:43-53. [PMID: 33140217 DOI: 10.1007/s00572-020-00998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
The first life stages of a tree are subject to strong environmental stresses and competition, limiting their chances of survival. Establishing a mutualistic relationship with mycorrhizal fungi during early life stages may increase growth and survival rates of trees, but how mycorrhizal communities assemble during these stages remains unclear. Here, we studied variation in the ectomycorrhizal (EcM) fungal communities in the soil and roots of Fagus sylvatica seedlings and saplings. Fungal DNA was extracted from the soil and seedling and sapling roots collected in 156 plots across the beech-dominated Sonian forest (Belgium) and community composition was determined through metabarcoding. EcM fungal community composition significantly differed between soil, seedlings and saplings. Russula, Amanita and Inocybe were most abundant in soil, while Lactarius and Scleroderma were more abundant in seedling and sapling roots and Xerocomellus and Laccaria were most abundant in sapling roots. Our results provide evidence of partner turnover in EcM fungal community composition with increasing age in the early life stages of F. sylvatica.
Collapse
Affiliation(s)
- Margaux Boeraeve
- Plant Conservation and Population Biology, Biology Department, Leuven, KU, Belgium.
| | - Teun Everts
- Research Institute for Nature and Forest, Geraardsbergen, Belgium
| | | | | | | | - Hans Jacquemyn
- Plant Conservation and Population Biology, Biology Department, Leuven, KU, Belgium
| |
Collapse
|
44
|
Miyamoto Y, Danilov AV, Bryanin SV. The dominance of Suillus species in ectomycorrhizal fungal communities on Larix gmelinii in a post-fire forest in the Russian Far East. MYCORRHIZA 2021; 31:55-66. [PMID: 33159597 DOI: 10.1007/s00572-020-00995-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
Wildfires can negatively affect ectomycorrhizal (EM) fungal communities. However, potential shifts in community structures due to wildfires have rarely been evaluated in the forests of eastern Eurasia, where surface fires are frequent. We investigated EM fungal communities in a Larix gmelinii-dominated forest that burned in 2003 in Zeya, in the Russian Far East. A total of 120 soil samples were collected from burned and adjacent unburned forest sites. The EM fungal root tips were morphotyped and internal transcribed spacer (ITS) sequences were obtained for fungal identification. We detected 147 EM fungal operational taxonomic units, and EM fungal richness was 25% lower at the burned site than at the unburned site. EM fungal composition was characterized by the occurrence of disturbance-adapted fungi (Amphinema and Wilcoxina) at the burned site and late-successional fungi (Lactarius, Russula and Cortinarius) at the unburned site. These findings suggest that the EM fungal communities did not recover to pre-fire levels 16 years after the fire. Suillus species were the dominant EM fungi on L. gmelinii, with greater richness and frequency at the burned site. Both Larix and Suillus exhibit adaptive traits to quickly colonize fire-disturbed habitats. Frequent surface fires common to eastern Eurasia are likely to play important roles in maintaining Larix forests, concomitantly with their closely associated EM fungi.
Collapse
Affiliation(s)
- Yumiko Miyamoto
- Arctic Research Center, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Aleksandr V Danilov
- Institute of Geology and Nature Management, Far East Branch, Russian Academy of Sciences, Blagoveshchensk, Russia
| | - Semyon V Bryanin
- Institute of Geology and Nature Management, Far East Branch, Russian Academy of Sciences, Blagoveshchensk, Russia
| |
Collapse
|
45
|
Kutszegi G, Siller I, Dima B, Merényi Z, Varga T, Takács K, Turcsányi G, Bidló A, Ódor P. Revealing hidden drivers of macrofungal species richness by analyzing fungal guilds in temperate forests, West Hungary. COMMUNITY ECOL 2020. [DOI: 10.1007/s42974-020-00031-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractWe explored the most influential stand-scaled drivers of ectomycorrhizal, terricolous saprotrophic, and wood-inhabiting (main functional groups) macrofungal species richness in mixed forests by applying regression models. We tested 67 potential explanatory variables representing tree species composition, stand structure, soil and litter conditions, microclimate, landscape structure, and management history. Within the main functional groups, we formed and modeled guilds and used their drivers to more objectively interpret the drivers of the main functional groups. Terricolous saprotrophic fungi were supported by air humidity and litter mass. Ectomycorrhizal fungi were suppressed by high soil nitrogen content and high air temperature. Wood saprotrophs were enhanced by litter pH (deciduous habitats), deadwood cover, and beech proportion. Wood saprotrophic guilds were determined often by drivers with hidden effects on all wood saprotrophs: non-parasites: total deadwood cover; parasites: beech proportion; white rotters: litter pH; brown rotters: air temperature (negatively); endophytes: beech proportion; early ruderals: deciduous stands that were formerly meadows; combative invaders: deciduous tree taxa; heart rotters: coarse woody debris; late stage specialists: deciduous deadwood. Terricolous saprotrophic cord formers positively responded to litter mass. Studying the drivers of guilds simultaneously, beech was a keystone species to maintain fungal diversity in the region, and coniferous stands would be more diverse by introducing deciduous tree species. Guilds were determined by drivers different from each other underlining their different functional roles and segregated substrate preferences. Modeling guilds of fungal species with concordant response to the environment would be powerful to explore and understand the functioning of fungal communities.
Collapse
|
46
|
Kalsoom Khan F, Kluting K, Tångrot J, Urbina H, Ammunet T, Eshghi Sahraei S, Rydén M, Ryberg M, Rosling A. Naming the untouchable - environmental sequences and niche partitioning as taxonomical evidence in fungi. IMA Fungus 2020; 11:23. [PMID: 33292867 PMCID: PMC7607712 DOI: 10.1186/s43008-020-00045-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 01/04/2023] Open
Abstract
Due to their submerged and cryptic lifestyle, the vast majority of fungal species are difficult to observe and describe morphologically, and many remain known to science only from sequences detected in environmental samples. The lack of practices to delimit and name most fungal species is a staggering limitation to communication and interpretation of ecology and evolution in kingdom Fungi. Here, we use environmental sequence data as taxonomical evidence and combine phylogenetic and ecological data to generate and test species hypotheses in the class Archaeorhizomycetes (Taphrinomycotina, Ascomycota). Based on environmental amplicon sequencing from a well-studied Swedish pine forest podzol soil, we generate 68 distinct species hypotheses of Archaeorhizomycetes, of which two correspond to the only described species in the class. Nine of the species hypotheses represent 78% of the sequenced Archaeorhizomycetes community, and are supported by long read data that form the backbone for delimiting species hypothesis based on phylogenetic branch lengths. Soil fungal communities are shaped by environmental filtering and competitive exclusion so that closely related species are less likely to co-occur in a niche if adaptive traits are evolutionarily conserved. In soil profiles, distinct vertical horizons represent a testable niche dimension, and we found significantly differential distribution across samples for a well-supported pair of sister species hypotheses. Based on the combination of phylogenetic and ecological evidence, we identify two novel species for which we provide molecular diagnostics and propose names. While environmental sequences cannot be automatically translated to species, they can be used to generate phylogenetically distinct species hypotheses that can be further tested using sequences as ecological evidence. We conclude that in the case of abundantly and frequently observed species, environmental sequences can support species recognition in the absences of physical specimens, while rare taxa remain uncaptured at our sampling and sequencing intensity.
Collapse
Affiliation(s)
- Faheema Kalsoom Khan
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden.,Department of Organismal Biology, Systematic Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Kerri Kluting
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Jeanette Tångrot
- Department of Molecular Biology, National Bioinformatics Infrastructure Sweden (NBIS), SciLifeLab, Umeå University, Umeå, Sweden
| | - Hector Urbina
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden.,Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, Florida, 32608, USA
| | - Tea Ammunet
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Shadi Eshghi Sahraei
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Martin Rydén
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Martin Ryberg
- Department of Organismal Biology, Systematic Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden
| | - Anna Rosling
- Department of Ecology and Genetics, Evolutionary Biology, Uppsala University, Norbyvägen 18D, 752 36, Uppsala, Sweden.
| |
Collapse
|
47
|
Linking Tree Health, Rhizosphere Physicochemical Properties, and Microbiome in Acute Oak Decline. FORESTS 2020. [DOI: 10.3390/f11111153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Forest decline diseases are complex processes driven by biotic and abiotic factors. Although information about host–microbiome–environment interactions in agricultural systems is emerging rapidly, similar studies on tree health are still in their infancy. We used acute oak decline (AOD) as a model system to understand whether the rhizosphere physicochemical properties and microbiome are linked to tree health by studying these two factors in healthy and diseased trees located in three sites in different AOD stages—low, mid and severe. We found significant changes in the rhizosphere properties and microbiome composition across the different AOD sites and between the tree health conditions. Rhizosphere pH correlated with microbiome composition, with the microbial assemblages changing in more acidic soils. At the severe AOD site, the oak trees exhibited the lowest rhizosphere pH and distinct microbiome, regardless of their health condition, whereas, at the low and mid-stage AOD sites, only diseased trees showed lower pH and the microbial composition differed significantly from healthy trees. On these two sites, less extreme soil conditions and a high presence of host-beneficial microbiota were observed in the healthy oak trees. For the first time, this study gathers evidence of associations among tree health conditions, rhizosphere properties and microbiome as well as links aboveground tree decline symptoms to the belowground environment. This provides a baseline of rhizosphere community profiling of UK oak trees and paves the way for these associations to be investigated in other tree species suffering decline disease events.
Collapse
|
48
|
Symbiotic niche mapping reveals functional specialization by two ectomycorrhizal fungi that expands the host plant niche. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100960] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Rotter P, Loreau M, de Mazancourt C. Why do forests respond differently to nitrogen deposition? A modelling approach. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
50
|
Arraiano-Castilho R, Bidartondo M, Niskanen T, Zimmermann S, Frey B, Brunner I, Senn-Irlet B, Hörandl E, Gramlich S, Suz L. Plant-fungal interactions in hybrid zones: Ectomycorrhizal communities of willows (Salix) in an alpine glacier forefield. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100936] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|