1
|
Venn AA, Techer N, Segonds N, Tambutté E, Tambutté S. Quantification of cytosolic 'free' calcium in isolated coral cells with confocal microscopy. J Exp Biol 2024; 227:jeb247638. [PMID: 39206669 DOI: 10.1242/jeb.247638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Despite its prominent role as an intracellular messenger in all organisms, cytosolic free calcium ([Ca2+]i) has never been quantified in corals or cnidarians in general. Ratiometric calcium dyes and cell imaging have been key methods in successful research on [Ca2+]i in model systems, and could be applied to corals. Here, we developed a procedure to quantify [Ca2+]i in isolated cells from the model coral species Stylophora pistillata using Indo-1 and confocal microscopy. We quantified [Ca2+]i in coral cells with and without intracellular dinoflagellate symbionts, and verified our procedure on cultured mammalian cells. We then used our procedure to measure changes in [Ca2+]i in coral cells exposed to a classic inhibitor of [Ca2+]i regulation, thapsigargin, and also used it to record elevations in [Ca2+]i in coral cells undergoing apoptosis. Our procedure paves the way for future studies into intracellular calcium in corals and other cnidarians.
Collapse
Affiliation(s)
- Alexander A Venn
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco
| | - Nathalie Techer
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco
| | - Natacha Segonds
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco
| | - Eric Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco
| |
Collapse
|
2
|
Helgoe J, Davy SK, Weis VM, Rodriguez-Lanetty M. Triggers, cascades, and endpoints: connecting the dots of coral bleaching mechanisms. Biol Rev Camb Philos Soc 2024; 99:715-752. [PMID: 38217089 DOI: 10.1111/brv.13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
The intracellular coral-dinoflagellate symbiosis is the engine that underpins the success of coral reefs, one of the most diverse ecosystems on the planet. However, the breakdown of the symbiosis and the loss of the microalgal symbiont (i.e. coral bleaching) due to environmental changes are resulting in the rapid degradation of coral reefs globally. There is an urgent need to understand the cellular physiology of coral bleaching at the mechanistic level to help develop solutions to mitigate the coral reef crisis. Here, at an unprecedented scope, we present novel models that integrate putative mechanisms of coral bleaching within a common framework according to the triggers (initiators of bleaching, e.g. heat, cold, light stress, hypoxia, hyposalinity), cascades (cellular pathways, e.g. photoinhibition, unfolded protein response, nitric oxide), and endpoints (mechanisms of symbiont loss, e.g. apoptosis, necrosis, exocytosis/vomocytosis). The models are supported by direct evidence from cnidarian systems, and indirectly through comparative evolutionary analyses from non-cnidarian systems. With this approach, new putative mechanisms have been established within and between cascades initiated by different bleaching triggers. In particular, the models provide new insights into the poorly understood connections between bleaching cascades and endpoints and highlight the role of a new mechanism of symbiont loss, i.e. 'symbiolysosomal digestion', which is different from symbiophagy. This review also increases the approachability of bleaching physiology for specialists and non-specialists by mapping the vast landscape of bleaching mechanisms in an atlas of comprehensible and detailed mechanistic models. We then discuss major knowledge gaps and how future research may improve the understanding of the connections between the diverse cascade of cellular pathways and the mechanisms of symbiont loss (endpoints).
Collapse
Affiliation(s)
- Joshua Helgoe
- Department of Biological Sciences, Institute of Environment, Florida International University, 11200 SW 8th Street, OE 167, Miami, FL, USA
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, 2701 SW Campus Way, 2403 Cordley Hall, Corvallis, OR, USA
| | - Mauricio Rodriguez-Lanetty
- Department of Biological Sciences, Institute of Environment, Florida International University, 11200 SW 8th Street, OE 167, Miami, FL, USA
- Department of Biological Sciences, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th Street, Miami, FL, USA
| |
Collapse
|
3
|
Bisanti L, La Corte C, Dara M, Bertini F, Parisi MG, Chemello R, Cammarata M, Parrinello D. Global warming-related response after bacterial challenge in Astroides calycularis, a Mediterranean thermophilic coral. Sci Rep 2024; 14:8495. [PMID: 38605161 PMCID: PMC11009343 DOI: 10.1038/s41598-024-58652-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
A worldwide increase in the prevalence of coral diseases and mortality has been linked to ocean warming due to changes in coral-associated bacterial communities, pathogen virulence, and immune system function. In the Mediterranean basin, the worrying upward temperature trend has already caused recurrent mass mortality events in recent decades. To evaluate how elevated seawater temperatures affect the immune response of a thermophilic coral species, colonies of Astroides calycularis were exposed to environmental (23 °C) or elevated (28 °C) temperatures, and subsequently challenged with bacterial lipopolysaccharides (LPS). Using immunolabeling with specific antibodies, we detected the production of Toll-like receptor 4 (TLR4) and nuclear factor kappa B (NF-kB), molecules involved in coral immune responses, and heat shock protein 70 (HSP70) activity, involved in general responses to thermal stress. A histological approach allowed us to characterize the tissue sites of activation (epithelium and/or gastroderm) under different experimental conditions. The activity patterns of the examined markers after 6 h of LPS stimulation revealed an up-modulation at environmental temperature. Under warmer conditions plus LPS-challenge, TLR4-NF-kB activation was almost completely suppressed, while constituent elevated values were recorded under thermal stress only. An HSP70 up-regulation appeared in both treatments at elevated temperature, with a significantly higher activation in LPS-challenge colonies. Such an approach is useful for further understanding the molecular pathogen-defense mechanisms in corals in order to disentangle the complex interactive effects on the health of these ecologically relevant organisms related to global climate change.
Collapse
Affiliation(s)
- L Bisanti
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - C La Corte
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - M Dara
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - F Bertini
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - M G Parisi
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - R Chemello
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| | - M Cammarata
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy.
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy.
| | - D Parrinello
- Department of Earth and Marine Sciences, University of Palermo, 90128, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90133, Palermo, Italy
| |
Collapse
|
4
|
Jacobovitz MR, Hambleton EA, Guse A. Unlocking the Complex Cell Biology of Coral-Dinoflagellate Symbiosis: A Model Systems Approach. Annu Rev Genet 2023; 57:411-434. [PMID: 37722685 DOI: 10.1146/annurev-genet-072320-125436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Symbiotic interactions occur in all domains of life, providing organisms with resources to adapt to new habitats. A prime example is the endosymbiosis between corals and photosynthetic dinoflagellates. Eukaryotic dinoflagellate symbionts reside inside coral cells and transfer essential nutrients to their hosts, driving the productivity of the most biodiverse marine ecosystem. Recent advances in molecular and genomic characterization have revealed symbiosis-specific genes and mechanisms shared among symbiotic cnidarians. In this review, we focus on the cellular and molecular processes that underpin the interaction between symbiont and host. We discuss symbiont acquisition via phagocytosis, modulation of host innate immunity, symbiont integration into host cell metabolism, and nutrient exchange as a fundamental aspect of stable symbiotic associations. We emphasize the importance of using model systems to dissect the cellular complexity of endosymbiosis, which ultimately serves as the basis for understanding its ecology and capacity to adapt in the face of climate change.
Collapse
Affiliation(s)
- Marie R Jacobovitz
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Elizabeth A Hambleton
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria;
| | - Annika Guse
- Faculty of Biology, Ludwig-Maximilians-Universität Munich, Munich, Germany;
| |
Collapse
|
5
|
Kaare-Rasmussen JO, Moeller HV, Pfab F. Modeling food dependent symbiosis in Exaiptasia pallida. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2023.110325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
6
|
Symbiosis with Dinoflagellates Alters Cnidarian Cell-Cycle Gene Expression. Cell Microbiol 2022. [DOI: 10.1155/2022/3330160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the cnidarian-dinoflagellate symbiosis, hosts show altered expression of genes involved in growth and proliferation when in the symbiotic state, but little is known about the molecular mechanisms that underlie the host’s altered growth rate. Using tissue-specific transcriptomics, we determined how symbiosis affects expression of cell cycle-associated genes, in the model symbiotic cnidarian Exaiptasia diaphana (Aiptasia). The presence of symbionts within the gastrodermis elicited cell-cycle arrest in the G1 phase in a larger proportion of host cells compared with the aposymbiotic gastrodermis. The symbiotic gastrodermis also showed a reduction in the amount of cells synthesizing their DNA and progressing through mitosis when compared with the aposymbiotic gastrodermis. Host apoptotic inhibitors (Mdm2) were elevated, while host apoptotic sensitizers (c-Myc) were depressed, in the symbiotic gastrodermis when compared with the aposymbiotic gastrodermis and epidermis of symbiotic anemones, respectively. This indicates that the presence of symbionts negatively regulates host apoptosis, possibly contributing to their persistence within the host. Transcripts (ATM/ATR) associated with DNA damage were also downregulated in symbiotic gastrodermal tissues. In epidermal cells, a single gene (Mob1) required for mitotic completion was upregulated in symbiotic compared with aposymbiotic anemones, suggesting that the presence of symbionts in the gastrodermis stimulates host cell division in the epidermis. To further corroborate this hypothesis, we performed microscopic analysis using an S-phase indicator (EdU), allowing us to evaluate cell cycling in host cells. Our results confirmed that there were significantly more proliferating host cells in both the gastrodermis and epidermis in the symbiotic state compared with the aposymbiotic state. Furthermore, when comparing between tissue layers in the presence of symbionts, the epidermis had significantly more proliferating host cells than the symbiont-containing gastrodermis. These results contribute to our understanding of the influence of symbionts on the mechanisms of cnidarian cell proliferation and mechanisms associated with symbiont maintenance.
Collapse
|
7
|
Larval transcriptomic responses of a stony coral, Acropora tenuis, during initial contact with the native symbiont, Symbiodinium microadriaticum. Sci Rep 2022; 12:2854. [PMID: 35190599 PMCID: PMC8861010 DOI: 10.1038/s41598-022-06822-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/07/2022] [Indexed: 02/07/2023] Open
Abstract
Although numerous dinoflagellate species (Family Symbiodiniaceae) are present in coral reef environments, Acropora corals tend to select a single species, Symbiodinium microadriaticum, in early life stages, even though this species is rarely found in mature colonies. In order to identify molecular mechanisms involved in initial contact with native symbionts, we analyzed transcriptomic responses of Acropora tenuis larvae at 1, 3, 6, 12, and 24 h after their first contact with S. microadriaticum, as well as with non-native symbionts, including the non-symbiotic S. natans and the occasional symbiont, S. tridacnidorum. Some gene expression changes were detected in larvae inoculated with non-native symbionts at 1 h post-inoculation, but those returned to baseline levels afterward. In contrast, when larvae were exposed to native symbionts, we found that the number of differentially expressed genes gradually increased in relation to inoculation time. As a specific response to native symbionts, upregulation of pattern recognition receptor-like and transporter genes, and suppression of cellular function genes related to immunity and apoptosis, were exclusively observed. These findings indicate that coral larvae recognize differences between symbionts, and when the appropriate symbionts infect, they coordinate gene expression to establish stable mutualism.
Collapse
|
8
|
Thummasan M, Casareto BE, Ramphul C, Suzuki T, Toyoda K, Suzuki Y. Physiological responses (Hsps 60 and 32, caspase 3, H 2O 2 scavenging, and photosynthetic activity) of the coral Pocillopora damicornis under thermal and high nitrate stresses. MARINE POLLUTION BULLETIN 2021; 171:112737. [PMID: 34298325 DOI: 10.1016/j.marpolbul.2021.112737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/22/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
This study explored the physiological responses of the coral Pocillopora damicornis to high nitrate concentrations and thermal stresses. The expression of heat shock proteins Hsp60 and Hsp32, Symbiodiniaceae density, Chl a concentration, Fv/Fm, H2O2 scavenging, and caspase 3 activity varied during 60 h incubations at 28 °C or 32 °C, ambient or high nitrate (~10 μM) concentrations, and their combinations. In combined stresses, corals showed a rapid and high oxidation level negatively affecting the Symbiodiniaceae density and Chl a concentration at 12 h, followed by caspase 3 and Hsps upregulations that induced apoptosis, bleaching and tissue detachment. Corals under thermal stress showed the highest oxidation and upregulation of Hsps and caspase 3 resulting in coral discoloration. High nitrate treatment alone did not seriously affect the coral function. Results showed that combined stress treatment severely affected coral physiology and, judging from the condition of detached tissues, these corals might have lower chances to recover.
Collapse
Affiliation(s)
- Montaphat Thummasan
- Environmental and Energy System, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Beatriz Estela Casareto
- Environmental and Energy System, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Chitra Ramphul
- Environmental and Energy System, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Toshiyuki Suzuki
- Environmental and Energy System, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Keita Toyoda
- Environmental and Energy System, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Yoshimi Suzuki
- Environmental and Energy System, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| |
Collapse
|
9
|
Snyder GA, Eliachar S, Connelly MT, Talice S, Hadad U, Gershoni-Yahalom O, Browne WE, Palmer CV, Rosental B, Traylor-Knowles N. Functional Characterization of Hexacorallia Phagocytic Cells. Front Immunol 2021; 12:662803. [PMID: 34381444 PMCID: PMC8350327 DOI: 10.3389/fimmu.2021.662803] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/03/2021] [Indexed: 11/20/2022] Open
Abstract
Phagocytosis is the cellular defense mechanism used to eliminate antigens derived from dysregulated or damaged cells, and microbial pathogens. Phagocytosis is therefore a pillar of innate immunity, whereby foreign particles are engulfed and degraded in lysolitic vesicles. In hexacorallians, phagocytic mechanisms are poorly understood, though putative anthozoan phagocytic cells (amoebocytes) have been identified histologically. We identify and characterize phagocytes from the coral Pocillopora damicornis and the sea anemone Nematostella vectensis. Using fluorescence-activated cell sorting and microscopy, we show that distinct populations of phagocytic cells engulf bacteria, fungal antigens, and beads. In addition to pathogenic antigens, we show that phagocytic cells engulf self, damaged cells. We show that target antigens localize to low pH phagolysosomes, and that degradation is occurring within them. Inhibiting actin filament rearrangement interferes with efficient particle phagocytosis but does not affect small molecule pinocytosis. We also demonstrate that cellular markers for lysolitic vesicles and reactive oxygen species (ROS) correlate with hexacorallian phagocytes. These results establish a foundation for improving our understanding of hexacorallian immune cell biology.
Collapse
Affiliation(s)
- Grace A Snyder
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States
| | - Shir Eliachar
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Michael T Connelly
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States
| | - Shani Talice
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Uzi Hadad
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Orly Gershoni-Yahalom
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - William E Browne
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Caroline V Palmer
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Benyamin Rosental
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Regenerative Medicine and Stem Cell Research Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States
| |
Collapse
|
10
|
Jacobovitz MR, Rupp S, Voss PA, Maegele I, Gornik SG, Guse A. Dinoflagellate symbionts escape vomocytosis by host cell immune suppression. Nat Microbiol 2021; 6:769-782. [PMID: 33927382 PMCID: PMC7611106 DOI: 10.1038/s41564-021-00897-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/25/2021] [Indexed: 02/02/2023]
Abstract
Alveolata comprises diverse taxa of single-celled eukaryotes, many of which are renowned for their ability to live inside animal cells. Notable examples are apicomplexan parasites and dinoflagellate symbionts, the latter of which power coral reef ecosystems. Although functionally distinct, they evolved from a common, free-living ancestor and must evade their host's immune response for persistence. Both the initial cellular events that gave rise to this intracellular lifestyle and the role of host immune modulation in coral-dinoflagellate endosymbiosis are poorly understood. Here, we use a comparative approach in the cnidarian endosymbiosis model Aiptasia, which re-establishes endosymbiosis with free-living dinoflagellates every generation. We find that uptake of microalgae is largely indiscriminate, but non-symbiotic microalgae are expelled by vomocytosis, while symbionts induce host cell innate immune suppression and form a lysosomal-associated membrane protein 1-positive niche. We demonstrate that exogenous immune stimulation results in symbiont expulsion and, conversely, inhibition of canonical Toll-like receptor signalling enhances infection of host animals. Our findings indicate that symbiosis establishment is dictated by local innate immune suppression, to circumvent expulsion and promote niche formation. This work provides insight into the evolution of the cellular immune response and key steps involved in mediating endosymbiotic interactions.
Collapse
Affiliation(s)
- Marie R Jacobovitz
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Sebastian Rupp
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Philipp A Voss
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Ira Maegele
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Sebastian G Gornik
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Annika Guse
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
11
|
Putnam HM. Avenues of reef-building coral acclimatization in response to rapid environmental change. J Exp Biol 2021; 224:224/Suppl_1/jeb239319. [DOI: 10.1242/jeb.239319] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABSTRACT
The swiftly changing climate presents a challenge to organismal fitness by creating a mismatch between the current environment and phenotypes adapted to historic conditions. Acclimatory mechanisms may be especially crucial for sessile benthic marine taxa, such as reef-building corals, where climate change factors including ocean acidification and increasing temperature elicit strong negative physiological responses such as bleaching, disease and mortality. Here, within the context of multiple stressors threatening marine organisms, I describe the wealth of metaorganism response mechanisms to rapid ocean change and the ontogenetic shifts in organism interactions with the environment that can generate plasticity. I then highlight the need to consider the interactions of rapid and evolutionary responses in an adaptive (epi)genetic continuum. Building on the definitions of these mechanisms and continuum, I also present how the interplay of the microbiome, epigenetics and parental effects creates additional avenues for rapid acclimatization. To consider under what conditions epigenetic inheritance has a more substantial role, I propose investigation into the offset of timing of gametogenesis leading to different environmental integration times between eggs and sperm and the consequences of this for gamete epigenetic compatibility. Collectively, non-genetic, yet heritable phenotypic plasticity will have significant ecological and evolutionary implications for sessile marine organism persistence under rapid climate change. As such, reef-building corals present ideal and time-sensitive models for further development of our understanding of adaptive feedback loops in a multi-player (epi)genetic continuum.
Collapse
Affiliation(s)
- Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
12
|
Umeki M, Yamashita H, Suzuki G, Sato T, Ohara S, Koike K. Fecal pellets of giant clams as a route for transporting Symbiodiniaceae to corals. PLoS One 2020; 15:e0243087. [PMID: 33326418 PMCID: PMC7743926 DOI: 10.1371/journal.pone.0243087] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/13/2020] [Indexed: 11/19/2022] Open
Abstract
Because more than 80% of species of gamete-spawning corals, including most Acroporidae species, do not inherit Symbiodiniaceae from their parents, they must acquire symbiont cells from sources in their environment. To determine whether photosynthetically competent Symbiodiniaceae expelled as fecal pellets from giant clams are capable of colonizing corals, we conducted laboratory experiments in which planula larvae of Acropora tenuis were inoculated with the cells in fecal pellets obtained from Tridacna crocea. T. crocea fecal pellets were administered once a day, and three days later, cells of Symbiodiniaceae from the fecal pellets had been taken up by the coral larvae. T. crocea fecal pellets were not supplied from the 4th day until the 8th day, and the cell densities in the larvae increased until the 8th day, which indicated the successful colonization by Symbiodiniaceae. The control group exhibited the highest mean percentage of larvae (100%) that were successfully colonized by culture strains of Symbiodiniaceae, and larvae inoculated with fecal pellets reached a colonization percentage of 66.7 ~ 96.7% on the 8th day. The highest colonization rate was achieved with the fecal pellets containing cells with high photosynthetic competency (Fv/Fm). Interestingly, the genetic composition of Symbiodiniaceae in the larvae retrieved on the 8th day differed from that in the fecal pellets and showed exclusive domination of the genus Symbiodinium. A minor but significant population of the genus Cladocopium in the fecal pellets was not inherited by the larvae. These experiments provided the first demonstration that the Symbiodiniaceae from tridacnine clams provided via fecal pellets can colonize and even proliferate in coral larvae.
Collapse
Affiliation(s)
- Masami Umeki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Hiroshi Yamashita
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Okinawa, Japan
| | - Go Suzuki
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Okinawa, Japan
| | - Taiki Sato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Shizuka Ohara
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Kazuhiko Koike
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
13
|
Bailey GF, Coelho JC, Poole AZ. Differential expression of Exaiptasia pallida GIMAP genes upon induction of apoptosis and autophagy suggests a potential role in cnidarian symbiosis and disease. J Exp Biol 2020; 223:jeb229906. [PMID: 32978315 DOI: 10.1242/jeb.229906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/15/2020] [Indexed: 01/11/2023]
Abstract
Coral reefs, one of the world's most productive and diverse ecosystems, are currently threatened by a variety of stressors that result in increased prevalence of both bleaching and disease. Therefore, understanding the molecular mechanisms involved in these responses is critical to mitigate future damage to the reefs. One group of genes that is potentially involved in cnidarian immunity and symbiosis is GTPases of immunity associated proteins (GIMAP). In vertebrates, this family of proteins is involved in regulating the fate of developing lymphocytes and interacts with proteins involved in apoptosis and autophagy. As apoptosis, autophagy and immunity have previously been shown to be involved in cnidarian symbiosis and disease, the goal of this research was to determine the role of cnidarian GIMAPs in these processes using the anemone Exaiptasia pallida To do so, GIMAP genes were characterized in the E. pallida genome and changes in gene expression were measured using qPCR in response to chemical induction of apoptosis, autophagy and treatment with the immune stimulant lipopolysaccharide (LPS) in both aposymbiotic and symbiotic anemones. The results revealed four GIMAP-like genes in E. pallida, referred to as Ep_GIMAPs Induction of apoptosis and autophagy resulted in a general downregulation of Ep_GIMAPs, but no significant changes were observed in response to LPS treatment. This indicates that Ep_GIMAPs may be involved in the regulation of apoptosis and autophagy, and therefore could play a role in cnidarian-dinoflagellate symbiosis. Overall, these results increase our knowledge on the function of GIMAPs in a basal metazoan.
Collapse
Affiliation(s)
- Grace F Bailey
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry, GA 30161, USA
| | - Jenny C Coelho
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry, GA 30161, USA
| | - Angela Z Poole
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry, GA 30161, USA
| |
Collapse
|
14
|
Sproles AE, Oakley CA, Krueger T, Grossman AR, Weis VM, Meibom A, Davy SK. Sub-cellular imaging shows reduced photosynthetic carbon and increased nitrogen assimilation by the non-native endosymbiont Durusdinium trenchii in the model cnidarian Aiptasia. Environ Microbiol 2020; 22:3741-3753. [PMID: 32592285 DOI: 10.1111/1462-2920.15142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/26/2020] [Accepted: 06/23/2020] [Indexed: 01/18/2023]
Abstract
Hosting different symbiont species can affect inter-partner nutritional fluxes within the cnidarian-dinoflagellate symbiosis. Using nanoscale secondary ion mass spectrometry (NanoSIMS), we measured the spatial incorporation of photosynthetically fixed 13 C and heterotrophically derived 15 N into host and symbiont cells of the model symbiotic cnidarian Aiptasia (Exaiptasia pallida) when colonized with its native symbiont Breviolum minutum or the non-native Durusdinium trenchii. Breviolum minutum exhibited high photosynthetic carbon assimilation per cell and translocation to host tissue throughout symbiosis establishment, whereas D. trenchii assimilated significantly less carbon, but obtained more host nitrogen. These findings suggest that D. trenchii has less potential to provide photosynthetically fixed carbon to the host despite obtaining considerable amounts of heterotrophically derived nitrogen. These sub-cellular events help explain previous observations that demonstrate differential effects of D. trenchii compared to B. minutum on the host transcriptome, proteome, metabolome and host growth and asexual reproduction. Together, these differential effects suggest that the non-native host-symbiont pairing is sub-optimal with respect to the host's nutritional benefits under normal environmental conditions. This contributes to our understanding of the ways in which metabolic integration impacts the benefits of a symbiotic association, and the potential evolution of novel host-symbiont pairings.
Collapse
Affiliation(s)
- Ashley E Sproles
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand.,The California Center for Algae Biotechnology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand
| | - Thomas Krueger
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland.,Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Arthur R Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, California, 94305, USA
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland.,Center for Advanced Surface Analysis, Institute of Earth Sciences, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand
| |
Collapse
|
15
|
Hartmann AC, Marhaver KL, Klueter A, Lovci MT, Closek CJ, Diaz E, Chamberland VF, Archer FI, Deheyn DD, Vermeij MJA, Medina M. Acquisition of obligate mutualist symbionts during the larval stage is not beneficial for a coral host. Mol Ecol 2019; 28:141-155. [PMID: 30506836 DOI: 10.1111/mec.14967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 09/13/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
Abstract
Theory suggests that the direct transmission of beneficial endosymbionts (mutualists) from parents to offspring (vertical transmission) in animal hosts is advantageous and evolutionarily stable, yet many host species instead acquire their symbionts from the environment (horizontal acquisition). An outstanding question in marine biology is why some scleractinian corals do not provision their eggs and larvae with the endosymbiotic dinoflagellates that are necessary for a juvenile's ultimate survival. We tested whether the acquisition of photosynthetic endosymbionts (family Symbiodiniaceae) during the planktonic larval stage was advantageous, as is widely assumed, in the ecologically important and threatened Caribbean reef-building coral Orbicella faveolata. Following larval acquisition, similar changes occurred in host energetic lipid use and gene expression regardless of whether their symbionts were photosynthesizing, suggesting the symbionts did not provide the energetic benefit characteristic of the mutualism in adults. Larvae that acquired photosymbionts isolated from conspecific adults on their natal reef exhibited a reduction in swimming, which may interfere with their ability to find suitable settlement substrate, and also a decrease in survival. Larvae exposed to two cultured algal species did not exhibit differences in survival, but decreased their swimming activity in response to one species. We conclude that acquiring photosymbionts during the larval stage confers no advantages and can in fact be disadvantageous to this coral host. The timing of symbiont acquisition appears to be a critical component of a host's life history strategy and overall reproductive fitness, and this timing itself appears to be under selective pressure.
Collapse
Affiliation(s)
- Aaron C Hartmann
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
| | | | | | - Michael T Lovci
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California
| | - Collin J Closek
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania
| | - Erika Diaz
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania
| | - Valérie F Chamberland
- CARMABI Foundation, Willemstad, Curaçao.,Aquatic Microbiology/Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.,SECORE International, Hilliard, Ohio
| | | | - Dimitri D Deheyn
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
| | - Mark J A Vermeij
- CARMABI Foundation, Willemstad, Curaçao.,Aquatic Microbiology/Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
16
|
Wright RM, Mera H, Kenkel CD, Nayfa M, Bay LK, Matz MV. Positive genetic associations among fitness traits support evolvability of a reef-building coral under multiple stressors. GLOBAL CHANGE BIOLOGY 2019; 25:3294-3304. [PMID: 31301206 DOI: 10.1111/gcb.14764] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/09/2019] [Accepted: 06/19/2019] [Indexed: 05/20/2023]
Abstract
Climate change threatens organisms in a variety of interactive ways that requires simultaneous adaptation of multiple traits. Predicting evolutionary responses requires an understanding of the potential for interactions among stressors and the genetic variance and covariance among fitness-related traits that may reinforce or constrain an adaptive response. Here we investigate the capacity of Acropora millepora, a reef-building coral, to adapt to multiple environmental stressors: rising sea surface temperature, ocean acidification, and increased prevalence of infectious diseases. We measured growth rates (weight gain), coral color (a proxy for Symbiodiniaceae density), and survival, in addition to nine physiological indicators of coral and algal health in 40 coral genets exposed to each of these three stressors singly and combined. Individual stressors resulted in predicted responses (e.g., corals developed lesions after bacterial challenge and bleached under thermal stress). However, corals did not suffer substantially more when all three stressors were combined. Nor were trade-offs observed between tolerances to different stressors; instead, individuals performing well under one stressor also tended to perform well under every other stressor. An analysis of genetic correlations between traits revealed positive covariances, suggesting that selection to multiple stressors will reinforce rather than constrain the simultaneous evolution of traits related to holobiont health (e.g., weight gain and algal density). These findings support the potential for rapid coral adaptation under climate change and emphasize the importance of accounting for corals' adaptive capacity when predicting the future of coral reefs.
Collapse
Affiliation(s)
- Rachel M Wright
- Department of Biological Sciences, Smith College, Northampton, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Hanaka Mera
- Australian Institute of Marine Science, Townsville, Qld, Australia
| | - Carly D Kenkel
- Australian Institute of Marine Science, Townsville, Qld, Australia
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Maria Nayfa
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Qld, Australia
| | - Line K Bay
- Australian Institute of Marine Science, Townsville, Qld, Australia
| | - Mikhail V Matz
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
17
|
Gabay Y, Parkinson JE, Wilkinson SP, Weis VM, Davy SK. Inter-partner specificity limits the acquisition of thermotolerant symbionts in a model cnidarian-dinoflagellate symbiosis. ISME JOURNAL 2019; 13:2489-2499. [PMID: 31186513 DOI: 10.1038/s41396-019-0429-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 02/07/2019] [Accepted: 04/10/2019] [Indexed: 01/19/2023]
Abstract
The ability of corals and other cnidarians to survive climate change depends partly on the composition of their endosymbiont communities. The dinoflagellate family Symbiodiniaceae is genetically and physiologically diverse, and one proposed mechanism for cnidarians to acclimate to rising temperatures is to acquire more thermally tolerant symbionts. However, cnidarian-dinoflagellate associations vary in their degree of specificity, which may limit their capacity to alter symbiont communities. Here, we inoculated symbiont-free polyps of the sea anemone Exaiptasia pallida (commonly referred to as 'Aiptasia'), a model system for the cnidarian-dinoflagellate symbiosis, with simultaneous or sequential mixtures of thermally tolerant and thermally sensitive species of Symbiodiniaceae. We then monitored symbiont success (relative proportional abundance) at normal and elevated temperatures across two to four weeks. All anemones showed signs of bleaching at high temperature. During simultaneous inoculations, the native, thermally sensitive Breviolum minutum colonized polyps most successfully regardless of temperature when paired against the non-native but more thermally tolerant Symbiodinium microadriaticum or Durusdinium trenchii. Furthermore, anemones initially colonized with B. minutum and subsequently exposed to S. microadriaticum failed to acquire the new symbiont. These results highlight how partner specificity may place strong limitations on the ability of certain cnidarians to acquire more thermally tolerant symbionts, and hence their adaptive potential under climate change.
Collapse
Affiliation(s)
- Yasmin Gabay
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, 6140, New Zealand
| | - John Everett Parkinson
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA.,Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Shaun P Wilkinson
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, 6140, New Zealand
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, 6140, New Zealand.
| |
Collapse
|
18
|
Unique quantitative Symbiodiniaceae signature of coral colonies revealed through spatio-temporal survey in Moorea. Sci Rep 2019; 9:7921. [PMID: 31138834 PMCID: PMC6538640 DOI: 10.1038/s41598-019-44017-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
One of the mechanisms of rapid adaptation or acclimatization to environmental changes in corals is through the dynamics of the composition of their associated endosymbiotic Symbiodiniaceae community. The various species of these dinoflagellates are characterized by different biological properties, some of which can confer stress tolerance to the coral host. Compelling evidence indicates that the corals’ Symbiodiniaceae community can change via shuffling and/or switching but the ecological relevance and the governance of these processes remain elusive. Using a qPCR approach to follow the dynamics of Symbiodiniaceae genera in tagged colonies of three coral species over a 10–18 month period, we detected putative genus-level switching of algal symbionts, with coral species-specific rates of occurrence. However, the dynamics of the corals’ Symbiodiniaceae community composition was not driven by environmental parameters. On the contrary, putative shuffling event were observed in two coral species during anomalous seawater temperatures and nutrient concentrations. Most notably, our results reveal that a suit of permanent Symbiodiniaceae genera is maintained in each colony in a specific range of quantities, giving a unique ‘Symbiodiniaceae signature’ to the host. This individual signature, together with sporadic symbiont switching may account for the intra-specific differences in resistance and resilience observed during environmental anomalies.
Collapse
|
19
|
Lin MF, Takahashi S, Forêt S, Davy SK, Miller DJ. Transcriptomic analyses highlight the likely metabolic consequences of colonization of a cnidarian host by native or non-native Symbiodinium species. Biol Open 2019; 8:bio.038281. [PMID: 30814067 PMCID: PMC6451341 DOI: 10.1242/bio.038281] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Reef-building corals and some other cnidarians form symbiotic relationships with members of the dinoflagellate family Symbiodinaceae. As Symbiodinaceae is a highly diverse taxon, the physiological interactions between its members and their hosts are assumed to differ between associations. The presence of different symbiont types is known to affect expression levels of specific host genes, but knowledge of the effects on the transcriptome more broadly remains limited. In the present study, transcriptome profiling was conducted on the tropical corallimorpharian, Ricordea yuma, following the establishment of symbiosis with either the ‘homologous’ symbiont Symbiodinium goreaui (also known as Cladocopium goreaui; ITS2 type C1) or ‘heterologous’ symbionts (predominantly S. trenchii, which is also known as Durusdinium trenchii; ITS2 type D1a) isolated from a different corallimorpharian host (Rhodactis indosinensis). Transcriptomic analyses showed that genes encoding host glycogen biosynthesis pathway components are more highly induced during colonization by the homologous symbiont than by the heterologous symbiont. Similar patterns were also observed for several other genes thought to facilitate symbiotic nutrient exchange, including those involved in lipid translocation/storage and metabolite transport. The gene expression results presented here imply that colonization by homologous or heterologous Symbiodinium types may have very different metabolic consequences for the Ricordea host, supporting the notion that even though some cnidarians may be able to form novel symbioses after bleaching, the metabolic performance of these may be compromised. This article has an associated First Person interview with the first author of the paper. Summary: Colonization by the homologous symbiont, Symbiodinium goreaui, resulted in greater glycogen synthesis and ammonium assimilation capacity in the host than when it was colonized by a heterologous symbiont (S. trenchii).
Collapse
Affiliation(s)
- Mei-Fang Lin
- Molecular and Cell Biology, James Cook University, Townsville, QLD 4811, Australia.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.,Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Shunichi Takahashi
- Division of Environmental Photobiology, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan
| | - Sylvain Forêt
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.,Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington 6140, New Zealand
| | - David J Miller
- Molecular and Cell Biology, James Cook University, Townsville, QLD 4811, Australia .,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
20
|
Piquet B, Shillito B, Lallier FH, Duperron S, Andersen AC. High rates of apoptosis visualized in the symbiont-bearing gills of deep-sea Bathymodiolus mussels. PLoS One 2019; 14:e0211499. [PMID: 30716127 PMCID: PMC6361440 DOI: 10.1371/journal.pone.0211499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/15/2019] [Indexed: 12/03/2022] Open
Abstract
Symbiosis between Bathymodiolus and Gammaproteobacteria allows these deep-sea mussels to live in toxic environments such as hydrothermal vents and cold seeps. The quantity of endosymbionts within the gill-bacteriocytes appears to vary according to the hosts environment; however, the mechanisms of endosymbiont population size regulation remain obscure. We investigated the possibility of a control of endosymbiont density by apoptosis, a programmed cell death, in three mussel species. Fluorometric TUNEL and active Caspase-3-targeting antibodies were used to visualize and quantify apoptotic cells in mussel gills. To control for potential artefacts due to depressurization upon specimen recovery from the deep-sea, the apoptotic rates between mussels recovered unpressurised, versus mussels recovered in a pressure-maintaining device, were compared in two species from hydrothermal vents on the Mid-Atlantic Ridge: Bathymodiolus azoricus and B. puteoserpentis. Results show that pressurized recovery had no significant effect on the apoptotic rate in the gill filaments. Apoptotic levels were highest in the ciliated zone and in the circulating hemocytes, compared to the bacteriocyte zone. Apoptotic gill-cells in B. aff. boomerang from cold seeps off the Gulf of Guinea show similar distribution patterns. Deep-sea symbiotic mussels have much higher rates of apoptosis in their gills than the coastal mussel Mytilus edulis, which lacks chemolithoautotrophic symbionts. We discuss how apoptosis might be one of the mechanisms that contribute to the adaptation of deep-sea mussels to toxic environments and/or to symbiosis.
Collapse
Affiliation(s)
- Bérénice Piquet
- Sorbonne Université, CNRS, Lab. Adaptation et Diversité en Milieu Marin, AD2M, Team: Adaptation et Biologie des Invertébrés marins en Conditions Extrêmes (UMR 7144), ABICE, Station Biologique de Roscoff, SBR, Roscoff, France
- Sorbonne Université, MNHN, CNRS, IRD, UCN, UA, Lab. Biologie des Organismes et Ecosystèmes Aquatiques BOREA (UMR 7208), Team: Adaptation aux Milieux Extrêmes, AMEX, 7 Quai Saint-Bernard, Paris, France
| | - Bruce Shillito
- Sorbonne Université, MNHN, CNRS, IRD, UCN, UA, Lab. Biologie des Organismes et Ecosystèmes Aquatiques BOREA (UMR 7208), Team: Adaptation aux Milieux Extrêmes, AMEX, 7 Quai Saint-Bernard, Paris, France
| | - François H. Lallier
- Sorbonne Université, CNRS, Lab. Adaptation et Diversité en Milieu Marin, AD2M, Team: Adaptation et Biologie des Invertébrés marins en Conditions Extrêmes (UMR 7144), ABICE, Station Biologique de Roscoff, SBR, Roscoff, France
| | - Sébastien Duperron
- Sorbonne Université, MNHN, CNRS, IRD, UCN, UA, Lab. Biologie des Organismes et Ecosystèmes Aquatiques BOREA (UMR 7208), Team: Adaptation aux Milieux Extrêmes, AMEX, 7 Quai Saint-Bernard, Paris, France
- Muséum National d’Histoire Naturelle, CNRS, Lab. Mécanismes de Communication et Adaptation des Micro-organismes (UMR 7245), Team: Cyanobactéries, Cyanotoxines et Environnement, CCE, 12 rue Buffon, Paris, France
- Institut Universitaire de France, Paris, France
- * E-mail: (ACA); (SD)
| | - Ann C. Andersen
- Sorbonne Université, CNRS, Lab. Adaptation et Diversité en Milieu Marin, AD2M, Team: Adaptation et Biologie des Invertébrés marins en Conditions Extrêmes (UMR 7144), ABICE, Station Biologique de Roscoff, SBR, Roscoff, France
- * E-mail: (ACA); (SD)
| |
Collapse
|
21
|
Mansfield KM, Gilmore TD. Innate immunity and cnidarian-Symbiodiniaceae mutualism. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 90:199-209. [PMID: 30268783 DOI: 10.1016/j.dci.2018.09.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
The phylum Cnidaria (sea anemones, corals, hydra, jellyfish) is one the most distantly related animal phyla to humans, and yet cnidarians harbor many of the same cellular pathways involved in innate immunity in mammals. In addition to its role in pathogen recognition, the innate immune system has a role in managing beneficial microbes and supporting mutualistic microbial symbioses. Some corals and sea anemones undergo mutualistic symbioses with photosynthetic algae in the family Symbiodiniaceae. These symbioses can be disrupted by anthropogenic disturbances of ocean environments, which can have devastating consequences for the health of coral reef ecosystems. Several studies of cnidarian-Symbiodiniaceae symbiosis have implicated proteins in the host immune system as playing a role in both symbiont tolerance and loss of symbiosis (i.e., bleaching). In this review, we critically evaluate current knowledge about the role of host immunity in the regulation of symbiosis in cnidarians.
Collapse
Affiliation(s)
| | - Thomas D Gilmore
- Department of Biology, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
22
|
Matthews JL, Oakley CA, Lutz A, Hillyer KE, Roessner U, Grossman AR, Weis VM, Davy SK. Partner switching and metabolic flux in a model cnidarian-dinoflagellate symbiosis. Proc Biol Sci 2018; 285:20182336. [PMID: 30487315 PMCID: PMC6283946 DOI: 10.1098/rspb.2018.2336] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/02/2018] [Indexed: 11/12/2022] Open
Abstract
Metabolite exchange is fundamental to the viability of the cnidarian-Symbiodiniaceae symbiosis and survival of coral reefs. Coral holobiont tolerance to environmental change might be achieved through changes in Symbiodiniaceae species composition, but differences in the metabolites supplied by different Symbiodiniaceae species could influence holobiont fitness. Using 13C stable-isotope labelling coupled to gas chromatography-mass spectrometry, we characterized newly fixed carbon fate in the model cnidarian Exaiptasia pallida (Aiptasia) when experimentally colonized with either native Breviolum minutum or non-native Durusdinium trenchii Relative to anemones containing B. minutum, D. trenchii-colonized hosts exhibited a 4.5-fold reduction in 13C-labelled glucose and reduced abundance and diversity of 13C-labelled carbohydrates and lipogenesis precursors, indicating symbiont species-specific modifications to carbohydrate availability and lipid storage. Mapping carbon fate also revealed significant alterations to host molecular signalling pathways. In particular, D. trenchii-colonized hosts exhibited a 40-fold reduction in 13C-labelled scyllo-inositol, a potential interpartner signalling molecule in symbiosis specificity. 13C-labelling also highlighted differential antioxidant- and ammonium-producing pathway activities, suggesting physiological responses to different symbiont species. Such differences in symbiont metabolite contribution and host utilization may limit the proliferation of stress-driven symbioses; this contributes valuable information towards future scenarios that select in favour of less-competent symbionts in response to environmental change.
Collapse
Affiliation(s)
- Jennifer L Matthews
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Adrian Lutz
- Metabolomics Australia, School of Botany, The University of Melbourne, Parkville 3052, Victoria, Australia
| | - Katie E Hillyer
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Ute Roessner
- Metabolomics Australia, School of Botany, The University of Melbourne, Parkville 3052, Victoria, Australia
| | - Arthur R Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| |
Collapse
|
23
|
Li Y, Liew YJ, Cui G, Cziesielski MJ, Zahran N, Michell CT, Voolstra CR, Aranda M. DNA methylation regulates transcriptional homeostasis of algal endosymbiosis in the coral model Aiptasia. SCIENCE ADVANCES 2018; 4:eaat2142. [PMID: 30116782 PMCID: PMC6093633 DOI: 10.1126/sciadv.aat2142] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/06/2018] [Indexed: 05/02/2023]
Abstract
The symbiotic relationship between cnidarians and dinoflagellates is the cornerstone of coral reef ecosystems. Although research has focused on the molecular mechanisms underlying this symbiosis, the role of epigenetic mechanisms, that is, the study of heritable changes that do not involve changes in the DNA sequence, is unknown. To assess the role of DNA methylation in the cnidarian-dinoflagellate symbiosis, we analyzed genome-wide CpG methylation, histone associations, and transcriptomic states of symbiotic and aposymbiotic anemones in the model system Aiptasia. We found that methylated genes are marked by histone 3 lysine 36 trimethylation (H3K36me3) and show significant reduction of spurious transcription and transcriptional noise, revealing a role of DNA methylation in the maintenance of transcriptional homeostasis. Changes in DNA methylation and expression show enrichment for symbiosis-related processes, such as immunity, apoptosis, phagocytosis recognition, and phagosome formation, and reveal intricate interactions between the underlying pathways. Our results demonstrate that DNA methylation provides an epigenetic mechanism of transcriptional homeostasis that responds to symbiosis.
Collapse
|
24
|
|
25
|
Zhou G, Cai L, Li Y, Tong H, Jiang L, Zhang Y, Lei X, Guo M, Liu S, Qian PY, Huang H. Temperature-Driven Local Acclimatization of Symbiodnium Hosted by the Coral Galaxea fascicularis at Hainan Island, China. Front Microbiol 2017; 8:2487. [PMID: 29312196 PMCID: PMC5733085 DOI: 10.3389/fmicb.2017.02487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 11/29/2017] [Indexed: 11/13/2022] Open
Abstract
The success of coral reef ecosystems largely depends on mutualistic symbiosis between scleractinian corals and the dinoflagellate photosymbiont Symbiodinium spp. However, further investigation is needed to elucidate the flexibility of coral-algae associations in response to environmental changes. In this study, we applied a molecular method (high-throughput internal transcribed spacer 2 region of ribosomal RNA gene amplicon sequencing) to explore diversity and flexibility of Symbiodinium associated with Galaxea fascicularis, an ecologically important scleractinian coral species collected at five locations around Hainan Island, South China Sea. The results revealed a high diversity of Symbiodinium subclades with C2r and D17 being dominant in G. fascicularis. Clade D Symbiodinium occurred most frequently in habitats where the annual average sea surface temperatures are the highest, suggesting that temperature is an important factor in determining Symbiodinium D abundance in G. fascicularis. The distribution of coral-Symbiodinium associations are possibly mediated by trade-off mechanisms which change the relative abundance of Symbiodinium clades/subclades under different environmental conditions. These findings provide further evidence that reef-building corals such as G. fascicularis can shuffle their symbionts to cope with environmental changes, and have implications for our understanding of the ecology of flexible coral-algal symbiosis.
Collapse
Affiliation(s)
- Guowei Zhou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Tropical Marine Biological Research Station in Hainan, Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
| | - Lin Cai
- Shenzhen Research Institute and Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Yuanchao Li
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Haoya Tong
- Shenzhen Research Institute and Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Lei Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yuyang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xinming Lei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Minglan Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Sheng Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Pei-Yuan Qian
- Shenzhen Research Institute and Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Hui Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Tropical Marine Biological Research Station in Hainan, Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
26
|
Optimal nutrient exchange and immune responses operate in partner specificity in the cnidarian-dinoflagellate symbiosis. Proc Natl Acad Sci U S A 2017; 114:13194-13199. [PMID: 29158383 DOI: 10.1073/pnas.1710733114] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The relationship between corals and dinoflagellates of the genus Symbiodinium is fundamental to the functioning of coral ecosystems. It has been suggested that reef corals may adapt to climate change by changing their dominant symbiont type to a more thermally tolerant one, although the capacity for such a shift is potentially hindered by the compatibility of different host-symbiont pairings. Here we combined transcriptomic and metabolomic analyses to characterize the molecular, cellular, and physiological processes that underlie this compatibility, with a particular focus on Symbiodinium trenchii, an opportunistic, thermally tolerant symbiont that flourishes in coral tissues after bleaching events. Symbiont-free individuals of the sea anemone Exaiptasia pallida (commonly referred to as Aiptasia), an established model system for the study of the cnidarian-dinoflagellate symbiosis, were colonized with the "normal" (homologous) symbiont Symbiodinium minutum and the heterologous S. trenchii Analysis of the host gene and metabolite expression profiles revealed that heterologous symbionts induced an expression pattern intermediate between the typical symbiotic state and the aposymbiotic state. Furthermore, integrated pathway analysis revealed that increased catabolism of fixed carbon stores, metabolic signaling, and immune processes occurred in response to the heterologous symbiont type. Our data suggest that both nutritional provisioning and the immune response induced by the foreign "invader" are important factors in determining the capacity of corals to adapt to climate change through the establishment of novel symbioses.
Collapse
|
27
|
Zheng P, Wang M, Li C, Sun X, Wang X, Sun Y, Sun S. Insights into deep-sea adaptations and host-symbiont interactions: A comparative transcriptome study on Bathymodiolus
mussels and their coastal relatives. Mol Ecol 2017; 26:5133-5148. [DOI: 10.1111/mec.14160] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Ping Zheng
- Key Laboratory of Marine Ecology and Environmental Sciences; Institute of Oceanology; Chinese Academy of Sciences; Qingdao China
- University of Chinese Academy of Sciences; Beijing China
| | - Minxiao Wang
- Key Laboratory of Marine Ecology and Environmental Sciences; Institute of Oceanology; Chinese Academy of Sciences; Qingdao China
- Deep Sea Research Center; Institute of Oceanology; Chinese Academy of Sciences; Qingdao China
| | - Chaolun Li
- Key Laboratory of Marine Ecology and Environmental Sciences; Institute of Oceanology; Chinese Academy of Sciences; Qingdao China
- University of Chinese Academy of Sciences; Beijing China
- Deep Sea Research Center; Institute of Oceanology; Chinese Academy of Sciences; Qingdao China
- Laboratory for Marine Ecology and Environmental Science; Qingdao National Laboratory for Marine Science and Technology; Qingdao China
| | | | - Xiaocheng Wang
- Key Laboratory of Marine Ecology and Environmental Sciences; Institute of Oceanology; Chinese Academy of Sciences; Qingdao China
- University of Chinese Academy of Sciences; Beijing China
| | - Yan Sun
- Key Laboratory of Marine Ecology and Environmental Sciences; Institute of Oceanology; Chinese Academy of Sciences; Qingdao China
| | - Song Sun
- Key Laboratory of Marine Ecology and Environmental Sciences; Institute of Oceanology; Chinese Academy of Sciences; Qingdao China
- University of Chinese Academy of Sciences; Beijing China
- Laboratory for Marine Ecology and Environmental Science; Qingdao National Laboratory for Marine Science and Technology; Qingdao China
- Jiaozhou Bay Marine Ecosystem Research Station; Chinese Academy of Sciences; Qingdao China
| |
Collapse
|
28
|
Mies M, Sumida PYG, Rädecker N, Voolstra CR. Marine Invertebrate Larvae Associated with Symbiodinium: A Mutualism from the Start? Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00056] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Sun J, Zhang Y, Xu T, Zhang Y, Mu H, Zhang Y, Lan Y, Fields CJ, Hui JHL, Zhang W, Li R, Nong W, Cheung FKM, Qiu JW, Qian PY. Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes. Nat Ecol Evol 2017; 1:121. [PMID: 28812709 DOI: 10.1038/s41559-017-0121] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 02/16/2017] [Indexed: 01/08/2023]
Abstract
Hydrothermal vents and methane seeps are extreme deep-sea ecosystems that support dense populations of specialized macro-benthos such as mussels. But the lack of genome information hinders the understanding of the adaptation of these animals to such inhospitable environments. Here we report the genomes of a deep-sea vent/seep mussel (Bathymodiolus platifrons) and a shallow-water mussel (Modiolus philippinarum). Phylogenetic analysis shows that these mussel species diverged approximately 110.4 million years ago. Many gene families, especially those for stabilizing protein structures and removing toxic substances from cells, are highly expanded in B. platifrons, indicating adaptation to extreme environmental conditions. The innate immune system of B. platifrons is considerably more complex than that of other lophotrochozoan species, including M. philippinarum, with substantial expansion and high expression levels of gene families that are related to immune recognition, endocytosis and caspase-mediated apoptosis in the gill, revealing presumed genetic adaptation of the deep-sea mussel to the presence of its chemoautotrophic endosymbionts. A follow-up metaproteomic analysis of the gill of B. platifrons shows methanotrophy, assimilatory sulfate reduction and ammonia metabolic pathways in the symbionts, providing energy and nutrients, which allow the host to thrive. Our study of the genomic composition allowing symbiosis in extremophile molluscs gives wider insights into the mechanisms of symbiosis in other organisms such as deep-sea tubeworms and giant clams.
Collapse
Affiliation(s)
- Jin Sun
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China.,Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yu Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Science, Shenzhen University, Shenzhen, China
| | - Ting Xu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Huawei Mu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yanjie Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yi Lan
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Christopher J Fields
- High Performance Computing in Biology, Roy J. Carver Biotechnology Centre, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jerome Ho Lam Hui
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Hong Kong, China
| | - Weipeng Zhang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Runsheng Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Wenyan Nong
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Hong Kong, China
| | - Fiona Ka Man Cheung
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, Centre for Soybean Research, Partner State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Pei-Yuan Qian
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China.,HKUST-CAS Joint Laboratory, Sanya Institute of Deep Sea Science and Engineering, Sanya 572000, China
| |
Collapse
|
30
|
McIlroy SE, Gillette P, Cunning R, Klueter A, Capo T, Baker AC, Coffroth MA. The effects of Symbiodinium (Pyrrhophyta) identity on growth, survivorship, and thermal tolerance of newly settled coral recruits. JOURNAL OF PHYCOLOGY 2016; 52:1114-1124. [PMID: 27690269 DOI: 10.1111/jpy.12471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/23/2016] [Indexed: 05/23/2023]
Abstract
For many coral species, the obligate association with phylogenetically diverse algal endosymbiont species is dynamic in time and space. Here, we used controlled laboratory inoculations of newly settled, aposymbiotic corals (Orbicella faveolata) with two cultured species of algal symbiont (Symbiodinium microadriaticum and S. minutum) to examine the role of symbiont identity on growth, survivorship, and thermal tolerance of the coral holobiont. We evaluated these data in the context of Symbiodinium photophysiology for 9 months post-settlement and also during a 5-d period of elevated temperatures Our data show that recruits that were inoculated with S. minutum grew significantly slower than those inoculated with S. microadriaticum (occasionally co-occurring with S. minutum), but that there was no difference in survivorship of O. faveolata polyps infected with Symbiodinium. However, photophysiological metrics (∆Fv/F'm, the efficiency with which available light is used to drive photosynthesis and α, the maximum light utilization coefficient) were higher in those slower growing recruits containing S. minutum. These findings suggest that light use (i.e., photophysiology) and carbon acquisition by the coral host (i.e., host growth) are decoupled, but did not distinguish the source of this difference. Neither Symbiodinium treatment demonstrated a significant negative effect of a 5-d exposure to temperatures as high as 32°C under low light conditions similar to those measured at settlement habitats.
Collapse
Affiliation(s)
- Shelby E McIlroy
- Graduate Program in Evolution, Ecology, and Behavior, University at Buffalo, 126 Cooke Hall, Buffalo, New York, 14260, USA
| | - Phillip Gillette
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Csy, Miami, Florida, 33149, USA
| | - Ross Cunning
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Csy, Miami, Florida, 33149, USA
| | - Anke Klueter
- Department of Geology, University at Buffalo, 126 Cooke Hall, Buffalo, New York, 14260, USA
| | - Tom Capo
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Csy, Miami, Florida, 33149, USA
| | - Andrew C Baker
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Csy, Miami, Florida, 33149, USA
| | - Mary Alice Coffroth
- Graduate Program in Evolution, Ecology, and Behavior, University at Buffalo, 126 Cooke Hall, Buffalo, New York, 14260, USA
| |
Collapse
|
31
|
Hawkins TD, Hagemeyer JCG, Warner ME. Temperature moderates the infectiousness of two conspecific
Symbiodinium
strains isolated from the same host population. Environ Microbiol 2016; 18:5204-5217. [DOI: 10.1111/1462-2920.13535] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/15/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Thomas D. Hawkins
- School of Marine Science and Policy, College of Earth, Ocean and EnvironmentUniversity of DelawareLewes Delaware, USA
| | - Julia. C. G. Hagemeyer
- School of Marine Science and Policy, College of Earth, Ocean and EnvironmentUniversity of DelawareLewes Delaware, USA
| | - Mark E. Warner
- School of Marine Science and Policy, College of Earth, Ocean and EnvironmentUniversity of DelawareLewes Delaware, USA
| |
Collapse
|
32
|
Masson F, Zaidman-Rémy A, Heddi A. Antimicrobial peptides and cell processes tracking endosymbiont dynamics. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150298. [PMID: 27160600 PMCID: PMC4874395 DOI: 10.1098/rstb.2015.0298] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2016] [Indexed: 11/12/2022] Open
Abstract
Many insects sustain long-term relationships with intracellular symbiotic bacteria that provide them with essential nutrients. Such endosymbiotic relationships likely emerged from ancestral infections of the host by free-living bacteria, the genomes of which experience drastic gene losses and rearrangements during the host-symbiont coevolution. While it is well documented that endosymbiont genome shrinkage results in the loss of bacterial virulence genes, whether and how the host immune system evolves towards the tolerance and control of bacterial partners remains elusive. Remarkably, many insects rely on a 'compartmentalization strategy' that consists in secluding endosymbionts within specialized host cells, the bacteriocytes, thus preventing direct symbiont contact with the host systemic immune system. In this review, we compile recent advances in the understanding of the bacteriocyte immune and cellular regulators involved in endosymbiont maintenance and control. We focus on the cereal weevils Sitophilus spp., in which bacteriocytes form bacteriome organs that strikingly evolve in structure and number according to insect development and physiological needs. We discuss how weevils track endosymbiont dynamics through at least two mechanisms: (i) a bacteriome local antimicrobial peptide synthesis that regulates endosymbiont cell cytokinesis and helps to maintain a homeostatic state within bacteriocytes and (ii) some cellular processes such as apoptosis and autophagy which adjust endosymbiont load to the host developmental requirements, hence ensuring a fine-tuned integration of symbiosis costs and benefits.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Florent Masson
- Université de Lyon, INSA-Lyon, INRA, BF2I, UMR0203, 69621 Villeurbanne, France
| | - Anna Zaidman-Rémy
- Université de Lyon, INSA-Lyon, INRA, BF2I, UMR0203, 69621 Villeurbanne, France
| | - Abdelaziz Heddi
- Université de Lyon, INSA-Lyon, INRA, BF2I, UMR0203, 69621 Villeurbanne, France
| |
Collapse
|
33
|
|
34
|
Cunning R, Silverstein RN, Baker AC. Investigating the causes and consequences of symbiont shuffling in a multi-partner reef coral symbiosis under environmental change. Proc Biol Sci 2016; 282:20141725. [PMID: 26041354 DOI: 10.1098/rspb.2014.1725] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Dynamic symbioses may critically mediate impacts of climate change on diverse organisms, with repercussions for ecosystem persistence in some cases. On coral reefs, increases in heat-tolerant symbionts after thermal bleaching can reduce coral susceptibility to future stress. However, the relevance of this adaptive response is equivocal owing to conflicting reports of symbiont stability and change. We help reconcile this conflict by showing that change in symbiont community composition (symbiont shuffling) in Orbicella faveolata depends on the disturbance severity and recovery environment. The proportion of heat-tolerant symbionts dramatically increased following severe experimental bleaching, especially in a warmer recovery environment, but tended to decrease if bleaching was less severe. These patterns can be explained by variation in symbiont performance in the changing microenvironments created by differentially bleached host tissues. Furthermore, higher proportions of heat-tolerant symbionts linearly increased bleaching resistance but reduced photochemical efficiency, suggesting that any change in community structure oppositely impacts performance and stress tolerance. Therefore, even minor symbiont shuffling can adaptively benefit corals, although fitness effects of resulting trade-offs are difficult to predict. This work helps elucidate causes and consequences of dynamism in symbiosis, which is critical to predicting responses of multi-partner symbioses such as O. faveolata to environmental change.
Collapse
Affiliation(s)
- R Cunning
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| | - R N Silverstein
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA Miami Waterkeeper, 12568 N. Kendall Dr., Miami, FL 33185, USA
| | - A C Baker
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA Wildlife Conservation Society, Marine Program, 2300 Southern Boulevard, Bronx, NY 10460, USA
| |
Collapse
|
35
|
Animal–Symbiodinium Symbioses: Foundations of Coral Reef Ecosystems. ADVANCES IN ENVIRONMENTAL MICROBIOLOGY 2016. [DOI: 10.1007/978-3-319-28068-4_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Camaya AP, Sekida S, Okuda K. Changes in the Ultrastructures of the Coral Pocillopora damicornis after Exposure to High Temperature, Ultraviolet and Far-Red Radiation. CYTOLOGIA 2016. [DOI: 10.1508/cytologia.81.465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Alex Pulvinar Camaya
- Graduate School of Kuroshio Science, Kochi University
- Coastal Resource Management Unit, Bicol University Tabaco Campus
| | - Satoko Sekida
- Graduate School of Kuroshio Science, Kochi University
| | - Kazuo Okuda
- Graduate School of Kuroshio Science, Kochi University
| |
Collapse
|
37
|
Krueger T, Hawkins TD, Becker S, Pontasch S, Dove S, Hoegh-Guldberg O, Leggat W, Fisher PL, Davy SK. Differential coral bleaching—Contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress. Comp Biochem Physiol A Mol Integr Physiol 2015; 190:15-25. [DOI: 10.1016/j.cbpa.2015.08.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/13/2015] [Accepted: 08/19/2015] [Indexed: 12/29/2022]
|
38
|
Masson F, Moné Y, Vigneron A, Vallier A, Parisot N, Vincent-Monégat C, Balmand S, Carpentier MC, Zaidman-Rémy A, Heddi A. Weevil endosymbiont dynamics is associated with a clamping of immunity. BMC Genomics 2015; 16:819. [PMID: 26482132 PMCID: PMC4617454 DOI: 10.1186/s12864-015-2048-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/08/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Insects subsisting on nutritionally unbalanced diets have evolved long-term mutualistic relationships with intracellular symbiotic bacteria (endosymbionts). The endosymbiont population load undergoes changes along with insect development. In the cereal weevil Sitophilus oryzae, the midgut endosymbionts Sodalis pierantonius drastically multiply following adult metamorphosis and rapidly decline until total elimination when the insect achieves its cuticle synthesis. Whilst symbiont load was shown to timely meet insect metabolic needs, little is known about the host molecular and immune processes underlying this dynamics. METHODS We performed RNA sequencing analysis on weevil midguts at three representative phases of the endosymbiont dynamics (i.e. increase, climax and decrease). To screen genes which transcriptional changes are specifically related to symbiont dynamics and not to the intrinsic development of the midgut, we further have monitored by RT-qPCR sixteen gene transcript levels in symbiotic and artificially non-symbiotic (aposymbiotic) weevils. We also localized the endosymbionts during the elimination process by fluorescence microscopy. RESULTS Functional analysis of the host differentially expressed genes by RNA sequencing showed that the main transcriptional changes occur during endosymbiont growth phase and affect cell proliferation, apoptosis, autophagy, phagocytosis, and metabolism of fatty acids and nucleic acids. We also showed that symbiont dynamics alters the expression of several genes involved in insect development. Our results strengthened the implication of apoptosis and autophagy processes in symbiont elimination and recycling. Remarkably, apart from the coleoptericin A that is known to target endosymbionts and controls their division and location, no gene coding antimicrobial peptide was upregulated during the symbiont growth and elimination phases. CONCLUSION We show that endosymbiont dynamics parallels numerous transcriptional changes in weevil developing adults and affects several biological processes, including metabolism and development. It also triggers cell apoptosis, autophagy and gut epithelial cell swelling and delamination. Strikingly, immunity is repressed during the whole process, presumably avoiding tissue inflammation and allowing insects to optimize nutrient recovery from recycled endosymbiont.
Collapse
Affiliation(s)
- Florent Masson
- Université de Lyon, INSA-Lyon, INRA, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, F-69621, Villeurbanne, France.
| | - Yves Moné
- Université de Lyon, INSA-Lyon, INRA, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, F-69621, Villeurbanne, France. .,Present address: Université Montpellier 2, INRA, UMR 1333 DGIMI, Diversité, Génomes et Interactions Micro-Organismes Insectes, F-34095, Montpellier, France.
| | - Aurélien Vigneron
- Université de Lyon, INSA-Lyon, INRA, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, F-69621, Villeurbanne, France. .,Present address: Department of Epidemiology and Public Health, Division of Epidemiology of Microbial Diseases, Yale University School of Medicine, New Haven, CT, USA.
| | - Agnès Vallier
- Université de Lyon, INSA-Lyon, INRA, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, F-69621, Villeurbanne, France.
| | - Nicolas Parisot
- Université de Lyon, INSA-Lyon, INRA, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, F-69621, Villeurbanne, France.
| | - Carole Vincent-Monégat
- Université de Lyon, INSA-Lyon, INRA, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, F-69621, Villeurbanne, France.
| | - Séverine Balmand
- Université de Lyon, INSA-Lyon, INRA, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, F-69621, Villeurbanne, France.
| | - Marie-Christine Carpentier
- Université de Lyon, CNRS, UMR5558 LBBE, Laboratoire de Biométrie et de Biologie Évolutive, F-69621, Villeurbanne, France.
| | - Anna Zaidman-Rémy
- Université de Lyon, INSA-Lyon, INRA, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, F-69621, Villeurbanne, France.
| | - Abdelaziz Heddi
- Université de Lyon, INSA-Lyon, INRA, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, F-69621, Villeurbanne, France.
| |
Collapse
|
39
|
Pinzón JH, Kamel B, Burge CA, Harvell CD, Medina M, Weil E, Mydlarz LD. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. ROYAL SOCIETY OPEN SCIENCE 2015; 2:140214. [PMID: 26064625 PMCID: PMC4448857 DOI: 10.1098/rsos.140214] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 03/04/2015] [Indexed: 05/18/2023]
Abstract
Climate change is negatively affecting the stability of natural ecosystems, especially coral reefs. The dissociation of the symbiosis between reef-building corals and their algal symbiont, or coral bleaching, has been linked to increased sea surface temperatures. Coral bleaching has significant impacts on corals, including an increase in disease outbreaks that can permanently change the entire reef ecosystem. Yet, little is known about the impacts of coral bleaching on the coral immune system. In this study, whole transcriptome analysis of the coral holobiont and each of the associate components (i.e. coral host, algal symbiont and other associated microorganisms) was used to determine changes in gene expression in corals affected by a natural bleaching event as well as during the recovery phase. The main findings include evidence that the coral holobiont and the coral host have different responses to bleaching, and the host immune system appears suppressed even a year after a bleaching event. These results support the hypothesis that coral bleaching changes the expression of innate immune genes of corals, and these effects can last even after recovery of symbiont populations. Research on the role of immunity on coral's resistance to stressors can help make informed predictions on the future of corals and coral reefs.
Collapse
Affiliation(s)
- Jorge H. Pinzón
- Department of Biology, University of Texas Arlington, Arlington, TX 76016, USA
- Author for correspondence: Jorge H. Pinzón e-mail:
| | - Bishoy Kamel
- Department of Biology, The Pennsylvania State University, State College, PA 16802, USA
| | - Colleen A. Burge
- Institute of Marine and Environmental Technology, University of Maryland Baltimore County Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - C. Drew Harvell
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Mónica Medina
- Department of Biology, The Pennsylvania State University, State College, PA 16802, USA
| | - Ernesto Weil
- Department of Marine Sciences, University of Puerto Rico—Mayagüez, La Parguera, PR 00865, USA
| | - Laura D. Mydlarz
- Department of Biology, University of Texas Arlington, Arlington, TX 76016, USA
| |
Collapse
|
40
|
Garcia JR, Gerardo NM. The symbiont side of symbiosis: do microbes really benefit? Front Microbiol 2014; 5:510. [PMID: 25309530 PMCID: PMC4176458 DOI: 10.3389/fmicb.2014.00510] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 09/10/2014] [Indexed: 11/24/2022] Open
Abstract
Microbial associations are integral to all eukaryotes. Mutualism, the interaction of two species for the benefit of both, is an important aspect of microbial associations, with evidence that multicellular organisms in particular benefit from microbes. However, the microbe’s perspective has largely been ignored, and it is unknown whether most microbial symbionts benefit from their associations with hosts. It has been presumed that microbial symbionts receive host-derived nutrients or a competition-free environment with reduced predation, but there have been few empirical tests, or even critical assessments, of these assumptions. We evaluate these hypotheses based on available evidence, which indicate reduced competition and predation are not universal benefits for symbionts. Some symbionts do receive nutrients from their host, but this has not always been linked to a corresponding increase in symbiont fitness. We recommend experiments to test symbiont fitness using current experimental systems of symbiosis and detail considerations for other systems. Incorporating symbiont fitness into symbiosis research will provide insight into the evolution of mutualistic interactions and cooperation in general.
Collapse
Affiliation(s)
- Justine R Garcia
- Gerardo Lab, Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, GA USA
| | - Nicole M Gerardo
- Gerardo Lab, Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, GA USA
| |
Collapse
|
41
|
Cunning R, Baker AC. Not just who, but how many: the importance of partner abundance in reef coral symbioses. Front Microbiol 2014; 5:400. [PMID: 25136339 PMCID: PMC4120693 DOI: 10.3389/fmicb.2014.00400] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 07/16/2014] [Indexed: 11/18/2022] Open
Abstract
The performance and function of reef corals depends on the genetic identity of their symbiotic algal partners, with some symbionts providing greater benefits (e.g., photosynthate, thermotolerance) than others. However, these interaction outcomes may also depend on partner abundance, with differences in the total number of symbionts changing the net benefit to the coral host, depending on the particular environmental conditions. We suggest that symbiont abundance is a fundamental aspect of the dynamic interface between reef corals and the abiotic environment that ultimately determines the benefits, costs, and functional responses of these symbioses. This density-dependent framework suggests that corals may regulate the size of their symbiont pool to match microhabitat-specific optima, which may contribute to the high spatiotemporal variability in symbiont abundance observed within and among colonies and reefs. Differences in symbiont standing stock may subsequently explain variation in energetics, growth, reproduction, and stress susceptibility, and may mediate the impacts of environmental change on these outcomes. However, the importance of symbiont abundance has received relatively little recognition, possibly because commonly-used metrics based on surface area (e.g., symbiont cells cm-2) may be only weakly linked to biological phenomena and are difficult to compare across studies. We suggest that normalizing symbionts to biological host parameters, such as units of protein or numbers of host cells, will more clearly elucidate the functional role of symbiont abundance in reef coral symbioses. In this article, we generate testable hypotheses regarding the importance of symbiont abundance by first discussing different metrics and their potential links to symbiosis performance and breakdown, and then describing how natural variability and dynamics of symbiont communities may help explain ecological patterns on coral reefs and predict responses to environmental change.
Collapse
Affiliation(s)
- Ross Cunning
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami Miami, FL, USA
| | - Andrew C Baker
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami Miami, FL, USA
| |
Collapse
|
42
|
Extensive differences in gene expression between symbiotic and aposymbiotic cnidarians. G3-GENES GENOMES GENETICS 2014; 4:277-95. [PMID: 24368779 PMCID: PMC3931562 DOI: 10.1534/g3.113.009084] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Coral reefs provide habitats for a disproportionate number of marine species relative to the small area of the oceans that they occupy. The mutualism between the cnidarian animal hosts and their intracellular dinoflagellate symbionts provides the nutritional foundation for coral growth and formation of reef structures, because algal photosynthesis can provide >90% of the total energy of the host. Disruption of this symbiosis (“coral bleaching”) is occurring on a large scale due primarily to anthropogenic factors and poses a major threat to the future of coral reefs. Despite the importance of this symbiosis, the cellular mechanisms involved in its establishment, maintenance, and breakdown remain largely unknown. We report our continued development of genomic tools to study these mechanisms in Aiptasia, a small sea anemone with great promise as a model system for studies of cnidarian–dinoflagellate symbiosis. Specifically, we have generated de novo assemblies of the transcriptomes of both a clonal line of symbiotic anemones and their endogenous dinoflagellate symbionts. We then compared transcript abundances in animals with and without dinoflagellates. This analysis identified >900 differentially expressed genes and allowed us to generate testable hypotheses about the cellular functions affected by symbiosis establishment. The differentially regulated transcripts include >60 encoding proteins that may play roles in transporting various nutrients between the symbiotic partners; many more encoding proteins functioning in several metabolic pathways, providing clues regarding how the transported nutrients may be used by the partners; and several encoding proteins that may be involved in host recognition and tolerance of the dinoflagellate.
Collapse
|
43
|
Libro S, Kaluziak ST, Vollmer SV. RNA-seq profiles of immune related genes in the staghorn coral Acropora cervicornis infected with white band disease. PLoS One 2013; 8:e81821. [PMID: 24278460 PMCID: PMC3836749 DOI: 10.1371/journal.pone.0081821] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/24/2013] [Indexed: 01/20/2023] Open
Abstract
Coral diseases are among the most serious threats to coral reefs worldwide, yet most coral diseases remain poorly understood. How the coral host responds to pathogen infection is an area where very little is known. Here we used next-generation RNA-sequencing (RNA-seq) to produce a transcriptome-wide profile of the immune response of the Staghorn coral Acropora cervicornis to White Band Disease (WBD) by comparing infected versus healthy (asymptomatic) coral tissues. The transcriptome of A. cervicornis was assembled de novo from A-tail selected Illumina mRNA-seq data from whole coral tissues, and parsed bioinformatically into coral and non-coral transcripts using existing Acropora genomes in order to identify putative coral transcripts. Differentially expressed transcripts were identified in the coral and non-coral datasets to identify genes that were up- and down-regulated due to disease infection. RNA-seq analyses indicate that infected corals exhibited significant changes in gene expression across 4% (1,805 out of 47,748 transcripts) of the coral transcriptome. The primary response to infection included transcripts involved in macrophage-mediated pathogen recognition and ROS production, two hallmarks of phagocytosis, as well as key mediators of apoptosis and calcium homeostasis. The strong up-regulation of the enzyme allene oxide synthase-lipoxygenase suggests a key role of the allene oxide pathway in coral immunity. Interestingly, none of the three primary innate immune pathways - Toll-like receptors (TLR), Complement, and prophenoloxydase pathways, were strongly associated with the response of A. cervicornis to infection. Five-hundred and fifty differentially expressed non-coral transcripts were classified as metazoan (n = 84), algal or plant (n = 52), fungi (n = 24) and protozoans (n = 13). None of the 52 putative Symbiodinium or algal transcript had any clear immune functions indicating that the immune response is driven by the coral host, and not its algal symbionts.
Collapse
Affiliation(s)
- Silvia Libro
- Marine Science Center, Northeastern University, Nahant, Massachusetts, United States of America
- * E-mail:
| | - Stefan T. Kaluziak
- Marine Science Center, Northeastern University, Nahant, Massachusetts, United States of America
| | - Steven V. Vollmer
- Marine Science Center, Northeastern University, Nahant, Massachusetts, United States of America
| |
Collapse
|
44
|
Dunlap WC, Starcevic A, Baranasic D, Diminic J, Zucko J, Gacesa R, van Oppen MJH, Hranueli D, Cullum J, Long PF. KEGG orthology-based annotation of the predicted proteome of Acropora digitifera: ZoophyteBase - an open access and searchable database of a coral genome. BMC Genomics 2013; 14:509. [PMID: 23889801 PMCID: PMC3750612 DOI: 10.1186/1471-2164-14-509] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/15/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Contemporary coral reef research has firmly established that a genomic approach is urgently needed to better understand the effects of anthropogenic environmental stress and global climate change on coral holobiont interactions. Here we present KEGG orthology-based annotation of the complete genome sequence of the scleractinian coral Acropora digitifera and provide the first comprehensive view of the genome of a reef-building coral by applying advanced bioinformatics. DESCRIPTION Sequences from the KEGG database of protein function were used to construct hidden Markov models. These models were used to search the predicted proteome of A. digitifera to establish complete genomic annotation. The annotated dataset is published in ZoophyteBase, an open access format with different options for searching the data. A particularly useful feature is the ability to use a Google-like search engine that links query words to protein attributes. We present features of the annotation that underpin the molecular structure of key processes of coral physiology that include (1) regulatory proteins of symbiosis, (2) planula and early developmental proteins, (3) neural messengers, receptors and sensory proteins, (4) calcification and Ca2+-signalling proteins, (5) plant-derived proteins, (6) proteins of nitrogen metabolism, (7) DNA repair proteins, (8) stress response proteins, (9) antioxidant and redox-protective proteins, (10) proteins of cellular apoptosis, (11) microbial symbioses and pathogenicity proteins, (12) proteins of viral pathogenicity, (13) toxins and venom, (14) proteins of the chemical defensome and (15) coral epigenetics. CONCLUSIONS We advocate that providing annotation in an open-access searchable database available to the public domain will give an unprecedented foundation to interrogate the fundamental molecular structure and interactions of coral symbiosis and allow critical questions to be addressed at the genomic level based on combined aspects of evolutionary, developmental, metabolic, and environmental perspectives.
Collapse
Affiliation(s)
- Walter C Dunlap
- Centre for Marine Microbiology and Genetics, Australian Institute of Marine Science, PMB No. 3 Townsville MC, Townsville 4810, Queensland, Australia
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Antonio Starcevic
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Damir Baranasic
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Janko Diminic
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Jurica Zucko
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Ranko Gacesa
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Madeleine JH van Oppen
- Centre for Marine Microbiology and Genetics, Australian Institute of Marine Science, PMB No. 3 Townsville MC, Townsville 4810, Queensland, Australia
| | - Daslav Hranueli
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - John Cullum
- Department of Genetics, University of Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany
| | - Paul F Long
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
- Department of Chemistry King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| |
Collapse
|
45
|
Paxton CW, Davy SK, Weis VM. Stress and death of cnidarian host cells play a role in cnidarian bleaching. J Exp Biol 2013; 216:2813-20. [DOI: 10.1242/jeb.087858] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Coral bleaching occurs when there is a breakdown of the symbiosis between cnidarian hosts and resident Symbiodinium spp. Multiple mechanisms for the bleaching process have been identified including apoptosis and autophagy, and most previous work has focused on the Symbiodinium cell as the initiator of the bleaching cascade. In this work we show that it is possible for host cells to initiate apoptosis that can contribute to death of the Symbiodinium cell. First we found that colchicine, which results in apoptosis in other animals, causes cell death in the model anemone Aiptasia sp. but not in cultured Symbiodinium CCMP-830 cells or in cells freshly isolated from host Aiptasia (at least within the time-frame of our study). In contrast, when symbiotic Aiptasia was incubated in colchicine, cell death in the resident Symbiodinium cells was observed, suggesting a host effect on symbiont mortality. Using live-cell confocal imaging of macerated symbiotic host cell isolates, we identified a pattern where the initiation of host cell death was followed by mortality of the resident Symbiodinium cells. This same pattern was observed in symbiotic host cells that were subjected to temperature stress. This research suggests that mortality of symbionts during temperature-induced bleaching can be initiated in part by host cell apoptosis.
Collapse
|
46
|
Meyer E, Weis VM. Study of cnidarian-algal symbiosis in the "omics" age. THE BIOLOGICAL BULLETIN 2012; 223:44-65. [PMID: 22983032 DOI: 10.1086/bblv223n1p44] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The symbiotic associations between cnidarians and dinoflagellate algae (Symbiodinium) support productive and diverse ecosystems in coral reefs. Many aspects of this association, including the mechanistic basis of host-symbiont recognition and metabolic interaction, remain poorly understood. The first completed genome sequence for a symbiotic anthozoan is now available (the coral Acropora digitifera), and extensive expressed sequence tag resources are available for a variety of other symbiotic corals and anemones. These resources make it possible to profile gene expression, protein abundance, and protein localization associated with the symbiotic state. Here we review the history of "omics" studies of cnidarian-algal symbiosis and the current availability of sequence resources for corals and anemones, identifying genes putatively involved in symbiosis across 10 anthozoan species. The public availability of candidate symbiosis-associated genes leaves the field of cnidarian-algal symbiosis poised for in-depth comparative studies of sequence diversity and gene expression and for targeted functional studies of genes associated with symbiosis. Reviewing the progress to date suggests directions for future investigations of cnidarian-algal symbiosis that include (i) sequencing of Symbiodinium, (ii) proteomic analysis of the symbiosome membrane complex, (iii) glycomic analysis of Symbiodinium cell surfaces, and (iv) expression profiling of the gastrodermal cells hosting Symbiodinium.
Collapse
Affiliation(s)
- Eli Meyer
- Department of Zoology, Oregon State University, Corvallis, Oregon 97331, USA.
| | | |
Collapse
|
47
|
Dunn SR, Pernice M, Green K, Hoegh-Guldberg O, Dove SG. Thermal stress promotes host mitochondrial degradation in symbiotic cnidarians: are the batteries of the reef going to run out? PLoS One 2012; 7:e39024. [PMID: 22815696 PMCID: PMC3398039 DOI: 10.1371/journal.pone.0039024] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/16/2012] [Indexed: 01/27/2023] Open
Abstract
The symbiotic relationship between cnidarians and their dinoflagellate symbionts, Symbiodinium spp, which underpins the formation of tropical coral reefs, can be destabilized by rapid changes to environmental conditions. Although some studies have concluded that a breakdown in the symbiosis begins with increased reactive oxygen species (ROS) generation within the symbiont due to a decoupling of photosynthesis, others have reported the release of viable symbionts via a variety of host cell derived mechanisms. We explored an alternative model focused upon changes in host cnidarian mitochondrial integrity in response to thermal stress. Mitochondria are often likened to being batteries of the cell, providing energy in the form of ATP, and controlling cellular pathway activation and ROS generation. The overall morphology of host mitochondria was compared to that of associated symbionts under an experimental thermal stress using confocal and electron microscopy. The results demonstrate that hyperthermic stress induces the degradation of cnidarian host mitochondria that is independent of symbiont cellular deterioration. The potential sites of host mitochondrial disruption were also assessed by measuring changes in the expression of genes associated with electron transport and ATP synthesis using quantitative RT-PCR. The primary site of degradation appeared to be downstream of complex III of the electron transport chain with a significant reduction in host cytochrome c and ATP synthase expression. The consequences of reduced expression could limit the capacity of the host to mitigate ROS generation and maintain both organelle integrity and cellular energy supplies. The disruption of host mitochondria, cellular homeostasis, and subsequent cell death irrespective of symbiont integrity highlights the importance of the host response to thermal stress and in symbiosis dysfunction that has substantial implications for understanding how coral reefs will survive in the face of climate change.
Collapse
Affiliation(s)
- Simon R Dunn
- ARC Centre of Excellence for Coral Reef Studies, School of Biological Sciences, University of Queensland, Brisbane, Australia.
| | | | | | | | | |
Collapse
|
48
|
Silverstein RN, Correa AMS, Baker AC. Specificity is rarely absolute in coral-algal symbiosis: implications for coral response to climate change. Proc Biol Sci 2012; 279:2609-18. [PMID: 22367985 PMCID: PMC3350700 DOI: 10.1098/rspb.2012.0055] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 02/03/2012] [Indexed: 11/12/2022] Open
Abstract
Some reef-building corals have been shown to respond to environmental change by shifting the composition of their algal symbiont (genus Symbiodinium) communities. These shifts have been proposed as a potential mechanism by which corals might survive climate stressors, such as increased temperatures. Conventional molecular methods suggest this adaptive capacity may not be widespread because few (∼25%) coral species have been found to associate with multiple Symbiodinium clades. However, these methods can fail to detect low abundance symbionts (typically less than 10-20% of the total algal symbiont community). To determine whether additional Symbiodinium clades are present, but are not detected using conventional techniques, we applied a high-resolution, real-time PCR assay to survey Symbiodinium (in clades A-D) from 39 species of phylogenetically and geographically diverse scleractinian corals. This survey included 26 coral species thought to be restricted to hosting a single Symbiodinium clade ('symbiotic specialists'). We detected at least two Symbiodinium clades (C and D) in at least one sample of all 39 coral species tested; all four Symbiodinium clades were detected in over half (54%) of the 26 symbiotic specialist coral species. Furthermore, on average, 68 per cent of all sampled colonies within a given coral species hosted two or more symbiont clades. We conclude that the ability to associate with multiple symbiont clades is common in scleractinian (stony) corals, and that, in coral-algal symbiosis, 'specificity' and 'flexibility' are relative terms: specificity is rarely absolute. The potential for reef corals to adapt or acclimatize to environmental change via symbiont community shifts may therefore be more phylogenetically widespread than has previously been assumed.
Collapse
Affiliation(s)
- Rachel N Silverstein
- Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA.
| | | | | |
Collapse
|
49
|
Nyholm SV, Song P, Dang J, Bunce C, Girguis PR. Expression and putative function of innate immunity genes under in situ conditions in the symbiotic hydrothermal vent tubeworm Ridgeia piscesae. PLoS One 2012; 7:e38267. [PMID: 22701617 PMCID: PMC3372519 DOI: 10.1371/journal.pone.0038267] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 05/05/2012] [Indexed: 11/19/2022] Open
Abstract
The relationships between hydrothermal vent tubeworms and sulfide-oxidizing bacteria have served as model associations for understanding chemoautotrophy and endosymbiosis. Numerous studies have focused on the physiological and biochemical adaptations that enable these symbioses to sustain some of the highest recorded carbon fixation rates ever measured. However, far fewer studies have explored the molecular mechanisms underlying the regulation of host and symbiont interactions, specifically those mediated by the innate immune system of the host. To that end, we conducted a series of studies where we maintained the tubeworm, Ridgeia piscesae, in high-pressure aquaria and examined global and quantitative changes in gene expression via high-throughput transcriptomics and quantitative real-time PCR (qPCR). We analyzed over 32,000 full-length expressed sequence tags as well as 26 Mb of transcript sequences from the trophosome (the organ that houses the endosymbiotic bacteria) and the plume (the gas exchange organ in contact with the free-living microbial community). R. piscesae maintained under conditions that promote chemoautotrophy expressed a number of putative cell signaling and innate immunity genes, including pattern recognition receptors (PRRs), often associated with recognizing microbe-associated molecular patterns (MAMPs). Eighteen genes involved with innate immunity, cell signaling, cell stress and metabolite exchange were further analyzed using qPCR. PRRs, including five peptidoglycan recognition proteins and a Toll-like receptor, were expressed significantly higher in the trophosome compared to the plume. Although PRRs are often associated with mediating host responses to infection by pathogens, the differences in expression between the plume and trophosome also implicate similar mechanisms of microbial recognition in interactions between the host and symbiont. We posit that regulation of this association involves a molecular "dialogue" between the partners that includes interactions between the host's innate immune system and the symbiont.
Collapse
Affiliation(s)
- Spencer V. Nyholm
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail: (SVN); (PRG)
| | - Pengfei Song
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Jeanne Dang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Corey Bunce
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Peter R. Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (SVN); (PRG)
| |
Collapse
|
50
|
Abstract
The symbiosis between cnidarians (e.g., corals or sea anemones) and intracellular dinoflagellate algae of the genus Symbiodinium is of immense ecological importance. In particular, this symbiosis promotes the growth and survival of reef corals in nutrient-poor tropical waters; indeed, coral reefs could not exist without this symbiosis. However, our fundamental understanding of the cnidarian-dinoflagellate symbiosis and of its links to coral calcification remains poor. Here we review what we currently know about the cell biology of cnidarian-dinoflagellate symbiosis. In doing so, we aim to refocus attention on fundamental cellular aspects that have been somewhat neglected since the early to mid-1980s, when a more ecological approach began to dominate. We review the four major processes that we believe underlie the various phases of establishment and persistence in the cnidarian/coral-dinoflagellate symbiosis: (i) recognition and phagocytosis, (ii) regulation of host-symbiont biomass, (iii) metabolic exchange and nutrient trafficking, and (iv) calcification. Where appropriate, we draw upon examples from a range of cnidarian-alga symbioses, including the symbiosis between green Hydra and its intracellular chlorophyte symbiont, which has considerable potential to inform our understanding of the cnidarian-dinoflagellate symbiosis. Ultimately, we provide a comprehensive overview of the history of the field, its current status, and where it should be going in the future.
Collapse
Affiliation(s)
- Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
| | | | | |
Collapse
|