1
|
Castledine M, Buckling A. Critically evaluating the relative importance of phage in shaping microbial community composition. Trends Microbiol 2024; 32:957-969. [PMID: 38604881 DOI: 10.1016/j.tim.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/13/2024]
Abstract
The ubiquity of bacteriophages (phages) and the major evolutionary and ecological impacts they can have on their microbial hosts has resulted in phages often cited as key drivers shaping microbial community composition (the relative abundances of species). However, the evidence for the importance of phages is mixed. Here, we critically review the theory and data exploring the role of phages in communities, identifying the conditions when phages are likely to be important drivers of community composition. At ecological scales, we conclude that phages are often followers rather than drivers of microbial population and community dynamics. While phages can affect strain diversity within species, there is yet to be strong evidence suggesting that fluctuations in species' strains affects community composition.
Collapse
Affiliation(s)
- Meaghan Castledine
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK.
| | - Angus Buckling
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| |
Collapse
|
2
|
Lindsay RJ, Holder PJ, Hewlett M, Gudelj I. Experimental evolution of yeast shows that public-goods upregulation can evolve despite challenges from exploitative non-producers. Nat Commun 2024; 15:7810. [PMID: 39242624 PMCID: PMC11379824 DOI: 10.1038/s41467-024-52043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Microbial secretions, such as metabolic enzymes, are often considered to be cooperative public goods as they are costly to produce but can be exploited by others. They create incentives for the evolution of non-producers, which can drive producer and population productivity declines. In response, producers can adjust production levels. Past studies suggest that while producers lower production to reduce costs and exploitation opportunities when under strong selection pressure from non-producers, they overproduce secretions when these pressures are weak. We challenge the universality of this trend with the production of a metabolic enzyme, invertase, by Saccharomyces cerevisiae, which catalyses sucrose hydrolysis into two hexose molecules. Contrary to past studies, overproducers evolve during evolutionary experiments even when under strong selection pressure from non-producers. Phenotypic and competition assays with a collection of synthetic strains - engineered to have modified metabolic attributes - identify two mechanisms for suppressing the benefits of invertase to those who exploit it. Invertase overproduction increases extracellular hexose concentrations that suppresses the metabolic efficiency of competitors, due to the rate-efficiency trade-off, and also enhances overproducers' hexose capture rate by inducing transporter expression. Thus, overproducers are maintained in the environment originally thought to not support public goods production.
Collapse
Affiliation(s)
- Richard J Lindsay
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Philippa J Holder
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Mark Hewlett
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Ivana Gudelj
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK.
| |
Collapse
|
3
|
Lynn BK, De Leenheer P, Schuster M. Putting theory to the test: An integrated computational/experimental chemostat model of the tragedy of the commons. PLoS One 2024; 19:e0300887. [PMID: 38598418 PMCID: PMC11006152 DOI: 10.1371/journal.pone.0300887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024] Open
Abstract
Cooperation via shared public goods is ubiquitous in nature, however, noncontributing social cheaters can exploit the public goods provided by cooperating individuals to gain a fitness advantage. Theory predicts that this dynamic can cause a Tragedy of the Commons, and in particular, a 'Collapsing' Tragedy defined as the extinction of the entire population if the public good is essential. However, there is little empirical evidence of the Collapsing Tragedy in evolutionary biology. Here, we experimentally demonstrate this outcome in a microbial model system, the public good-producing bacterium Pseudomonas aeruginosa grown in a continuous-culture chemostat. In a growth medium that requires extracellular protein digestion, we find that P. aeruginosa populations maintain a high density when entirely composed of cooperating, protease-producing cells but completely collapse when non-producing cheater cells are introduced. We formulate a mechanistic mathematical model that recapitulates experimental observations and suggests key parameters, such as the dilution rate and the cost of public good production, that define the stability of cooperative behavior. We combine model prediction with experimental validation to explain striking differences in the long-term cheater trajectories of replicate cocultures through mutational events that increase cheater fitness. Taken together, our integrated empirical and theoretical approach validates and parametrizes the Collapsing Tragedy in a microbial population, and provides a quantitative, mechanistic framework for generating testable predictions of social behavior.
Collapse
Affiliation(s)
- Bryan K. Lynn
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Patrick De Leenheer
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
- Department of Mathematics, Oregon State University, Corvallis, Oregon, United States of America
| | - Martin Schuster
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
4
|
Schaal KA, Manhes P, Velicer GJ. Ecological histories determine the success of social exploitation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571652. [PMID: 38168390 PMCID: PMC10760085 DOI: 10.1101/2023.12.14.571652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Ecological context often modifies biotic interactions, yet effects of ecological history are poorly understood. In experiments with the bacterium Myxococcus xanthus , resource-level histories of genotypes interacting during cooperative multicellular development were found to strongly regulate social fitness. Yet how developmental spore production responded to variation in resource-level histories between interactants differed greatly between cooperators and cheaters; relative-fitness advantages gained by cheating after high-resource growth were generally reduced or absent if one or both parties experienced low-resource growth. Low-resource growth also eliminated facultative exploitation in some pairwise mixes of cooperation-proficient natural isolates that occurs when both strains have grown under resource abundance. Our results contrast with previous studies in which cooperator fitness correlated positively with resource level and suggest that resource-level variation may be important in regulating whether exploitation of cooperators occurs in a natural context.
Collapse
|
5
|
Xu Z, Ding Z, Shi L, Xie Y, Zhang Y, Wang Z, Liu Q. Coevolution between marine Aeromonas and phages reveals temporal trade-off patterns of phage resistance and host population fitness. THE ISME JOURNAL 2023; 17:2200-2209. [PMID: 37814126 PMCID: PMC10689771 DOI: 10.1038/s41396-023-01529-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Coevolution of bacteria and phages is an important host and parasite dynamic in marine ecosystems, contributing to the understanding of bacterial community diversity. On the time scale, questions remain concerning what is the difference between phage resistance patterns in marine bacteria and how advantageous mutations gradually accumulate during coevolution. In this study, marine Aeromonas was co-cultured with its phage for 180 days and their genetic and phenotypic dynamics were measured every 30 days. We identified 11 phage resistance genes and classified them into three categories: lipopolysaccharide (LPS), outer membrane protein (OMP), and two-component system (TCS). LPS shortening and OMP mutations are two distinct modes of complete phage resistance, while TCS mutants mediate incomplete resistance by repressing the transcription of phage genes. The co-mutation of LPS and OMP was a major mode for bacterial resistance at a low cost. The mutations led to significant reductions in the growth and virulence of bacterial populations during the first 60 days of coevolution, with subsequent leveling off. Our findings reveal the marine bacterial community dynamics and evolutionary trade-offs of phage resistance during coevolution, thus granting further understanding of the interaction of marine microbes.
Collapse
Affiliation(s)
- Zhenhe Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| | - Zihan Ding
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| | - Lijia Shi
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuzhen Xie
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519000, Zhuhai, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Zhuang Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| |
Collapse
|
6
|
Schaal KA, Yu YTN, Vasse M, Velicer GJ. Allopatric divergence of cooperators confers cheating resistance and limits effects of a defector mutation. BMC Ecol Evol 2022; 22:141. [PMID: 36510120 PMCID: PMC9746145 DOI: 10.1186/s12862-022-02094-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Social defectors may meet diverse cooperators. Genotype-by-genotype interactions may constrain the ranges of cooperators upon which particular defectors can cheat, limiting cheater spread. Upon starvation, the soil bacterium Myxococcus xanthus cooperatively develops into spore-bearing fruiting bodies, using a complex regulatory network and several intercellular signals. Some strains (cheaters) are unable to sporulate effectively in pure culture due to mutations that reduce signal production but can exploit and outcompete cooperators within mixed groups. RESULTS In this study, interactions between a cheater disrupted at the signaling gene csgA and allopatrically diversified cooperators reveal a very small cheating range. Expectedly, the cheater failed to cheat on all natural-isolate cooperators owing to non-cheater-specific antagonisms. Surprisingly, some lab-evolved cooperators had already exited the csgA mutant's cheating range after accumulating fewer than 20 mutations and without experiencing cheating during evolution. Cooperators might also diversify in the potential for a mutation to reduce expression of a cooperative trait or generate a cheating phenotype. A new csgA mutation constructed in several highly diverged cooperators generated diverse sporulation phenotypes, ranging from a complete defect to no defect, indicating that genetic backgrounds can limit the set of genomes in which a mutation creates a defector. CONCLUSIONS Our results demonstrate that natural populations may feature geographic mosaics of cooperators that have diversified in their susceptibility to particular cheaters, limiting defectors' cheating ranges and preventing them from spreading. This diversification may also lead to variation in the phenotypes generated by any given cooperation-gene mutation, further decreasing the chance of a cheater emerging which threatens the persistence of cooperation in the system.
Collapse
Affiliation(s)
- Kaitlin A. Schaal
- grid.5801.c0000 0001 2156 2780Institute of Integrative Biology, ETH Zürich, 8092 Zurich, Switzerland
| | - Yuen-Tsu Nicco Yu
- grid.5801.c0000 0001 2156 2780Institute of Integrative Biology, ETH Zürich, 8092 Zurich, Switzerland
| | - Marie Vasse
- grid.5801.c0000 0001 2156 2780Institute of Integrative Biology, ETH Zürich, 8092 Zurich, Switzerland ,grid.121334.60000 0001 2097 0141Institute MIVEGEC (UMR 5290 CNRS, IRD, UM), 34394 Montpellier, France
| | - Gregory J. Velicer
- grid.5801.c0000 0001 2156 2780Institute of Integrative Biology, ETH Zürich, 8092 Zurich, Switzerland
| |
Collapse
|
7
|
Gurney J, Simonet C, Wollein Waldetoft K, Brown SP. Challenges and opportunities for cheat therapy in the control of bacterial infections. Nat Prod Rep 2021; 39:325-334. [PMID: 34913456 DOI: 10.1039/d1np00053e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 1999 to 2021Bacterial pathogens can be highly social, communicating and cooperating within multi-cellular groups to make us sick. The requirement for collective action in pathogens presents novel therapeutic avenues that seek to undermine cooperative behavior, what we call here 'cheat therapies'. We review two broad avenues of cheat therapy: first, the introduction of genetically engineered 'cheat' strains (bio-control cheats), and second the chemical induction of 'cheat' behavior in the infecting pathogens (chemical-control cheats). Both genetically engineered and chemically induced cheats can socially exploit the cooperative wildtype infection, reducing pathogen burden and the severity of disease. We review the costs and benefits of cheat therapies, highlighting advantages of evolutionary robustness and also the challenges of low to moderate efficacy, compared to conventional antibiotic treatments. We end with a summary of what we see as the most valuable next steps, focusing on adjuvant treatments and use as alternate therapies for mild, self-resolving infections - allowing the reservation of current and highly effective antibiotics for more critical patient needs.
Collapse
Affiliation(s)
- James Gurney
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA. .,School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA
| | - Camille Simonet
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Kristofer Wollein Waldetoft
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA. .,School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA.,Torsby Hospital, Torsby, Sweden
| | - Sam P Brown
- Center for Microbial Dynamics & Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA. .,School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA
| |
Collapse
|
8
|
Lindsay RJ, Jepson A, Butt L, Holder PJ, Smug BJ, Gudelj I. Would that it were so simple: Interactions between multiple traits undermine classical single-trait-based predictions of microbial community function and evolution. Ecol Lett 2021; 24:2775-2795. [PMID: 34453399 DOI: 10.1111/ele.13861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/11/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Understanding how microbial traits affect the evolution and functioning of microbial communities is fundamental for improving the management of harmful microorganisms, while promoting those that are beneficial. Decades of evolutionary ecology research has focused on examining microbial cooperation, diversity, productivity and virulence but with one crucial limitation. The traits under consideration, such as public good production and resistance to antibiotics or predation, are often assumed to act in isolation. Yet, in reality, multiple traits frequently interact, which can lead to unexpected and undesired outcomes for the health of macroorganisms and ecosystem functioning. This is because many predictions generated in a single-trait context aimed at promoting diversity, reducing virulence or controlling antibiotic resistance can fail for systems where multiple traits interact. Here, we provide a much needed discussion and synthesis of the most recent research to reveal the widespread and diverse nature of multi-trait interactions and their consequences for predicting and controlling microbial community dynamics. Importantly, we argue that synthetic microbial communities and multi-trait mathematical models are powerful tools for managing the beneficial and detrimental impacts of microbial communities, such that past mistakes, like those made regarding the stewardship of antimicrobials, are not repeated.
Collapse
Affiliation(s)
- Richard J Lindsay
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Alys Jepson
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Lisa Butt
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Philippa J Holder
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| | - Bogna J Smug
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ivana Gudelj
- Biosciences and Living Systems Institute, University of Exeter, Exeter, UK
| |
Collapse
|
9
|
Freund L, Vasse M, Velicer GJ. Hidden paths to endless forms most wonderful: parasite-blind diversification of host quality. Proc Biol Sci 2021; 288:20210456. [PMID: 33906400 PMCID: PMC8080016 DOI: 10.1098/rspb.2021.0456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/24/2021] [Indexed: 01/21/2023] Open
Abstract
Evolutionary diversification can occur in allopatry or sympatry, can be driven by selection or unselected, and can be phenotypically manifested immediately or remain latent until manifested in a newly encountered environment. Diversification of host-parasite interactions is frequently studied in the context of intrinsically selective coevolution, but the potential for host-parasite interaction phenotypes to diversify latently during parasite-blind host evolution is rarely considered. Here, we use a social bacterium experimentally adapted to several environments in the absence of phage to analyse allopatric diversification of host quality-the degree to which a host population supports a viral epidemic. Phage-blind evolution reduced host quality overall, with some bacteria becoming completely resistant to growth suppression by phage. Selective-environment differences generated only mild divergence in host quality. However, selective environments nonetheless played a major role in shaping evolution by determining the degree of stochastic diversification among replicate populations within treatments. Ancestral motility genotype was also found to strongly shape patterns of latent host-quality evolution and diversification. These outcomes show that (i) adaptive landscapes can differ in how they constrain stochastic diversification of a latent phenotype and (ii) major effects of selection on biological diversification can be missed by focusing on trait means. Collectively, our findings suggest that latent-phenotype evolution should inform host-parasite evolution theory and that diversification should be conceived broadly to include latent phenotypes.
Collapse
Affiliation(s)
- Lisa Freund
- Institute for Integrative Biology, ETH Zürich 8092, Zürich, Switzerland
| | - Marie Vasse
- Institute for Integrative Biology, ETH Zürich 8092, Zürich, Switzerland
| | | |
Collapse
|
10
|
West SA, Cooper GA, Ghoul MB, Griffin AS. Ten recent insights for our understanding of cooperation. Nat Ecol Evol 2021; 5:419-430. [PMID: 33510431 PMCID: PMC7612052 DOI: 10.1038/s41559-020-01384-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
Since Hamilton published his seminal papers in 1964, our understanding of the importance of cooperation for life on Earth has evolved beyond recognition. Early research was focused on altruism in the social insects, where the problem of cooperation was easy to see. In more recent years, research into cooperation has expanded across the entire tree of life, and has been revolutionized by advances in genetic, microbiological and analytical techniques. We highlight ten insights that have arisen from these advances, which have illuminated generalizations across different taxa, making the world simpler to explain. Furthermore, progress in these areas has opened up numerous new problems to solve, suggesting exciting directions for future research.
Collapse
Affiliation(s)
- Stuart A West
- Department of Zoology, University of Oxford, Oxford, UK.
| | - Guy A Cooper
- Department of Zoology, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
11
|
Hart SFM, Chen CC, Shou W. Pleiotropic mutations can rapidly evolve to directly benefit self and cooperative partner despite unfavorable conditions. eLife 2021; 10:57838. [PMID: 33501915 PMCID: PMC8184212 DOI: 10.7554/elife.57838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 01/26/2021] [Indexed: 01/08/2023] Open
Abstract
Cooperation, paying a cost to benefit others, is widespread. Cooperation can be promoted by pleiotropic ‘win-win’ mutations which directly benefit self (self-serving) and partner (partner-serving). Previously, we showed that partner-serving should be defined as increased benefit supply rate per intake benefit. Here, we report that win-win mutations can rapidly evolve even under conditions unfavorable for cooperation. Specifically, in a well-mixed environment we evolved engineered yeast cooperative communities where two strains exchanged costly metabolites, lysine and hypoxanthine. Among cells that consumed lysine and released hypoxanthine, ecm21 mutations repeatedly arose. ecm21 is self-serving, improving self’s growth rate in limiting lysine. ecm21 is also partner-serving, increasing hypoxanthine release rate per lysine consumption and the steady state growth rate of partner and of community. ecm21 also arose in monocultures evolving in lysine-limited chemostats. Thus, even without any history of cooperation or pressure to maintain cooperation, pleiotropic win-win mutations may readily evolve to promote cooperation.
Collapse
Affiliation(s)
| | - Chi-Chun Chen
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences, Seattle, United States
| | - Wenying Shou
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences, Seattle, United States.,University College London, Department of Genetics, Evolution and Environment, Centre for Life's Origins and Evolution (CLOE), London, United Kingdom
| |
Collapse
|
12
|
Abstract
Bacteria harbor viruses called bacteriophages that, like all viruses, co-opt the host cellular machinery to replicate. Although this relationship is at first glance parasitic, there are social interactions among and between bacteriophages and their bacterial hosts. These social interactions can take on many forms, including cooperation, altruism, and cheating. Such behaviors among individuals in groups of bacteria have been well described. However, the social nature of some interactions between phages or phages and bacteria is only now becoming clear. Bacteria harbor viruses called bacteriophages that, like all viruses, co-opt the host cellular machinery to replicate. Although this relationship is at first glance parasitic, there are social interactions among and between bacteriophages and their bacterial hosts. These social interactions can take on many forms, including cooperation, altruism, and cheating. Such behaviors among individuals in groups of bacteria have been well described. However, the social nature of some interactions between phages or phages and bacteria is only now becoming clear. We are just beginning to understand how bacteriophages affect the sociobiology of bacteria, and we know even less about social interactions within bacteriophage populations. In this review, we discuss recent developments in our understanding of bacteriophage sociobiology, including how selective pressures influence the outcomes of social interactions between populations of bacteria and bacteriophages. We also explore how tripartite social interactions between bacteria, bacteriophages, and an animal host affect host-microbe interactions. Finally, we argue that understanding the sociobiology of bacteriophages will have implications for the therapeutic use of bacteriophages to treat bacterial infections.
Collapse
|
13
|
Hart SFM, Pineda JMB, Chen CC, Green R, Shou W. Disentangling strictly self-serving mutations from win-win mutations in a mutualistic microbial community. eLife 2019; 8:e44812. [PMID: 31162049 PMCID: PMC6548503 DOI: 10.7554/elife.44812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/19/2019] [Indexed: 12/31/2022] Open
Abstract
Mutualisms can be promoted by pleiotropic win-win mutations which directly benefit self (self-serving) and partner (partner-serving). Intuitively, partner-serving phenotype could be quantified as an individual's benefit supply rate to partners. Here, we demonstrate the inadequacy of this thinking, and propose an alternative. Specifically, we evolved well-mixed mutualistic communities where two engineered yeast strains exchanged essential metabolites lysine and hypoxanthine. Among cells that consumed lysine and released hypoxanthine, a chromosome duplication mutation seemed win-win: it improved cell's affinity for lysine (self-serving), and increased hypoxanthine release rate per cell (partner-serving). However, increased release rate was due to increased cell size accompanied by increased lysine utilization per birth. Consequently, total hypoxanthine release rate per lysine utilization (defined as 'exchange ratio') remained unchanged. Indeed, this mutation did not increase the steady state growth rate of partner, and is thus solely self-serving during long-term growth. By extension, reduced benefit production rate by an individual may not imply cheating.
Collapse
Affiliation(s)
| | | | - Chi-Chun Chen
- Division of Basic SciencesFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Robin Green
- Division of Basic SciencesFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Wenying Shou
- Division of Basic SciencesFred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
14
|
Lindstedt C, Miettinen A, Freitak D, Ketola T, López-Sepulcre A, Mäntylä E, Pakkanen H. Ecological conditions alter cooperative behaviour and its costs in a chemically defended sawfly. Proc Biol Sci 2018; 285:rspb.2018.0466. [PMID: 30068673 DOI: 10.1098/rspb.2018.0466] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 07/06/2018] [Indexed: 01/24/2023] Open
Abstract
The evolution of cooperation and social behaviour is often studied in isolation from the ecology of organisms. Yet, the selective environment under which individuals evolve is much more complex in nature, consisting of ecological and abiotic interactions in addition to social ones. Here, we measured the life-history costs of cooperative chemical defence in a gregarious social herbivore, Diprion pini pine sawfly larvae, and how these costs vary under different ecological conditions. We ran a rearing experiment where we manipulated diet (resin content) and attack intensity by repeatedly harassing larvae to produce a chemical defence. We show that forcing individuals to allocate more to cooperative defence (high attack intensity) incurred a clear cost by decreasing individual survival and potency of chemical defence. Cooperative behaviour and the magnitude of its costs were further shaped by host plant quality. The number of individuals participating in group defence, immune responses and female growth decreased on a high resin diet under high attack intensity. We also found some benefits of cheating: non-defending males had higher growth rates across treatments. Taken together, these results suggest that ecological interactions can shape the adaptive value of cooperative behaviour and maintain variation in the frequency of cooperation and cheating.
Collapse
Affiliation(s)
- Carita Lindstedt
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Antti Miettinen
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Dalial Freitak
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland.,Centre of Excellence in Biological Interactions, University of Helsinki, Helsinki, Finland
| | - Tarmo Ketola
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Andres López-Sepulcre
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland.,CNRS UMR 7618, Institute of Ecology and Environmental Sciences of Paris (iEES), Universite Pierre et Marie Curie, Paris, France
| | - Elina Mäntylä
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Hannu Pakkanen
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
15
|
Harrison F, McNally A, da Silva AC, Heeb S, Diggle SP. Optimised chronic infection models demonstrate that siderophore 'cheating' in Pseudomonas aeruginosa is context specific. THE ISME JOURNAL 2017; 11:2492-2509. [PMID: 28696423 PMCID: PMC5649161 DOI: 10.1038/ismej.2017.103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 12/25/2022]
Abstract
The potential for siderophore mutants of Pseudomonas aeruginosa to attenuate virulence during infection, and the possibility of exploiting this for clinical ends, have attracted much discussion. This has largely been based on the results of in vitro experiments conducted in iron-limited growth medium, in which siderophore mutants act as social 'cheats:' increasing in frequency at the expense of the wild type to result in low-productivity, low-virulence populations dominated by mutants. We show that insights from in vitro experiments cannot necessarily be transferred to infection contexts. First, most published experiments use an undefined siderophore mutant. Whole-genome sequencing of this strain revealed a range of mutations affecting phenotypes other than siderophore production. Second, iron-limited medium provides a very different environment from that encountered in chronic infections. We conducted cheating assays using defined siderophore deletion mutants, in conditions designed to model infected fluids and tissue in cystic fibrosis lung infection and non-healing wounds. Depending on the environment, siderophore loss led to cheating, simple fitness defects, or no fitness effect at all. Our results show that it is crucial to develop defined in vitro models in order to predict whether siderophores are social, cheatable and suitable for clinical exploitation in specific infection contexts.
Collapse
Affiliation(s)
- Freya Harrison
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, UK
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ana C da Silva
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Stephan Heeb
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Stephen P Diggle
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
16
|
Schuster M, Sexton DJ, Hense BA. Why Quorum Sensing Controls Private Goods. Front Microbiol 2017; 8:885. [PMID: 28579979 PMCID: PMC5437708 DOI: 10.3389/fmicb.2017.00885] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/02/2017] [Indexed: 12/22/2022] Open
Abstract
Cell-cell communication, also termed quorum sensing (QS), is a widespread process that coordinates gene expression in bacterial populations. The generally accepted view is that QS optimizes the cell density-dependent benefit attained from cooperative behaviors, often in the form of secreted products referred to as "public goods." This view is challenged by an increasing number of cell-associated products or "private goods" reported to be under QS-control for which a collective benefit is not apparent. A prominent example is nucleoside hydrolase from Pseudomonas aeruginosa, a periplasmic enzyme that catabolizes adenosine. Several recent studies have shown that private goods can function to stabilize cooperation by co-regulated public goods, seemingly explaining their control by QS. Here we argue that this property is a by-product of selection for other benefits rather than an adaptation. Emphasizing ecophysiological context, we propose alternative explanations for the QS control of private goods. We suggest that the benefit attained from private goods is associated with high cell density, either because a relevant ecological condition correlates with density, or because the private good is, directly or indirectly, involved in cooperative behavior. Our analysis helps guide a systems approach to QS, with implications for antivirulence drug design and synthetic biology.
Collapse
Affiliation(s)
- Martin Schuster
- Department of Microbiology, Oregon State UniversityCorvallis, OR, United States
| | - D Joseph Sexton
- Department of Microbiology, Oregon State UniversityCorvallis, OR, United States
| | - Burkhard A Hense
- Institute of Computational Biology, Helmholtz Zentrum MünchenNeuherberg, Germany
| |
Collapse
|
17
|
Bacteria-Bacteriophage Coevolution in the Human Gut: Implications for Microbial Diversity and Functionality. Trends Microbiol 2017; 25:614-623. [PMID: 28342597 DOI: 10.1016/j.tim.2017.02.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/15/2017] [Accepted: 02/24/2017] [Indexed: 02/08/2023]
Abstract
Antagonistic coevolution (AC) between bacteria and bacteriophages plays a key role in driving and maintaining microbial diversity. Consequently, AC is predicted to affect all levels of biological organisation, from the individual to ecosystem scales. Nonetheless, we know nothing about bacteria-bacteriophage AC in perhaps the most important and clinically relevant microbial ecosystem known to humankind - the human gut microbiome. In this opinion piece I review current research on bacteria-phage AC in in vitro and natural populations of microbes. I then examine the evidence and discuss the potential role of AC in driving observed patterns of intra- and interindividual variation in the gut microbiome together with detailing the potential functional consequences of such AC-driven microbial variation for human health and disease.
Collapse
|
18
|
Quorum-quenching limits quorum-sensing exploitation by signal-negative invaders. Sci Rep 2017; 7:40126. [PMID: 28054641 PMCID: PMC5215187 DOI: 10.1038/srep40126] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/02/2016] [Indexed: 12/13/2022] Open
Abstract
Some bacteria produce and perceive quorum-sensing (QS) signals that coordinate several behaviours, including the costly processes that are exoenzyme production and plasmid transfer. In the case of plasmid transfer, the emergence of QS signal-altered invaders and their policing are poorly documented. In Agrobacterium tumefaciens, the virulence Ti-plasmid encodes both synthesis and sensing of QS-signals, which promote its transfer from a donor to a recipient cell. Here, we reported that QS-altered A. tumefaciens mutants arose during experimental evolution. All showed improved growth compared to their ancestor. Genome sequencing revealed that, though some had lost the Ti-plasmid, most were defective for QS-signal synthesis and Ti-plasmid conjugation (traR mutations) and one exhibited a QS-signal exploitation behaviour, using signal produced by other cells to enhance its own Ti-plasmid transfer. We explored mechanisms that can limit this QS-hijacking. We showed that the A. tumefaciens capacity to inactivate QS-signals by expressing QS-degrading enzyme could attenuate dissemination of the QS signal-negative Ti-plasmids. This work shows that enzymatic QS-disruption whether encoded by the QS-producing Ti-plasmid itself, by a companion plasmid in the same donor cells, or by one in the recipient cells, in all cases can serve as a mechanism for controlling QS exploitation by QS signal-negative mutants.
Collapse
|
19
|
Antibiotic stress selects against cooperation in the pathogenic bacterium Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2017; 114:546-551. [PMID: 28049833 DOI: 10.1073/pnas.1612522114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cheats are a pervasive threat to public goods production in natural and human communities, as they benefit from the commons without contributing to it. Although ecological antagonisms such as predation, parasitism, competition, and abiotic environmental stress play key roles in shaping population biology, it is unknown how such stresses generally affect the ability of cheats to undermine cooperation. We used theory and experiments to address this question in the pathogenic bacterium, Pseudomonas aeruginosa Although public goods producers were selected against in all populations, our competition experiments showed that antibiotics significantly increased the advantage of nonproducers. Moreover, the dominance of nonproducers in mixed cultures was associated with higher resistance to antibiotics than in either monoculture. Mathematical modeling indicates that accentuated costs to producer phenotypes underlie the observed patterns. Mathematical analysis further shows how these patterns should generalize to other taxa with public goods behaviors. Our findings suggest that explaining the maintenance of cooperative public goods behaviors in certain natural systems will be more challenging than previously thought. Our results also have specific implications for the control of pathogenic bacteria using antibiotics and for understanding natural bacterial ecosystems, where subinhibitory concentrations of antimicrobials frequently occur.
Collapse
|
20
|
Inglis RF, Biernaskie JM, Gardner A, Kümmerli R. Presence of a loner strain maintains cooperation and diversity in well-mixed bacterial communities. Proc Biol Sci 2016; 283:rspb.2015.2682. [PMID: 26763707 PMCID: PMC4721107 DOI: 10.1098/rspb.2015.2682] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cooperation and diversity abound in nature despite cooperators risking exploitation from defectors and superior competitors displacing weaker ones. Understanding the persistence of cooperation and diversity is therefore a major problem for evolutionary ecology, especially in the context of well-mixed populations, where the potential for exploitation and displacement is greatest. Here, we demonstrate that a ‘loner effect’, described by economic game theorists, can maintain cooperation and diversity in real-world biological settings. We use mathematical models of public-good-producing bacteria to show that the presence of a loner strain, which produces an independent but relatively inefficient good, can lead to rock–paper–scissor dynamics, whereby cooperators outcompete loners, defectors outcompete cooperators and loners outcompete defectors. These model predictions are supported by our observations of evolutionary dynamics in well-mixed experimental communities of the bacterium Pseudomonas aeruginosa. We find that the coexistence of cooperators and defectors that produce and exploit, respectively, the iron-scavenging siderophore pyoverdine, is stabilized by the presence of loners with an independent iron-uptake mechanism. Our results establish the loner effect as a simple and general driver of cooperation and diversity in environments that would otherwise favour defection and the erosion of diversity.
Collapse
Affiliation(s)
- R F Inglis
- Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Überlandstrasse 133, 8600 Dübendorf, Switzerland Department of Environmental Systems Science, ETH Zurich, Universitätsstrasse 16, 8092 Zürich, Switzerland
| | - J M Biernaskie
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - A Gardner
- School of Biology, University of St Andrews, Dyers Brae, St Andrews KY16 9TH, UK
| | - R Kümmerli
- Department of Plant and Microbial Biology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
21
|
Withycombe C, Purdy K, Maddocks S. Micro-management: curbing chronic wound infection. Mol Oral Microbiol 2016; 32:263-274. [DOI: 10.1111/omi.12174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2016] [Indexed: 01/21/2023]
Affiliation(s)
- C. Withycombe
- Department of Biomedical Sciences; Cardiff School of Health Sciences; Cardiff Metropolitan University; Cardiff UK
| | - K.J. Purdy
- School of Life Sciences; University of Warwick; Coventry UK
| | - S.E. Maddocks
- Department of Biomedical Sciences; Cardiff School of Health Sciences; Cardiff Metropolitan University; Cardiff UK
| |
Collapse
|
22
|
Asfahl KL, Schuster M. Social interactions in bacterial cell-cell signaling. FEMS Microbiol Rev 2016; 41:92-107. [PMID: 27677972 DOI: 10.1093/femsre/fuw038] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/19/2016] [Accepted: 08/14/2016] [Indexed: 01/16/2023] Open
Abstract
Cooperation and conflict in microorganisms is being recognized as an important factor in the organization and function of microbial communities. Many of the cooperative behaviors described in bacteria are governed through a cell-cell signaling process generally termed quorum sensing. Communication and cooperation in diverse microorganisms exhibit predictable trends that behave according to social evolutionary theory, notably that public goods dilemmas produce selective pressures for divergence in social phenotypes including cheating. In this review, we relate the general features of quorum sensing and social adaptation in microorganisms to established evolutionary theory. We then describe physiological and molecular mechanisms that have been shown to stabilize cooperation in microbes, thereby preventing a tragedy of the commons. Continued study of the role of communication and cooperation in microbial ecology and evolution is important to clinical treatment of pathogens, as well as to our fundamental understanding of cooperative selection at all levels of life.
Collapse
Affiliation(s)
- Kyle L Asfahl
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR 97331-3804, USA
| | - Martin Schuster
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR 97331-3804, USA
| |
Collapse
|
23
|
Hammarlund SP, Connelly BD, Dickinson KJ, Kerr B. The evolution of cooperation by the Hankshaw effect. Evolution 2016; 70:1376-85. [DOI: 10.1111/evo.12928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 04/05/2016] [Indexed: 01/31/2023]
Affiliation(s)
- Sarah P. Hammarlund
- Department of Biology and BEACON Center for the Study of Evolution in Action University of Washington Seattle Washington 98195
| | - Brian D. Connelly
- Department of Biology and BEACON Center for the Study of Evolution in Action University of Washington Seattle Washington 98195
| | - Katherine J. Dickinson
- Department of Biology and BEACON Center for the Study of Evolution in Action University of Washington Seattle Washington 98195
| | - Benjamin Kerr
- Department of Biology and BEACON Center for the Study of Evolution in Action University of Washington Seattle Washington 98195
| |
Collapse
|
24
|
Leisner JJ, Jørgensen NOG, Middelboe M. Predation and selection for antibiotic resistance in natural environments. Evol Appl 2016; 9:427-34. [PMID: 26989434 PMCID: PMC4778110 DOI: 10.1111/eva.12353] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/21/2015] [Indexed: 12/01/2022] Open
Abstract
Genes encoding resistance to antibiotics appear, like the antibiotics themselves, to be ancient, originating long before the rise of the era of anthropogenic antibiotics. However, detailed understanding of the specific biological advantages of antibiotic resistance in natural environments is still lacking, thus limiting our efforts to prevent environmental influx of resistance genes. Here, we propose that antibiotic-resistant cells not only evade predation from antibiotic producers but also take advantage of nutrients released from cells that are killed by the antibiotic-producing bacteria. Thus, predation is potentially an important mechanism for driving antibiotic resistance during slow or stationary phase of growth when nutrients are deprived. This adds to explain the ancient nature and widespread occurrence of antibiotic resistance in natural environments unaffected by anthropogenic antibiotics. In particular, we suggest that nutrient-poor environments including indoor environments, for example, clean rooms and intensive care units may serve as a reservoir and source for antibiotic-producing as well as antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Jørgen J. Leisner
- Department of Veterinary Disease BiologyFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksbergDenmark
| | - Niels O. G. Jørgensen
- Department of Plant and Environmental SciencesFaculty of ScienceUniversity of CopenhagenFrederiksbergDenmark
| | - Mathias Middelboe
- Department of BiologyMarine Biological SectionFaculty of ScienceUniversity of CopenhagenHelsingørDenmark
| |
Collapse
|
25
|
Shou W. Acknowledging selection at sub-organismal levels resolves controversy on pro-cooperation mechanisms. eLife 2015; 4. [PMID: 26714105 PMCID: PMC4798966 DOI: 10.7554/elife.10106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/21/2015] [Indexed: 01/24/2023] Open
Abstract
Cooperators who pay a cost to produce publically-available benefits can be exploited by cheaters who do not contribute fairly. How might cooperation persist against cheaters? Two classes of mechanisms are known to promote cooperation: 'partner choice', where a cooperator preferentially interacts with cooperative over cheating partners; and 'partner fidelity feedback', where repeated interactions between individuals ensure that cheaters suffer as their cooperative partners languish (see, for example, Momeni et al., 2013). However when both mechanisms can act, differentiating them has generated controversy. Here, I resolve this controversy by noting that selection can operate on organismal and sub-organismal 'entities' such that partner fidelity feedback at sub-organismal level can appear as partner choice at organismal level. I also show that cooperation between multicellular eukaryotes and mitochondria is promoted by partner fidelity feedback and partner choice between sub-organismal entities, in addition to being promoted by partner fidelity feedback between hosts and symbionts, as was previously known.
Collapse
Affiliation(s)
- Wenying Shou
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
26
|
Waite AJ, Cannistra C, Shou W. Defectors Can Create Conditions That Rescue Cooperation. PLoS Comput Biol 2015; 11:e1004645. [PMID: 26690946 PMCID: PMC4687000 DOI: 10.1371/journal.pcbi.1004645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 11/05/2015] [Indexed: 11/18/2022] Open
Abstract
Cooperation based on the production of costly common goods is observed throughout nature. This is puzzling, as cooperation is vulnerable to exploitation by defectors which enjoy a fitness advantage by consuming the common good without contributing fairly. Depletion of the common good can lead to population collapse and the destruction of cooperation. However, population collapse implies small population size, which, in a structured population, is known to favor cooperation. This happens because small population size increases variability in cooperator frequency across different locations. Since individuals in cooperator-dominated locations (which are most likely cooperators) will grow more than those in defector-dominated locations (which are most likely defectors), cooperators can outgrow defectors globally despite defectors outgrowing cooperators in each location. This raises the possibility that defectors can lead to conditions that sometimes rescue cooperation from defector-induced destruction. We demonstrate multiple mechanisms through which this can occur, using an individual-based approach to model stochastic birth, death, migration, and mutation events. First, during defector-induced population collapse, defectors occasionally go extinct before cooperators by chance, which allows cooperators to grow. Second, empty locations, either preexisting or created by defector-induced population extinction, can favor cooperation because they allow cooperator but not defector migrants to grow. These factors lead to the counterintuitive result that the initial presence of defectors sometimes allows better survival of cooperation compared to when defectors are initially absent. Finally, we find that resource limitation, inducible by defectors, can select for mutations adaptive to resource limitation. When these mutations are initially present at low levels or continuously generated at a moderate rate, they can favor cooperation by further reducing local population size. We predict that in a structured population, small population sizes precipitated by defectors provide a "built-in" mechanism for the persistence of cooperation.
Collapse
Affiliation(s)
- Adam James Waite
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail: (AJW); (WS)
| | - Caroline Cannistra
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Wenying Shou
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail: (AJW); (WS)
| |
Collapse
|
27
|
Vasse M, Torres-Barceló C, Hochberg ME. Phage selection for bacterial cheats leads to population decline. Proc Biol Sci 2015; 282:20152207. [PMID: 26538598 PMCID: PMC4650167 DOI: 10.1098/rspb.2015.2207] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/08/2015] [Indexed: 11/12/2022] Open
Abstract
While predators and parasites are known for their effects on bacterial population biology, their impact on the dynamics of bacterial social evolution remains largely unclear. Siderophores are iron-chelating molecules that are key to the survival of certain bacterial species in iron-limited environments, but their production can be subject to cheating by non-producing genotypes. In a selection experiment conducted over approximately 20 bacterial generations and involving 140 populations of the pathogenic bacterium Pseudomonas aeruginosa PAO1, we assessed the impact of a lytic phage on competition between siderophore producers and non-producers. We show that the presence of lytic phages favours the non-producing genotype in competition, regardless of whether iron use relies on siderophores. Interestingly, phage pressure resulted in higher siderophore production, which constitutes a cost to the producers and may explain why they were outcompeted by non-producers. By the end of the experiment, however, cheating load reduced the fitness of mixed populations relative to producer monocultures, and only monocultures of producers managed to grow in the presence of phage in situations where siderophores were necessary to access iron. These results suggest that public goods production may be modulated in the presence of natural enemies with consequences for the evolution of social strategies.
Collapse
Affiliation(s)
- Marie Vasse
- Institut des Sciences de l'Evolution, CNRS-Université de Montpellier, Place Eugène Bataillon, Montpellier Cedex 5 34095, France
| | - Clara Torres-Barceló
- Institut des Sciences de l'Evolution, CNRS-Université de Montpellier, Place Eugène Bataillon, Montpellier Cedex 5 34095, France
| | - Michael E Hochberg
- Institut des Sciences de l'Evolution, CNRS-Université de Montpellier, Place Eugène Bataillon, Montpellier Cedex 5 34095, France Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
28
|
Connelly BD, Dickinson KJ, Hammarlund SP, Kerr B. Negative niche construction favors the evolution of cooperation. Evol Ecol 2015. [DOI: 10.1007/s10682-015-9803-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Kümmerli R, Santorelli LA, Granato ET, Dumas Z, Dobay A, Griffin AS, West SA. Co-evolutionary dynamics between public good producers and cheats in the bacterium Pseudomonas aeruginosa. J Evol Biol 2015; 28:2264-74. [PMID: 26348785 DOI: 10.1111/jeb.12751] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/17/2015] [Indexed: 01/20/2023]
Abstract
The production of beneficial public goods is common in the microbial world, and so is cheating--the exploitation of public goods by nonproducing mutants. Here, we examine co-evolutionary dynamics between cooperators and cheats and ask whether cooperators can evolve strategies to reduce the burden of exploitation, and whether cheats in turn can improve their exploitation abilities. We evolved cooperators of the bacterium Pseudomonas aeruginosa, producing the shareable iron-scavenging siderophore pyoverdine, together with cheats, defective in pyoverdine production but proficient in uptake. We found that cooperators managed to co-exist with cheats in 56% of all replicates over approximately 150 generations of experimental evolution. Growth and competition assays revealed that co-existence was fostered by a combination of general adaptions to the media and specific adaptions to the co-evolving opponent. Phenotypic screening and whole-genome resequencing of evolved clones confirmed this pattern, and suggest that cooperators became less exploitable by cheats because they significantly reduced their pyoverdine investment. Cheats, meanwhile, improved exploitation efficiency through mutations blocking the costly pyoverdine-signalling pathway. Moreover, cooperators and cheats evolved reduced motility, a pattern that likely represents adaptation to laboratory conditions, but at the same time also affects social interactions by reducing strain mixing and pyoverdine sharing. Overall, we observed parallel evolution, where co-existence of cooperators and cheats was enabled by a combination of adaptations to the abiotic and social environment and their interactions.
Collapse
Affiliation(s)
- R Kümmerli
- Microbial Evolutionary Ecology, Institute of Plant Biology, University of Zürich, Zürich, Switzerland.,Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | | | - E T Granato
- Microbial Evolutionary Ecology, Institute of Plant Biology, University of Zürich, Zürich, Switzerland
| | - Z Dumas
- Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - A Dobay
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - A S Griffin
- Department of Zoology, University of Oxford, Oxford, UK
| | - S A West
- Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Asfahl KL, Walsh J, Gilbert K, Schuster M. Non-social adaptation defers a tragedy of the commons in Pseudomonas aeruginosa quorum sensing. THE ISME JOURNAL 2015; 9:1734-46. [PMID: 25615439 PMCID: PMC4511930 DOI: 10.1038/ismej.2014.259] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 02/02/2023]
Abstract
In a process termed quorum sensing (QS), the opportunistic bacterial pathogen Pseudomonas aeruginosa uses diffusible signaling molecules to regulate the expression of numerous secreted factors or public goods that are shared within the population. But not all cells respond to QS signals. These social cheaters typically harbor a mutation in the QS receptor gene lasR and exploit the public goods produced by cooperators. Here we show that non-social adaptation under growth conditions that require QS-dependent public goods increases tolerance to cheating and defers a tragedy of the commons. The underlying mutation is in the transcriptional repressor gene psdR. This mutation has no effect on public goods expression but instead increases individual fitness by derepressing growth-limiting intracellular metabolism. Even though psdR mutant populations remain susceptible to invasion by isogenic psdR lasR cheaters, they bear a lower cheater load than do wild-type populations, and they are completely resistant to invasion by lasR cheaters with functional psdR. Mutations in psdR also sustain growth near wild-type levels when paired with certain partial loss-of-function lasR mutations. Targeted sequencing of multiple evolved isolates revealed that mutations in psdR arise before mutations in lasR, and rapidly sweep through the population. Our results indicate that a QS-favoring environment can lead to adaptations in non-social, intracellular traits that increase the fitness of cooperating individuals and thereby contribute to population-wide maintenance of QS and associated cooperative behaviors.
Collapse
Affiliation(s)
- Kyle L Asfahl
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Jessica Walsh
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Kerrigan Gilbert
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Martin Schuster
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
31
|
Mokkonen M, Lindstedt C. The evolutionary ecology of deception. Biol Rev Camb Philos Soc 2015; 91:1020-1035. [PMID: 26118820 DOI: 10.1111/brv.12208] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 12/15/2022]
Abstract
Through dishonest signals or actions, individuals often misinform others to their own benefit. We review recent literature to explore the evolutionary and ecological conditions for deception to be more likely to evolve and be maintained. We identify four conditions: (1) high misinformation potential through perceptual constraints of perceiver; (2) costs and benefits of responding to deception; (3) asymmetric power relationships between individuals and (4) exploitation of common goods. We discuss behavioural and physiological mechanisms that form a deception continuum from secrecy to overt signals. Deceptive tactics usually succeed by being rare and are often evolving under co-evolutionary arms races, sometimes leading to the evolution of polymorphism. The degree of deception can also vary depending on the environmental conditions. Finally, we suggest a conceptual framework for studying deception and highlight important questions for future studies.
Collapse
Affiliation(s)
- Mikael Mokkonen
- Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, Jyväskylä 40014, Finland. .,Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| | - Carita Lindstedt
- Department of Biological and Environmental Science, Centre of Excellence in Biological Interactions, University of Jyväskylä, PO Box 35, Jyväskylä 40014, Finland
| |
Collapse
|
32
|
Abstract
Bacteriophages are a major cause of bacterial mortality and impose strong selection on natural bacterial populations, yet their effects on the dynamics of conjugative plasmids have rarely been tested. We combined experimental evolution, mathematical modeling, and individual-based simulations to explain how the ecological and population genetics effects of bacteriophages upon bacteria interact to determine the dynamics of conjugative plasmids and their persistence. The ecological effects of bacteriophages on bacteria are predicted to limit the existence conditions for conjugative plasmids, preventing persistence under weak selection for plasmid accessory traits. Experiments showed that phages drove faster extinction of plasmids in environments where the plasmid conferred no benefit, but they also revealed more complex effects of phages on plasmid dynamics under these conditions, specifically, the temporary maintenance of plasmids at fixation followed by rapid loss. We hypothesized that the population genetic effects of bacteriophages, specifically, selection for phage resistance mutations, may have caused this. Further mathematical modeling and individual-based simulations supported our hypothesis, showing that conjugative plasmids may hitchhike with phage resistance mutations in the bacterial chromosome. Conjugative plasmids are infectious loops of DNA capable of transmitting DNA between bacterial cells and between species. Because plasmids often carry extra genes that allow bacteria to live in otherwise-inhospitable environments, their dynamics are central to understanding bacterial adaptive evolution. The plasmid-bacterium interaction has typically been studied in isolation, but in natural bacterial communities, bacteriophages, viruses that infect bacteria, are ubiquitous. Using experiments, mathematical models, and computer simulations we show that bacteriophages drive plasmid dynamics through their ecological and evolutionary effects on bacteria and ultimately limit the conditions allowing plasmid existence. These results advance our understanding of bacterial adaptation and show that bacteriophages could be used to select against plasmids carrying undesirable traits, such as antibiotic resistance.
Collapse
|
33
|
Wilder B, Stanley KO. Altruists Proliferate Even at a Selective Disadvantage within Their Own Niche. PLoS One 2015; 10:e0128654. [PMID: 26030734 PMCID: PMC4451246 DOI: 10.1371/journal.pone.0128654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 04/29/2015] [Indexed: 11/19/2022] Open
Abstract
The evolutionary origin of altruism is a long-standing puzzle. Numerous explanations have been proposed, most prominently based on inclusive fitness or group selection. One possibility that has not yet been considered is that new niches will be created disproportionately often when altruism appears, perhaps by chance, causing altruists to be over-represented in such new niches. This effect is a novel variant of group selection in which altruistic groups benefit by discovering unoccupied niches instead of by competing for the limited resources within a single niche. Both an analytical population genetics model and computational simulations support that altruism systematically arises due to this side effect of increased carrying capacity even when it is strongly selected against within any given niche. In fact, even when selection is very strongly negative and altruism does not develop in most populations, it can still be expected to be observed in a consistent fraction of species. The ecological structure provided by niches thereby may be sufficient for altruists to proliferate even if they are always at a disadvantage within each niche considered individually.
Collapse
Affiliation(s)
- Bryan Wilder
- Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL, USA
| | - Kenneth O. Stanley
- Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
34
|
Tazzyman SJ, Hall AR. Lytic phages obscure the cost of antibiotic resistance in Escherichia coli. ISME JOURNAL 2015; 9:809-20. [PMID: 25268496 DOI: 10.1038/ismej.2014.176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/21/2014] [Accepted: 08/25/2014] [Indexed: 01/07/2023]
Abstract
The long-term persistence of antibiotic-resistant bacteria depends on their fitness relative to other genotypes in the absence of drugs. Outside the laboratory, viruses that parasitize bacteria (phages) are ubiquitous, but costs of antibiotic resistance are typically studied in phage-free experimental conditions. We used a mathematical model and experiments with Escherichia coli to show that lytic phages strongly affect the incidence of antibiotic resistance in drug-free conditions. Under phage parasitism, the likelihood that antibiotic-resistant genetic backgrounds spread depends on their initial frequency, mutation rate and intrinsic growth rate relative to drug-susceptible genotypes, because these parameters determine relative rates of phage-resistance evolution on different genetic backgrounds. Moreover, the average cost of antibiotic resistance in terms of intrinsic growth in the antibiotic-free experimental environment was small relative to the benefits of an increased mutation rate in the presence of phages. This is consistent with our theoretical work indicating that, under phage selection, typical costs of antibiotic resistance can be outweighed by realistic increases in mutability if drug resistance and hypermutability are genetically linked, as is frequently observed in clinical isolates. This suggests the long-term distribution of antibiotic resistance depends on the relative rates at which different lineages adapt to other types of selection, which in the case of phage parasitism is probably extremely common, as well as costs of resistance inferred by classical in vitro methods.
Collapse
Affiliation(s)
| | - Alex R Hall
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
35
|
Misevic D, Frénoy A, Lindner AB, Taddei F. Shape matters: lifecycle of cooperative patches promotes cooperation in bulky populations. Evolution 2015; 69:788-802. [PMID: 25639379 PMCID: PMC4409860 DOI: 10.1111/evo.12616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/02/2015] [Indexed: 11/29/2022]
Abstract
Natural cooperative systems take many forms, ranging from one-dimensional cyanobacteria arrays to fractal-like biofilms. We use in silico experimental systems to study a previously overlooked factor in the evolution of cooperation, physical shape of the population. We compare the emergence and maintenance of cooperation in populations of digital organisms that inhabit bulky (100 × 100 cells) or slender (4 × 2500) toroidal grids. Although more isolated subpopulations of secretors in a slender population could be expected to favor cooperation, we find the opposite: secretion evolves to higher levels in bulky populations. We identify the mechanistic explanation for the shape effect by analyzing the lifecycle and dynamics of cooperator patches, from their emergence and growth, to invasion by noncooperators and extinction. Because they are constrained by the population shape, the cooperator patches expand less in slender than in bulky populations, leading to fewer cooperators, less public good secretion, and generally lower cooperation. The patch dynamics and mechanisms of shape effect are robust across several digital cooperation systems and independent of the underlying basis for cooperation (public good secretion or a cooperation game). Our results urge for a greater consideration of population shape in the study of the evolution of cooperation across experimental and modeling systems.
Collapse
Affiliation(s)
- Dusan Misevic
- Center for Research and Interdisciplinarity, INSERM U1001, Medicine Faculty, site Cochin Port-Royal, University Paris Descartes, Sorbonne Paris Cité, 24, rue du Faubourg Saint Jacques, 75014, Paris, France.
| | | | | | | |
Collapse
|
36
|
Scanlan PD, Hall AR, Blackshields G, Friman VP, Davis MR, Goldberg JB, Buckling A. Coevolution with bacteriophages drives genome-wide host evolution and constrains the acquisition of abiotic-beneficial mutations. Mol Biol Evol 2015; 32:1425-35. [PMID: 25681383 DOI: 10.1093/molbev/msv032] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Studies of antagonistic coevolution between hosts and parasites typically focus on resistance and infectivity traits. However, coevolution could also have genome-wide effects on the hosts due to pleiotropy, epistasis, or selection for evolvability. Here, we investigate these effects in the bacterium Pseudomonas fluorescens SBW25 during approximately 400 generations of evolution in the presence or absence of bacteriophage (coevolution or evolution treatments, respectively). Coevolution resulted in variable phage resistance, lower competitive fitness in the absence of phages, and greater genome-wide divergence both from the ancestor and between replicates, in part due to the evolution of increased mutation rates. Hosts from coevolution and evolution treatments had different suites of mutations. A high proportion of mutations observed in coevolved hosts were associated with a known phage target binding site, the lipopolysaccharide (LPS), and correlated with altered LPS length and phage resistance. Mutations in evolved bacteria were correlated with higher fitness in the absence of phages. However, the benefits of these growth-promoting mutations were completely lost when these bacteria were subsequently coevolved with phages, indicating that they were not beneficial in the presence of resistance mutations (consistent with negative epistasis). Our results show that in addition to affecting genome-wide evolution in loci not obviously linked to parasite resistance, coevolution can also constrain the acquisition of mutations beneficial for growth in the abiotic environment.
Collapse
Affiliation(s)
| | - Alex R Hall
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Gordon Blackshields
- Central Pathology Laboratory, Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College, Dublin, Ireland
| | - Ville-P Friman
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Michael R Davis
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA
| | - Joanna B Goldberg
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA
| | - Angus Buckling
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Ross-Gillespie A, Dumas Z, Kümmerli R. Evolutionary dynamics of interlinked public goods traits: an experimental study of siderophore production in Pseudomonas aeruginosa. J Evol Biol 2015; 28:29-39. [DOI: 10.1111/jeb.12559] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 02/03/2023]
Affiliation(s)
- A. Ross-Gillespie
- Microbial Evolutionary Ecology; Institute of Plant Biology; University of Zürich; Zürich Switzerland
| | - Z. Dumas
- Environmental Microbiology; Swiss Federal Institute of Aquatic Science and Technology (EAWAG); Dübendorf Switzerland
- Department of Ecology and Evolution; University of Lausanne; Lausanne Switzerland
| | - R. Kümmerli
- Microbial Evolutionary Ecology; Institute of Plant Biology; University of Zürich; Zürich Switzerland
- Environmental Microbiology; Swiss Federal Institute of Aquatic Science and Technology (EAWAG); Dübendorf Switzerland
| |
Collapse
|
38
|
Ray S, Dasgupta AK. Probiotics as cheater cells: parameter space clustering for individualized prescription. J Theor Biol 2014; 361:165-74. [PMID: 25066785 DOI: 10.1016/j.jtbi.2014.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 11/28/2022]
Abstract
Clinicians often perform infection management administering probiotics along with antibiotics. Such probiotics added to an infecting population showing antibiotic resistance can be compared to a dynamical system composed of cheaters and workers. The presence of cheater strains is known to modulate the fitness of the infecting population. We propose a model where probiotics as cheater strain re-establishes the susceptibility of a resistant population towards an antibiotic. Control parameters must assume optimal values in order to attain minimum worker number within a finite time-scale feasible in a clinical set-up. The problem is made non-trivial by the complicated interplay between parameters. The model is an extension of a logistic framework, where a pay-off function has been included to account for the effect of instantaneous worker number on death rates of each species. The outcomes for a randomized set of parameter values and initial conditions are utilized in partitioning the set and desired clusters were identified. For a test case, one can take random combinations of controllable parameters and combine them with fixed parameters and find out the closeness of the points to the desired cluster centroids. This process leads to the identification of optimum antibiotic versus probiotic dosage range leading to elimination or limited existence of the genetically resistant population.
Collapse
Affiliation(s)
- Sanhita Ray
- Department of Biochemistry and Center for Excellence in Systems Biology and Biomedical Engineering, University of Calcutta, Kolkata, India.
| | - Anjan Kr Dasgupta
- Department of Biochemistry and Center for Excellence in Systems Biology and Biomedical Engineering, University of Calcutta, Kolkata, India.
| |
Collapse
|
39
|
Leggett HC, Brown SP, Reece SE. War and peace: social interactions in infections. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130365. [PMID: 24686936 PMCID: PMC3982666 DOI: 10.1098/rstb.2013.0365] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
One of the most striking facts about parasites and microbial pathogens that has emerged in the fields of social evolution and disease ecology in the past few decades is that these simple organisms have complex social lives, indulging in a variety of cooperative, communicative and coordinated behaviours. These organisms have provided elegant experimental tests of the importance of relatedness, kin discrimination, cooperation and competition, in driving the evolution of social strategies. Here, we briefly review the social behaviours of parasites and microbial pathogens, including their contributions to virulence, and outline how inclusive fitness theory has helped to explain their evolution. We then take a mechanistically inspired ‘bottom-up’ approach, discussing how key aspects of the ways in which parasites and pathogens exploit hosts, namely public goods, mobile elements, phenotypic plasticity, spatial structure and multi-species interactions, contribute to the emergent properties of virulence and transmission. We argue that unravelling the complexities of within-host ecology is interesting in its own right, and also needs to be better incorporated into theoretical evolution studies if social behaviours are to be understood and used to control the spread and severity of infectious diseases.
Collapse
Affiliation(s)
- Helen C Leggett
- Department of Zoology, Oxford University, , South Parks Road, Oxford OX1 3PS, UK
| | | | | |
Collapse
|
40
|
Phages can constrain protist predation-driven attenuation of Pseudomonas aeruginosa virulence in multienemy communities. ISME JOURNAL 2014; 8:1820-30. [PMID: 24671085 DOI: 10.1038/ismej.2014.40] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 02/18/2014] [Accepted: 02/23/2014] [Indexed: 11/08/2022]
Abstract
The coincidental theory of virulence predicts that bacterial pathogenicity could be a by-product of selection by natural enemies in environmental reservoirs. However, current results are ambiguous and the simultaneous impact of multiple ubiquitous enemies, protists and phages on virulence evolution has not been investigated previously. Here we tested experimentally how Tetrahymena thermophila protist predation and PNM phage parasitism (bacteria-specific virus) alone and together affect the evolution of Pseudomonas aeruginosa PAO1 virulence, measured in wax moth larvae. Protist predation selected for small colony types, both in the absence and presence of phage, which showed decreased edibility to protists, reduced growth in the absence of enemies and attenuated virulence. Although phage selection alone did not affect the bacterial phenotype, it weakened protist-driven antipredatory defence (biofilm formation), its associated pleiotropic growth cost and the correlated reduction in virulence. These results suggest that protist selection can be a strong coincidental driver of attenuated bacterial virulence, and that phages can constrain this effect owing to effects on population dynamics and conflicting selection pressures. Attempting to define causal links such as these might help us to predict the cold and hot spots of coincidental virulence evolution on the basis of microbial community composition of environmental reservoirs.
Collapse
|
41
|
O'Brien S, Rodrigues AMM, Buckling A. The evolution of bacterial mutation rates under simultaneous selection by interspecific and social parasitism. Proc Biol Sci 2013; 280:20131913. [PMID: 24197408 PMCID: PMC3826219 DOI: 10.1098/rspb.2013.1913] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/09/2013] [Indexed: 02/05/2023] Open
Abstract
Many bacterial populations harbour substantial numbers of hypermutable bacteria, in spite of hypermutation being associated with deleterious mutations. One reason for the persistence of hypermutators is the provision of novel mutations, enabling rapid adaptation to continually changing environments, for example coevolving virulent parasites. However, hypermutation also increases the rate at which intraspecific parasites (social cheats) are generated. Interspecific and intraspecific parasitism are therefore likely to impose conflicting selection pressure on mutation rate. Here, we combine theory and experiments to investigate how simultaneous selection from inter- and intraspecific parasitism affects the evolution of bacterial mutation rates in the plant-colonizing bacterium Pseudomonas fluorescens. Both our theoretical and experimental results suggest that phage presence increases and selection for public goods cooperation (the production of iron-scavenging siderophores) decreases selection for mutator bacteria. Moreover, phages imposed a much greater growth cost than social cheating, and when both selection pressures were imposed simultaneously, selection for cooperation did not affect mutation rate evolution. Given the ubiquity of infectious phages in the natural environment and clinical infections, our results suggest that phages are likely to be more important than social interactions in determining mutation rate evolution.
Collapse
Affiliation(s)
- Siobhán O'Brien
- Department of Biosciences, University of Exeter, Tremough, Penryn, Cornwall TR10 9EZ, UK
| | | | - Angus Buckling
- Department of Biosciences, University of Exeter, Tremough, Penryn, Cornwall TR10 9EZ, UK
| |
Collapse
|
42
|
Kümmerli R, Ross-Gillespie A. EXPLAINING THE SOCIOBIOLOGY OF PYOVERDIN PRODUCINGPSEUDOMONAS: A COMMENT ON ZHANG AND RAINEY (2013). Evolution 2013; 68:3337-43. [DOI: 10.1111/evo.12311] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 10/30/2013] [Indexed: 01/10/2023]
Affiliation(s)
- Rolf Kümmerli
- Institute of Plant Biology; University of Zürich; Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Adin Ross-Gillespie
- Institute of Plant Biology; University of Zürich; Winterthurerstrasse 190 8057 Zürich Switzerland
| |
Collapse
|
43
|
Abstract
Heterotypic cooperation—two populations exchanging distinct benefits that are costly to produce—is widespread. Cheaters, exploiting benefits while evading contribution, can undermine cooperation. Two mechanisms can stabilize heterotypic cooperation. In ‘partner choice’, cooperators recognize and choose cooperating over cheating partners; in ‘partner fidelity feedback’, fitness-feedback from repeated interactions ensures that aiding your partner helps yourself. How might a spatial environment, which facilitates repeated interactions, promote fitness-feedback? We examined this process through mathematical models and engineered Saccharomyces cerevisiae strains incapable of recognition. Here, cooperators and their heterotypic cooperative partners (partners) exchanged distinct essential metabolites. Cheaters exploited partner-produced metabolites without reciprocating, and were competitively superior to cooperators. Despite initially random spatial distributions, cooperators gained more partner neighbors than cheaters did. The less a cheater contributed, the more it was excluded and disfavored. This self-organization, driven by asymmetric fitness effects of cooperators and cheaters on partners during cell growth into open space, achieves assortment. DOI:http://dx.doi.org/10.7554/eLife.00960.001 Cooperation between individuals of the same species, and also between different species, is known to be important in evolution. Large fish, for example, rely on small cleaner fish to remove parasites, while the small fish benefit from the nutrients in these parasites. However, cooperation can be undermined by other individuals or species who “cheat” by taking advantage of those who cooperate, without providing any benefits in return. For example, some cleaner fish cheat by biting off healthy tissue from their host, in addition to parasites. Genetically-related individuals who cooperate by sharing identical benefits can combat cheaters by giving preferential treatment to their relatives (a process known as kin discrimination) or by staying close to the relatives to form clusters (kin fidelity). However, two genetically-unrelated populations that mutually cooperate by sharing different benefits cannot employ these methods to overcome cheaters. Instead they rely on either partner choice or partner fidelity feedback. Partner choice – the approach adopted by cleaner fish and their hosts – relies on one population recognizing a signal from the other population and responding accordingly: for example, large fish observe cleaner fish and approach those that cooperate with their current host and avoid those that cheat. Partner fidelity feedback, on the other hand, relies on repeated interactions between the two populations providing an advantage in terms of evolutionary fitness to both: for example, organelles called mitochondria and chloroplasts live inside cells, helping the cells to harvest energy and providing energy for themselves and the host cells in the process. In some cases – such as the cooperation between figs and fig wasps, or between certain plants and the bacteria that fix nitrogen in their roots – researchers cannot agree if the populations are relying on partner choice or partner fidelity feedback. Now Momeni et al. have used a combination of experiments on yeast and mathematical modeling to explore partner fidelity feedback in greater detail. They started by using genetic engineering techniques to produce two species of yeast that mutually cooperate, each providing a metabolite that is essential to the other, but are not able to recognize each other: this means that these populations cannot rely on partner choice to combat cheaters. Momeni et al. then observed how these two species interacted with each other and a third species of yeast that cheated by consuming one of the metabolites without releasing any metabolite of its own. Momeni et al. found that as long as there was space for the yeast cells to grow into, the two species that cooperated self-organized into mixed clusters, with the cheating species being excluded from these clusters. The self-organization was driven by a positive feedback loop involving the two species that cooperated, with each species helping to increase the fitness of the other. The results of Momeni et al. demonstrate that it is possible for two genetically unrelated populations to cooperate and combat cheaters without the use of partner choice. DOI:http://dx.doi.org/10.7554/eLife.00960.002
Collapse
Affiliation(s)
- Babak Momeni
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | | | | |
Collapse
|
44
|
Abstract
Dense and diverse microbial communities are found in many environments. Disentangling the social interactions between strains and species is central to understanding microbes and how they respond to perturbations. However, the study of social evolution in microbes tends to focus on single species. Here, we broaden this perspective and review evolutionary and ecological theory relevant to microbial interactions across all phylogenetic scales. Despite increased complexity, we reduce the theory to a simple null model that we call the genotypic view. This states that cooperation will occur when cells are surrounded by identical genotypes at the loci that drive interactions, with genetic identity coming from recent clonal growth or horizontal gene transfer (HGT). In contrast, because cooperation is only expected to evolve between different genotypes under restrictive ecological conditions, different genotypes will typically compete. Competition between two genotypes includes mutual harm but, importantly, also many interactions that are beneficial to one of the two genotypes, such as predation. The literature offers support for the genotypic view with relatively few examples of cooperation between genotypes. However, the study of microbial interactions is still at an early stage. We outline the logic and methods that help to better evaluate our perspective and move us toward rationally engineering microbial communities to our own advantage.
Collapse
Affiliation(s)
- Sara Mitri
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom; ,
| | | |
Collapse
|
45
|
Abstract
Here, we studied how protist predation affects cooperation in the opportunistic pathogen bacterium Pseudomonas aeruginosa, which uses quorum sensing (QS) cell-to-cell signalling to regulate the production of public goods. By competing wild-type bacteria with QS mutants (cheats), we show that a functioning QS system confers an elevated resistance to predation. Surprisingly, cheats were unable to exploit this resistance in the presence of cooperators, which suggests that resistance does not appear to result from activation of QS-regulated public goods. Instead, elevated resistance of wild-type bacteria was related to the ability to form more predation-resistant biofilms. This could be explained by the expression of QS-regulated resistance traits in densely populated biofilms and floating cell aggregations, or alternatively, by a pleiotropic cost of cheating where less resistant cheats are selectively removed from biofilms. These results show that trophic interactions among species can maintain cooperation within species, and have further implications for P. aeruginosa virulence in environmental reservoirs by potentially enriching the cooperative and highly infective strains with functional QS system.
Collapse
|
46
|
O'Brien S, Hodgson DJ, Buckling A. The interplay between microevolution and community structure in microbial populations. Curr Opin Biotechnol 2013; 24:821-5. [PMID: 23545440 DOI: 10.1016/j.copbio.2013.02.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/14/2013] [Accepted: 02/24/2013] [Indexed: 11/18/2022]
Abstract
The structure of microbial communities is key to their functionality. However, this structure is likely to be influenced by adaptive genetic change in members of the community, which can occur over a matter of days. Changes in community structure can in turn influence the evolutionary trajectories of species within the community, further altering community structure. Microbial communities provide evidence for this interplay between rapid evolution and community structure. To date, studies are primarily limited to simple in vitro systems, but we suggest similar processes are inevitably operating in both natural and derived communities, which are important for biotechnology.
Collapse
Affiliation(s)
- Siobhán O'Brien
- Biosciences, University of Exeter, Penryn, Cornwall TR10 9EZ, United Kingdom.
| | | | | |
Collapse
|
47
|
Harrison F. Bacterial cooperation in the wild and in the clinic: are pathogen social behaviours relevant outside the laboratory? Bioessays 2012; 35:108-12. [PMID: 23281188 PMCID: PMC4267416 DOI: 10.1002/bies.201200154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Individual bacterial cells can communicate via quorum sensing, cooperate to harvest nutrients from their environment, form multicellular biofilms, compete over resources and even kill one another. When the environment that bacteria inhabit is an animal host, these social behaviours mediate virulence. Over the last decade, much attention has focussed on the ecology, evolution and pathology of bacterial cooperation, and the possibility that it could be exploited or destabilised to treat infections. But how far can we really extrapolate from theoretical predictions and laboratory experiments to make inferences about ‘cooperative’ behaviours in hosts and reservoirs? To determine the likely importance and evolution of cooperation ‘in the wild’, several questions must be addressed. A recent paper that reports the dynamics of bacterial cooperation and virulence in a field experiment provides an excellent nucleus for bringing together key empirical and theoretical results which help us to frame – if not completely to answer – these questions.
Collapse
Affiliation(s)
- Freya Harrison
- School of Molecular Medical Sciences, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
48
|
|
49
|
Adaptation to a new environment allows cooperators to purge cheaters stochastically. Proc Natl Acad Sci U S A 2012; 109:19079-86. [PMID: 23091010 DOI: 10.1073/pnas.1210190109] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cooperation via production of common goods is found in diverse life forms ranging from viruses to social animals. However, natural selection predicts a "tragedy of the commons": Cheaters, benefiting from without producing costly common goods, are more fit than cooperators and should destroy cooperation. In an attempt to discover novel mechanisms of cheater control, we eliminated known ones using a yeast cooperator-cheater system engineered to supply or exploit essential nutrients. Surprisingly, although less fit than cheaters, cooperators quickly dominated a fraction of cocultures. Cooperators isolated from these cocultures were superior to the cheater isolates they had been cocultured with, even though these cheaters were superior to ancestral cooperators. Resequencing and phenotypic analyses revealed that evolved cooperators and cheaters all harbored mutations adaptive to the nutrient-limited cooperative environment, allowing growth at a much lower concentration of nutrient than their ancestors. Even after the initial round of adaptation, evolved cooperators still stochastically dominated cheaters derived from them. We propose the "adaptive race" model: If during adaptation to an environment, the fitness gain of cooperators exceeds that of cheaters by at least the fitness cost of cooperation, the tragedy of the commons can be averted. Although cooperators and cheaters sample from the same pool of adaptive mutations, this symmetry is soon broken: The best cooperators purge cheaters and continue to grow, whereas the best cheaters cause rapid self-extinction. We speculate that adaptation to changing environments may contribute to the persistence of cooperative systems before the appearance of more sophisticated mechanisms of cheater control.
Collapse
|
50
|
Quigley BJZ, García López D, Buckling A, McKane AJ, Brown SP. The mode of host-parasite interaction shapes coevolutionary dynamics and the fate of host cooperation. Proc Biol Sci 2012; 279:3742-8. [PMID: 22740644 PMCID: PMC3415897 DOI: 10.1098/rspb.2012.0769] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Antagonistic coevolution between hosts and parasites can have a major impact on host population structures, and hence on the evolution of social traits. Using stochastic modelling techniques in the context of bacteria–virus interactions, we investigate the impact of coevolution across a continuum of host–parasite genetic specificity (specifically, where genotypes have the same infectivity/resistance ranges (matching alleles, MA) to highly variable ranges (gene-for-gene, GFG)) on population genetic structure, and on the social behaviour of the host. We find that host cooperation is more likely to be maintained towards the MA end of the continuum, as the more frequent bottlenecks associated with an MA-like interaction can prevent defector invasion, and can even allow migrant cooperators to invade populations of defectors.
Collapse
|