1
|
Lori M, Kundel D, Mäder P, Singh A, Patel D, Sisodia BS, Riar A, Krause HM. Organic farming systems improve soil quality and shape microbial communities across a cotton-based crop rotation in an Indian Vertisol. FEMS Microbiol Ecol 2024; 100:fiae127. [PMID: 39289000 PMCID: PMC11503945 DOI: 10.1093/femsec/fiae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024] Open
Abstract
The adverse effects of intensified cropland practices on soil quality and biodiversity become especially evident in India, where nearly 60% of land is dedicated to cultivation and almost 30% of soil is already degraded. Intensive agricultural practice significantly contributes to soil degradation, highlighting the crucial need for effective countermeasures to support sustainable development goals. A long-term experiment, established in the semi-arid Nimar Valley (India) in 2007, monitors the effect of organic and conventional management on the plant-soil system in a Vertisol. The focus of our study was to assess how organic and conventional farming systems affect biological and chemical soil quality indicators. Additionally, we followed the community structure of the soil microbiome throughout the vegetation phase under soya or cotton cultivation in the year 2019. We found that organic farming enhanced soil organic carbon and nitrogen content, increased microbial abundance and activity, and fostered distinct microbial communities associated with traits in nutrient mineralization. In contrast, conventional farming enhanced the abundance of bacteria involved in ammonium oxidation suggesting high nitrification and subsequent nitrogen losses with regular mineral fertilization. Our findings underscore the value of adopting organic farming approaches in semi-arid subtropical regions to rectify soil quality and minimize nitrogen losses.
Collapse
Affiliation(s)
- Martina Lori
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| | - Dominika Kundel
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| | - Paul Mäder
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| | - Akanksha Singh
- Department of International Cooperation, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| | | | | | - Amritbir Riar
- Department of International Cooperation, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| | - Hans-Martin Krause
- Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland
| |
Collapse
|
2
|
Chen C, Ai J, Chen L, Li Y, Tang X, Li J. Nitrogen metabolism pathways and functional microorganisms in typical karst wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22494-22506. [PMID: 38407711 DOI: 10.1007/s11356-024-32587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
Aha Lake artificial reservoir wetland, Niangniang Mountain karst mountain wetland, and Caohai plateau lake wetland are typical karst wetlands in Guizhou Province with unique topography and geomorphic features. They were selected as research objects in this study to explore microorganisms and functional genes in nitrogen metabolism adopting macro-genome sequencing technology. It was found that Proteobacteria, Actinobacteria, and Acidobacteria were the dominant phyla in nitrogen metabolism in these three wetlands, similar to previous studies. However, at the genus level, there was a significant difference, with the dominant bacteria being Bradyrhizobium, Methylocystis, and Anaeromyxobacter. Six nitrogen metabolism pathways, including nitrogen fixation, nitrification, denitrification, dissimilatory nitrate reduction, assimilatory nitrate reduction, and complete nitrification, comammox, were revealed, but anaerobic ammonia oxidation genes were not detected. Nitrogen metabolism microorganisms and pathways were more affected by SOM, pH, NO3-, and EC in karst wetlands. This study further discussed microorganisms and functions of nitrogen metabolism in karst wetlands, which was of great significance to nitrogen cycles of karst wetland ecosystems.
Collapse
Affiliation(s)
- Chen Chen
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Jia Ai
- Ecological and Environmental Monitoring Center, Guizhou, 558013, Qiannan, China
| | - Li Chen
- College of Civil Engineering, Chongqing Vocational Institute of Engineering, Chongqing, 402260, China
| | - Yancheng Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, Guizhou, China.
| | - Xin Tang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Jiang Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, Guizhou, China
| |
Collapse
|
3
|
Beeckman F, Drozdzecki A, De Knijf A, Audenaert D, Beeckman T, Motte H. High-throughput assays to identify archaea-targeting nitrification inhibitors. FRONTIERS IN PLANT SCIENCE 2024; 14:1283047. [PMID: 38259951 PMCID: PMC10800436 DOI: 10.3389/fpls.2023.1283047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Nitrification is a microbial process that converts ammonia (NH3) to nitrite (NO2 -) and then to nitrate (NO3 -). The first and rate-limiting step in nitrification is ammonia oxidation, which is conducted by both bacteria and archaea. In agriculture, it is important to control this process as high nitrification rates result in NO3 - leaching, reduced nitrogen (N) availability for the plants and environmental problems such as eutrophication and greenhouse gas emissions. Nitrification inhibitors can be used to block nitrification, and as such reduce N pollution and improve fertilizer use efficiency (FUE) in agriculture. Currently applied inhibitors target the bacteria, and do not block nitrification by ammonia-oxidizing archaea (AOA). While it was long believed that nitrification in agroecosystems was primarily driven by bacteria, recent research has unveiled potential significant contributions from ammonia-oxidizing archaea (AOA), especially when bacterial activity is inhibited. Hence, there is also a need for AOA-targeting nitrification inhibitors. However, to date, almost no AOA-targeting inhibitors are described. Furthermore, AOA are difficult to handle, hindering their use to test or identify possible AOA-targeting nitrification inhibitors. To address the need for AOA-targeting nitrification inhibitors, we developed two miniaturized nitrification inhibition assays using an AOA-enriched nitrifying community or the AOA Nitrosospaera viennensis. These assays enable high-throughput testing of candidate AOA inhibitors. We here present detailed guidelines on the protocols and illustrate their use with some examples. We believe that these assays can contribute to the discovery of future AOA-targeting nitrification inhibitors, which could complement the currently applied inhibitors to increase nitrification inhibition efficiency in the field and as such contribute to a more sustainable agriculture.
Collapse
Affiliation(s)
- Fabian Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
| | - Andrzej Drozdzecki
- Screening Core, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
- Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Alexa De Knijf
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
| | - Dominique Audenaert
- Screening Core, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
- Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
| |
Collapse
|
4
|
Sakoula D, Schatteman A, Blom P, Jetten MSM, van Kessel MAHJ, Lehtovirta-Morley L, Lücker S. Activity-based labelling of ammonia- and alkane-oxidizing microorganisms including ammonia-oxidizing archaea. ISME COMMUNICATIONS 2024; 4:ycae092. [PMID: 39071849 PMCID: PMC11283641 DOI: 10.1093/ismeco/ycae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Recently, an activity-based labelling protocol for the in vivo detection of ammonia- and alkane-oxidizing bacteria became available. This functional tagging technique enabled targeted studies of these environmentally widespread functional groups, but it failed to capture ammonia-oxidizing archaea (AOA). Since their first discovery, AOA have emerged as key players within the biogeochemical nitrogen cycle, but our knowledge regarding their distribution and abundance in natural and engineered ecosystems is mainly derived from PCR-based and metagenomic studies. Furthermore, the archaeal ammonia monooxygenase is distinctly different from its bacterial counterparts and remains poorly understood. Here, we report on the development of an activity-based labelling protocol for the fluorescent detection of all ammonia- and alkane-oxidizing prokaryotes, including AOA. In this protocol, 1,5-hexadiyne is used as inhibitor of ammonia and alkane oxidation and as bifunctional enzyme probe for the fluorescent labelling of cells via the Cu(I)-catalyzed alkyne-azide cycloaddition reaction. Besides efficient activity-based labelling of ammonia- and alkane-oxidizing microorganisms, this method can also be employed in combination with deconvolution microscopy for determining the subcellular localization of their ammonia- and alkane-oxidizing enzyme systems. Labelling of these enzymes in diverse ammonia- and alkane-oxidizing microorganisms allowed their visualization on the cytoplasmic membranes, the intracytoplasmic membrane stacks of ammonia- and methane-oxidizing bacteria, and, fascinatingly, on vesicle-like structures in one AOA species. The development of this novel activity-based labelling method for ammonia- and alkane-oxidizers will be a valuable addition to the expanding molecular toolbox available for research of nitrifying and alkane-oxidizing microorganisms.
Collapse
Affiliation(s)
- Dimitra Sakoula
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Arne Schatteman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, United Kingdom
| | - Pieter Blom
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Mike S M Jetten
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Maartje A H J van Kessel
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Laura Lehtovirta-Morley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR4 7TJ, United Kingdom
| | - Sebastian Lücker
- Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| |
Collapse
|
5
|
Poghosyan L, Lehtovirta-Morley LE. Investigating microbial and environmental drivers of nitrification in alkaline forest soil. ISME COMMUNICATIONS 2024; 4:ycae093. [PMID: 39132578 PMCID: PMC11310595 DOI: 10.1093/ismeco/ycae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/26/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024]
Abstract
Ammonia oxidation is a key step in the biogeochemical cycling of nitrogen, and soils are important ecosystems for nitrogen flux globally. Approximately 25% of the world's soils are alkaline. While nitrification has been studied more extensively in agricultural alkaline soils, less is known about natural, unfertilized alkaline soils. In this study, microorganisms responsible for ammonia oxidation and several environmental factors (season, temperature, ammonia concentration, and moisture content) known to affect nitrification were studied in an alkaline forest soil with a pH ranging from 8.36 to 8.77. Ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea, and comammox were present, and AOB belonging to genera Nitrosospira and Nitrosomonas, originally comprising <0.01% of the total bacterial community, responded rapidly to ammonia addition to the soil. No significant difference was observed in nitrification rates between seasons, but there was a significant difference between in situ field nitrification rates and rates in laboratory microcosms. Surprisingly, nitrification took place under many of the tested conditions, but there was no detectable increase in the abundance of any recognizable group of ammonia oxidizers. This study raises questions about the role of low-abundance microorganisms in microbial processes and of situations where zero or very low microbial growth coincides with metabolic activity. In addition, this study provides insights into nitrification in unfertilized alkaline soil and supports previous studies, which found that AOB play an important role in alkaline soils supplemented with ammonia, including agricultural ecosystems.
Collapse
Affiliation(s)
- Lianna Poghosyan
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | |
Collapse
|
6
|
Guo J, Wang X, Cao X, Qi W, Peng J, Liu H, Qu J. The influence of wet-to-dry season shifts on the microbial community stability and nitrogen cycle in the Poyang Lake sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166036. [PMID: 37544457 DOI: 10.1016/j.scitotenv.2023.166036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
In lake environments, seasonal changes can cause exposure of the lake sediment, leading to soil formation. Although previous studies have explored how environmental changes influence microbial functioning in the water-level-fluctuating zone, few studies have investigated how wholescale habitat changes affect microbial composition, community stability and ecological functions in lake environments. To address this issue, our study investigated the effects of sediment-to-soil conversion on microbial composition, community stability and subsequent ecological functioning in Poyang Lake, China. Our results revealed that, during sediment-to-soil conversion, the number of total and unique operational taxonomic units (OTUs) decreased by 40 % and 55 %, respectively. Moreover, sediment-to-soil conversion decreased the microbial community connectivity and complexity while significantly increasing its stability, as evidenced by increased absolute values of negative/positive cohesion. In sediment and soil, the abundance of dominant bacteria, and bacterial diversity strongly affected microbial community stability, although this phenomenon was not true in water. Furthermore, the specific microbial phyla and genes involved in the nitrogen cycle changed significantly following sediment-to-soil conversion, with the major nitrogen cycling processes altering from denitrification and dissimilatory nitrate reduction to ammonium to nitrification and assimilatory nitrate reduction to ammonia. Moreover, a compensation mechanism was observed in the functional genes related to the nitrogen cycle, such that all the processes in the nitrogen cycle were maintained following sediment-to-soil conversion. The oxidation-reduction potential strongly affected network complexity, microbial stability, and nitrogen cycling in the sediment and soil. These results aid in the understanding of responses of microorganisms to climate change and extreme drought. Our findings have considerable implications for predicting the ecological consequences of habitat conversion and for ecosystem management.
Collapse
Affiliation(s)
- Jiaxun Guo
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xu Wang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaofeng Cao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Jianfeng Peng
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Song Y, Wu D, Ju X, Dörsch P, Wang M, Wang R, Song X, Deng L, Wang R, Gao Z, Haider H, Hou L, Liu M, Yu Y. Nitrite stimulates HONO and NO x but not N 2O emissions in Chinese agricultural soils during nitrification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166451. [PMID: 37611720 DOI: 10.1016/j.scitotenv.2023.166451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
The long-lived greenhouse gas nitrous oxide (N2O) and short-lived reactive nitrogen (Nr) gases such as ammonia (NH3), nitrous acid (HONO), and nitrogen oxides (NOx) are produced and emitted from fertilized soils and play a critical role for climate warming and air quality. However, only few studies have quantified the production and emission potentials for long- and short-lived gaseous nitrogen (N) species simultaneously in agricultural soils. To link the gaseous N species to intermediate N compounds [ammonium (NH4+), hydroxylamine (NH2OH), and nitrite (NO2-)] and estimate their temperature change potential, ex-situ dry-out experiments were conducted with three Chinese agricultural soils. We found that HONO and NOx (NO + NO2) emissions mainly depend on NO2-, while NH3 and N2O emissions are stimulated by NH4+ and NH2OH, respectively. Addition of 3,4-dimethylpyrazole phosphate (DMPP) and acetylene significantly reduced HONO and NOx emissions, while NH3 emissions were significantly enhanced in an alkaline Fluvo-aquic soil. These results suggested that ammonia-oxidizing bacteria (AOB) and complete ammonia-oxidizing bacteria (comammox Nitrospira) dominate HONO and NOx emissions in the alkaline Fluvo-aquic soil, while ammonia-oxidizing archaea (AOA) are dominant in the acidic Mollisol. DMPP effectively mitigated the warming effect in the Fluvo-aquic soil and the Ultisol. In conclusion, our findings highlight NO2- significantly stimulates HONO and NOx emissions from dryland agricultural soils, dominated by nitrification. In addition, subtle differences of soil NH3, N2O, HONO, and NOx emissions indicated different N turnover processes, and should be considered in biogeochemical and atmospheric chemistry models.
Collapse
Affiliation(s)
- Yaqi Song
- College of Ecology and the Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Dianming Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China; State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China.
| | - Xiaotang Ju
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Peter Dörsch
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Mengdi Wang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China
| | - Ruhai Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaotong Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lingling Deng
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Rui Wang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Zhiwei Gao
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Haroon Haider
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Lijun Hou
- Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Institute of Eco-Chongming (IEC), Shanghai 202162, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Yuanchun Yu
- College of Ecology and the Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
8
|
Wilson SJ, Song B, Anderson IC. Geochemical factors impacting nitrifying communities in sandy sediments. Environ Microbiol 2023; 25:3180-3191. [PMID: 37715648 DOI: 10.1111/1462-2920.16504] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 09/18/2023]
Abstract
Sandy sediment beaches covering 70% of non-ice-covered coastlines are important ecosystems for nutrient cycling along the land-ocean continuum. Subterranean estuaries (STEs), where groundwater and seawater meet, are hotspots for biogeochemical cycling within sandy beaches. The STE microbial community facilitates biogeochemical reactions, determining the fate of nutrients, including nitrogen (N), supplied by groundwater. Nitrification influences the fate of N, oxidising reduced dissolved inorganic nitrogen (DIN), making it available for N removal. We used metabarcoding of 16S rRNA genes and quantitative PCR (qPCR) of ammonia monooxygenase (amoA) genes to characterise spatial and temporal variation in STE microbial community structure and nitrifying organisms. We examined nitrifier diversity, distribution and abundance to determine how geochemical measurements influenced their distribution in STEs. Sediment microbial communities varied with depth (p-value = 0.001) and followed geochemical gradients in dissolved oxygen (DO), salinity, pH, dissolved inorganic carbon and DIN. Genetic potential for nitrification in the STE was evidenced by qPCR quantification of amoA genes. Ammonia oxidiser abundance was best explained by DIN, DO and pH. Our results suggest that geochemical gradients are tightly linked to STE community composition and nitrifier abundance, which are important to determine the fate and transport of groundwater-derived nutrients to coastal waters.
Collapse
Affiliation(s)
- Stephanie J Wilson
- Department of Biological Sciences, Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, Virginia, USA
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - Bongkeun Song
- Department of Biological Sciences, Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, Virginia, USA
| | - Iris C Anderson
- Department of Biological Sciences, Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, Virginia, USA
| |
Collapse
|
9
|
Yang Y, Liu H, Zhang Y, Fang X, Zhong X, Lv J. Contribution of ammonia-oxidizing archaea and bacteria to nitrogen transformation in a soil fertilized with urea and organic amendments. Sci Rep 2023; 13:20722. [PMID: 38007550 PMCID: PMC10676402 DOI: 10.1038/s41598-023-44147-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/04/2023] [Indexed: 11/27/2023] Open
Abstract
The contribution of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) is crucial for nitrogen transformation. The effects of four organic amendments (OAs) plus urea on soil nitrogen transformation and the contribution of the ammonia-oxidizing microbial community were investigated using an incubation experiment. The OAs plus urea treatments included pig manure plus urea (PM + U), wheat straw plus urea (WS + U), compost plus urea (CP + U) and improved-compost plus urea (IC + U), while no OAs and urea amended control was noted as CK. The abundance and composition of AOA and AOB were determined using high through-put sequencing. Compared with CK, the OA plus urea treatments significantly enhanced the amount of total mineralized nitrogen released during the incubation process. After incubation, the highest mineralized nitrogen and net nitrogen mineralization was under the PM + U treatment and the lowest was in the WS + U treatment. In conclusion, among all OA plus urea treatments, the microbial biomass nitrogen content was the highest in WS + U treatment and dissolved organic nitrogen content was the highest with the PM + U treatment. Additionally, the abundance of AOB was inhibited in comparison to that of AOA; however, AOB contributed more to nitrification than AOA. Soil NO3--N and dissolved organic nitrogen were the principal components influencing the distribution of AOA and AOB. The result illustrated that the OAs plus urea, especially PM plus urea promoted mineralization to produce more dissolved organic nitrogen and NH4+-N, thus accelerating the growth of AOB to strengthen nitrification in soil.
Collapse
Affiliation(s)
- Yajun Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, China
| | - Hexiang Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, China
| | - Yang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, China
| | - Xianhui Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, China
| | - Xianbao Zhong
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, China
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, China.
| |
Collapse
|
10
|
Sarkar S, Kazarina A, Hansen PM, Ward K, Hargreaves C, Reese N, Ran Q, Kessler W, de Souza LF, Loecke TD, Sarto MVM, Rice CW, Zeglin LH, Sikes BA, Lee ST. Ammonia-oxidizing archaea and bacteria differentially contribute to ammonia oxidation in soil under precipitation gradients and land legacy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566028. [PMID: 37987001 PMCID: PMC10659370 DOI: 10.1101/2023.11.08.566028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background Global change has accelerated the nitrogen cycle. Soil nitrogen stock degradation by microbes leads to the release of various gases, including nitrous oxide (N2O), a potent greenhouse gas. Ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) participate in the soil nitrogen cycle, producing N2O. There are outstanding questions regarding the impact of environmental processes such as precipitation and land use legacy on AOA and AOB structurally, compositionally, and functionally. To answer these questions, we analyzed field soil cores and soil monoliths under varying precipitation profiles and land legacies. Results We resolved 28 AOA and AOB metagenome assembled genomes (MAGs) and found that they were significantly higher in drier environments and differentially abundant in different land use legacies. We further dissected AOA and AOB functional potentials to understand their contribution to nitrogen transformation capabilities. We identified the involvement of stress response genes, differential metabolic functional potentials, and subtle population dynamics under different environmental parameters for AOA and AOB. We observed that AOA MAGs lacked a canonical membrane-bound electron transport chain and F-type ATPase but possessed A/A-type ATPase, while AOB MAGs had a complete complex III module and F-type ATPase, suggesting differential survival strategies of AOA and AOB. Conclusions The outcomes from this study will enable us to comprehend how drought-like environments and land use legacies could impact AOA- and AOB-driven nitrogen transformations in soil.
Collapse
Affiliation(s)
- Soumyadev Sarkar
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Anna Kazarina
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Paige M. Hansen
- PMH Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado USA
| | - Kaitlyn Ward
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | | | - Nicholas Reese
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Qinghong Ran
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Willow Kessler
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| | - Ligia F.T. de Souza
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| | - Terry D. Loecke
- Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, Kansas, USA
- Environmental Studies Program, University of Kansas, Lawrence, Kansas, USA
| | | | - Charles W. Rice
- Department of Agronomy, Kansas State University, Manhattan, Kansas, USA
| | - Lydia H. Zeglin
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| | - Benjamin A. Sikes
- Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
- Kansas Biological Survey and Center for Ecological Research, University of Kansas, Lawrence, Kansas, USA
| | - Sonny T.M. Lee
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
11
|
Gonzalez SV, Dafforn KA, Gribben PE, O'Connor WA, Johnston EL. Organic enrichment reduces sediment bacterial and archaeal diversity, composition, and functional profile independent of bioturbator activity. MARINE POLLUTION BULLETIN 2023; 196:115608. [PMID: 37797537 DOI: 10.1016/j.marpolbul.2023.115608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/16/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Eutrophication is a worldwide issue that can disrupt ecosystem processes in sediments. Studies have shown that macrofauna influences sediment processes by engineering environments that constrain microbial communities. Here, we explored the effect of different sizes of the Sydney cockle (Anadara trapezia), on bacterial and archaeal communities in natural and experimentally enriched sediments. A mesocosm experiment was conducted with two enrichment conditions (natural or enriched) and 5 cockle treatments (small, medium, large, mixed sizes and a control). This study was unable to detect A. trapezia effects on microbial communities irrespective of body size. However, a substantial decrease of bacterial richness, diversity, and structural and functional shifts, were seen with organic enrichment of sediments. Archaea were similarly changed although the magnitude of effect was less than for bacteria. Overall, we found evidence to suggest that A. trapezia had limited capacity to affect sediment microbial communities and mitigate the effects of organic enrichment.
Collapse
Affiliation(s)
- Sebastian Vadillo Gonzalez
- Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW 2088, Sydney, Australia; The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia; Evolution and Ecology Research Centre, University of New South Wales, Sydney, Australia.
| | - Katherine A Dafforn
- Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW 2088, Sydney, Australia; School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Sydney, Australia
| | - Paul E Gribben
- Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW 2088, Sydney, Australia; Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW, 2052 Sydney, Australia; Evolution and Ecology Research Centre, University of New South Wales, Sydney, Australia
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Fisheries NSW, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316, Australia
| | - Emma L Johnston
- Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW 2088, Sydney, Australia; Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW, 2052 Sydney, Australia
| |
Collapse
|
12
|
Lagos S, Tsetsekos G, Mastrogianopoulos S, Tyligada M, Diamanti L, Vasileiadis S, Sotiraki S, Karpouzas DG. Interactions of anthelmintic veterinary drugs with the soil microbiota: Toxicity or enhanced biodegradation? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122135. [PMID: 37406753 DOI: 10.1016/j.envpol.2023.122135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Anthelmintic (AH) compounds are used to control gastrointestinal nematodes (GINs) in livestock production. They are only partially metabolized in animals ending in animal excreta whose use as manures leads to AH dispersal in agricultural soils. Once in soil, AHs interact with soil microorganisms, with the outcome being either detrimental, or beneficial. We aimed to disentangle the mechanisms of these complex interactions. Two soils previously identified as « fast » or « slow», regarding the degradation of albendazole (ABZ), ivermectin (IVM), and eprinomectin (EPM), were subjected to repeated applications at two dose rates (1, 2 mg kg-1and 10, 20 mg kg-1). We hypothesized that this application scheme will lead to enhanced biodegradation in «fast » soils and accumulation and toxicity in «slow » soils. Repeated application of ABZ resulted in different transformation pathways in the two soils and a clear acceleration of its degradation in the «fast » soil only. In contrast residues of IVM and EPM accumulated in both soils. ABZ was the sole AH that induced a consistent reduction in the abundance of total fungi and crenarchaea. In addition, inhibition of nitrification and reduction in the abundance of ammonia-oxidizing bacteria (AOB) and archaea (AOA) by all AHs was observed, while commamox bacteria were less responsive. Amplicon sequencing analysis showed dose-depended shifts in the diversity of bacteria, fungi, and protists in response to AHs application. ABZ presented the most consistent effect on the abundance and diversity of most microbial groups. Our findings provide first evidence for the unexpected toxicity of AHs on key soil microbial groups that might have to be considered in a regulatory context.
Collapse
Affiliation(s)
- Stathis Lagos
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece
| | - Georgios Tsetsekos
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece
| | - Spyridon Mastrogianopoulos
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece
| | - Maria Tyligada
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece
| | - Lamprini Diamanti
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece
| | - Sotirios Vasileiadis
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece
| | - Smaragda Sotiraki
- Laboratory of Parasitology, Hellenic Agricultural Organization-Demeter, Veterinary Research Institute, 57001, Thermi, Greece
| | - Dimitrios G Karpouzas
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Viopolis, 41500, Larissa, Greece.
| |
Collapse
|
13
|
Ghaly TM, Focardi A, Elbourne LDH, Sutcliffe B, Humphreys W, Paulsen IT, Tetu SG. Stratified microbial communities in Australia's only anchialine cave are taxonomically novel and drive chemotrophic energy production via coupled nitrogen-sulphur cycling. MICROBIOME 2023; 11:190. [PMID: 37626351 PMCID: PMC10463829 DOI: 10.1186/s40168-023-01633-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Anchialine environments, in which oceanic water mixes with freshwater in coastal aquifers, are characterised by stratified water columns with complex physicochemical profiles. These environments, also known as subterranean estuaries, support an abundance of endemic macro and microorganisms. There is now growing interest in characterising the metabolisms of anchialine microbial communities, which is essential for understanding how complex ecosystems are supported in extreme environments, and assessing their vulnerability to environmental change. However, the diversity of metabolic strategies that are utilised in anchialine ecosystems remains poorly understood. RESULTS Here, we employ shotgun metagenomics to elucidate the key microorganisms and their dominant metabolisms along a physicochemical profile in Bundera Sinkhole, the only known continental subterranean estuary in the Southern Hemisphere. Genome-resolved metagenomics suggests that the communities are largely represented by novel taxonomic lineages, with 75% of metagenome-assembled genomes assigned to entirely new or uncharacterised families. These diverse and novel taxa displayed depth-dependent metabolisms, reflecting distinct phases along dissolved oxygen and salinity gradients. In particular, the communities appear to drive nutrient feedback loops involving nitrification, nitrate ammonification, and sulphate cycling. Genomic analysis of the most highly abundant members in this system suggests that an important source of chemotrophic energy is generated via the metabolic coupling of nitrogen and sulphur cycling. CONCLUSION These findings substantially contribute to our understanding of the novel and specialised microbial communities in anchialine ecosystems, and highlight key chemosynthetic pathways that appear to be important in these energy-limited environments. Such knowledge is essential for the conservation of anchialine ecosystems, and sheds light on adaptive processes in extreme environments. Video Abstract.
Collapse
Affiliation(s)
- Timothy M Ghaly
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Amaranta Focardi
- Climate Change Cluster (C3), University of Technology Sydney, Sydney, Australia
| | - Liam D H Elbourne
- School of Natural Sciences, Macquarie University, Sydney, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | | | - William Humphreys
- School of Biological Sciences, University of Western Australia, Perth, Australia
| | - Ian T Paulsen
- School of Natural Sciences, Macquarie University, Sydney, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| | - Sasha G Tetu
- School of Natural Sciences, Macquarie University, Sydney, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| |
Collapse
|
14
|
Zheng M, Tian Z, Chai Z, Zhang A, Gu A, Mu G, Wu D, Guo J. Ubiquitous occurrence and functional dominance of comammox Nitrospira in full-scale wastewater treatment plants. WATER RESEARCH 2023; 236:119931. [PMID: 37045640 DOI: 10.1016/j.watres.2023.119931] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/04/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
The recent discovery of complete ammonia oxidation (comammox) bacteria has fundamentally upended the traditional two-step nitrification conception, but their functional importance in wastewater treatment plants (WWTPs) is still poorly understood. This study investigated distributions of comammox Nitrospira, ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in activated sludge samples collected from 25 full-scale WWTPs. Using quantitative PCR (qPCR) and 16S rRNA gene amplicon sequencing, our results revealed that comammox Nitrospira ubiquitously occurred in all of 25 WWTPs and even outnumbered AOB and AOA with an average abundance of 1∼183 orders of magnitude higher in 19 WWTPs. Moreover, DNA-based stable isotope probing (DNA-SIP) assays validated that comammox Nitrospira actively participated in ammonia oxidation in the three microcosms seeding with activated sludge from three typical WWTPs, in which the ratios of comammox amoA to AOB amoA were at the range of 1∼10, 10∼100 and >100, respectively. Phylogenetic analysis in heavy fractions further indicated that Nitrospira nitrosa (N. nitrosa) was the dominant and active species. We quantified the contribution of ammonia oxidizers based on the currently available kinetic parameters of the representative species and found that comammox made major contributions to ammonia oxidation than other nitrifiers (5 ∼ 106 times that of AOB). The findings not only demonstrate the ubiquitous occurrence of comammox, but also highlight their functional dominance in ammonia oxidation in WWTPs.
Collapse
Affiliation(s)
- Maosheng Zheng
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Zhichao Tian
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zimin Chai
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Anqi Zhang
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Ailu Gu
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Guangli Mu
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Dedong Wu
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
15
|
Segaran TC, Azra MN, Lananan F, Wang Y. Microbe, climate change and marine environment: Linking trends and research hotspots. MARINE ENVIRONMENTAL RESEARCH 2023:106015. [PMID: 37291004 DOI: 10.1016/j.marenvres.2023.106015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 06/10/2023]
Abstract
Microbes, or microorganisms, have been the foundation of the biosphere for over 3 billion years and have played an essential role in shaping our planet. The available knowledge on the topic of microbes associated with climate change has the potential to reshape upcoming research trends globally. As climate change impacts the ocean or marine ecosystem, the responses of these "unseen life" will heavily influence the achievement of a sustainable evolutionary environment. The present study aims to identify microbial-related research under changing climate within the marine environment through the mapping of visualized graphs of the available literature. We used scientometric methods to retrieve documents from the Web of Science platform in the Core Collection (WOSCC) database, analyzing a total of 2767 documents based on scientometric indicators. Our findings show that this research area is growing exponentially, with the most influential keywords being "microbial diversity," "bacteria," and "ocean acidification," and the most cited being "microorganism" and "diversity." The identification of influential clusters in the field of marine science provides insight into the hot spots and frontiers of research in this area. Prominent clusters include "coral microbiome," "hypoxic zone," "novel Thermoplasmatota clade," "marine dinoflagellate bloom," and "human health." Analyzing emerging trends and transformative changes in this field can inform the creation of special issues or research topics in selected journals, thus increasing visibility and engagement among the scientific community.
Collapse
Affiliation(s)
- Thirukanthan Chandra Segaran
- Climate Change Adaptation Laboratory, Institute of Marine Biotechnology (IMB), Universiti Malaysia Terengganu (UMT), 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Mohamad Nor Azra
- Climate Change Adaptation Laboratory, Institute of Marine Biotechnology (IMB), Universiti Malaysia Terengganu (UMT), 21030, Kuala Nerus, Terengganu, Malaysia; Research Center for Marine and Land Bioindustry, Earth Sciences and Maritime Organization, National Research and Innovation Agency (BRIN), Pemenang, West Nusa Tenggara, 83352, Indonesia.
| | - Fathurrahman Lananan
- East Coast Environmental Research Institute, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300, Kuala Nerus, Terengganu, Malaysia.
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.
| |
Collapse
|
16
|
Wu Z, Wang Y, Liu C, Yin N, Hu Z, Shen L, Islam ARMT, Wei Z, Chen S. Characteristics of soil N 2O emission and N 2O-producing microbial communities in paddy fields under elevated CO 2 concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120872. [PMID: 36529344 DOI: 10.1016/j.envpol.2022.120872] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The effects of elevated carbon dioxide (CO2) concentration (e[CO2]) on nitrous oxide (N2O) emissions from paddy fields and the microbial processes involved in N2O emissions have recently received much attention. Ammonia-oxidizing microorganisms and denitrifying bacteria dominate the production of N2O in paddy soils. To better understand the dynamics of N2O production under e[CO2], a field experiment was conducted after five years of CO2 fumigation based on three treatments: CK (ambient atmospheric CO2), T1 (CK + increase of 40 ppm per year until 200 ppm), and T2 (CK + 200 ppm). N2O fluxes, soil physicochemical properties, and N2O production potential were quantified during the rice-growth period. The functional gene abundance and community composition of ammonia-oxidizing archaea (AOA) and bacteria (AOB) were analyzed using quantitative polymerase chain reaction (qPCR) and those of ammonia-denitrifying bacteria (nirS- and nirK-type) were analyzed using Illumina MiSeq sequencing. N2O emissions decreased by 173% and 41% under the two e[CO2] treatments during grain filling and milk ripening, respectively (P < 0.05). N2O emissions increased by 279% and 172% in the T2 treatment compared with T1 during the tillering and milk-ripening stages, respectively (P < 0.05). Furthermore, the N2O production potential was significantly higher in the CK treatment than in T1 and T2 during the elongation stage. The N2O production potential and abundance of AOA amoA genes in T1 treatment were significantly lower than those in CK treatment during the high N2O emission phase caused by mid-season drainage (P < 0.05). Although nirK- and nirS-type denitrifying bacteria community structure and diversity did not respond significantly (P > 0.05) to e[CO2], the abundance of nirK-type denitrifying bacteria significantly affected the N2O flux (P < 0.05). Linear regression analysis showed that the N2O production potential, AOA amoA gene abundance, and nirK gene abundance explained 47.2% of the variation in N2O emissions. In addition, soil nitrogen (N) significantly affected the nirK- and nirS-type denitrifier communities. Overall, our results revealed that e[CO2] suppressed N2O emissions, which was closely associated with the abundance of AOA amoA and nirK genes (P < 0.05).
Collapse
Affiliation(s)
- Zhurong Wu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yuanyuan Wang
- School of Life Science, Huaiyin Normal University, Huaian, 223001, China
| | - Chao Liu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Nan Yin
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhenghua Hu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Lidong Shen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - A R M Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Zhaowei Wei
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Shutao Chen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
17
|
Ai J, Li Y, Lv Y, Zhong X, Li J, Yang A. Study on microbes and antibiotic resistance genes in karst primitive mountain marshes - A case study of Niangniang Mountain in Guizhou, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114210. [PMID: 36306620 DOI: 10.1016/j.ecoenv.2022.114210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/25/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Previous research on antibiotic resistance genes and microorganisms centered on those in urban sewage treatment plants, breeding farms, hospitals and others with serious antibiotic pollution. However, at present, there are evident proofs that antibiotic resistance genes (ARGs) indeed exist in a primitive environment hardly without any human's footprints. Accordingly, an original karst mountain swamp ecosystem in Niangniang Mountain, Guizhou, China, including herbaceous swamp, shrub swamp, sphagnum bog and forest swamp, was selected to analyze the physical and chemical parameters of sediments. Moreover, microbial compositions, functions, as well as their connections with ARGs were assayed and analyzed using metagenomic technology. The results showed that there was no significant difference in the dominant microorganisms and ARGs in the four marshes, in which the dominant bacteria phyla were Proteobacteria (37.82 %), Acidobacteriota (22.17 %) and Actinobacteriota (20.64 %); the dominant archaea Euryarchaeota. (1.00 %); and the dominant eukaryotes Ascomycota (0.07 %), with metabolism as their major functions. Based on the ARDB database, the number of ARGs annotated reached 209 including 30 subtypes, and the dominant ARGs were all Bacitracin resistance genes (bacA, 84.77 %). In terms of the diversity of microorganisms and ARGs, the herbaceous swamp ranked the top, and the shrub swamp were at the bottom. Correlation analysis between microorganisms and resistance genes showed that, apart from aac2ic, macB, smeE, tetQ, and tetL, other ARGs were positively correlated with microorganisms. Among them, baca coexisted with microorganisms. Pearson correlation analysis results showed that contrary to ARGs, microorganisms were more affected by environmental factors.
Collapse
Affiliation(s)
- Jia Ai
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China; Qiannan Ecological Environment Monitoring Center, Duyun 558000, China
| | - Yancheng Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China.
| | - Yang Lv
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China
| | - Xiong Zhong
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China
| | - Jiang Li
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| | - Aijiang Yang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 500025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, China
| |
Collapse
|
18
|
Yang X, Yu X, He Q, Deng T, Guan X, Lian Y, Xu K, Shu L, Wang C, Yan Q, Yang Y, Wu B, He Z. Niche differentiation among comammox ( Nitrospira inopinata) and other metabolically distinct nitrifiers. Front Microbiol 2022; 13:956860. [PMID: 36187961 PMCID: PMC9515657 DOI: 10.3389/fmicb.2022.956860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Due to global change, increasing nutrient input to ecosystems dramatically affects the nitrogen cycle, especially the nitrification process. Nitrifiers including ammonia-oxidizing archaea (AOAs), ammonia-oxidizing bacteria (AOBs), nitrite-oxidizing bacteria (NOBs), and recently discovered complete ammonia oxidizers (comammoxs) perform nitrification individually or in a community. However, much remains to be learned about their niche differentiation, coexistence, and interactions among those metabolically distinct nitrifiers. Here, we used synthetic microbial ecology approaches to construct synthetic nitrifying communities (SNCs) with different combinations of Nitrospira inopinata as comammox, Nitrososphaera gargensis as AOA, Nitrosomonas communis as AOB, and Nitrospira moscoviensis as NOB. Our results showed that niche differentiation and potential interactions among those metabolically distinct nitrifiers were determined by their kinetic characteristics. The dominant species shifted from N. inopinata to N. communis in the N4 community (with all four types of nitrifiers) as ammonium concentrations increased, which could be well explained by the kinetic difference in ammonia affinity, specific growth rate, and substrate tolerance of nitrifiers in the SNCs. In addition, a conceptual model was developed to infer niche differentiation and possible interactions among the four types of nitrifiers. This study advances our understanding of niche differentiation and provides new strategies to further study their interactions among the four types of nitrifiers.
Collapse
Affiliation(s)
- Xueqin Yang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Xiaoli Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Qiang He
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN, United States
| | - Ting Deng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Xiaotong Guan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Yingli Lian
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Kui Xu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Bo Wu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- College of Agronomy, Hunan Agricultural University, Changsha, China
| |
Collapse
|
19
|
Lei J, Fan Q, Yu J, Ma Y, Yin J, Liu R. A meta-analysis to examine whether nitrification inhibitors work through selectively inhibiting ammonia-oxidizing bacteria. Front Microbiol 2022; 13:962146. [PMID: 35928162 PMCID: PMC9343776 DOI: 10.3389/fmicb.2022.962146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022] Open
Abstract
Nitrification inhibitor (NI) is often claimed to be efficient in mitigating nitrogen (N) losses from agricultural production systems by slowing down nitrification. Increasing evidence suggests that ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) have the genetic potential to produce nitrous oxide (N2O) and perform the first step of nitrification, but their contribution to N2O and nitrification remains unclear. Furthermore, both AOA and AOB are probably targets for NIs, but a quantitative synthesis is lacking to identify the “indicator microbe” as the best predictor of NI efficiency under different environmental conditions. In this present study, a meta-analysis to assess the response characteristics of AOB and AOA to NI application was conducted and the relationship between NI efficiency and the AOA and AOB amoA genes response under different conditions was evaluated. The dataset consisted of 48 papers (214 observations). This study showed that NIs on average reduced 58.1% of N2O emissions and increased 71.4% of soil NH4+ concentrations, respectively. When 3, 4-dimethylpyrazole phosphate (DMPP) was applied with both organic and inorganic fertilizers in alkaline medium soils, it had higher efficacy of decreasing N2O emissions than in acidic soils. The abundance of AOB amoA genes was dramatically reduced by about 50% with NI application in most soil types. Decrease in N2O emissions with NI addition was significantly correlated with AOB changes (R2 = 0.135, n = 110, P < 0.01) rather than changes in AOA, and there was an obvious correlation between the changes in NH4+ concentration and AOB amoA gene abundance after NI application (R2 = 0.037, n = 136, P = 0.014). The results indicated the principal role of AOB in nitrification, furthermore, AOB would be the best predictor of NI efficiency.
Collapse
|
20
|
Zhao C, He X, Dan X, He M, Zhao J, Meng H, Cai Z, Zhang J. Soil dissolved organic matters mediate bacterial taxa to enhance nitrification rates under wheat cultivation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154418. [PMID: 35276137 DOI: 10.1016/j.scitotenv.2022.154418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Studies have shown that dissolved organic matters (DOMs) may affect soil nutrient availability to plants due to their effect on microbial communities; however, the relationships of soil DOM-bacterial community-N function in response to root exudates remains poorly understand. Here, we evaluated the DOM composition, bacterial taxonomic variation and nitrogen transformation rates in both acidic and alkaline soils, with or without the typical nitrate preference plant (wheat, Triticum aestivum L.). After 30 days' cultivation, DOM compositions such as sugars, amines, amino acids, organic acid, and ketone were significantly increased in soil with wheat vs. bare soil, and these compounds were mainly involved in nitrogen metabolism pathways. Soil core bacterial abundance was changed while bacterial community diversity decreased in response to wheat planting. Function prediction analysis based on FAPROTAX software showed that the bacterial community were significantly (p < 0.05) affiliated with nitrification and organic compound degradation. Additionally, db-RDA and VPA analysis suggested that the contribution of soil DOM to the variance of bacterial community was stronger than that of soil available nutrients. Furthermore, the N-transformation related bacteria like Burkholderiales and ammonia-oxidizing bacteria (AOB) were positively correlated with soil gross nitrification rate, confirming that the soil N transformation was enhanced in both acidic and alkaline soils. Our results provide insight into how soil DOM affects the community structure and function of bacteria to regulate the process of nitrogen transformation in plant-soil system.
Collapse
Affiliation(s)
- Chang Zhao
- School of Geography, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiaoxiang He
- School of Geography, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiaoqian Dan
- School of Geography, Nanjing Normal University, Nanjing 210023, PR China
| | - Mengqiu He
- School of Geography, Nanjing Normal University, Nanjing 210023, PR China
| | - Jun Zhao
- School of Geography, Nanjing Normal University, Nanjing 210023, PR China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource, Development and Application, Nanjing 210023, PR China
| | - Han Meng
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China.
| | - Zucong Cai
- School of Geography, Nanjing Normal University, Nanjing 210023, PR China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, PR China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource, Development and Application, Nanjing 210023, PR China
| | - Jinbo Zhang
- School of Geography, Nanjing Normal University, Nanjing 210023, PR China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, PR China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource, Development and Application, Nanjing 210023, PR China
| |
Collapse
|
21
|
Yu C, Wang Q, Zhang S, Zeng H, Chen W, Chen W, Lou H, Yu W, Wu J. Effects of Strigolactone on Torreya grandis Gene Expression and Soil Microbial Community Structure Under Simulated Nitrogen Deposition. FRONTIERS IN PLANT SCIENCE 2022; 13:908129. [PMID: 35720604 PMCID: PMC9201785 DOI: 10.3389/fpls.2022.908129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen enters the terrestrial ecosystem through deposition. High nitrogen levels can affect physical and chemical properties of soil and inhibit normal growth and reproduction of forest plants. Nitrogen modulates the composition of soil microorganisms. Strigolactones inhibits plant branching, promotes root growth, nutrient absorption, and promotes arbuscular fungal mycelia branching. Plants are subjected to increasing atmospheric nitrogen deposition. Therefore, it is imperative to explore the relationship between strigolactone and nitrogen deposition of plants and abundance of soil microorganisms. In the present study, the effects of strigolactone on genetic responses and soil microorganisms of Torreya grandis, under simulated nitrogen deposition were explored using high-throughput sequencing techniques. T. grandis is a subtropical economic tree species in China. A total of 4,008 differentially expressed genes were identified in additional N deposition and GR24 treatment. These genes were associated with multiple GO terms and metabolic pathways. GO enrichment analysis showed that several DEGs were associated with enrichment of the transporter activity term. Both additional nitrogen deposition and GR24 treatment modulated the content of nutrient elements. The content of K reduced in leaves after additional N deposition treatment. The content of P increased in leaves after GR24 treatment. A total of 20 families and 29 DEGs associated with transporters were identified. These transporters may be regulated by transcription factors. A total of 1,402,819 clean reads and 1,778 amplicon sequence variants (ASVs) were generated through Bacterial 16S rRNA sequencing. Random forest classification revealed that Legionella, Lacunisphaera, Klebsiella, Bryobacter, and Janthinobacterium were significantly enriched in the soil in the additional N deposition group and the GR24 treatment group. Co-occurrence network analysis showed significant differences in composition of soil microbial community under different treatments. These results indicate a relationship between N deposition and strigolactones effect. The results provide new insights on the role of strigolactones in plants and composition of soil microorganisms under nitrogen deposition.
Collapse
Affiliation(s)
- Chenliang Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Qi Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Shouke Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Hao Zeng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Weijie Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Wenchao Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Heqiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Weiwu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
- NFGA Engineering Research Center for Torreya grandis ‘Merrillii’, Zhejiang A&F University, Hangzhou, China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
- NFGA Engineering Research Center for Torreya grandis ‘Merrillii’, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
22
|
Abstract
Arid ecosystems cover ∼40% of the Earth's terrestrial surface and store a high proportion of the global nitrogen (N) pool. They are low-productivity, low-biomass, and polyextreme ecosystems, i.e., with (hyper)arid and (hyper)oligotrophic conditions and high surface UV irradiation and evapotranspiration. These polyextreme conditions severely limit the presence of macrofauna and -flora and, particularly, the growth and productivity of plant species. Therefore, it is generally recognized that much of the primary production (including N-input processes) and nutrient biogeochemical cycling (particularly N cycling) in these ecosystems are microbially mediated. Consequently, we present a comprehensive survey of the current state of knowledge of biotic and abiotic N-cycling processes of edaphic (i.e., open soil, biological soil crust, or plant-associated rhizosphere and rhizosheath) and hypo/endolithic refuge niches from drylands in general, including hot, cold, and polar desert ecosystems. We particularly focused on the microbially mediated biological nitrogen fixation, N mineralization, assimilatory and dissimilatory nitrate reduction, and nitrification N-input processes and the denitrification and anaerobic ammonium oxidation (anammox) N-loss processes. We note that the application of modern meta-omics and related methods has generated comprehensive data sets on the abundance, diversity, and ecology of the different N-cycling microbial guilds. However, it is worth mentioning that microbial N-cycling data from important deserts (e.g., Sahara) and quantitative rate data on N transformation processes from various desert niches are lacking or sparse. Filling this knowledge gap is particularly important, as climate change models often lack data on microbial activity and environmental microbial N-cycling communities can be key actors of climate change by producing or consuming nitrous oxide (N2O), a potent greenhouse gas.
Collapse
|
23
|
|
24
|
Toledo S, Peri PL, Correa OS, Montecchia MS, Gargaglione VB, Ladd B. Structure and function of soil microbial communities in fertile islands in austral drylands. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Santiago Toledo
- Universidad Nacional de la Patagonia Austral (UNPA)‐CIT‐CONICET Postal address 9400 Río Gallegos Argentina
| | - Pablo Luis Peri
- Universidad Nacional de la Patagonia Austral (UNPA)‐CIT‐CONICET Postal address 9400 Río Gallegos Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) Postal address 9400 Río Gallegos Argentina
| | - Olga Susana Correa
- Facultad de Agronomía, Departamento de Biología Aplicada y Alimentos Universidad de Buenos Aires (UBA) Postal address 1417 Buenos Aires Argentina
| | - Marcela Susana Montecchia
- Facultad de Agronomía, Departamento de Biología Aplicada y Alimentos Universidad de Buenos Aires (UBA) Postal address 1417 Buenos Aires Argentina
| | - Veronica Beatriz Gargaglione
- Universidad Nacional de la Patagonia Austral (UNPA)‐CIT‐CONICET Postal address 9400 Río Gallegos Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA) Postal address 9400 Río Gallegos Argentina
| | - Brenton Ladd
- Universidad científica del Sur, Lima, Peru ‐ Escuela de Agroforestería
| |
Collapse
|
25
|
Liu Y, Chi Q, Cheng H, Ding H, Wen T, Zhao J, Feng X, Zhang J, Cai Z, Liu G. Comparative Microbial Nitrogen Functional Gene Abundances in the Topsoil vs. Subsoil of Three Grassland Habitats in Northern China. FRONTIERS IN PLANT SCIENCE 2022; 12:792002. [PMID: 35095965 PMCID: PMC8798409 DOI: 10.3389/fpls.2021.792002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
The microbial groups of nitrogen fixers, ammonia oxidizers, and denitrifiers play vital roles in driving the nitrogen cycle in grassland ecosystems. However, the understanding of the abundance and distribution of these functional microorganisms as well as their driving factors were limited mainly to topsoil. In this study, the abundances of nitrogen functional genes (NFGs) involved in nitrogen fixation (nifH), ammonia oxidation (amoA), and denitrification (nirK, nirS, and nosZ) were investigated in both topsoil (0-10 cm, soil layer with concentrated root) and subsoil (30-40 cm, soil layer with spare root) of three grassland habitats in northern China. The abundance of NFGs decreased with soil depth except for the archaeal amoA gene and the distribution of nifH, archaeal amoA, nirK, and nirS gene was significantly impacted by grassland habitats. Moreover, the distribution of NFGs was more responsive to the vertical difference than horizontal spatial heterogeneity. Redundancy analysis revealed that the distribution pattern of overall NFGs was regulated by grassland habitats, and these regulations were more obvious in the subsoil than in the topsoil. Variance partitioning analysis further indicated that soil resource supply (e.g., organic matter) may control the vertical distribution of NFGs. Taken together, the findings in this study could fundamentally improve our understanding of the distribution of N cycling-associated microorganisms across a vertical scale, which would be useful for predicting the soil N availability and guiding the soil N management in grassland ecosystems.
Collapse
Affiliation(s)
- Yuqing Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences (CAS), Beijing, China
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Qiaodong Chi
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Hui Cheng
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Huanxin Ding
- Suzhou Station of Farmland Quality Protection, Suzhou, China
| | - Teng Wen
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Jun Zhao
- School of Geography, Nanjing Normal University, Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
- Zhongke Clean Soil (Guangzhou) Technology Service Co., Ltd., Guangzhou, China
| | - Xiaojuan Feng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jinbo Zhang
- School of Geography, Nanjing Normal University, Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
- Zhongke Clean Soil (Guangzhou) Technology Service Co., Ltd., Guangzhou, China
| | - Zucong Cai
- School of Geography, Nanjing Normal University, Nanjing, China
- Zhongke Clean Soil (Guangzhou) Technology Service Co., Ltd., Guangzhou, China
- Key Laboratory of Virtual Geographical Environment, Ministry of Education, Nanjing Normal University, Nanjing, China
| | - Guohua Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| |
Collapse
|
26
|
Saghaï A, Banjeree S, Degrune F, Edlinger A, García-Palacios P, Garland G, van der Heijden MGA, Herzog C, Maestre FT, Pescador DS, Philippot L, Rillig MC, Romdhane S, Hallin S. Diversity of archaea and niche preferences among putative ammonia-oxidizing Nitrososphaeria dominating across European arable soils. Environ Microbiol 2021; 24:341-356. [PMID: 34796612 DOI: 10.1111/1462-2920.15830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/28/2021] [Accepted: 10/27/2021] [Indexed: 01/04/2023]
Abstract
Archaeal communities in arable soils are dominated by Nitrososphaeria, a class within Thaumarchaeota comprising all known ammonia-oxidizing archaea (AOA). AOA are key players in the nitrogen cycle and defining their niche specialization can help predicting effects of environmental change on these communities. However, hierarchical effects of environmental filters on AOA and the delineation of niche preferences of nitrososphaerial lineages remain poorly understood. We used phylogenetic information at fine scale and machine learning approaches to identify climatic, edaphic and geomorphological drivers of Nitrososphaeria and other archaea along a 3000 km European gradient. Only limited insights into the ecology of the low-abundant archaeal classes could be inferred, but our analyses underlined the multifactorial nature of niche differentiation within Nitrososphaeria. Mean annual temperature, C:N ratio and pH were the best predictors of their diversity, evenness and distribution. Thresholds in the predictions could be defined for C:N ratio and cation exchange capacity. Furthermore, multiple, independent and recent specializations to soil pH were detected in the Nitrososphaeria phylogeny. The coexistence of widespread ecophysiological differences between closely related soil Nitrososphaeria highlights that their ecology is best studied at fine phylogenetic scale.
Collapse
Affiliation(s)
- Aurélien Saghaï
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Florine Degrune
- Institute of Biology, Freie Universität Berlin, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Anna Edlinger
- Plant-Soil Interactions Group, Agroscope, Zurich, Switzerland.,Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Pablo García-Palacios
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Gina Garland
- Plant-Soil Interactions Group, Agroscope, Zurich, Switzerland.,Soil Quality and Use Group, Agroscope, Zurich, Switzerland.,Department of Environmental System Sciences, Soil Resources Group, ETH Zurich, Zurich, Switzerland
| | - Marcel G A van der Heijden
- Plant-Soil Interactions Group, Agroscope, Zurich, Switzerland.,Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Chantal Herzog
- Plant-Soil Interactions Group, Agroscope, Zurich, Switzerland.,Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Fernando T Maestre
- Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef", Universidad de Alicante, Alicante, Spain.,Departamento de Ecología, Universidad de Alicante, Alicante, Spain
| | - David S Pescador
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Escuela Superior de Ciencias Experimentales y Tecnología, Móstoles, Spain
| | - Laurent Philippot
- Department of Agroecology, University of Bourgogne Franche-Comté, INRAE, AgroSup Dijon, Dijon, France
| | - Matthias C Rillig
- Institute of Biology, Freie Universität Berlin, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Sana Romdhane
- Department of Agroecology, University of Bourgogne Franche-Comté, INRAE, AgroSup Dijon, Dijon, France
| | - Sara Hallin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
27
|
Wang Y, Shang Z, Lan W, Liang S, Kang X, Hu Z. Optimization of nutrient removal performance of magnesia-containing constructed wetlands: a microcosm study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:58583-58591. [PMID: 34120283 DOI: 10.1007/s11356-021-14785-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
Recently, magnesia has drawn much attention for enhancing phosphorus (P) removal of constructed wetlands. However, the poor nitrogen (N) removal efficiency of magnesia-containing constructed wetlands (Mg-CWs) inherently caused by magnesia impedes its application. In this study, peat and intermittent aeration were applied to enhance N removal in a Mg-CW, identified as P-CW and A-CW, respectively. A high TP removal rate (around 90%) was achieved in all CW, and the TN removal rate in the P-CW was 91.05% higher than that in the Mg-CW, which was mainly because the carbon source provided by the peat directly promoted the growth and metabolism of microorganisms and plants. Higher fresh weight of plants was obtained in P-CW (64.94 ± 5.78 g), compared with A-CW (35.88 ± 15.25 g) and Mg-CW (46.25 ± 18.88 g), accomplished by stronger tolerance to high pH (>10). The microbial abundance (16S rRNA) in the P-CW was 15.6 and 8.12 times higher than that of Mg-CW and A-CW, respectively, resulting in lower global warming potential. Tanking all factors into consideration, addition of peat could be an effective method to optimize the nutrient removal performance of Mg-CW.
Collapse
Affiliation(s)
- Yuru Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong, China
| | - Zhenxin Shang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong, China
| | - Wei Lan
- National Engineering Laboratory For Lake Pollution Control and Ecological Restoration, Institute of Lake Environment, Chinese Research Academy of Environmental Science, Beijing, 100012, China
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong, China
| | - Xinsheng Kang
- Shandong Academy of Environmental Science CO., LTD., Jinan, 250013, Shandong, China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, Shandong, China.
| |
Collapse
|
28
|
Traving SJ, Kellogg CTE, Ross T, McLaughlin R, Kieft B, Ho GY, Peña A, Krzywinski M, Robert M, Hallam SJ. Prokaryotic responses to a warm temperature anomaly in northeast subarctic Pacific waters. Commun Biol 2021; 4:1217. [PMID: 34686760 PMCID: PMC8536700 DOI: 10.1038/s42003-021-02731-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 09/23/2021] [Indexed: 11/23/2022] Open
Abstract
Recent studies on marine heat waves describe water temperature anomalies causing changes in food web structure, bloom dynamics, biodiversity loss, and increased plant and animal mortality. However, little information is available on how water temperature anomalies impact prokaryotes (bacteria and archaea) inhabiting ocean waters. This is a nontrivial omission given their integral roles in driving major biogeochemical fluxes that influence ocean productivity and the climate system. Here we present a time-resolved study on the impact of a large-scale warm water surface anomaly in the northeast subarctic Pacific Ocean, colloquially known as the Blob, on prokaryotic community compositions. Multivariate statistical analyses identified significant depth- and season-dependent trends that were accentuated during the Blob. Moreover, network and indicator analyses identified shifts in specific prokaryotic assemblages from typically particle-associated before the Blob to taxa considered free-living and chemoautotrophic during the Blob, with potential implications for primary production and organic carbon conversion and export.
Collapse
Affiliation(s)
- Sachia J Traving
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
- HADAL and Nordcee, Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | | | - Tetjana Ross
- Institute of Ocean Sciences, Fisheries and Ocean Canada, Sidney, BC, Canada
| | - Ryan McLaughlin
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Brandon Kieft
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Grace Y Ho
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
- Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany
| | - Angelica Peña
- Institute of Ocean Sciences, Fisheries and Ocean Canada, Sidney, BC, Canada
| | - Martin Krzywinski
- Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Marie Robert
- Institute of Ocean Sciences, Fisheries and Ocean Canada, Sidney, BC, Canada
| | - Steven J Hallam
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Genome Science and Technology Program, University of British Columbia, 2329 West Mall, Vancouver, BC, V6T 1Z4, Canada.
- Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- ECOSCOPE Training Program, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
29
|
Finn DR, Lee S, Lanzén A, Bertrand M, Nicol GW, Hazard C. Cropping systems impact changes in soil fungal, but not prokaryote, alpha-diversity and community composition stability over a growing season in a long-term field trial. FEMS Microbiol Ecol 2021; 97:6374554. [PMID: 34555173 DOI: 10.1093/femsec/fiab136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/21/2021] [Indexed: 12/30/2022] Open
Abstract
Crop harvest followed by a fallow period can act as a disturbance on soil microbial communities. Cropping systems intended to improve alpha-diversity of communities may also confer increased compositional stability during succeeding growing seasons. Over a single growing season in a long-term (18 year) agricultural field experiment incorporating conventional (CON), conservation (CA), organic (ORG) and integrated (INT) cropping systems, temporal changes in prokaryote, fungal and arbuscular mycorrhizal fungi (AMF) communities were investigated overwinter, during crop growth and at harvest. While certain prokaryote phyla were influenced by cropping system (e.g. Acidobacteria), the community as a whole was primarily driven by temporal changes over the growing season as distinct overwinter and crop-associated communities, with the same trend observed regardless of cropping system. Species-rich prokaryote communities were most stable over the growing season. Cropping system exerted a greater effect on fungal communities, with alpha-diversity highest and temporal changes most stable under CA. CON was particularly detrimental for alpha-diversity in AMF communities, with AMF alpha-diversity and stability improved under all other cropping systems. Practices that promoted alpha-diversity tended to also increase the similarity and temporal stability of soil fungal (and AMF) communities during a growing season, while prokaryote communities were largely insensitive to management.
Collapse
Affiliation(s)
- Damien R Finn
- Thünen Institut für Biodiversität, 38116 Braunschweig, Germany.,Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, 69134 Écully, France
| | - Sungeun Lee
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, 69134 Écully, France
| | - Anders Lanzén
- NEIKER, Basque Institute of Agricultural Research and Development, c/ Berreaga 1, 48160 Derio, Spain
| | - Michel Bertrand
- UMR Agronomie, INRAE AgroParisTech Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Graeme W Nicol
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, 69134 Écully, France
| | - Christina Hazard
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, 69134 Écully, France
| |
Collapse
|
30
|
Wang X, Bai J, Xie T, Wang W, Zhang G, Yin S, Wang D. Effects of biological nitrification inhibitors on nitrogen use efficiency and greenhouse gas emissions in agricultural soils: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112338. [PMID: 34015632 DOI: 10.1016/j.ecoenv.2021.112338] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 05/27/2023]
Abstract
To maintain and increase crop yields, large amounts of nitrogen fertilizers have been applied to farmland. However, the nitrogen use efficiency (NUE) of chemical fertilizer remains very low, which may lead to serious environmental problems, including nitrate pollution, air quality degradation and greenhouse gas (GHG) emissions. Nitrification inhibitors can alleviate nitrogen loss by inhibiting nitrification; thus, biological nitrification inhibition by plants has gradually attracted increasing attention due to its low cost and environmental friendliness. Research progress on BNI is reviewed in this article, including the source, mechanisms, influencing factors and application of BNIs. In addition, the impact of BNI on agriculture and GHG emissions is summarized from the perspective of agricultural production and environmental protection, and the key future research prospects of BNIs are also noted.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Tian Xie
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Guangliang Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shuo Yin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Dawei Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
31
|
Du P, He H, Wu X, Xu J, Dong F, Liu X, Zheng Y. Mesosulfuron-methyl influenced biodegradability potential and N transformation of soil. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125770. [PMID: 33838509 DOI: 10.1016/j.jhazmat.2021.125770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
The wide application of mesosulfuron-methyl (MS) in soil may affect soil microbial community, yet the information is limited. In this work, two distinct soil types from Anyang (AY) and Nanjing (NJ) were spiked with MS (0, 0.006, 0.06, or 0.6 mg kg-1) and incubated for 90 days. MS decreased bacterial and fungal (except the last sampling) abundance and altered their diversity and community. Five biomarkers of bacterial species may help MS degradation and more increased xenobiotics biodegradation pathways were also observed in 0.6 mg kg-1 treatment in AY soil. A co-occurrence network revealed the biomarkers grouped in one module in all AY soils, suggesting these biomarkers act in concert to degrade MS. MS impacted soil N transformation with increasing N2-fixing bacteria in both soils and ammonia-oxidising bacteria (AOB) in NJ and decreasing ammonia-oxidizing archaea (AOA) in AY. The contents of NO3--N and NH4+-N were increased by MS. Structural equation models revealed that the abundance of bacteria and fungi was responsible for the NO3--N and NH4+-N contents. In conclusion, this work aids safety assessments and degradation-related research of MS in soil.
Collapse
Affiliation(s)
- Pengqiang Du
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Plant Protection, Henan Agricultural University, No. 63, Agricultural Road, Zhengzhou 450002, China
| | - Hairong He
- College of Pharmacy, Henan University of Chinese Medicine, No. 156, Jinshui East Road, Zhengzhou 450046, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| |
Collapse
|
32
|
Rodriguez J, Chakrabarti S, Choi E, Shehadeh N, Sierra-Martinez S, Zhao J, Martens-Habbena W. Nutrient-Limited Enrichments of Nitrifiers From Soil Yield Consortia of Nitrosocosmicus-Affiliated AOA and Nitrospira-Affiliated NOB. Front Microbiol 2021; 12:671480. [PMID: 34322099 PMCID: PMC8312096 DOI: 10.3389/fmicb.2021.671480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/22/2021] [Indexed: 11/21/2022] Open
Abstract
The discovery of ammonia-oxidizing archaea (AOA) and complete ammonia-oxidizing (comammox) bacteria widespread in terrestrial ecosystems indicates an important role of these organisms in terrestrial nitrification. Recent evidence indicated a higher ammonia affinity of comammox bacteria than of terrestrial AOA and ammonia-oxidizing bacteria (AOB), suggesting that comammox bacteria could potentially represent the most low-nutrient adapted nitrifiers in terrestrial systems. We hypothesized that a nutrient-limited enrichment strategy could exploit the differences in cellular kinetic properties and yield enrichments dominated by high affinity and high yield comammox bacteria. Using soil with a mixed community of AOA, AOB, and comammox Nitrospira, we compared performance of nutrient-limited chemostat enrichment with or without batch culture pre-enrichment in two different growth media without inhibitors or antibiotics. Monitoring of microbial community composition via 16S rRNA and amoA gene sequencing showed that batch enrichments were dominated by AOB, accompanied by low numbers of AOA and comammox Nitrospira. In contrast, nutrient-limited enrichment directly from soil, and nutrient-limited sub-cultivation of batch enrichments consistently yielded high enrichments of Nitrosocosmicus-affiliated AOA associated with multiple canonical nitrite-oxidizing Nitrospira strains, whereas AOB numbers dropped below 0.1% and comammox Nitrospira were lost completely. Our results reveal competitiveness of Nitrosocosmicus sp. under nutrient limitation, and a likely more complex or demanding ecological niche of soil comammox Nitrospira than simulated in our nutrient-limited chemostat experiments.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Willm Martens-Habbena
- Fort Lauderdale Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Davie, FL, United States
| |
Collapse
|
33
|
Changes in soil ammonia oxidizers and potential nitrification after clear-cutting of boreal forests in China. World J Microbiol Biotechnol 2021; 37:126. [PMID: 34180026 DOI: 10.1007/s11274-021-03087-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
The Korean pine and broad-leaved mixed forests are the most typical and complete ecosystem among the global boreal forests, with extremely important ecological functions. However, few studies on the changes of soil ammonia oxidizers and potential nitrification after clear-cutting of forests are reported. In this study, in contrast to primary Korean pine forests, nitrate (NO3-) was significantly higher in secondary broad-leaved forests, while ammonium (NH4+) was on the contrary. The abundance of ammonia-oxidizing bacteria (AOB) was greatly higher in secondary broad-leaved forests, while levels of ammonia-oxidizing archaea (AOA) were not significantly different between them. The significant differences of community structure of AOA and AOB were observed in different forest types and soil layers. Compared with AOA, community compositions of AOB was more sensitive to forest type. The dominant groups of AOA were Nitrososphaera and Nitrosotalea, and the dominant group of AOB was Nitrosospira, of which Nitrosospira cluster 2 and 4 were functional groups with highly activity. Soil potential nitrification rate (PNR) was higher in secondary broad-leaved forests. Furthermore, PNR and AOB abundance had a significant positive correlation, but no significant correlation with AOA abundance. These results provide insights into the soil nitrogen balance and effects on forest restoration after clear-cutting.
Collapse
|
34
|
Yue P, Zuo X, Li K, Cui X, Wang S, Misselbrook T, Liu X. The driving effect of nitrogen-related functional microorganisms under water and nitrogen addition on N 2O emission in a temperate desert. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145470. [PMID: 33581515 DOI: 10.1016/j.scitotenv.2021.145470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Nitrous oxide (N2O) is an important greenhouse gas and a precursor of ozone depletion in the upper atmosphere, thus contributing to climate change and biological safety. The mechanisms and response characteristics of N2O emission in desert soils to precipitation and nitrogen (N) deposition are still unclear. To further elucidate this, an in-situ experiment was conducted in the Gurbantunggut Desert, a temperate desert in China, between June and September 2015 and 2016. The response in N2O flux to water addition (equivalent to 5 mm precipitation) was very transient in summer, only lasting one to two days. This was attributed to the rapid decrease in soil moisture following the water addition, due to the high temperature and drought conditions, and there was no significant change in N2O emission or in the abundance of N-related key functional genes. In contrast, N2O emissions increased significantly in response to N addition. This was associated with an increase in functional gene abundances of amoA (ammonia oxidizing bacteria (AOB)) and ammonia-oxidizing archaea (AOA), which responded positively to increasing soil NH4+-N content, but were inhibited by increasing soil NO3--N content. The abundance of the nirS (nitrate reductase) gene was significantly increased by increasing soil NO3--N content. Interestingly, the indirect effect of increased soil moisture in enhancing N2O emission by increasing the abundance of AOA was offset by a direct effect of soil moisture in inhibiting soil N2O emission. Overall, N2O emissions were mainly controlled by AOA rather than AOB in summer, and were more sensitive to soil available N than to soil moisture in this temperate desert.
Collapse
Affiliation(s)
- Ping Yue
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xiaoan Zuo
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China
| | - Kaihui Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xiaoqing Cui
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Shaokun Wang
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China
| | - Tom Misselbrook
- Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB, UK
| | - Xuejun Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
35
|
Huang L, Chakrabarti S, Cooper J, Perez A, John SM, Daroub SH, Martens-Habbena W. Ammonia-oxidizing archaea are integral to nitrogen cycling in a highly fertile agricultural soil. ISME COMMUNICATIONS 2021; 1:19. [PMID: 37938645 PMCID: PMC9723749 DOI: 10.1038/s43705-021-00020-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/14/2021] [Indexed: 12/21/2022]
Abstract
Nitrification is a central process in the global nitrogen cycle, carried out by a complex network of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), complete ammonia-oxidizing (comammox) bacteria, and nitrite-oxidizing bacteria (NOB). Nitrification is responsible for significant nitrogen leaching and N2O emissions and thought to impede plant nitrogen use efficiency in agricultural systems. However, the actual contribution of each nitrifier group to net rates and N2O emissions remain poorly understood. We hypothesized that highly fertile agricultural soils with high organic matter mineralization rates could allow a detailed characterization of N cycling in these soils. Using a combination of molecular and activity measurements, we show that in a mixed AOA, AOB, and comammox community, AOA outnumbered low diversity assemblages of AOB and comammox 50- to 430-fold, and strongly dominated net nitrification activities with low N2O yields between 0.18 and 0.41 ng N2O-N per µg NOx-N in cropped, fallow, as well as native soil. Nitrification rates were not significantly different in plant-covered and fallow plots. Mass balance calculations indicated that plants relied heavily on nitrate, and not ammonium as primary nitrogen source in these soils. Together, these results imply AOA as integral part of the nitrogen cycle in a highly fertile agricultural soil.
Collapse
Affiliation(s)
- Laibin Huang
- Fort Lauderdale Research and Education Center, Microbiology and Cell Science, University of Florida, Davie, FL, USA
| | - Seemanti Chakrabarti
- Fort Lauderdale Research and Education Center, Microbiology and Cell Science, University of Florida, Davie, FL, USA
| | - Jennifer Cooper
- Everglades Research and Education Center, Soil and Water Sciences, University of Florida, Belle Glade, FL, USA
| | - Ana Perez
- Fort Lauderdale Research and Education Center, Microbiology and Cell Science, University of Florida, Davie, FL, USA
| | - Sophia M John
- Fort Lauderdale Research and Education Center, Microbiology and Cell Science, University of Florida, Davie, FL, USA
| | - Samira H Daroub
- Everglades Research and Education Center, Soil and Water Sciences, University of Florida, Belle Glade, FL, USA
| | - Willm Martens-Habbena
- Fort Lauderdale Research and Education Center, Microbiology and Cell Science, University of Florida, Davie, FL, USA.
| |
Collapse
|
36
|
Shi L, Zhang P, He Y, Zeng F, Xu J, He L. Enantioselective effects of cyflumetofen on microbial community and related nitrogen cycle gene function in acid-soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144831. [PMID: 33548698 DOI: 10.1016/j.scitotenv.2020.144831] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/26/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Cyflumetofen (CYF) is a novel chiral acaricide widely used in commercial crops to control mites. The environmental risks exposed by CYF in the soil, especially at the enantiomer level, remain unclear. We found that the (+)-CYF enantiomer was preferentially degraded in acid-soil, resulting in (-)-CYF enrichment. 16S rRNA and qPCR analysis indicated that decreased bacterial abundance by 12.79-61.80% and 2.52-52.48% in (-)-CYF treatment and (+)-CYF treatment, respectively. Diversity was also decreased with (-)-CYF treatment. Interestingly, several beneficial bacteria, for instance, Alphaproteobacteria (class), Sphingomonadaceae (family), and Arthrobacter (specise) were more enriched following (-)-CYF. The abundance of N2-fixing bacteria showed a sustained reduction with time, and the decrease was 3.24-72.94% with (-)-CYF and 25.37-73.11% with (+)-CYF treatment. Compared with the (+)-CYF treatment could positively promote nitrification, while the treatment (-)-CYF significantly reduced the abundance of amoA gene; namely it significantly negatively affected the nitrification in the nitrogen cycle. Through our further research, we found that Actinobacteria, Alphaproteobacteria, Lysobacter; Sphingomonas, Patescibacteria, Saccharimonadia, and Saccharimonadales showed synergistic effects with the nitrogen cycling-related genes nifH and amoA. These results contribute to a comprehensive environmental risk assessment of CYF in acid-soil at the enantiomer level.
Collapse
Affiliation(s)
- Linlin Shi
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Ping Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Yuhan He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Fanzhan Zeng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China; Academy of Agricultural Sciences, Southwest University, Chongqing, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Southwest University, Chongqing, China.
| |
Collapse
|
37
|
Zhao W, Vermace RR, Mattes TE, Just C. Impacts of ammonia loading and biofilm age on the prevalence of nitrogen-cycling microorganisms in a full-scale submerged attached-growth reactor. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:787-796. [PMID: 33124148 DOI: 10.1002/wer.1471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/04/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
This study reports the impacts of seasonal ammonia load changes and biofilm age on the quantity of biomass and on the prevalence of ammonia- and nitrite-metabolizing organisms within a submerged attached-growth reactor (SAGR™) following lagoon treatment. Ammonia (NH3 ) loadings (0.12-3.17 kg/d) in the primary SAGR were measured over 223 days from May to December in 2017. Adjustment of the wastewater flow path on September 1 successfully increased NH3 loading to the primary SAGR, which subsequently caused reactor biomass to increase. The NH3 removal rate in October (0.5 kg/d) was greater than rates in June and July (0.3 and 0.2 kg/d) despite a water temperature decrease from >24 to 15.6°C. This elevated removal rate in October, and the sustained removal rate in December (0.4 kg/d, 5.3°C) were associated with a measured increase in microbial biomass. The relative abundance of the anammox organism C. Brocadia was 5 times greater in the mature biofilm after 686 days of growth, and the genus Pseudomonas increased sevenfold. The presence of Pseudomonas, which contains denitrifying species, and anammox suggests a high potential for removal of total nitrogen in SAGRs. PRACTITIONER POINTS: Pseudomonas prevalence and the presence of anammox suggest a high potential for total nitrogen removal in mature SAGR biofilms. The abundance of the anammox microorganism C. Brocadia was greater after 686 days of biofilm growth compared with 33 days. Simple operational changes can increase biomass in the SAGR to maintain, or even increase, NH3 transformation rates during cold weather.
Collapse
Affiliation(s)
- Weilun Zhao
- Civil & Environmental Engineering, University of Iowa, Iowa City, IA, USA
| | - Rebecca R Vermace
- Civil & Environmental Engineering, University of Iowa, Iowa City, IA, USA
| | - Timothy E Mattes
- Civil & Environmental Engineering, University of Iowa, Iowa City, IA, USA
| | - Craig Just
- Civil & Environmental Engineering, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
38
|
Molecular characterization of bacteria and archaea in a bioaugmented zero-water exchange shrimp pond. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04392-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
AbstractIn the zero-water exchange shrimp culture pond maintained with the application of indigenous bioaugmentor, low levels of total ammonia–nitrogen were reported, indicating the relevance of indigenous microbial communities. Sediments (0–5 cm layer) were sampled from the pond (85th day) and the bacterial and archaeal communities; specifically, the ammonia oxidizers (ammonia-oxidizing bacteria, ammonia-oxidizing archaea, and anaerobic ammonia-oxidizing bacteria) in the sediment metagenome of the pond were analysed using the 16S rRNA and functional genes. Bacterial and archaeal 16S rRNA genes showed the relative abundance of Delta-Proteobacteria and Bacteroidetes groups performing sulphur respiration and organic matter degradation, archaeal groups of anaerobic sulphur respiring Crenarchaeotae, and chemolithoautotrophic ammonia oxidizers belonging to Thaumarchaeota. The presence of these diverse bacterial and archaeal communities denotes their significant roles in the cycling the carbon, nitrogen, and sulphur thereby bringing out efficient bioremediation in the bioaugmented zero-water exchange shrimp culture pond. Similarly, the functional gene-specific study showed the predominance of Nitrosomonas sp. (ammonia-oxidizing bacteria), Nitrosopumilus maritimus (ammonia-oxidizing archaea), and Candidatus Kuenenia (anaerobic ammonia-oxidizing bacteria) in the system, which points to their importance in the removal of accumulated ammonia. Thus, this study paves the way for understanding the microbial communities, specifically the ammonia oxidizers responsible for maintaining healthy and optimal environmental conditions in the bioaugmented zero-water exchange shrimp culture pond.
Collapse
|
39
|
Bernhard AE, Beltz J, Giblin AE, Roberts BJ. Biogeography of ammonia oxidizers in New England and Gulf of Mexico salt marshes and the potential importance of comammox. ISME COMMUNICATIONS 2021; 1:9. [PMID: 36717686 PMCID: PMC9723745 DOI: 10.1038/s43705-021-00008-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 02/03/2023]
Abstract
Few studies have focused on broad scale biogeographic patterns of ammonia oxidizers in coastal systems, yet understanding the processes that govern them is paramount to understanding the mechanisms that drive biodiversity, and ultimately impact ecosystem processes. Here we present a meta-analysis of 16 years of data of ammonia oxidizer abundance, diversity, and activity in New England (NE) salt marshes and 5 years of data from marshes in the Gulf of Mexico (GoM). Potential nitrification rates were more than 80x higher in GoM compared to NE marshes. However, nitrifier abundances varied between regions, with ammonia-oxidizing archaea (AOA) and comammox bacteria significantly greater in GoM, while ammonia-oxidizing bacteria (AOB) were more than 20x higher in NE than GoM. Total bacterial 16S rRNA genes were also significantly greater in GoM marshes. Correlation analyses of rates and abundance suggest that AOA and comammox are more important in GoM marshes, whereas AOB are more important in NE marshes. Furthermore, ratios of nitrifiers to total bacteria in NE were as much as 80x higher than in the GoM, suggesting differences in the relative importance of nitrifiers between these systems. Communities of AOA and AOB were also significantly different between the two regions, based on amoA sequences and DNA fingerprints (terminal restriction fragment length polymorphism). Differences in rates and abundances may be due to differences in salinity, temperature, and N loading between the regions, and suggest significantly different N cycling dynamics in GoM and NE marshes that are likely driven by strong environmental differences between the regions.
Collapse
Affiliation(s)
- A E Bernhard
- Department of Biology, Connecticut College, New London, CT, USA.
| | - J Beltz
- Department of Biology, Connecticut College, New London, CT, USA
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - A E Giblin
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - B J Roberts
- Louisiana Universities Marine Consortium, Chauvin, LA, USA
| |
Collapse
|
40
|
Li X, Xu S, Neupane A, Abdoulmoumine N, DeBruyn JM, Walker FR, Jagadamma S. Co-application of biochar and nitrogen fertilizer reduced nitrogen losses from soil. PLoS One 2021; 16:e0248100. [PMID: 33760843 PMCID: PMC7990209 DOI: 10.1371/journal.pone.0248100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/22/2021] [Indexed: 11/19/2022] Open
Abstract
Combined application of biochar and nitrogen (N) fertilizer has the potential to reduce N losses from soil. However, the effectiveness of biochar amendment on N management can vary with biochar types with different physical and chemical properties. This study aimed to assess the effect of two types of hardwood biochar with different ash contents and cation exchange capacity (CEC) on soil N mineralization and nitrous oxide (N2O) production when applied alone and in combination with N fertilizer. Soil samples collected from a temperate pasture system were amended with two types of biochar (B1 and B2), urea, and urea plus biochar, and incubated for 60 days along with soil control (without biochar or urea addition). Soil nitrate N, ammonium N, ammonia-oxidizing bacteria amoA gene transcripts, and N2O production were measured during the experiment. Compared to control, addition of B1 (higher CEC and lower ash content) alone decreased nitrate N concentration by 21% to 45% during the incubation period while the addition of B2 (lower CEC and higher ash content) alone increased the nitrate N concentration during the first 10 days. Biochar B1 also reduced the abundance of amoA transcripts by 71% after 60 days. Compared to B1 + urea, B2 + urea resulted in a significantly greater initial increase in soil ammonium and nitrate N concentrations. However, B2 + urea had a significantly lower 60-day cumulative N2O emission compared to B1 + urea. Overall, when applied with urea, the biochar with higher CEC reduced ammonification and nitrification rates, while biochar with higher ash content reduced N N2O production. Our study demonstrated that biochar has the potential to enhance N retention in soil and reduce N2O emission when it is applied with urea, but the specific effects of the added biochar depend on its physical and chemical properties.
Collapse
Affiliation(s)
- Xiuwen Li
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Sutie Xu
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Avishesh Neupane
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Nourredine Abdoulmoumine
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Jennifer M. DeBruyn
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Forbes R. Walker
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Sindhu Jagadamma
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
41
|
Relationships between nitrogen cycling microbial community abundance and composition reveal the indirect effect of soil pH on oak decline. THE ISME JOURNAL 2021; 15:623-635. [PMID: 33067585 PMCID: PMC8027100 DOI: 10.1038/s41396-020-00801-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 01/30/2023]
Abstract
Tree decline is a global concern and the primary cause is often unknown. Complex interactions between fluctuations in nitrogen (N) and acidifying compounds have been proposed as factors causing nutrient imbalances and decreasing stress tolerance of oak trees. Microorganisms are crucial in regulating soil N available to plants, yet little is known about the relationships between soil N-cycling and tree health. Here, we combined high-throughput sequencing and qPCR analysis of key nitrification and denitrification genes with soil chemical analyses to characterise ammonia-oxidising bacteria (AOB), archaea (AOA) and denitrifying communities in soils associated with symptomatic (declining) and asymptomatic (apparently healthy) oak trees (Quercus robur and Q. petraea) in the United Kingdom. Asymptomatic trees were associated with a higher abundance of AOB that is driven positively by soil pH. No relationship was found between AOA abundance and tree health. However, AOA abundance was driven by lower concentrations of NH4+, further supporting the idea of AOA favouring lower soil NH4+ concentrations. Denitrifier abundance was influenced primarily by soil C:N ratio, and correlations with AOB regardless of tree health. These findings indicate that amelioration of soil acidification by balancing C:N may affect AOB abundance driving N transformations, reducing stress on declining oak trees.
Collapse
|
42
|
Hetz SA, Horn MA. Burkholderiaceae Are Key Acetate Assimilators During Complete Denitrification in Acidic Cryoturbated Peat Circles of the Arctic Tundra. Front Microbiol 2021; 12:628269. [PMID: 33613495 PMCID: PMC7892595 DOI: 10.3389/fmicb.2021.628269] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/18/2021] [Indexed: 01/23/2023] Open
Abstract
Cryoturbated peat circles (pH 4) in the Eastern European Tundra harbor up to 2 mM pore water nitrate and emit the greenhouse gas N2O like heavily fertilized agricultural soils in temperate regions. The main process yielding N2O under oxygen limited conditions is denitrification, which is the sequential reduction of nitrate/nitrite to N2O and/or N2. N2O reduction to N2 is impaired by pH < 6 in classical model denitrifiers and many environments. Key microbes of peat circles are important but largely unknown catalysts for C- and N-cycling associated N2O fluxes. Thus, we hypothesized that the peat circle community includes hitherto unknown taxa and is essentially unable to efficiently perform complete denitrification, i.e., reduce N2O, due to a low in situ pH. 16S rRNA analysis indicated a diverse active community primarily composed of the bacterial class-level taxa Alphaproteobacteria, Acidimicrobiia, Acidobacteria, Verrucomicrobiae, and Bacteroidia, as well as archaeal Nitrososphaeria. Euryarchaeota were not detected. 13C2- and 12C2-acetate supplemented anoxic microcosms with endogenous nitrate and acetylene at an in situ near pH of 4 were used to assess acetate dependent carbon flow, denitrification and N2O production. Initial nitrate and acetate were consumed within 6 and 11 days, respectively, and primarily converted to CO2 and N2, suggesting complete acetate fueled denitrification at acidic pH. Stable isotope probing coupled to 16S rRNA analysis via Illumina MiSeq amplicon sequencing identified acetate consuming key players of the family Burkholderiaceae during complete denitrification correlating with Rhodanobacter spp. The archaeal community consisted primarily of ammonia-oxidizing Archaea of Nitrososphaeraceae, and was stable during the incubation. The collective data indicate that peat circles (i) host acid-tolerant denitrifiers capable of complete denitrification at pH 4-5.5, (ii) other parameters like carbon availability rather than pH are possible reasons for high N2O emissions in situ, and (iii) Burkholderiaceae are responsive key acetate assimilators co-occurring with Rhodanobacter sp. during denitrification, suggesting both organisms being associated with acid-tolerant denitrification in peat circles.
Collapse
Affiliation(s)
- Stefanie A Hetz
- Institute of Microbiology, Leibniz University Hannover, Hannover, Germany
| | - Marcus A Horn
- Institute of Microbiology, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
43
|
Han P, Wu D, Sun D, Zhao M, Wang M, Wen T, Zhang J, Hou L, Liu M, Klümper U, Zheng Y, Dong HP, Liang X, Yin G. N 2O and NO y production by the comammox bacterium Nitrospira inopinata in comparison with canonical ammonia oxidizers. WATER RESEARCH 2021; 190:116728. [PMID: 33326897 DOI: 10.1016/j.watres.2020.116728] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Nitrous oxide (N2O) and NOy (nitrous acid (HONO) + nitric oxide (NO) + nitrogen dioxide (NO2)) are released as byproducts or obligate intermediates during aerobic ammonia oxidation, and further influence global warming and atmospheric chemistry. The ammonia oxidation process is catalyzed by groups of globally distributed ammonia-oxidizing microorganisms, which are playing a major role in atmospheric N2O and NOy emissions. Yet, little is known about HONO and NO2 production by the recently discovered, widely distributed complete ammonia oxidizers (comammox), able to individually perform the oxidation of ammonia to nitrate via nitrite. Here, we examined the N2O and NOy production patterns by comammox bacterium Nitrospira inopinata during aerobic ammonia oxidation, in comparison to its canonical ammonia-converting counterparts, representatives of the ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Our findings, i) show low yield NOy production by the comammox bacterium compared to AOB; ii) highlight the role of the NO reductase in the biological formation of N2O based on results from NH2OH inhibition assays and its stimulation during archaeal and bacterial ammonia oxidations; iii) postulate that the lack of hydroxylamine (NH2OH) and NO transformation enzymatic activities may lead to a buildup of NH2OH/NO which can abiotically react to N2O ; iv) collectively confirm restrained N2O and NOy emission by comammox bacteria, an unneglectable consortium of microbes in global atmospheric emission of reactive nitrogen gases.
Collapse
Affiliation(s)
- Ping Han
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming (IEC), East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China.
| | - Dianming Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming (IEC), East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Dongyao Sun
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Mengyue Zhao
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Mengdi Wang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Teng Wen
- School of Geography, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jinbo Zhang
- School of Geography, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lijun Hou
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming (IEC), East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming (IEC), East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Uli Klümper
- Institute for Hydrobiology, Technische Universität Dresden, Dresden, 01062, Germany
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China; Institute of Eco-Chongming (IEC), East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Hong-Po Dong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| |
Collapse
|
44
|
Truu M, Nõlvak H, Ostonen I, Oopkaup K, Maddison M, Ligi T, Espenberg M, Uri V, Mander Ü, Truu J. Soil Bacterial and Archaeal Communities and Their Potential to Perform N-Cycling Processes in Soils of Boreal Forests Growing on Well-Drained Peat. Front Microbiol 2020; 11:591358. [PMID: 33343531 PMCID: PMC7744593 DOI: 10.3389/fmicb.2020.591358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
Peatlands are unique wetland ecosystems that cover approximately 3% of the world’s land area and are mostly located in boreal and temperate regions. Around 15 Mha of these peatlands have been drained for forestry during the last century. This study investigated soil archaeal and bacterial community structure and abundance, as well as the abundance of marker genes of nitrogen transformation processes (nitrogen fixation, nitrification, denitrification, and dissimilatory nitrate reduction to ammonia) across distance gradients from drainage ditches in nine full-drained, middle-aged peatland forests dominated by Scots pine, Norway spruce, or Downy birch. The dominating tree species had a strong effect on the chemical properties (pH, N and C/N status) of initially similar Histosols and affected the bacterial and archaeal community structure and abundance of microbial groups involved in the soil nitrogen cycle. The pine forests were distinguished by having the lowest fine root biomass of trees, pH, and N content and the highest potential for N fixation. The distance from drainage ditches affected the spatial distribution of bacterial and archaeal communities (especially N-fixers, nitrifiers, and denitrifiers possessing nosZ clade II), but this effect was often dependent on the conditions created by the dominance of certain tree species. The composition of the nitrifying microbial community was dependent on the soil pH, and comammox bacteria contributed significantly to nitrate formation in the birch and spruce soils where the pH was higher than 4.6. The highest N2O emission was recorded from soils with higher bacterial and archaeal phylogenetic diversity such as birch forest soils. This study demonstrates that the long-term growth of forests dominated by birch, pine, and spruce on initially similar organic soil has resulted in tree-species-specific changes in the soil properties and the development of forest-type-specific soil prokaryotic communities with characteristic functional properties and relationships within microbial communities.
Collapse
Affiliation(s)
- Marika Truu
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Hiie Nõlvak
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Ivika Ostonen
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Kristjan Oopkaup
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Martin Maddison
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Teele Ligi
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Mikk Espenberg
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Veiko Uri
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Ülo Mander
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Jaak Truu
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
45
|
Dang K, Gong X, Zhao G, Wang H, Ivanistau A, Feng B. Intercropping Alters the Soil Microbial Diversity and Community to Facilitate Nitrogen Assimilation: A Potential Mechanism for Increasing Proso Millet Grain Yield. Front Microbiol 2020; 11:601054. [PMID: 33324383 PMCID: PMC7721675 DOI: 10.3389/fmicb.2020.601054] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
Intercropping of cereals and legumes has been used in modern agricultural systems, and the soil microorganisms associated with legumes play a vital role in organic matter decomposition and nitrogen (N) fixation. This study investigated the effect of intercropping on the rhizosphere soil microbial composition and structure and how this interaction affects N absorption and utilization by plants to improve crop productivity. Experiments were conducted to analyze the rhizosphere soil microbial diversity and the relationship between microbial composition and N assimilation by proso millet (Panicum miliaceum L.) and mung bean (Vigna radiata L.) from 2017 to 2019. Four different intercropping row arrangements were evaluated, and individual plantings of proso millet and mung bean were used as controls. Microbial diversity and community composition were determined through Illumina sequencing of 16S rRNA and internal transcribed spacer (ITS) genes. The results indicated that intercropping increased N levels in the soil-plant system and this alteration was strongly dependent on changes in the microbial (bacterial and fungal) diversities and communities. The increase in bacterial alpha diversity and changes in unique operational taxonomic unit (OTU) numbers increased the soil N availability and plant N accumulation. Certain bacterial taxa (such as Proteobacteria) and fungal taxa (such as Ascomycota) were significantly altered under intercropping and showed positive responses to increased N assimilation. The average grain yield of intercropped proso millet increased by 13.9-50.1% compared to that of monoculture proso millet. Our data clearly showed that intercropping proso millet with mung bean altered the rhizosphere soil microbial diversity and community composition; thus, this intercropping system represents a potential mechanism for promoting N assimilation and increasing grain yield.
Collapse
Affiliation(s)
- Ke Dang
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas/Northwest A & F University, Yangling, China
| | - Xiangwei Gong
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas/Northwest A & F University, Yangling, China
| | - Guan Zhao
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas/Northwest A & F University, Yangling, China
| | - Honglu Wang
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas/Northwest A & F University, Yangling, China
| | | | - Baili Feng
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas/Northwest A & F University, Yangling, China
| |
Collapse
|
46
|
Wei D, Zeng S, Hou D, Zhou R, Xing C, Deng X, Yu L, Wang H, Deng Z, Weng S, Huang Z, He J. Community diversity and abundance of ammonia-oxidizing archaea and bacteria in shrimp pond sediment at different culture stages. J Appl Microbiol 2020; 130:1442-1455. [PMID: 33021028 DOI: 10.1111/jam.14846] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
AIMS Ammonia oxidation is a significant process of nitrogen cycles in a lot of ecosystems sediments while there are few studies in shrimp culture pond (SCP) sediments. This paper attempted to explore the community diversity and abundance of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in SCP sediments at different culture stages. METHODS AND RESULTS We collected SCP sediments and analysed the community diversity and abundance of AOA and bacteria in shrimp pond sediment at different culture stages using the ammonia monooxygenase (amoA) gene with quantitative PCR (qPCR) and 16S rRNA gene sequencing. The AOB-amoA gene abundance was showed higher than AOA-amoA gene abundance in SCP sediments on Day 50 and Day 60 after shrimp larvae introducing into the pond, and the diversity of AOA in SCP sediments was higher than that of AOB. The phylogenetic tree revealed that the most of AOA were the member of Nitrosopumilus and Nitrososphaera, and the majority of AOB sequences were clustered into Nitrosospira, Nitrosomonas clusters 6a and 7. The AOA community has close relationship with total organic carbon (TOC), pH, total phosphorus (TP), nitrate reductase, urease, acid phosphatase and β-glucosidase. The AOB community was related to TOC, C/N and nitrate reductase. CONCLUSIONS AOA and AOB play the different ecological roles in SCP sediments at different culture stages. SIGNIFICANCE AND IMPACT OF THE STUDY Our results suggested that the different community diversity and abundance of AOA and AOB in SCP sediments, which may improve our ecological cognition of shrimp culture stages in SCP ecosystems.
Collapse
Affiliation(s)
- D Wei
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences/School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.,Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - S Zeng
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences/School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.,Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - D Hou
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences/School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.,Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - R Zhou
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences/School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.,Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - C Xing
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences/School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - X Deng
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - L Yu
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences/School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.,Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - H Wang
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences/School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Z Deng
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences/School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.,Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - S Weng
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences/School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.,Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Z Huang
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences/School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.,Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - J He
- State Key Laboratory of Biocontrol/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences/School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.,Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
47
|
Wenck BR, Santangelo TJ. Archaeal transcription. Transcription 2020; 11:199-210. [PMID: 33112729 PMCID: PMC7714419 DOI: 10.1080/21541264.2020.1838865] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
Increasingly sophisticated biochemical and genetic techniques are unraveling the regulatory factors and mechanisms that control gene expression in the Archaea. While some similarities in regulatory strategies are universal, archaeal-specific regulatory strategies are emerging to complement a complex patchwork of shared archaeal-bacterial and archaeal-eukaryotic regulatory mechanisms employed in the archaeal domain. The prokaryotic archaea encode core transcription components with homology to the eukaryotic transcription apparatus and also share a simplified eukaryotic-like initiation mechanism, but also deploy tactics common to bacterial systems to regulate promoter usage and influence elongation-termination decisions. We review the recently established complete archaeal transcription cycle, highlight recent findings of the archaeal transcription community and detail the expanding post-initiation regulation imposed on archaeal transcription.
Collapse
Affiliation(s)
- Breanna R. Wenck
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Thomas J. Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
48
|
McGee CF. The effects of silver nanoparticles on the microbial nitrogen cycle: a review of the known risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31061-31073. [PMID: 32514926 DOI: 10.1007/s11356-020-09548-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/01/2020] [Indexed: 05/16/2023]
Abstract
The nitrogen cycle is an integral biogeochemical function for maintaining healthy environments. Nitrogen is a key nutrient that must be continuously replenished through recycling mechanisms to sustain ecosystems, disruption to which can result in compromised ecosystem functioning. Certain stages in the microbial conversion of nitrogen compounds are performed by a limited range of micro-organisms making these key functional species in ecosystems. The growing industrial use of silver nanoparticles (AgNPs) potentially poses significant risks for microbial nitrogen cycling species. AgNPs possess potent antimicrobial properties and are expected to reach a range of natural environments through several routes of exposure. Certain functional nitrogen cycling microbes have been shown to be highly susceptible to AgNP toxicity. The current literature indicates that AgNPs can negatively affect certain nitrogen fixing, nitrifying and denitrifying microbes in vitro. In vivo studies investigating the effect of AgNPs on nitrogen cycling microbial communities and nitrogen transformation rates in soil, sediment and sludge environments have also indicated disruption of these functional processes. This review provides a comprehensive description of the current state of knowledge regarding the toxicity of AgNPs to nitrogen cycling communities. The aim of the review is to highlight the most susceptible stages in the nitrogen cycle and the implications for the affected ecosystems.
Collapse
Affiliation(s)
- Conor Francis McGee
- Department of Agriculture, Food and the Marine, Cellbridge, Co. Kildare, Ireland.
| |
Collapse
|
49
|
Plant-archaea relationships: a potential means to improve crop production in arid and semi-arid regions. World J Microbiol Biotechnol 2020; 36:133. [PMID: 32772189 DOI: 10.1007/s11274-020-02910-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
Crop production in arid and semi-arid regions of the world is limited by several abiotic factors, including water stress, temperature extremes, low soil fertility, high soil pH, low soil water-holding capacity, and low soil organic matter. Moreover, arid and semi-arid areas experience low levels of rainfall with high spatial and temporal variability. Also, the indiscriminate use of chemicals, a practice that characterizes current agricultural practice, promotes crop and soil pollution potentially resulting in serious human health and environmental hazards. A reliable and sustainable alternative to current farming practice is, therefore, a necessity. One such option includes the use of plant growth-promoting microbes that can help to ameliorate some of the adverse effects of these multiple stresses. In this regard, archaea, functional components of the plant microbiome that are found both in the rhizosphere and the endosphere may contribute to the promotion of plant growth. Archaea can survive in extreme habitats such as areas with high temperatures and hypersaline water. No cases of archaea pathogenicity towards plants have been reported. Archaea appear to have the potential to promote plant growth, improve nutrient supply and protect plants against various abiotic stresses. A better understanding of recent developments in archaea functional diversity, plant colonizing ability, and modes of action could facilitate their eventual usage as reliable components of sustainable agricultural systems. The research discussed herein, therefore, addresses the potential role of archaea to improve sustainable crop production in arid and semi-arid areas.
Collapse
|
50
|
Wu L, Chen X, Wei W, Liu Y, Wang D, Ni BJ. A Critical Review on Nitrous Oxide Production by Ammonia-Oxidizing Archaea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9175-9190. [PMID: 32657581 DOI: 10.1021/acs.est.0c03948] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The continuous increase of nitrous oxide (N2O) in the atmosphere has become a global concern because of its property as a potent greenhouse gas. Given the important role of ammonia-oxidizing archaea (AOA) in ammonia oxidation and their involvement in N2O production, a clear understanding of the knowledge on archaeal N2O production is necessary for global N2O mitigation. Compared to bacterial N2O production by ammonia-oxidizing bacteria (AOB), AOA-driven N2O production pathways are less-well elucidated. In this Critical Review, we synthesized the currently proposed AOA-driven N2O production pathways in combination with enzymology distinction, analyzed the role of AOA species involved in N2O production pathways, discussed the relative contribution of AOA to N2O production in both natural and anthropogenic environments, summarized the factors affecting archaeal N2O yield, and compared the distinctions among approaches used to differentiate ammonia oxidizer-associated N2O production. We, then, put forward perspectives for archaeal N2O production and future challenges to further improve our understanding of the production pathways, putative enzymes involved and potential approaches for identification in order to potentially achieve effective N2O mitigations.
Collapse
Affiliation(s)
- Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Xueming Chen
- College of Environment and Resources, Fuzhou University, Fujian 350116, PR China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Dongbo Wang
- Key Laboratory of Environmental Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| |
Collapse
|