1
|
Torcello-Requena A, Murphy ARJ, Lidbury IDEA, Pitt FD, Stark R, Millard AD, Puxty RJ, Chen Y, Scanlan DJ. A distinct, high-affinity, alkaline phosphatase facilitates occupation of P-depleted environments by marine picocyanobacteria. Proc Natl Acad Sci U S A 2024; 121:e2312892121. [PMID: 38713622 PMCID: PMC11098088 DOI: 10.1073/pnas.2312892121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/06/2024] [Indexed: 05/09/2024] Open
Abstract
Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus, the two most abundant phototrophs on Earth, thrive in oligotrophic oceanic regions. While it is well known that specific lineages are exquisitely adapted to prevailing in situ light and temperature regimes, much less is known of the molecular machinery required to facilitate occupancy of these low-nutrient environments. Here, we describe a hitherto unknown alkaline phosphatase, Psip1, that has a substantially higher affinity for phosphomonoesters than other well-known phosphatases like PhoA, PhoX, or PhoD and is restricted to clade III Synechococcus and a subset of high light I-adapted Prochlorococcus strains, suggesting niche specificity. We demonstrate that Psip1 has undergone convergent evolution with PhoX, requiring both iron and calcium for activity and likely possessing identical key residues around the active site, despite generally very low sequence homology. Interrogation of metagenomes and transcriptomes from TARA oceans and an Atlantic Meridional transect shows that psip1 is abundant and highly expressed in picocyanobacterial populations from the Mediterranean Sea and north Atlantic gyre, regions well recognized to be phosphorus (P)-deplete. Together, this identifies psip1 as an important oligotrophy-specific gene for P recycling in these organisms. Furthermore, psip1 is not restricted to picocyanobacteria and is abundant and highly transcribed in some α-proteobacteria and eukaryotic algae, suggesting that such a high-affinity phosphatase is important across the microbial taxonomic world to occupy low-P environments.
Collapse
Affiliation(s)
| | - Andrew R. J. Murphy
- School of Life Sciences, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Ian D. E. A. Lidbury
- Molecular Microbiology: Biochemistry to Disease, School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Frances D. Pitt
- School of Life Sciences, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Richard Stark
- School of Life Sciences, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Andrew D. Millard
- Centre for Phage Research, Department of Genetics and Genome Biology, University of Leicester, LeicesterLE1 7RH, United Kingdom
| | - Richard J. Puxty
- School of Life Sciences, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Yin Chen
- School of Biosciences, University of Birmingham, BirminghamB15 2TT, United Kingdom
| | - David J. Scanlan
- School of Life Sciences, University of Warwick, CoventryCV4 7AL, United Kingdom
| |
Collapse
|
2
|
Gäb F, Bierbaum G, Wirth R, Bultmann C, Palmer B, Janssen K, Karačić S. Enzymatic phosphatization of fish scales-a pathway for fish fossilization. Sci Rep 2024; 14:8347. [PMID: 38594297 PMCID: PMC11003971 DOI: 10.1038/s41598-024-59025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024] Open
Abstract
Phosphatized fish fossils occur in various locations worldwide. Although these fossils have been intensively studied over the past decades they remain a matter of ongoing research. The mechanism of the permineralization reaction itself remains still debated in the community. The mineralization in apatite of a whole fish requires a substantial amount of phosphate which is scarce in seawater, so the origin of the excess is unknown. Previous research has shown that alkaline phosphatase, a ubiquitous enzyme, can increase the phosphate content in vitro in a medium to the degree of saturation concerning apatite. We applied this principle to an experimental setup where fish scales were exposed to commercial bovine alkaline phosphatase. We analyzed the samples with SEM and TEM and found that apatite crystals had formed on the remaining soft tissue. A comparison of these newly formed apatite crystals with fish fossils from the Solnhofen and Santana fossil deposits showed striking similarities. Both are made up of almost identically sized and shaped nano-apatites. This suggests a common formation process: the spontaneous precipitation from an oversaturated solution. The excess activity of alkaline phosphatase could explain that effect. Therefore, our findings could provide insight into the formation of well-preserved fossils.
Collapse
Affiliation(s)
- Fabian Gäb
- Institute of Geosciences, University of Bonn, Bonn, Germany
| | - Gabriele Bierbaum
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Richard Wirth
- Deutsches GeoForschungsZentrum (GFZ), Section 3.5 Interface Geochemistry, Potsdam, Germany
| | - Christoph Bultmann
- Radiomed Group Practice for Radiology and Nuclear Medicine, Wiesbaden, Germany
| | - Brianne Palmer
- Bonn Institute of Organismic Biology, Division of Palaeontology, University of Bonn, Bonn, Germany
| | - Kathrin Janssen
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Sabina Karačić
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
3
|
Lidbury IDEA, Hitchcock A, Groenhof SRM, Connolly AN, Moushtaq L. New insights in bacterial organophosphorus cycling: From human pathogens to environmental bacteria. Adv Microb Physiol 2024; 84:1-49. [PMID: 38821631 DOI: 10.1016/bs.ampbs.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
In terrestrial and aquatic ecosystems, phosphorus (P) availability controls primary production, with consequences for climate regulation and global food security. Understanding the microbial controls on the global P cycle is a prerequisite for minimising our reliance on non-renewable phosphate rock reserves and reducing pollution associated with excessive P fertiliser use. This recognised importance has reinvigorated research into microbial P cycling, which was pioneered over 75 years ago through the study of human pathogenic bacteria-host interactions. Immobilised organic P represents a significant fraction of the total P pool. Hence, microbes have evolved a plethora of mechanisms to transform this fraction into labile inorganic phosphate, the building block for numerous biological molecules. The 'genomics era' has revealed an extraordinary diversity of organic P cycling genes exist in the environment and studies going 'back to the lab' are determining how this diversity relates to function. Through this integrated approach, many hitherto unknown genes and proteins that are involved in microbial P cycling have been discovered. Not only do these fundamental discoveries push the frontier of our knowledge, but several examples also provide exciting opportunities for biotechnology and present possible solutions for improving the sustainability of how we grow our food, both locally and globally. In this review, we provide a comprehensive overview of bacterial organic P cycling, covering studies on human pathogens and how this knowledge is informing new discoveries in environmental microbiology.
Collapse
Affiliation(s)
- Ian D E A Lidbury
- Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom.
| | - Andrew Hitchcock
- Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom; Plants, Photosynthesis, and Soil, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | - Sophie R M Groenhof
- Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | - Alex N Connolly
- Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| | - Laila Moushtaq
- Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
4
|
Gupta S, Paul M, Sahu SK. Zymography assisted quick purification, characterization and inhibition analysis of K. pneumoniae alkaline phosphatase by mercury and thiohydroxyal compounds. Protein Expr Purif 2022; 201:106185. [PMID: 36195295 DOI: 10.1016/j.pep.2022.106185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 10/07/2022]
Abstract
In-gel hydrolysis of para-nitrophenyl phosphate (p-NPP) to yellow colored para-nitrophenol was used to locate precisely the K. pneumoniae alkaline phosphatase (Kp-ALKP) on 7% native PAGE. Subsequent removal of the yellow-stained band and electroelution yielded a 54 kDa, Kp-ALKP with Km, Vmax and kcat values of (0.7 ± 0.02) mM, (80 ± 4.5) μmol min-1 and (39.2 ± 2.2) × 104 s-1 respectively for p-NPP. Kp-ALKP was optimally active at 70 °C and pH 7.2 that was activated by Mg2+, Ca2+, Co2+ and inhibited by EDTA, PO4, Pb2+, Cu2+ and Hg2+. The enzyme was trypsin resistant and retained 75% activity in presence of 10 mM PO4 and 65% activity at 3 mM Hg2+ showing it's PO43- irrepressibility and Hg2+-tolerance. Molecular dynamics simulation revealed increased structural stability of Kp-ALKP at 70 °C that accounts for it's optimal temperature. Zymography revealed that both DTT and β-mercaptoethanol induced activity loss accompanied by mobility retardation of Kp-ALKP on 7% native PAGE. These results and in Silico analysis shows that both DTT and βME reduce the C308-C358 disulfide bond, leading to an open conformation of the enzyme. However, Hg2+ had negligible effect on the in-gel mobility of Kp-ALKP indicating it's plausible non-covalent interaction with surface-accessible amino-acids without significant conformational change. For the first time our study reveals the zymography as an easy, inexpensive and convenient tool for quick purification, characterization and conformational analysis of K. pneumoniae alkaline phosphatase.
Collapse
Affiliation(s)
- Sangam Gupta
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Odisha, 757003, India
| | - Manish Paul
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Odisha, 757003, India
| | - Santosh Kumar Sahu
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Odisha, 757003, India.
| |
Collapse
|
5
|
Stimulation of Distinct Rhizosphere Bacteria Drives Phosphorus and Nitrogen Mineralization in Oilseed Rape under Field Conditions. mSystems 2022; 7:e0002522. [PMID: 35862821 PMCID: PMC9426549 DOI: 10.1128/msystems.00025-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Advances in DNA sequencing technologies have drastically changed our perception of the structure and complexity of the plant microbiome. By comparison, our ability to accurately identify the metabolically active fraction of soil microbiota and its specific functional role in augmenting plant health is relatively limited. Important ecological interactions being performed by microbes can be investigated by analyzing the extracellular protein fraction. Here, we combined a unique protein extraction method and an iterative bioinformatics pipeline to capture and identify extracellular proteins (metaexoproteomics) synthesized in the rhizosphere of Brassica spp. We first validated our method in the laboratory by successfully identifying proteins related to a host plant (Brassica rapa) and its bacterial inoculant, Pseudomonas putida BIRD-1. This identified numerous rhizosphere specific proteins linked to the acquisition of plant-derived nutrients in P. putida. Next, we analyzed natural field-soil microbial communities associated with Brassica napus L. (oilseed rape). By combining metagenomics with metaexoproteomics, 1,885 plant, insect, and microbial proteins were identified across bulk and rhizosphere samples. Metaexoproteomics identified a significant shift in the metabolically active fraction of the soil microbiota responding to the presence of B. napus roots that was not apparent in the composition of the total microbial community (metagenome). This included stimulation of rhizosphere-specialized bacteria, such as Gammaproteobacteria, Betaproteobacteria, and Flavobacteriia, and the upregulation of plant beneficial functions related to phosphorus and nitrogen mineralization. Our metaproteomic assessment of the “active” plant microbiome at the field-scale demonstrates the importance of moving beyond metagenomics to determine ecologically important plant-microbe interactions underpinning plant health. IMPORTANCE Plant-microbe interactions are critical to ecosystem function and crop production. While significant advances have been made toward understanding the structure of the plant microbiome, learning about its full functional role is still in its infancy. This is primarily due to an incomplete ability to determine in situ plant-microbe interactions actively operating under field conditions. Proteins are the functional entities of the cell. Therefore, their identification and relative quantification within a microbial community provide the best proxy for which microbes are the most metabolically active and which are driving important plant-microbe interactions. Here, we provide the first metaexoproteomics assessment of the plant microbiome using field-grown oilseed rape as the model crop species, identifying key taxa responsible for specific ecological interactions. Gaining a mechanistic understanding of the plant microbiome is central to developing engineered plant microbiomes to improve sustainable agricultural approaches and reduce our reliance on nonrenewable resources.
Collapse
|
6
|
Morris DE, Osman KL, Cleary DW, Clarke SC. The characterization of Moraxella catarrhalis carried in the general population. Microb Genom 2022; 8:mgen000820. [PMID: 35639578 PMCID: PMC9465073 DOI: 10.1099/mgen.0.000820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
Moraxella catarrhalis is a common cause of respiratory tract infection, particularly otitis media in children, whilst it is also associated with the onset of exacerbation in chronic obstructive pulmonary disease in adults. Despite the need for an efficacious vaccine against M. catarrhalis, no candidates have progressed to clinical trial. This study, therefore, aimed to characterize the diversity of M. catarrhalis isolated from the upper respiratory tract of healthy children and adults, to gain a better understanding of the epidemiology of M. catarrhalis and the distribution of genes associated with virulence factors, to aid vaccine efforts. Isolates were sequenced and the presence of target genes reported. Contrary to prevailing data, this study found that lipooligosaccharide (LOS) B serotypes are not exclusively associated with 16S type 1. In addition, a particularly low prevalence of LOS B and high prevalence of LOS C serotypes was observed. M. catarrhalis isolates showed low prevalence of antimicrobial resistance and a high gene prevalence for a number of the target genes investigated: ompB2 (also known as copB), ompCD, ompE, ompG1a, ompG1b, mid (also known as hag), mcaP, m35, tbpA, lbpA, tbpB, lbpB, msp22, msp75 and msp78, afeA, pilA, pilQ, pilT, mod, oppA, sbp2, mcmA and mclS.
Collapse
Affiliation(s)
- Denise E. Morris
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Karen L. Osman
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - David W. Cleary
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Global Health Research Institute, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton Foundation NHS Trust, Southampton SO16 6YD, UK
| | - Stuart C. Clarke
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Global Health Research Institute, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton Foundation NHS Trust, Southampton SO16 6YD, UK
| |
Collapse
|
7
|
Abstract
Nematode predation plays an essential role in determining changes in the rhizosphere microbiome. These changes affect the local nutrient balance and cycling of essential nutrients by selectively structuring interactions across functional taxa in the system. Currently, it is largely unknown to what extent nematode predation induces shifts in the microbiome associated with different rates of soil phosphorous (P) mineralization. Here, we performed an 7-year field experiment to investigate the importance of nematode predation influencing P availability and cycling. These were tracked via the changes in the alkaline phosphomonoesterase (ALP)-producing bacterial community and ALP activity in the rhizosphere of rapeseed. Here, we found that the nematode addition led to high predation pressure and thereby caused shifts in the abundance and composition of the ALP-producing bacterial community. Further analyses based on cooccurrence networks and metabolomics consistently showed that nematode addition induced competitive interactions between potentially keystone ALP-producing bacteria and other members within the community. Structural equation modeling revealed that the outcome of this competition induced by stronger predation pressure of nematodes was significantly associated with higher diversity of ALP-producing bacteria, thereby enhancing ALP activity and P availability. Taken together, our results provide evidence for the importance of predator-prey and competitive interactions in soil biology and their direct influences on nutrient cycling dynamics.
Collapse
|
8
|
Identification and characterization of alkaline phosphatase gene phoX in Microcystis aeruginosa PCC7806. 3 Biotech 2021; 11:218. [PMID: 33968563 DOI: 10.1007/s13205-021-02774-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/03/2021] [Indexed: 10/21/2022] Open
Abstract
PhoX is an extracellular alkaline phosphatase that is widely found in cyanobacteria and plays an important role in the conversion of extracellular organophosphorus into soluble inorganic phosphorus. However, the phoX gene has not yet been experimentally confirmed to exist in bloom-forming Microcystis species. In this study, we identified a putative phoX gene (GenBank accession no. ARI79942.1) in M. aeruginosa PCC7806 and overexpressed it in Escherichia coli 21 (DE3). The expressed PhoX protein displayed phosphodiesterase and phosphomonoesterase activities. In contrast to other bacterial PhoX proteins, which are activated mainly by Ca2+, Microcysits PhoX was most strongly activated by Mg2+, followed by Co2+, Ca2+, Zn2+ and Mn2+, but it was inhibited by Ni2+. Sequence analysis showed that phoX was highly conserved in the Microcystis genus (DNA similarity > 96% between species). phoX expression responded significantly to different environmental phosphorus levels. When PCC7806 cells were cultured in phosphorus-deficient medium (BG11-P), phoX expression reached its highest level at 2 h and then decreased to a low level at 4 h. Organophosphate induced the expression of phoX; its expression reached the highest level at 4 h and was maintained at a high level at 6 h. Our results confirmed a putative phoX gene and demonstrated that the phoX gene of Microcystis is conserved.
Collapse
|
9
|
Niche-adaptation in plant-associated Bacteroidetes favours specialisation in organic phosphorus mineralisation. THE ISME JOURNAL 2021; 15:1040-1055. [PMID: 33257812 PMCID: PMC8115612 DOI: 10.1038/s41396-020-00829-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
Bacteroidetes are abundant pathogen-suppressing members of the plant microbiome that contribute prominently to rhizosphere phosphorus mobilisation, a frequent growth-limiting nutrient in this niche. However, the genetic traits underpinning their success in this niche remain largely unknown, particularly regarding their phosphorus acquisition strategies. By combining cultivation, multi-layered omics and biochemical analyses we first discovered that all plant-associated Bacteroidetes express constitutive phosphatase activity, linked to the ubiquitous possession of a unique phosphatase, PafA. For the first time, we also reveal a subset of Bacteroidetes outer membrane SusCD-like complexes, typically associated with carbon acquisition, and several TonB-dependent transporters, are induced during Pi-depletion. Furthermore, in response to phosphate depletion, the plant-associated Flavobacterium used in this study expressed many previously characterised and novel proteins targeting organic phosphorus. Collectively, these enzymes exhibited superior phosphatase activity compared to plant-associated Pseudomonas spp. Importantly, several of the novel low-Pi-inducible phosphatases and transporters, belong to the Bacteroidetes auxiliary genome and are an adaptive genomic signature of plant-associated strains. In conclusion, niche adaptation to the plant microbiome thus appears to have resulted in the acquisition of unique phosphorus scavenging loci in Bacteroidetes, enhancing their phosphorus acquisition capabilities. These traits may enable their success in the rhizosphere and also present exciting avenues to develop sustainable agriculture.
Collapse
|
10
|
Shoemaker KM, McCliment EA, Moisander PH. Copepod-Associated Gammaproteobacterial Alkaline Phosphatases in the North Atlantic Subtropical Gyre. Front Microbiol 2020; 11:1033. [PMID: 32523576 PMCID: PMC7261903 DOI: 10.3389/fmicb.2020.01033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/27/2020] [Indexed: 11/13/2022] Open
Abstract
Planktonic organisms may provide a niche to associated bacteria in the oligotrophic ocean. Bacterial fitness strategies in association with copepods - abundant planktonic crustaceans - were examined by sampling and incubation experiments in the North Atlantic Subtropical Gyre (NASG). The bacterial metatranscriptome was dominated by Gammaproteobacteria and showed expression of complete bacterial pathways including chemotaxis, cell signaling, and alkaline phosphatase activity. Quantitative PCR and reverse transcriptase qPCR revealed the consistent presence and expression of alkaline phosphatase genes primarily by Vibrio spp. in the copepod association. Copepod-associated bacteria appear to respond to prevailing phosphorus limitation by using alkaline phosphatases to break down organophosphoesters, presumably originating from the copepods. The results suggest that the basin-wide tendency for phosphorus limitation in the North Atlantic Ocean is occurring at microscales in these nitrogen-enriched copepod microenvironments. The bacterial communities and their fitness strategies supported by associations with these abundant mesozooplankton are unique from the surrounding seawater and could have large-scale implications for biogeochemical cycling, marine food web structuring, and copepod and ecosystem health.
Collapse
Affiliation(s)
- Katyanne M Shoemaker
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, MA, United States
| | - Elizabeth A McCliment
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, MA, United States
| | - Pia H Moisander
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, MA, United States
| |
Collapse
|
11
|
Takahashi S, Morooka Y, Kumakura T, Abe K, Kera Y. Enzymatic characterization and regulation of gene expression of PhoK alkaline phosphatase in Sphingobium sp. strain TCM1. Appl Microbiol Biotechnol 2019; 104:1125-1134. [DOI: 10.1007/s00253-019-10291-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/13/2019] [Accepted: 11/28/2019] [Indexed: 11/30/2022]
|
12
|
Neal AL, Glendining MJ. Calcium exerts a strong influence upon phosphohydrolase gene abundance and phylogenetic diversity in soil. SOIL BIOLOGY & BIOCHEMISTRY 2019; 139:107613. [PMID: 31885404 PMCID: PMC6919939 DOI: 10.1016/j.soilbio.2019.107613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 09/21/2019] [Accepted: 09/29/2019] [Indexed: 05/26/2023]
Abstract
The mechanisms by which microbial communities maintain functions within the context of changing environments are key to a wide variety of environmental processes. In soil, these mechanisms support fertility. Genes associated with hydrolysis of organic phosphoesters represent an interesting set of genes with which to study maintenance of function in microbiomes. Here, we shown that the richness of ecotypes for each gene varies considerably in response to application of manure and various inorganic fertilizer combinations. We show, at unprecedented phylogenetic resolution, that phylogenetic diversity of phosphohydrolase genes are more responsive to soil management and edaphic factors than the taxonomic biomarker 16S rRNA gene. Available phosphorus - assessed by measuring Olsen-P - exerted some influence on alkaline phosphatase distribution: however, consistent and significant differences were observed in gene abundance between treatments that were inconsistent with bioavailable orthophosphate being the dominant factor determining gene abundance. Instead, we observed gene niche separation which was most strongly associated with soil exchangeable calcium. Our study suggests that the bioavailability of enzyme cofactors (exchangeable calcium in the case of phoD, phoX and βPPhy studied here) influence the abundance of genes in soil microbial communities; in the absence of cofactors, genes coding for alternative enzyme families that do not require the limiting cofactor (for example, non-specific acid phosphatases which require vanadate) become more abundant.
Collapse
Affiliation(s)
- Andrew L. Neal
- Department of Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Margaret J. Glendining
- Computational and Analytical Sciences, Rothamsted Research, Harpenden, Hertfordshire, UK
| |
Collapse
|
13
|
Zadeh Hosseingholi E, Zarrini G, Pashazadeh M, Gheibi Hayat SM, Molavi G. In Silico Identification of Probable Drug and Vaccine Candidates Against Antibiotic-Resistant Acinetobacter baumannii. Microb Drug Resist 2019; 26:456-467. [PMID: 31742478 DOI: 10.1089/mdr.2019.0236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acinetobacter baumannii is known as a Gram-negative bacterium that has become one of the most important health problems due to antibiotic resistance. Today, numerous efforts are being made to find new antibiotics against this nosocomial pathogen. As an alternative solution, finding bacterial target(s), necessary for survival and spread of most resistant strains, can be a benefit exploited in drug and vaccine design. In this study, a list of extensive drug-resistant and carbapenem-resistant (multidrug resistant) A. bumannii strains with complete sequencing of genome were prepared and common hypothetical proteins (HPs) composed of more than 200 amino acids were selected. Then, a number of bioinformatics tools were combined for functional assignments of HPs using their sequence. Overall, among 18 in silico investigated proteins, the results showed that 7 proteins implicated in transcriptional regulation, pilus assembly, protein catabolism, fatty acid biosynthesis, adhesion, urea catalysis, and hydrolysis of phosphate monoesters have theoretical potential of involvement in successful survival and pathogenesis of A. baumannii. In addition, immunological analyses with prediction softwares indicated 4 HPs to be probable vaccine candidates. The outcome of this work will be helpful to find novel vaccine design candidates and therapeutic targets for A. baumannii through experimental investigations.
Collapse
Affiliation(s)
| | - Gholamreza Zarrini
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Marayam Pashazadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Seyed Mohammad Gheibi Hayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Ghader Molavi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Non-Conventional Metal Ion Cofactor Requirement of Dinoflagellate Alkaline Phosphatase and Translational Regulation by Phosphorus Limitation. Microorganisms 2019; 7:microorganisms7080232. [PMID: 31374942 PMCID: PMC6723241 DOI: 10.3390/microorganisms7080232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/15/2019] [Accepted: 07/30/2019] [Indexed: 12/30/2022] Open
Abstract
Alkaline phosphatase (AP) enables marine phytoplankton to utilize dissolved organic phosphorus (DOP) when dissolved inorganic phosphate (DIP) is depleted in the ocean. Dinoflagellate AP (Dino-AP) represents a newly classified atypical type of AP, PhoAaty. Despite While being a conventional AP, PhoAEC is known to recruit Zn2+ and Mg2+ in the active center, and the cofactors required by PhoAaty have been contended and remain unclear. In this study, we investigated the metal ion requirement of AP in five dinoflagellate species. After AP activity was eliminated by using EDTA to chelate metal ions, the enzymatic activity could be recovered by the supplementation of Ca2+, Mg2+ and Mn2+ in all cases but not by that of Zn2+. Furthermore, the same analysis conducted on the purified recombinant ACAAP (AP of Amphidinium carterae) verified that the enzyme could be activated by Ca2+, Mg2+, and Mn2+ but not Zn2+. We further developed an antiserum against ACAAP, and a western blot analysis using this antibody showed a remarkable up-regulation of ACAAP under a phosphate limitation, consistent with elevated AP activity. The unconventional metal cofactor requirement of Dino-AP may be an adaptation to trace metal limitations in the ocean, which warrants further research to understand the niche differentiation between dinoflagellates and other phytoplankton that use Zn–Mg AP in utilizing DOP.
Collapse
|
15
|
Zheng L, Ren M, Xie E, Ding A, Liu Y, Deng S, Zhang D. Roles of Phosphorus Sources in Microbial Community Assembly for the Removal of Organic Matters and Ammonia in Activated Sludge. Front Microbiol 2019; 10:1023. [PMID: 31156575 PMCID: PMC6532738 DOI: 10.3389/fmicb.2019.01023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/24/2019] [Indexed: 11/13/2022] Open
Abstract
Various phosphorus sources are utilized by microbes in WWTPs, eventually affecting microbial assembly and functions. This study identified the effects of phosphorus source on microbial communities and functions in the activated sludge. By cultivation with 59 phosphorus sources, including inorganic phosphates (IP), nucleoside-monophosphates (NMP), cyclic-nucleoside-monophosphates (cNMP), and other organophosphates (OP), we evaluated the change in removal efficiencies of total organic carbon (TOC) and ammonia, microbial biomass, alkaline phosphatase (AKP) activity, microbial community structure, and AKP-associated genes. TOC and ammonia removal efficiency was highest in IP (64.8%) and cNMP (52.3%) treatments. Microbial community structure changed significantly across phosphorus sources that IP and cNMP encouraged Enterobacter and Aeromonas, respectively. The abundance of phoA and phoU genes was higher in IP treatments, whereas phoD and phoX genes dominated OP treatments. Our findings suggested that the performance of WWTPs was dependent on phosphorus sources and provided new insights into effective WWTP management.
Collapse
Affiliation(s)
- Lei Zheng
- College of Water Science, Beijing Normal University, Beijing, China
| | - Mengli Ren
- College of Water Science, Beijing Normal University, Beijing, China
| | - En Xie
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
| | - Aizhong Ding
- College of Water Science, Beijing Normal University, Beijing, China
| | - Yan Liu
- Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Songqiang Deng
- Research Institute for Environmental Innovation (Tsinghua-Suzhou), Suzhou, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
16
|
Skouri-Panet F, Benzerara K, Cosmidis J, Férard C, Caumes G, De Luca G, Heulin T, Duprat E. In Vitro and in Silico Evidence of Phosphatase Diversity in the Biomineralizing Bacterium Ramlibacter tataouinensis. Front Microbiol 2018; 8:2592. [PMID: 29375498 PMCID: PMC5768637 DOI: 10.3389/fmicb.2017.02592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/12/2017] [Indexed: 11/13/2022] Open
Abstract
Microbial phosphatase activity can trigger the precipitation of metal-phosphate minerals, a process called phosphatogenesis with global geochemical and environmental implications. An increasing diversity of phosphatases expressed by diverse microorganisms has been evidenced in various environments. However, it is challenging to link the functional properties of genomic repertoires of phosphatases with the phosphatogenesis capabilities of microorganisms. Here, we studied the betaproteobacterium Ramlibacter tataouinensis (Rta), known to biomineralize Ca-phosphates in the environment and the laboratory. We investigated the functional repertoire of this biomineralization process at the cell, genome and molecular level. Based on a mineralization assay, Rta is shown to hydrolyse the phosphoester bonds of a wide range of organic P molecules. Accordingly, its genome has an unusually high diversity of phosphatases: five genes belonging to two non-homologous families, phoD and phoX, were detected. These genes showed diverse predicted cis-regulatory elements. Moreover, they encoded proteins with diverse structural properties according to molecular models. Heterologously expressed PhoD and PhoX in Escherichia coli had different profiles of substrate hydrolysis. As evidenced for Rta cells, recombinant E. coli cells induced the precipitation of Ca-phosphate mineral phases, identified as poorly crystalline hydroxyapatite. The phosphatase genomic repertoire of Rta (containing phosphatases of both the PhoD and PhoX families) was previously evidenced as prevalent in marine oligotrophic environments. Interestingly, the Tataouine sand from which Rta was isolated showed similar P-depleted, but Ca-rich conditions. Overall, the diversity of phosphatases in Rta allows the hydrolysis of a broad range of organic P substrates and therefore the release of orthophosphates (inorganic phosphate) under diverse trophic conditions. Since the release of orthophosphates is key to the achievement of high saturation levels with respect to hydroxyapatite and the induction of phosphatogenesis, Rta appears as a particularly efficient driver of this process as shown experimentally.
Collapse
Affiliation(s)
- Fériel Skouri-Panet
- Centre National de la Recherche Scientifique, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Universités, UMR 7590, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, IRD 206, Paris, France
| | - Karim Benzerara
- Centre National de la Recherche Scientifique, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Universités, UMR 7590, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, IRD 206, Paris, France
| | - Julie Cosmidis
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - Céline Férard
- Centre National de la Recherche Scientifique, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Universités, UMR 7590, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, IRD 206, Paris, France
| | - Géraldine Caumes
- Centre National de la Recherche Scientifique, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Universités, UMR 7590, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, IRD 206, Paris, France
| | - Gilles De Luca
- Laboratoire d'Écologie Microbienne de la Rhizosphère et Environnements Extrêmes, UMR 7265, Aix Marseille Univ, Centre National de la Recherche Scientifique, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Saint-Paul-lez-Durance, France
| | - Thierry Heulin
- Laboratoire d'Écologie Microbienne de la Rhizosphère et Environnements Extrêmes, UMR 7265, Aix Marseille Univ, Centre National de la Recherche Scientifique, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Saint-Paul-lez-Durance, France
| | - Elodie Duprat
- Centre National de la Recherche Scientifique, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Universités, UMR 7590, Muséum National d'Histoire Naturelle, Université Pierre et Marie Curie, IRD 206, Paris, France
| |
Collapse
|
17
|
PhoU Allows Rapid Adaptation to High Phosphate Concentrations by Modulating PstSCAB Transport Rate in Sinorhizobium meliloti. J Bacteriol 2017; 199:JB.00143-17. [PMID: 28416708 DOI: 10.1128/jb.00143-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/11/2017] [Indexed: 01/14/2023] Open
Abstract
Maintenance of cellular phosphate homeostasis is essential for cellular life. The PhoU protein has emerged as a key regulator of this process in bacteria, and it is suggested to modulate phosphate import by PstSCAB and control activation of the phosphate limitation response by the PhoR-PhoB two-component system. However, a proper understanding of PhoU has remained elusive due to numerous complications of mutating phoU, including loss of viability and the genetic instability of the mutants. Here, we developed two sets of strains of Sinorhizobium meliloti that overcame these limitations and allowed a more detailed and comprehensive analysis of the biological and molecular activities of PhoU. The data showed that phoU cannot be deleted in the presence of phosphate unless PstSCAB is inactivated also. However, phoU deletions were readily recovered in phosphate-free media, and characterization of these mutants revealed that addition of phosphate to the environment resulted in toxic levels of PstSCAB-mediated phosphate accumulation. Phosphate uptake experiments indicated that PhoU significantly decreased the PstSCAB transport rate specifically in phosphate-replete cells but not in phosphate-starved cells and that PhoU could rapidly respond to elevated environmental phosphate concentrations and decrease the PstSCAB transport rate. Site-directed mutagenesis results suggested that the ability of PhoU to respond to phosphate levels was independent of the conformation of the PstSCAB transporter. Additionally, PhoU-PhoU and PhoU-PhoR interactions were detected using a bacterial two-hybrid screen. We propose that PhoU modulates PstSCAB and PhoR-PhoB in response to local, internal fluctuations in phosphate concentrations resulting from PstSCAB-mediated phosphate import.IMPORTANCE Correct maintenance of cellular phosphate homeostasis is critical in all kingdoms of life and in bacteria involves the PhoU protein. This work provides novel insights into the role of the Sinorhizobium meliloti PhoU protein, which plays a key role in rapid adaptation to elevated phosphate concentrations. It is shown that PhoU rapidly responds to elevated phosphate levels by significantly decreasing the phosphate transport of PstSCAB, thereby preventing phosphate toxicity and cell death. Additionally, a new model for phosphate sensing in bacterial species which involves the PhoR-PhoB two-component system is presented. This work provides new insights into the bacterial response to changing environmental conditions and into regulation of the phosphate limitation response that influences numerous bacterial processes, including antibiotic production and virulence.
Collapse
|
18
|
Lidbury IDEA, Fraser T, Murphy ARJ, Scanlan DJ, Bending GD, Jones AME, Moore JD, Goodall A, Tibbett M, Hammond JP, Wellington EMH. The 'known' genetic potential for microbial communities to degrade organic phosphorus is reduced in low-pH soils. Microbiologyopen 2017; 6:e00474. [PMID: 28419748 PMCID: PMC5552915 DOI: 10.1002/mbo3.474] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/01/2017] [Accepted: 02/16/2017] [Indexed: 11/29/2022] Open
Abstract
In soil, bioavailable inorganic orthophosphate is found at low concentrations and thus limits biological growth. To overcome this phosphorus scarcity, plants and bacteria secrete numerous enzymes, namely acid and alkaline phosphatases, which cleave orthophosphate from various organic phosphorus substrates. Using profile hidden Markov modeling approaches, we investigated the abundance of various non specific phosphatases, both acid and alkaline, in metagenomes retrieved from soils with contrasting pH regimes. This analysis uncovered a marked reduction in the abundance and diversity of various alkaline phosphatases in low-pH soils that was not counterbalanced by an increase in acid phosphatases. Furthermore, it was also discovered that only half of the bacterial strains from different phyla deposited in the Integrated Microbial Genomes database harbor alkaline phosphatases. Taken together, our data suggests that these 'phosphatase lacking' isolates likely increase in low-pH soils and future research should ascertain how these bacteria overcome phosphorus scarcity.
Collapse
Affiliation(s)
| | - Tandra Fraser
- School of Agriculture, Policy, and DevelopmentUniversity of ReadingWhiteknightsUnited Kingdom
| | - Andrew R. J. Murphy
- School of Life SciencesUniversity of WarwickCoventryWest MidlandsUnited Kingdom
| | - David J. Scanlan
- School of Life SciencesUniversity of WarwickCoventryWest MidlandsUnited Kingdom
| | - Gary D. Bending
- School of Life SciencesUniversity of WarwickCoventryWest MidlandsUnited Kingdom
| | | | - Jonathan D. Moore
- The Genome Analysis CentreNorwich Research ParkNorwichUnited Kingdom
| | - Andrew Goodall
- School of Agriculture, Policy, and DevelopmentUniversity of ReadingWhiteknightsUnited Kingdom
| | - Mark Tibbett
- School of Agriculture, Policy, and DevelopmentUniversity of ReadingWhiteknightsUnited Kingdom
| | - John P. Hammond
- School of Agriculture, Policy, and DevelopmentUniversity of ReadingWhiteknightsUnited Kingdom
- Southern Cross Plant ScienceSouthern Cross UniversityLismoreAustralia
| | | |
Collapse
|
19
|
Hagberg KL, Yurgel SN, Mulder M, Kahn ML. Interaction between Nitrogen and Phosphate Stress Responses in Sinorhizobium meliloti. Front Microbiol 2016; 7:1928. [PMID: 27965651 PMCID: PMC5127829 DOI: 10.3389/fmicb.2016.01928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/16/2016] [Indexed: 11/13/2022] Open
Abstract
Bacteria have developed various stress response pathways to improve their assimilation and allocation of limited nutrients, such as nitrogen and phosphate. While both the nitrogen stress response (NSR) and phosphate stress response (PSR) have been studied individually, there are few experiments reported that characterize effects of multiple stresses on one or more pathways in Sinorhizobium meliloti, a facultatively symbiotic, nitrogen-fixing bacteria. The PII proteins, GlnB and GlnK, regulate the NSR activity, but analysis of global transcription changes in a PII deficient mutant suggest that the S. meliloti PII proteins may also regulate the PSR. PII double deletion mutants grow very slowly and pseudoreversion of the slow growth phenotype is common. To understand this phenomenon better, transposon mutants were isolated that had a faster growing phenotype. One mutation was in phoB, the response regulator for a two component regulatory system that is important in the PSR. phoB::Tn5 mutants had different phenotypes in the wild type compared to a PII deficient background. This led to the hypothesis that phosphate stress affects the NSR and conversely, that nitrogen stress affects the PSR. Our results show that phosphate availability affects glutamine synthetase activity and expression, which are often used as indicators of NSR activity, but that nitrogen availability did not affect alkaline phosphatase activity and expression, which are indicators of PSR activity. We conclude that the NSR is co-regulated by nitrogen and phosphate, whereas the PSR does not appear to be co-regulated by nitrogen in addition to its known phosphate regulation.
Collapse
Affiliation(s)
- Kelly L Hagberg
- School of Molecular Biosciences, Washington State University, PullmanWA, USA; Institute of Biological Chemistry, Washington State University, PullmanWA, USA
| | - Svetlana N Yurgel
- Institute of Biological Chemistry, Washington State University, Pullman WA, USA
| | - Monika Mulder
- Institute of Biological Chemistry, Washington State University, Pullman WA, USA
| | - Michael L Kahn
- School of Molecular Biosciences, Washington State University, PullmanWA, USA; Institute of Biological Chemistry, Washington State University, PullmanWA, USA
| |
Collapse
|
20
|
Identification of alkaline phosphatase genes for utilizing a flame retardant, tris(2-chloroethyl) phosphate, in Sphingobium sp. strain TCM1. Appl Microbiol Biotechnol 2016; 101:2153-2162. [DOI: 10.1007/s00253-016-7991-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/31/2016] [Accepted: 11/05/2016] [Indexed: 10/20/2022]
|
21
|
Ragot SA, Kertesz MA, Mészáros É, Frossard E, Bünemann EK. SoilphoDandphoXalkaline phosphatase gene diversity responds to multiple environmental factors. FEMS Microbiol Ecol 2016; 93:fiw212. [DOI: 10.1093/femsec/fiw212] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2016] [Indexed: 02/01/2023] Open
|
22
|
Jiangyu DAI, Guang GAO, Shiqiang WU, Xiufeng WU, Jie ZHOU, Wanyun XUE, Qianqian YANG, Dan CHEN. Bacterial alkaline phosphatases and affiliated encoding genes in natural waters: A review. ACTA ACUST UNITED AC 2016. [DOI: 10.18307/2016.0601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
23
|
Liao RZ, Siegbahn PEM. Phosphate Hydrolysis by the Fe2–Ca3-Dependent Alkaline Phosphatase PhoX: Mechanistic Insights from DFT calculations. Inorg Chem 2015; 54:11941-7. [DOI: 10.1021/acs.inorgchem.5b02268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rong-Zhen Liao
- Key Laboratory of Material Chemistry for
Energy Conversion and Storage, Ministry of Education, School of Chemistry
and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Per E. M. Siegbahn
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
24
|
Lin X, Wang L, Shi X, Lin S. Rapidly diverging evolution of an atypical alkaline phosphatase (PhoA(aty)) in marine phytoplankton: insights from dinoflagellate alkaline phosphatases. Front Microbiol 2015; 6:868. [PMID: 26379645 PMCID: PMC4548154 DOI: 10.3389/fmicb.2015.00868] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/10/2015] [Indexed: 11/13/2022] Open
Abstract
Alkaline phosphatase (AP) is a key enzyme that enables marine phytoplankton to scavenge phosphorus (P) from dissolved organic phosphorus (DOP) when inorganic phosphate is scarce in the ocean. Yet how the AP gene has evolved in phytoplankton, particularly dinoflagellates, is poorly understood. We sequenced full-length AP genes and corresponding complementary DNA (cDNA) from 15 strains (10 species), representing four classes of the core dinoflagellate lineage, Gymnodiniales, Prorocentrales, Suessiales, and Gonyaulacales. Dinoflagellate AP gene sequences exhibited high variability, containing variable introns, pseudogenes, single nucleotide polymorphisms and consequent variations in amino acid sequence, indicative of gene duplication events and consistent with the “birth-and-death” model of gene evolution. Further sequence comparison showed that dinoflagellate APs likely belong to an atypical type AP (PhoAaty), which shares conserved motifs with counterparts in marine bacteria, cyanobacteria, green algae, haptophytes, and stramenopiles. Phylogenetic analysis suggested that PhoAaty probably originated from an ancestral gene in bacteria and evolved divergently in marine phytoplankton. Because variations in AP amino acid sequences may lead to differential subcellular localization and potentially different metal ion requirements, the multiple types of APs in algae may have resulted from selection for diversifying strategies to utilize DOP in the P variable marine environment.
Collapse
Affiliation(s)
- Xin Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University Xiamen, China
| | - Lu Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University Xiamen, China
| | - Xinguo Shi
- State Key Laboratory of Marine Environmental Science, Xiamen University Xiamen, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University Xiamen, China ; Department of Marine Sciences, University of Connecticut Groton, CT, USA
| |
Collapse
|
25
|
phoD Alkaline Phosphatase Gene Diversity in Soil. Appl Environ Microbiol 2015; 81:7281-9. [PMID: 26253682 DOI: 10.1128/aem.01823-15] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/01/2015] [Indexed: 11/20/2022] Open
Abstract
Phosphatase enzymes are responsible for much of the recycling of organic phosphorus in soils. The PhoD alkaline phosphatase takes part in this process by hydrolyzing a range of organic phosphoesters. We analyzed the taxonomic and environmental distribution of phoD genes using whole-genome and metagenome databases. phoD alkaline phosphatase was found to be spread across 20 bacterial phyla and was ubiquitous in the environment, with the greatest abundance in soil. To study the great diversity of phoD, we developed a new set of primers which targets phoD genes in soil. The primer set was validated by 454 sequencing of six soils collected from two continents with different climates and soil properties and was compared to previously published primers. Up to 685 different phoD operational taxonomic units were found in each soil, which was 7 times higher than with previously published primers. The new primers amplified sequences belonging to 13 phyla, including 71 families. The most prevalent phoD genes identified in these soils were affiliated with the orders Actinomycetales (13 to 35%), Bacillales (1 to 29%), Gloeobacterales (1 to 18%), Rhizobiales (18 to 27%), and Pseudomonadales (0 to 22%). The primers also amplified phoD genes from additional orders, including Burkholderiales, Caulobacterales, Deinococcales, Planctomycetales, and Xanthomonadales, which represented the major differences in phoD composition between samples, highlighting the singularity of each community. Additionally, the phoD bacterial community structure was strongly related to soil pH, which varied between 4.2 and 6.8. These primers reveal the diversity of phoD in soil and represent a valuable tool for the study of phoD alkaline phosphatase in environmental samples.
Collapse
|
26
|
Tiwari B, Singh S, Kaushik MS, Mishra AK. Regulation of organophosphate metabolism in cyanobacteria. A review. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715030200] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
27
|
Golotin V, Balabanova L, Likhatskaya G, Rasskazov V. Recombinant production and characterization of a highly active alkaline phosphatase from marine bacterium Cobetia marina. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:130-143. [PMID: 25260971 DOI: 10.1007/s10126-014-9601-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 08/07/2014] [Indexed: 06/03/2023]
Abstract
The psychrophilic marine bacterium, Cobetia marina, recovered from the mantle tissue of the marine mussel, Crenomytilus grayanus, which contained a gene encoding alkaline phosphatase (AP) with apparent biotechnology advantages. The enzyme was found to be more efficient than its counterparts and showed k cat value 10- to 100-fold higher than those of all known commercial APs. The enzyme did not require the presence of exogenous divalent cations and dimeric state of its molecule for activity. The recombinant enzyme (CmAP) production and purification were optimized with a final recovery of 2 mg of the homogenous protein from 1 L of the transgenic Escherichia coli Rosetta(DE3)/Pho40 cells culture. CmAP displayed a half-life of 16 min at 45 °C and 27 min at 40 °C in the presence of 2 mM EDTA, thus suggesting its relative thermostability in comparison with the known cold-adapted analogues. A high concentration of EDTA in the incubation mixture did not appreciably inhibit CmAP. The enzyme was stable in a wide range of pH (6.0-11.0). CmAP exhibited its highest activity at the reaction temperature of 40-50 °C and pH 9.5-10.3. The structural features of CmAP could be the reason for the increase in its stability and catalytic turnover. We have modeled the CmAP 3D structure on the base of the high-quality experimental structure of the close homologue Vibrio sp. AP (VAP) and mutated essential residues predicted to break Mg(2+) bonds in CmAP. It seems probable that the intrinsically tight binding of catalytic and structural metal ions together with the flexibility of intermolecular and intramolecular links in CmAP could be attributed to the adapted mutualistic lifestyle in oceanic waters.
Collapse
Affiliation(s)
- Vasily Golotin
- G.B. Elyakova Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of Russian Academy of Sciences, Prospect 100-letya Vladivostoka, 159, Vladivostok, Russian Federation
| | | | | | | |
Collapse
|
28
|
Dai J, Chen D, Wu S, Wu X, Zhou J, Tang X, Shao K, Gao G. Comparative analysis of alkaline phosphatase-encoding genes (phoX) in two contrasting zones of Lake Taihu. Can J Microbiol 2015; 61:227-36. [DOI: 10.1139/cjm-2014-0446] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Limnetic habitats that are dominated by either algae or macrophytes represent the 2 dominant ecosystems in shallow lakes. We assessed seasonal variations in the diversity and abundance of alkaline phosphate-encoding genes (phoX) in these 2 zones of Lake Taihu, which is a large, shallow, eutrophic lake in China. There was no significant difference in seasonal mean phoX diversity between the 2 zones, whereas the seasonal mean phoX abundance in the macrophyte-dominated region was higher than that in the algae-dominated region. The bulk of the genotypes in the 2 regions were most similar to the alphaproteobacterial and betaproteobacterial phoX. Genotypes most similar to phoX affiliated with Betaproteobacteria were present with greater diversity in the macrophyte-dominated zone than in the algae-dominated zone. In the algae-dominated zone, the relative proportion of genotypes most similar to cyanobacterial phoX was highest (38.8%) in summer. In addition to the different genotype structures and environmental factors between the 2 stable states, the lower gene abundances and higher alkaline phosphatase activities in Meiliang Bay in summer than those in Xukou Bay reveals different organophosphate-mineralizing modes in these 2 contrasting habitats.
Collapse
Affiliation(s)
- Jiangyu Dai
- State Key Laboratory of Hydrology – Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, People’s Republic of China
| | - Dan Chen
- Nanjing Institute of Environmental Sciences, MEP, Nanjing 210042, People’s Republic of China
| | - Shiqiang Wu
- State Key Laboratory of Hydrology – Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, People’s Republic of China
| | - Xiufeng Wu
- State Key Laboratory of Hydrology – Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, People’s Republic of China
| | - Jie Zhou
- State Key Laboratory of Hydrology – Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, People’s Republic of China
| | - Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
| | - Keqiang Shao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
| |
Collapse
|
29
|
Lee DH, Choi SL, Rha E, Kim SJ, Yeom SJ, Moon JH, Lee SG. A novel psychrophilic alkaline phosphatase from the metagenome of tidal flat sediments. BMC Biotechnol 2015; 15:1. [PMID: 25636680 PMCID: PMC4335783 DOI: 10.1186/s12896-015-0115-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alkaline phosphatase (AP) catalyzes the hydrolytic cleavage of phosphate monoesters under alkaline conditions and plays important roles in microbial ecology and molecular biology applications. Here, we report on the first isolation and biochemical characterization of a thermolabile AP from a metagenome. RESULTS The gene encoding a novel AP was isolated from a metagenomic library constructed with ocean-tidal flat sediments from the west coast of Korea. The metagenome-derived AP (mAP) gene composed of 1,824 nucleotides encodes a polypeptide with a calculated molecular mass of 64 kDa. The deduced amino acid sequence of mAP showed a high degree of similarity to other members of the AP family. Phylogenetic analysis revealed that the mAP is shown to be a member of a recently identified family of PhoX that is distinct from the well-studied classical PhoA family. When the open reading frame encoding mAP was cloned and expressed in recombinant Escherichia coli, the mature mAP was secreted to the periplasm and lacks an 81-amino-acid N-terminal Tat signal peptide. Mature mAP was purified to homogeneity as a monomeric enzyme with a molecular mass of 56 kDa. The purified mAP displayed typical features of a psychrophilic enzyme: high catalytic activity at low temperature and a remarkable thermal instability. The optimal temperature for the enzymatic activity of mAP was 37°C and complete thermal inactivation of the enzyme was observed at 65°C within 15 min. mAP was activated by Ca(2+) and exhibited maximal activity at pH 9.0. Except for phytic acid and glucose 1-phosphate, mAP showed phosphatase activity against various phosphorylated substrates indicating that it had low substrate specificity. In addition, the mAP was able to remove terminal phosphates from cohesive and blunt ends of linearized plasmid DNA, exhibiting comparable efficiency to commercially available APs that have been used in molecular biology. CONCLUSIONS The presented mAP enzyme is the first thermolabile AP found in cold-adapted marine metagenomes and may be useful for efficient dephosphorylation of linearized DNA.
Collapse
Affiliation(s)
- Dae-Hee Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea. .,Biosystems and Bioengineering Program, Korea University of Science and Technology (UST), Daejeon, Korea.
| | - Su-Lim Choi
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea. .,Present address: Su-Lim Choi, Amicogen, Inc., Jinju, Korea.
| | - Eugene Rha
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.
| | - Soo Jin Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.
| | - Soo-Jin Yeom
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.
| | - Jae-Hee Moon
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.
| | - Seung-Goo Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea. .,Biosystems and Bioengineering Program, Korea University of Science and Technology (UST), Daejeon, Korea.
| |
Collapse
|
30
|
Valdespino-Castillo PM, Alcántara-Hernández RJ, Alcocer J, Merino-Ibarra M, Macek M, Falcón LI. Alkaline phosphatases in microbialites and bacterioplankton from Alchichica soda lake, Mexico. FEMS Microbiol Ecol 2014; 90:504-19. [PMID: 25112496 DOI: 10.1111/1574-6941.12411] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 11/29/2022] Open
Abstract
Dissolved organic phosphorus utilization by different members of natural communities has been closely linked to microbial alkaline phosphatases whose affiliation and diversity is largely unknown. Here we assessed genetic diversity of bacterial alkaline phosphatases phoX and phoD, using highly diverse microbial consortia (microbialites and bacterioplankton) as study models. These microbial consortia are found in an oligo-mesotrophic soda lake with a particular geochemistry, exhibiting a low calcium concentration and a high Mg : Ca ratio relative to seawater. In spite of the relative low calcium concentration in the studied system, our results highlight the diversity of calcium-based metallophosphatases phoX and phoD-like in heterotrophic bacteria of microbialites and bacterioplankton, where phoX was the most abundant alkaline phosphatase found. phoX and phoD-like phylotypes were more numerous in microbialites than in bacterioplankton. A larger potential community for DOP utilization in microbialites was consistent with the TN : TP ratio, suggesting P limitation within these assemblages. A cross-system comparison indicated that diversity of phoX in Lake Alchichica was similar to that of other aquatic systems with a naturally contrasting ionic composition and trophic state, although no phylotypes were shared among systems.
Collapse
Affiliation(s)
- Patricia M Valdespino-Castillo
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Coyoacán, Mexico; Laboratorio de Ecología Bacteriana, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, Mexico
| | | | | | | | | | | |
Collapse
|
31
|
Trypanosoma rangeli: An alkaline ecto-phosphatase activity is involved with survival and growth of the parasite. Exp Parasitol 2013; 135:459-65. [DOI: 10.1016/j.exppara.2013.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 07/18/2013] [Accepted: 08/21/2013] [Indexed: 12/25/2022]
|
32
|
Zimmerman AE, Martiny AC, Allison SD. Microdiversity of extracellular enzyme genes among sequenced prokaryotic genomes. THE ISME JOURNAL 2013; 7:1187-99. [PMID: 23303371 PMCID: PMC3660669 DOI: 10.1038/ismej.2012.176] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 11/20/2012] [Accepted: 12/01/2012] [Indexed: 11/08/2022]
Abstract
Understanding the relationship between prokaryotic traits and phylogeny is important for predicting and modeling ecological processes. Microbial extracellular enzymes have a pivotal role in nutrient cycling and the decomposition of organic matter, yet little is known about the phylogenetic distribution of genes encoding these enzymes. In this study, we analyzed 3058 annotated prokaryotic genomes to determine which taxa have the genetic potential to produce alkaline phosphatase, chitinase and β-N-acetyl-glucosaminidase enzymes. We then evaluated the relationship between the genetic potential for enzyme production and 16S rRNA phylogeny using the consenTRAIT algorithm, which calculated the phylogenetic depth and corresponding 16S rRNA sequence identity of clades of potential enzyme producers. Nearly half (49.2%) of the genomes analyzed were found to be capable of extracellular enzyme production, and these were non-randomly distributed across most prokaryotic phyla. On average, clades of potential enzyme-producing organisms had a maximum phylogenetic depth of 0.008004-0.009780, though individual clades varied broadly in both size and depth. These values correspond to a minimum 16S rRNA sequence identity of 98.04-98.40%. The distribution pattern we found is an indication of microdiversity, the occurrence of ecologically or physiologically distinct populations within phylogenetically related groups. Additionally, we found positive correlations among the genes encoding different extracellular enzymes. Our results suggest that the capacity to produce extracellular enzymes varies at relatively fine-scale phylogenetic resolution. This variation is consistent with other traits that require a small number of genes and provides insight into the relationship between taxonomy and traits that may be useful for predicting ecological function.
Collapse
Affiliation(s)
- Amy E Zimmerman
- Department of Ecology and Evolutionary Biology, University of California Irvine, CA 92697, USA.
| | | | | |
Collapse
|
33
|
Yurgel SN, Rice J, Kahn ML. Transcriptome analysis of the role of GlnD/GlnBK in nitrogen stress adaptation by Sinorhizobium meliloti Rm1021. PLoS One 2013; 8:e58028. [PMID: 23516427 PMCID: PMC3596328 DOI: 10.1371/journal.pone.0058028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/30/2013] [Indexed: 11/19/2022] Open
Abstract
Transcriptional changes in the nitrogen stress response (NSR) of wild type S. meliloti Rm1021, and isogenic strains missing both PII proteins, GlnB and GlnK, or carrying a ΔglnD-sm2 mutation were analyzed using whole-genome microarrays. This approach allowed us to identify a number of new genes involved in the NSR and showed that the response of these bacteria to nitrogen stress overlaps with other stress responses, including induction of the fixK2 transcriptional activator and genes that are part of the phosphate stress response. Our data also show that GlnD and GlnBK proteins may regulate many genes that are not part of the NSR. Analysis of transcriptome profiles of the Rm1021 ΔglnD-sm2 strain allowed us to identify several genes that appear to be regulated by GlnD without the participation of the PII proteins.
Collapse
Affiliation(s)
- Svetlana N Yurgel
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA.
| | | | | |
Collapse
|
34
|
White CE, Gavina JMA, Morton R, Britz-McKibbin P, Finan TM. Control of hydroxyproline catabolism inSinorhizobium meliloti. Mol Microbiol 2012; 85:1133-47. [DOI: 10.1111/j.1365-2958.2012.08164.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Peimbert M, Alcaraz LD, Bonilla-Rosso G, Olmedo-Alvarez G, García-Oliva F, Segovia L, Eguiarte LE, Souza V. Comparative metagenomics of two microbial mats at Cuatro Ciénegas Basin I: ancient lessons on how to cope with an environment under severe nutrient stress. ASTROBIOLOGY 2012; 12:648-58. [PMID: 22920515 PMCID: PMC3426886 DOI: 10.1089/ast.2011.0694] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The Cuatro Ciénegas Basin (CCB) is an oasis in the desert of Mexico characterized by low phosphorus availability and by its great diversity of microbial mats. We compared the metagenomes of two aquatic microbial mats from the CCB with different nutrient limitations. We observed that the red mat was P-limited and dominated by Pseudomonas, while the green mat was N-limited and had higher species richness, with Proteobacteria and Cyanobacteria as the most abundant phyla. From their gene content, we deduced that both mats were very metabolically diverse despite their use of different strategies to cope with their respective environments. The red mat was found to be mostly heterotrophic, while the green mat was more autotrophic. The red mat had a higher number of transporters in general, including transporters of cellobiose and osmoprotectants. We suggest that generalists with plastic genomes dominate the red mat, while specialists with minimal genomes dominate the green mat. Nutrient limitation was a common scenario on the early planet; despite this, biogeochemical cycles were performed, and as a result the planet changed. The metagenomes of microbial mats from the CCB show the different strategies a community can use to cope with oligotrophy and persist.
Collapse
Affiliation(s)
- Mariana Peimbert
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, México D.F., México
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Cuajimalpa, México D.F., México
| | - Luis David Alcaraz
- Departamento de Ingeniería Genética, Cinvestav, Campus Guanajuato, Irapuato, México
- Departamento de Genómica y Salud, Centro Superior de Investigación en Salud Pública, Valencia, España
| | - Germán Bonilla-Rosso
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, México D.F., México
| | | | - Felipe García-Oliva
- Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Morelia, México
| | - Lorenzo Segovia
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, México D.F., México
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, México D.F., México
| |
Collapse
|
36
|
Mazard S, Wilson WH, Scanlan DJ. DISSECTING THE PHYSIOLOGICAL RESPONSE TO PHOSPHORUS STRESS IN MARINE SYNECHOCOCCUS ISOLATES (CYANOPHYCEAE)(1). JOURNAL OF PHYCOLOGY 2012; 48:94-105. [PMID: 27009654 DOI: 10.1111/j.1529-8817.2011.01089.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Marine Synechococcus is ubiquitous in aquatic environments. However, distinct phylogenetic lineages of this genus have a complex ecological distribution that is not fully explained. Here, we undertook a broad study of the phosphorus (P)-related behavior of marine Synechococcus isolates from all previously described ribotypes (sensu Fuller et al. 2003). A wide variability in P-related physiology was noted among members of this genus, particularly in the utilization of organic P sources. However, some characteristics (e.g., cell size change during P limitation and the ability to accumulate polyphosphate) were largely consistent with their phylogenetic lineage and inferred ecology, with clear distinctions between oligotrophic, mesotrophic, and opportunistic lineages. Similarly, the ability to induce protein expression in response to P limitation was consistent with the presence/absence of phoB/R regulatory capacity of the corresponding strain. Taxonomic differences in P uptake, storage, and utilization strategies could explain the ubiquitous distribution of marine Synechococcus throughout the world's oceans and explain the coexistence and/or ecological partitioning of multiple phototrophic taxa in the photic zone of tropical and subtropical oligotrophic oceans.
Collapse
Affiliation(s)
- Sophie Mazard
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK Plymouth Marine Laboratory, Plymouth, PL1 3DH, UK Bigelow Laboratory for Ocean Sciences, Maine 04575, USASchool of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - William H Wilson
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK Plymouth Marine Laboratory, Plymouth, PL1 3DH, UK Bigelow Laboratory for Ocean Sciences, Maine 04575, USASchool of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Dave J Scanlan
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK Plymouth Marine Laboratory, Plymouth, PL1 3DH, UK Bigelow Laboratory for Ocean Sciences, Maine 04575, USASchool of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
37
|
Merchant SS, Helmann JD. Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation. Adv Microb Physiol 2012; 60:91-210. [PMID: 22633059 PMCID: PMC4100946 DOI: 10.1016/b978-0-12-398264-3.00002-4] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microorganisms play a dominant role in the biogeochemical cycling of nutrients. They are rightly praised for their facility for fixing both carbon and nitrogen into organic matter, and microbial driven processes have tangibly altered the chemical composition of the biosphere and its surrounding atmosphere. Despite their prodigious capacity for molecular transformations, microorganisms are powerless in the face of the immutability of the elements. Limitations for specific elements, either fleeting or persisting over eons, have left an indelible trace on microbial genomes, physiology, and their very atomic composition. We here review the impact of elemental limitation on microbes, with a focus on selected genetic model systems and representative microbes from the ocean ecosystem. Evolutionary adaptations that enhance growth in the face of persistent or recurrent elemental limitations are evident from genome and proteome analyses. These range from the extreme (such as dispensing with a requirement for a hard to obtain element) to the extremely subtle (changes in protein amino acid sequences that slightly, but significantly, reduce cellular carbon, nitrogen, or sulfur demand). One near-universal adaptation is the development of sophisticated acclimation programs by which cells adjust their chemical composition in response to a changing environment. When specific elements become limiting, acclimation typically begins with an increased commitment to acquisition and a concomitant mobilization of stored resources. If elemental limitation persists, the cell implements austerity measures including elemental sparing and elemental recycling. Insights into these fundamental cellular properties have emerged from studies at many different levels, including ecology, biological oceanography, biogeochemistry, molecular genetics, genomics, and microbial physiology. Here, we present a synthesis of these diverse studies and attempt to discern some overarching themes.
Collapse
Affiliation(s)
- Sabeeha S. Merchant
- Institute for Genomics and Proteomics and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101
| |
Collapse
|
38
|
Drozd M, Gangaiah D, Liu Z, Rajashekara G. Contribution of TAT system translocated PhoX to Campylobacter jejuni phosphate metabolism and resilience to environmental stresses. PLoS One 2011; 6:e26336. [PMID: 22028859 PMCID: PMC3197622 DOI: 10.1371/journal.pone.0026336] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 09/25/2011] [Indexed: 12/12/2022] Open
Abstract
Campylobacter jejuni is a common gastrointestinal pathogen that colonizes food animals; it is transmitted via fecal contamination of food, and infections in immune-compromised people are more likely to result in serious long-term illness. Environmental phosphate is likely an important sensor of environmental fitness and the ability to obtain extracellular phosphate is central to the bacteria's core metabolic responses. PhoX is the sole alkaline phosphatase in C. jejuni, a substrate of the TAT transport system. Alkaline phosphatases mediate the hydrolytic removal of inorganic phosphate (Pi) from phospho-organic compounds and thereby contribute significantly to the polyphosphate kinase 1 (ppk1) mediated formation of poly P, a molecule that regulates bacterial response to stresses and virulence. Similarly, deletion of the tatC gene, a key component of the TAT system, results in diverse phenotypes in C. jejuni including reduced stress tolerance and in vivo colonization. Therefore, here we investigated the contribution of phoX in poly P synthesis and in TAT-system mediated responses. The phoX deletion mutant showed significant decrease (P<0.05) in poly P accumulation in stationary phase compared to the wild-type, suggesting that PhoX is a major contributor to the inorganic phosphate pool in the cell which is essential for poly P synthesis. The phoX deletion is sufficient for a nutrient stress defect similar to the defect previously described for the ΔtatC mutant. Additionally, the phoX deletion mutant has increased resistance to certain antimicrobials. The ΔphoX mutant was also moderately defective in invasion and intracellular survival within human intestinal epithelial cells as well as in chicken colonization. Further, the ΔphoX mutant produced increased biofilm that can be rescued with 1 mM inorganic phosphate. The qRT-PCR of the ΔphoX mutant revealed transcriptional changes that suggest potential mechanisms for the increased biofilm phenotype.
Collapse
Affiliation(s)
- Mary Drozd
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Dharanesh Gangaiah
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Zhe Liu
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Gireesh Rajashekara
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| |
Collapse
|
39
|
Sebastian M, Ammerman JW. Role of the phosphatase PhoX in the phosphorus metabolism of the marine bacterium Ruegeria pomeroyi DSS-3. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:535-542. [PMID: 23761332 DOI: 10.1111/j.1758-2229.2011.00253.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Marine microbes are adapted to surviving in a variable phosphorus (P) environment. This adaptation frequently involves the presence of periplasmic or cell membrane-associated enzymes that enable them access to alternative sources of P when phosphate is depleted. In a recent study we identified the phosphatase PhoX as an enzyme that may be essential in mediating organic P acquisition in the ocean. Here we have investigated the role of this enzyme in the utilization of different P sources, using as a model the marine bacterium Ruegeria pomeroyi DSS-3. Although our previous study had demonstrated that PhoX accounts for more than 90% of the alkaline phosphatase (APase) activity in R. pomeroyi, a PhoX mutant strain was able to grow on monophosphate esters at the same rate as the wild type. Nevertheless, further APase kinetic analyses with both strains demonstrated that the Km of the wild-type strain was an order of magnitude lower than the mutant strain, indicating that PhoX is crucial for the use of these substrates at low concentrations, typically found in seawater. We also showed that PhoX is required for efficient hydrolysation of nucleotides like ADP and ATP.
Collapse
Affiliation(s)
- M Sebastian
- Institute of Marine and Coastal Sciences, Rutgers University. 71 Dudley Road, New Brunswick, NJ 08901-8521, USA
| | | |
Collapse
|
40
|
Kathuria S, Martiny AC. Prevalence of a calcium-based alkaline phosphatase associated with the marine cyanobacterium Prochlorococcus and other ocean bacteria. Environ Microbiol 2011; 13:74-83. [PMID: 20649645 DOI: 10.1111/j.1462-2920.2010.02310.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphate plays a key role in regulating primary productivity in several regions of the world's oceans and here dissolved organic phosphate can be an important phosphate source. A key enzyme for utilizing dissolved organic phosphate is alkaline phosphatase and the phoA-type of this enzyme has a zinc cofactor. As the dissolved zinc concentration is low in phosphate depleted environments, this has led to the hypothesis that some phytoplankton may be zinc-P co-limited. Recently, it was shown that many marine bacteria contain an alternative form of alkaline phosphatase called phoX, but it is unclear which marine lineages carry this enzyme. Here, we describe the occurrence in low phosphate environments of phoX that is associated with uncultured Prochlorococcus and SAR11 cells. Through heterologous expression, we demonstrate that phoX encodes an active phosphatase with a calcium cofactor. The enzyme also functions with magnesium and copper, whereas cobalt, manganese, nickel and zinc inhibit enzyme activity to various degrees. We also find that uncultured SAR11 cells and cyanophages contain a different alkaline phosphatase related to a variant present in several Prochlorococcus isolates. Overall, the results suggest that many bacterial lineages including Prochlorococcus and SAR11 may not be subject to zinc-P co-limitation.
Collapse
Affiliation(s)
- Satish Kathuria
- Departments of Earth System ScienceEcology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Adam C Martiny
- Departments of Earth System ScienceEcology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
41
|
Sinorhizobium meliloti phospholipase C required for lipid remodeling during phosphorus limitation. Proc Natl Acad Sci U S A 2009; 107:302-7. [PMID: 20018679 DOI: 10.1073/pnas.0912930107] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Rhizobia are Gram-negative soil bacteria able to establish nitrogen-fixing root nodules with their respective legume host plants. Besides phosphatidylglycerol, cardiolipin, and phosphatidylethanolamine, rhizobial membranes contain phosphatidylcholine (PC) as a major membrane lipid. Under phosphate-limiting conditions of growth, some bacteria replace their membrane phospholipids with lipids lacking phosphorus. In Sinorhizobium meliloti, these phosphorus-free lipids are sulfoquinovosyl diacylglycerol, ornithine-containing lipid, and diacylglyceryl trimethylhomoserine (DGTS). Pulse-chase experiments suggest that the zwitterionic phospholipids phosphatidylethanolamine and PC act as biosynthetic precursors of DGTS under phosphorus-limiting conditions. A S. meliloti mutant, deficient in the predicted phosphatase SMc00171 was unable to degrade PC or to form DGTS in a similar way as the wild type. Cell-free extracts of Escherichia coli, in which SMc00171 had been expressed, convert PC to phosphocholine and diacylglycerol, showing that SMc00171 functions as a phospholipase C. Diacylglycerol , in turn, is the lipid anchor from which biosynthesis is initiated during the formation of the phosphorus-free membrane lipid DGTS. Inorganic phosphate can be liberated from phosphocholine. These data suggest that, in S. meliloti under phosphate-limiting conditions, membrane phospholipids provide a pool for metabolizable inorganic phosphate, which can be used for the synthesis of other essential phosphorus-containing biomolecules. This is an example of an intracellular phospholipase C in a bacterial system; however, the ability to degrade endogenous preexisting membrane phospholipids as a source of phosphorus may be a general property of Gram-negative soil bacteria.
Collapse
|
42
|
Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, Post AF, Hagemann M, Paulsen I, Partensky F. Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev 2009; 73:249-99. [PMID: 19487728 PMCID: PMC2698417 DOI: 10.1128/mmbr.00035-08] [Citation(s) in RCA: 457] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus numerically dominate the picophytoplankton of the world ocean, making a key contribution to global primary production. Prochlorococcus was isolated around 20 years ago and is probably the most abundant photosynthetic organism on Earth. The genus comprises specific ecotypes which are phylogenetically distinct and differ markedly in their photophysiology, allowing growth over a broad range of light and nutrient conditions within the 45 degrees N to 40 degrees S latitudinal belt that they occupy. Synechococcus and Prochlorococcus are closely related, together forming a discrete picophytoplankton clade, but are distinguishable by their possession of dissimilar light-harvesting apparatuses and differences in cell size and elemental composition. Synechococcus strains have a ubiquitous oceanic distribution compared to that of Prochlorococcus strains and are characterized by phylogenetically discrete lineages with a wide range of pigmentation. In this review, we put our current knowledge of marine picocyanobacterial genomics into an environmental context and present previously unpublished genomic information arising from extensive genomic comparisons in order to provide insights into the adaptations of these marine microbes to their environment and how they are reflected at the genomic level.
Collapse
Affiliation(s)
- D J Scanlan
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|