1
|
Bernetti A, Barili S, Sannino C, Mugnai G, Borruso L, Pinchuk I, Pezzolla D, Turchetti B, Gigliotti G, Buzzini P. Selective response of soil bacterial and fungal taxa to biodegradable polymers. ENVIRONMENTAL RESEARCH 2025; 264:120344. [PMID: 39537004 DOI: 10.1016/j.envres.2024.120344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Biodegradable mulching films offer an eco-friendly alternative to petroleum-based plastics in agriculture, but their effects on soil parameters are not well understood. A microcosm experiment (20 °C, 75% field capacity) investigated the impact of two doses (0.021% and 1% w/w) of a biodegradable polymer on soil chemical and microbiological properties over a year. The 1% dose significantly (p < 0.05) increased CO2 emissions, water-extractable organic C, and hydrolytic activity. A significant (p < 0.05) effect on microbial alpha- and beta-diversity was noted only during short- and medium-term incubations. In contrast, a taxon-related response was found for both bacterial and fungal taxa affecting the abundance of the genera Aquicella, Cellvibrio, Bacillus, Ramlibacter, and Saccharibacteria genera incertae sedis among bacteria, and Malassezia, Orbilia, and Rhodotorula among fungi (including both yeast and filamentous lifestyles). Microbial functions revealed a greater impact on fungal communities compared to bacterial ones. However, after one year of exposition, only a marginal effect on the abundance of both bacterial and fungal functional groups was found in the microcosms. A significantly higher concentration of tightly bound exopolysaccharides in the presence of 1% biodegradable polymer at the start of the experiment suggested their key role in microbial degradation of bioplastics via biofilm formation.
Collapse
Affiliation(s)
- Alessandro Bernetti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Italy
| | - Sofia Barili
- Department of Civil and Environmental Engineering, University of Perugia, Italy
| | - Ciro Sannino
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Italy.
| | - Gianmarco Mugnai
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Italy
| | - Luigimaria Borruso
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Irina Pinchuk
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Italy; Laboratory of Soil Carbon and Microbial Ecology, Dokuchaev Soil Science Institute, Moscow, Russia
| | - Daniela Pezzolla
- Department of Civil and Environmental Engineering, University of Perugia, Italy
| | - Benedetta Turchetti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Italy
| | - Giovanni Gigliotti
- Department of Civil and Environmental Engineering, University of Perugia, Italy
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Italy
| |
Collapse
|
2
|
Wang X, Ganzert L, Bartholomäus A, Amen R, Yang S, Guzmán CM, Matus F, Albornoz MF, Aburto F, Oses-Pedraza R, Friedl T, Wagner D. The effects of climate and soil depth on living and dead bacterial communities along a longitudinal gradient in Chile. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173846. [PMID: 38871316 DOI: 10.1016/j.scitotenv.2024.173846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Soil bacterial communities play a critical role in shaping soil stability and formation, exhibiting a dynamic interaction with local climate and soil depth. We employed an innovative DNA separation method to characterize microbial assemblages in low-biomass environments such as deserts and distinguish between intracellular DNA (iDNA) and extracellular DNA (eDNA) in soils. This approach, combined with analyses of physicochemical properties and co-occurrence networks, investigated soil bacterial communities across four sites representing diverse climatic gradients (i.e., arid, semi-arid, Mediterranean, and humid) along the Chilean Coastal Cordillera. The separation method yielded a distinctive unimodal pattern in the iDNA pool alpha diversity, increasing from arid to semi-arid climates and decreasing in humid environments, highlighting the rapid feedback of the iDNA community to increasing soil moisture. In the arid region, harsh surface conditions restrict bacterial growth, leading to peak iDNA abundance and diversity occurring in slightly deeper layers than the other sites. Our findings confirmed the association between specialist bacteria and ecosystem-functional traits. We observed transitions from Halomonas and Delftia, resistant to extreme arid environments, to Class AD3 and the genus Bradyrhizobium, associated with plants and organic matter in humid environments. The distance-based redundancy analysis (dbRDA) analysis revealed that soil pH and moisture were the key parameters that influenced bacterial community variation. The eDNA community correlated slightly better with the environment than the iDNA community. Soil depth was found to influence the iDNA community significantly but not the eDNA community, which might be related to depth-related metabolic activity. Our investigation into iDNA communities uncovered deterministic community assembly and distinct co-occurrence modules correlated with unique bacterial taxa, thereby showing connections with sites and key environmental factors. The study additionally revealed the effects of climatic gradients and soil depth on living and dead bacterial communities, emphasizing the need to distinguish between iDNA and eDNA pools.
Collapse
Affiliation(s)
- Xiuling Wang
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
| | - Lars Ganzert
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
| | - Alexander Bartholomäus
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
| | - Rahma Amen
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany; Department of Zoology, Faculty of Science, Aswan University, 81528 Aswan, Egypt
| | - Sizhong Yang
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany
| | - Carolina Merino Guzmán
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, BIOREN, Universidad de La Frontera, Temuco 4780000, Chile
| | - Francisco Matus
- Laboratory of Conservation and Dynamics of Volcanic Soils, Department of Chemical Sciences and Natural Resources, Universidad de La Frontera, Temuco 4780000, Chile; Network for Extreme Environmental Research (NEXER), Universidad de La Frontera, Temuco 4780000, Chile
| | - Maria Fernanda Albornoz
- Laboratorio de Investigación de Suelos, Aguas y Bosques (LISAB), Universidad de Concepción, Concepción, Chile
| | - Felipe Aburto
- Pedology and Soil Biogeochemistry Lab, Soil and Crop Sciences Department, Texas A&M University, College Station, TX, USA
| | - Rómulo Oses-Pedraza
- Centro Regional de Investigación y Desarrollo Sustentable de Atacama, Universidad de Atacama (CRIDESAT UDA), Copayapu 484, Copiapó 1530000, Chile
| | - Thomas Friedl
- Department of Experimental Phycology and Culture Collection of Algae (EPSAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University, 37073 Göttingen, Germany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473 Potsdam, Germany; Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany.
| |
Collapse
|
3
|
Castellano-Hinojosa A, Karlsen-Ayala E, Boyd NS, Strauss SL. Impact of repeated fumigant applications on soil properties, crop yield, and microbial communities in a plastic-mulched tomato production system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170659. [PMID: 38325480 DOI: 10.1016/j.scitotenv.2024.170659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Pre-plant soil fumigation is widely applied to control nematodes, soil-borne fungal pathogens, and weeds in vegetable crops. However, most of the research evaluating the effect of fumigants on crop yield and soil microbial communities has been done on single compounds despite growers mainly applying fumigant combinations. We studied the effect of different fumigant combinations (chloropicrin, 1,3-dichloropropene, and metam potassium) on soil properties, crop yield, and the soil bacterial and fungal microbiome for two consecutive years in a plastic-mulched tomato production system in Florida (United States). While combinations of fumigants did not improve plant productivity more than the individual application of these products, application of fumigants with >60 % chloropicrin did significantly increase yield. Fumigant combinations had no significant effect on bacterial diversity, but fumigants with >35 % chloropicrin reduced soil fungal diversity and induced temporary changes in the soil bacterial and fungal community composition. These changes included short-term increases in the relative abundance of Firmicutes and Ascomycota, as well as decreases in other bacterial and fungal taxa. Repeated fumigation reduced network complexity and the relative abundance of several predicted bacterial functions and fungal guilds, particularly after fumigation and at end of harvest (3-months post fumigation). A structural equation model (SEM) showed fumigants not only directly impact crop yield, but they can also indirectly determine variations in plant productivity through effects on the soil microbiome. Overall, this study increases our understanding of the environmental and agricultural impacts of fumigants in a plastic-mulched tomato production system.
Collapse
Affiliation(s)
- Antonio Castellano-Hinojosa
- Southwest Florida Research and Education Center, Department of Soil, Water, and Ecosystem Sciences, Institute of Food and Agricultural Sciences, University of Florida, 2685 State Rd 29N, Immokalee, FL, 34142, USA
| | - Elena Karlsen-Ayala
- Southwest Florida Research and Education Center, Department of Soil, Water, and Ecosystem Sciences, Institute of Food and Agricultural Sciences, University of Florida, 2685 State Rd 29N, Immokalee, FL, 34142, USA; Northern Research Station, United States Department of Agriculture, Forest Service, 51 Millpond Road, Hamden, CT 06517, USA
| | - Nathan S Boyd
- Gulf Coast Research and Education Center, Department of Horticulture, Institute of Food and Agricultural Sciences, University of Florida, 14625 C.R. 672, Wimauma, FL 33598, USA
| | - Sarah L Strauss
- Southwest Florida Research and Education Center, Department of Soil, Water, and Ecosystem Sciences, Institute of Food and Agricultural Sciences, University of Florida, 2685 State Rd 29N, Immokalee, FL, 34142, USA.
| |
Collapse
|
4
|
Vaish S, Soni SK, Singh B, Garg N, Zareen Ahmad I, Manoharan M, Trivedi AK. Meta-analysis of biodynamic (BD) preparations reveal the bacterial population involved in improving soil health, crop yield and quality. J Genet Eng Biotechnol 2024; 22:100345. [PMID: 38494258 PMCID: PMC10980875 DOI: 10.1016/j.jgeb.2023.100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 03/19/2024]
Abstract
BACKGROUND Bacterial community found in biodynamic preparations (BD500-BD507) can help improve soil health, plant development, yield, and quality. The current work describes a metagenomic investigation of these preparations to identify the bacterial communities along with the functional diversity present within them. RESULTS Metagenome sequencing was performed using the Illumina MiSeq platform, which employs next-generation sequencing (NGS) technology, to provide an understanding of the bacterial communities and their functional diversity in BD preparations. NGS data of BD preparations revealed that maximum operational taxonomic units (OTUs) of the phylum Proteobacteria were present in BD506 (23429) followed by BD505 (22712) and BD501 (21591), respectively. Moreover, unclassified phylum (16657) and genus (16657) were also highest in BD506. Maximum alpha diversity was reported in BD501 (1095 OTU) and minimum in BD507 (257 OTU). Further, the OTUs for five major metabolic functional groups viz carbohydrate metabolism, xenobiotic degradation, membrane transport functions, energy metabolism, and enzyme activities were abundant in BD506 and BD501. CONCLUSION The bacterial communities in BD506 and BD501 are found to be unique and rare; they belong to functional categories that are involved in enzyme activity, membrane transport, xenobiotic degradation, and carbohydrate metabolism. These preparations might therefore be thought to be more effective. The investigation also found a highly varied population of bacteria, which could explain why BD preparations work well in the field. In view of this, the BD preparations may be utilized for unexploited bacterial communities for sustainable agriculture production.
Collapse
Affiliation(s)
- Supriya Vaish
- Division of Post Harvest Management, ICAR-Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kakori, Lucknow, Uttar Pradesh 226101, India
| | - Sumit K Soni
- Division of Crop Improvement and Biotechnology, ICAR-Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kakori, Lucknow, Uttar Pradesh 226101, India.
| | - Balvindra Singh
- Division of Post Harvest Management, ICAR-Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kakori, Lucknow, Uttar Pradesh 226101, India
| | - Neelima Garg
- Division of Post Harvest Management, ICAR-Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kakori, Lucknow, Uttar Pradesh 226101, India.
| | - Iffat Zareen Ahmad
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Muthukumar Manoharan
- Division of Crop Improvement and Biotechnology, ICAR-Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kakori, Lucknow, Uttar Pradesh 226101, India
| | - Ajaya Kumar Trivedi
- Division of Post Harvest Management, ICAR-Central Institute for Subtropical Horticulture, Rehmankhera, P.O. Kakori, Lucknow, Uttar Pradesh 226101, India
| |
Collapse
|
5
|
Wang Y, Zhang X, Lou Z, An X, Li X, Jiang X, Wang W, Zhao H, Fu M, Cui Z. The effects of adding exogenous lignocellulose degrading bacteria during straw incorporation in cold regions on degradation characteristics and soil indigenous bacteria communities. Front Microbiol 2023; 14:1141545. [PMID: 37234521 PMCID: PMC10206022 DOI: 10.3389/fmicb.2023.1141545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Low temperature is one of the bottleneck factors that limits the degradation of straw during rice straw incorporation. Determining strategies to promote the efficient degradation of straw in cold regions has become a highly active research area. This study was to investigate the effect of rice straw incorporation by adding exogenous lignocellulose decomposition microbial consortiums at different soil depths in cold regions. The results showed that the lignocellulose was degraded the most efficiently during straw incorporation, which was in deep soil with the full addition of a high-temperature bacterial system. The composite bacterial systems changed the indigenous soil microbial community structure and diminished the effect of straw incorporation on soil pH, it also significantly increased rice yield and effectively enhanced the functional abundance of soil microorganisms. The predominant bacteria SJA-15, Gemmatimonadaceae, and Bradyrhizobium promoted straw degradation. The concentration of bacterial system and the depth of soil had significantly positive correlations on lignocellulose degradation. These results provide new insights and a theoretical basis for the changes in the soil microbial community and the application of lignocellulose-degrading composite microbial systems with straw incorporation in cold regions.
Collapse
Affiliation(s)
- Yunlong Wang
- College of Agronomy, Yanbian University, Yanji, China
| | - Xuelian Zhang
- College of Agronomy, Yanbian University, Yanji, China
| | - Zixi Lou
- College of Agronomy, Yanbian University, Yanji, China
| | - Xiaoya An
- College of Agronomy, Yanbian University, Yanji, China
| | - Xue Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xinbo Jiang
- College of Agronomy, Yanbian University, Yanji, China
| | - Weidong Wang
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hongyan Zhao
- College of Agronomy, Yanbian University, Yanji, China
| | - Minjie Fu
- College of Agronomy, Yanbian University, Yanji, China
| | - Zongjun Cui
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Yang R, Zhou S, Zhang L, Qin C. Pronounced temporal changes in soil microbial community and nitrogen transformation caused by benzalkonium chloride. J Environ Sci (China) 2023; 126:827-835. [PMID: 36503808 PMCID: PMC9553405 DOI: 10.1016/j.jes.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 05/16/2023]
Abstract
As one typical cationic disinfectant, quaternary ammonium compounds (QACs) were approved for surface disinfection in the coronavirus disease 2019 pandemic and then unintentionally or intentionally released into the surrounding environment. Concerningly, it is still unclear how the soil microbial community succession happens and the nitrogen (N) cycling processes alter when exposed to QACs. In this study, one common QAC (benzalkonium chloride (BAC) was selected as the target contaminant, and its effects on the temporal changes in soil microbial community structure and nitrogen transformation processes were determined by qPCR and 16S rRNA sequencing-based methods. The results showed that the aerobic microbial degradation of BAC in the two different soils followed first-order kinetics with a half-life (4.92 vs. 17.33 days) highly dependent on the properties of the soil. BAC activated the abundance of N fixation gene (nifH) and nitrification genes (AOA and AOB) in the soil and inhibited that of denitrification gene (narG). BAC exposure resulted in the decrease of the alpha diversity of soil microbial community and the enrichment of Crenarchaeota and Proteobacteria. This study demonstrates that BAC degradation is accompanied by changes in soil microbial community structure and N transformation capacity.
Collapse
Affiliation(s)
- Rui Yang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Shaohong Zhou
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Lilan Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Cunli Qin
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
7
|
Valette N, Legout A, Goodell B, Alfredsen G, Auer L, Gelhaye E, Derrien D. Impact of Norway spruce pre-degradation stages induced by Gloeophyllum trabeum on fungal and bacterial communities. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2022.101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Reboleira AS, Bodawatta KH, Ravn NMR, Lauritzen SE, Skoglund RØ, Poulsen M, Michelsen A, Jønsson KA. Nutrient-limited subarctic caves harbour more diverse and complex bacterial communities than their surface soil. ENVIRONMENTAL MICROBIOME 2022; 17:41. [PMID: 35941623 PMCID: PMC9361705 DOI: 10.1186/s40793-022-00435-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Subarctic regions are particularly vulnerable to climate change, yet little is known about nutrient availability and biodiversity of their cave ecosystems. Such knowledge is crucial for predicting the vulnerability of these ecosystems to consequences of climate change. Thus, to improve our understanding of life in these habitats, we characterized environmental variables, as well as bacterial and invertebrate communities of six subarctic caves in Northern Norway. RESULTS Only a minuscule diversity of surface-adapted invertebrates were found in these caves. However, the bacterial communities in caves were compositionally different, more diverse and more complex than the nutrient-richer surface soil. Cave soil microbiomes were less variable between caves than between surface communities in the same area, suggesting that the stable cave environments with tougher conditions drive the uniform microbial communities. We also observed only a small proportion of cave bacterial genera originating from the surface, indicating unique cave-adapted microbial communities. Increased diversity within caves may stem from higher niche specialization and levels of interdependencies for nutrient cycling among bacterial taxa in these oligotrophic environments. CONCLUSIONS Taken together this suggest that environmental changes, e.g., faster melting of snow as a result of global warming that could alter nutrient influx, can have a detrimental impact on interactions and dependencies of these complex communities. This comparative exploration of cave and surface microbiomes also lays the foundation to further investigate the long-term environmental variables that shape the biodiversity of these vulnerable ecosystems.
Collapse
Affiliation(s)
- Ana Sofia Reboleira
- Departamento de Biologia Animal, and Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal.
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen East, Denmark.
| | - Kasun H Bodawatta
- Departamento de Biologia Animal, and Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen East, Denmark
| | - Nynne M R Ravn
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen East, Denmark
| | - Stein-Erik Lauritzen
- Department of Earth Science, University of Bergen, Allegt. 41, 5007, Bergen, Norway
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, 0316, Oslo, Norway
| | | | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen East, Denmark
| | - Anders Michelsen
- Section for Terrestrial Ecology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen East, Denmark
| | - Knud Andreas Jønsson
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen East, Denmark
| |
Collapse
|
9
|
Ding H, Liu T, Hu Q, Liu M, Cai M, Jiang Y, Cao C. Effect of microbial community structures and metabolite profile on greenhouse gas emissions in rice varieties. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119365. [PMID: 35489537 DOI: 10.1016/j.envpol.2022.119365] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/01/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Rice paddy fields are major sources of atmospheric methane (CH4) and nitrous oxide (N2O). Rice variety is an important factor affecting CH4 and N2O emissions. However, the interactive effects of rice metabolites and microorganisms on CH4 and N2O emissions in paddy fields are not clearly understood. In this study, a high greenhouse gas-emitting cultivar (YL 6) and a low greenhouse gas-emitting cultivar (YY 1540) were used as experimental materials. Metabolomics was used to examine the roots, root exudates, and bulk soil metabolites. High-throughput sequencing was used to determine the microbial community composition. YY 1540 had more secondary metabolites (flavonoids and isoflavonoids) in root exudates than YL 6. It was enriched with the uncultured members of the families Gemmatimonadanceae and Rhizobiales_Incertae_Sedis in bulk soil, and genera Burkholderia-Caballeronia-Paraburkholderia, Magnetospirillum, Aeromonas, and Anaeromyxobacter in roots, contributing to increased expression of pmoA and nosZ genes and reducing CH4 and N2O emissions. YL 6 roots and root exudates contained higher contents of carbohydrates [e.g., 6-O- acetylarbutin and 2-(3- hydroxyphenyl) ethanol 1'-glucoside] than those of YY 1540. They were enriched with genera RBG-16-58-14 in bulk soil and Exiguobacterium, and uncultured member of the Kineosporiaceae family in roots, which contributed to increased expression of mcrA, ammonia-oxidizing archaea, ammonia-oxidizing bacteria, nirS, and nirK genes and greenhouse gas emissions. In general, these results established a link between metabolites, microorganisms, microbial functional genes, and greenhouse gas emissions. The metabolites of root exudates and roots regulated CH4 and N2O emissions by influencing the microbial community composition in bulk soil and roots.
Collapse
Affiliation(s)
- Huina Ding
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Tianqi Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Quanyi Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Min Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Mingli Cai
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yang Jiang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Cougui Cao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
10
|
Zhou X, Shi A, Rensing C, Yang J, Ni W, Xing S, Yang W. Wood vinegar facilitated growth and Cd/Zn phytoextraction of Sedum alfredii Hance by improving rhizosphere chemical properties and regulating bacterial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119266. [PMID: 35413404 DOI: 10.1016/j.envpol.2022.119266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Soil Cd and Zn contamination has become a serious environmental problem. This work explored the performance of wood vinegar (WV) in enhancing the phytoextraction of Cd/Zn by hyperaccumulator Sedum alfredii Hance. Rhizosphere chemical properties, enzyme activities and bacterial community were analyzed to determine the mechanisms of metal accumulation in this process. Results demonstrated that, after 120 days growth, different times dilution of WV increased the shoot biomass of S. alfredii by 85.2%-148%. In addition, WV application significantly increased soil available Cd and Zn by lowing soil pH, which facilitated plant uptake. The optimal Cd and Zn phytoextraction occurred from the 100 times diluted WV (D100), which increased the Cd and Zn extraction by 188% and 164%, compared to CK. The 100 and 50 times diluted WV significantly increased soil total and available carbon, nitrogen and phosphorus, and enhancing enzyme activities of urease, acid phosphatase, invertase and protease by 10.1-21.4%, 29.1-42.7%,12.2-38.3% and 26.8-85.7%, respectively, compared to CK. High-throughput sequencing revealed that the D 100 significantly increased the bacterial diversity compared to CK. Soil bacterial compositions at phylum, family and genera level were changed by WV addition. Compared to CK, WV application increased the relative abundances of genus with plant growth promotion and metal mobilization function such as, Bacillus, Gemmatimonas, Streptomyces, Sphingomonas and Polycyclovorans, which was positively correlated to biomass, Cd/Zn concentrations and extractions by S. alfredii. Structural equation modeling analysis showed that, soil chemical properties, enzyme activities and bacterial abundance directly or indirectly contributed to the biomass promotion, Cd, and Zn extraction by S. alfredii. To sum up, WV improved phytoextraction efficiency by enhancing plant growth, Cd and Zn extraction and increasing soil nutrients, enzyme activities, and modifying bacterial community.
Collapse
Affiliation(s)
- Xueqi Zhou
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - An Shi
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Christopher Rensing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jing Yang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wuzhong Ni
- College of Environment and Resources, Zhejiang University, Hangzhou, 310058, China
| | - Shihe Xing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenhao Yang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Environment and Resources, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Benthic Biofilm Bacterial Communities and Their Linkage with Water-Soluble Organic Matter in Effluent Receivers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19041994. [PMID: 35206183 PMCID: PMC8872271 DOI: 10.3390/ijerph19041994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023]
Abstract
Benthic biofilms are pioneering microbial aggregates responding to effluent discharge from wastewater treatment plants (WWTPs). However, knowledge of the characteristics and linkage of bacterial communities and water-soluble organic matter (WSOM) of benthic biofilms in effluent-receiving rivers remains unknown. Here, we investigated the quality of WSOM and the evolution of bacterial communities in benthic biofilm to evaluate the ecological impacts of effluent discharge on a representative receiving water. Tryptophan-like proteins showed an increased proportion in biofilms collected from the discharge area and downstream from the WWTP, especially in summer. Biofilm WSOM showed weak humic character and strong autochthonous components, and species turnover was proven to be the main factor governing biofilm bacteria community diversity patterns. The bacterial community alpha diversity, interspecies interaction, biological index, and humification index were signally altered in the biofilms from the discharge area, while the values were more similar in biofilms collected upstream and downstream from the WWTP, indicating that both biofilm bacterial communities and WSOM characters have resilience capacities. Although effluent discharge simplified the network pattern of the biofilm bacterial community, its metabolic functional abundance was basically stable. The functional abundance of carbohydrate metabolism and amino acid metabolism in the discharge area increased, and the key modules in the non-random co-occurrence network also verified the important ecological role of carbon metabolism in the effluent-receiving river. The study sheds light on how benthic biofilms respond to effluent discharge from both ecological and material points of view, providing new insights on the feasibility of utilizing benthic biofilms as robust indicators reflecting river ecological health.
Collapse
|
12
|
Clocchiatti A, Hannula SE, Rizaludin MS, Hundscheid MPJ, klein Gunnewiek PJA, Schilder MT, Postma J, de Boer W. Impact of Cellulose-Rich Organic Soil Amendments on Growth Dynamics and Pathogenicity of Rhizoctonia solani. Microorganisms 2021; 9:microorganisms9061285. [PMID: 34204724 PMCID: PMC8231496 DOI: 10.3390/microorganisms9061285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 01/04/2023] Open
Abstract
Cellulose-rich amendments stimulate saprotrophic fungi in arable soils. This may increase competitive and antagonistic interactions with root-infecting pathogenic fungi, resulting in lower disease incidence. However, cellulose-rich amendments may also stimulate pathogenic fungi with saprotrophic abilities, thereby increasing plant disease severity. The current study explores these scenarios, with a focus on the pathogenic fungus Rhizoctonia solani. Saprotrophic growth of R. solani on cellulose-rich materials was tested in vitro. This confirmed paper pulp as a highly suitable substrate for R. solani, whereas its performance on wood sawdusts varied with tree species. In two pot experiments, the effects of amendment of R. solani-infected soil with cellulose-rich materials on performance of beetroot seedlings were tested. All deciduous sawdusts and paper pulp stimulated soil fungal biomass, but only oak, elder and beech sawdusts reduced damping-off of beetroot. Oak sawdust amendment gave a consistent stimulation of saprotrophic Sordariomycetes fungi and of seedling performance, independently of the time between amendment and sowing. In contrast, paper pulp caused a short-term increase in R. solani abundance, coinciding with increased disease severity for beet seedlings sown immediately after amendment. However, damping-off of beetroot was reduced if plants were sown two or four weeks after paper pulp amendment. Cellulolytic bacteria, including Cytophagaceae, responded to paper pulp during the first two weeks and may have counteracted further spread of R. solani. The results showed that fungus-stimulating, cellulose-rich amendments have potential to be used for suppression of R. solani. However, such amendments require a careful consideration of material choice and application strategy.
Collapse
Affiliation(s)
- Anna Clocchiatti
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; (M.S.R.); (M.P.J.H.); (P.J.A.k.G.)
- Correspondence: (A.C.); (W.d.B.)
| | - Silja Emilia Hannula
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands;
| | - Muhammad Syamsu Rizaludin
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; (M.S.R.); (M.P.J.H.); (P.J.A.k.G.)
| | - Maria P. J. Hundscheid
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; (M.S.R.); (M.P.J.H.); (P.J.A.k.G.)
| | - Paulien J. A. klein Gunnewiek
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; (M.S.R.); (M.P.J.H.); (P.J.A.k.G.)
| | - Mirjam T. Schilder
- Biointeractions and Plant Health, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (M.T.S.); (J.P.)
| | - Joeke Postma
- Biointeractions and Plant Health, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (M.T.S.); (J.P.)
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands; (M.S.R.); (M.P.J.H.); (P.J.A.k.G.)
- Soil Biology Group, Wageningen University, 6708 PB Wageningen, The Netherlands
- Correspondence: (A.C.); (W.d.B.)
| |
Collapse
|
13
|
Clocchiatti A, Hannula SE, Hundscheid MPJ, Klein Gunnewiek PJA, de Boer W. Stimulated saprotrophic fungi in arable soil extend their activity to the rhizosphere and root microbiomes of crop seedlings. Environ Microbiol 2021; 23:6056-6073. [PMID: 33973345 PMCID: PMC8596668 DOI: 10.1111/1462-2920.15563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 05/05/2021] [Indexed: 11/28/2022]
Abstract
Saprotrophic fungi play an important role in ecosystem functioning and plant performance, but their abundance in intensively managed arable soils is low. Saprotrophic fungal biomass in arable soils can be enhanced with amendments of cellulose‐rich materials. Here, we examined if sawdust‐stimulated saprotrophic fungi extend their activity to the rhizosphere of crop seedlings and influence the composition and activity of other rhizosphere and root inhabitants. After growing carrot seedlings in sawdust‐amended arable soil, we determined fungal and bacterial biomass and community structure in roots, rhizosphere and soil. Utilization of root exudates was assessed by stable isotope probing (SIP) following 13CO2‐pulse‐labelling of seedlings. This was combined with analysis of lipid fatty acids (PLFA/NLFA‐SIP) and nucleic acids (DNA‐SIP). Sawdust‐stimulated Sordariomycetes colonized the seedling's rhizosphere and roots and actively consumed root exudates. This did not reduce the abundance and activity of bacteria, yet higher proportions of α‐Proteobacteria and Bacteroidia were seen. Biomass and activity of mycorrhizal fungi increased with sawdust amendments, whereas exudate consumption and root colonization by functional groups containing plant pathogens did not change. Sawdust amendment of arable soil enhanced abundance and exudate‐consuming activity of saprotrophic fungi in the rhizosphere of crop seedlings and promoted potential beneficial microbial groups in root‐associated microbiomes.
Collapse
Affiliation(s)
- Anna Clocchiatti
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.,Soil Biology Group, Wageningen University, Wageningen, The Netherlands
| | - S Emilia Hannula
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Maria P J Hundscheid
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | | | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.,Soil Biology Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
14
|
Varsadiya M, Urich T, Hugelius G, Bárta J. Microbiome structure and functional potential in permafrost soils of the Western Canadian Arctic. FEMS Microbiol Ecol 2021; 97:6102547. [PMID: 33452882 DOI: 10.1093/femsec/fiab008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/13/2021] [Indexed: 01/12/2023] Open
Abstract
Substantial amounts of topsoil organic matter (OM) in Arctic Cryosols have been translocated by the process of cryoturbation into deeper soil horizons (cryoOM), reducing its decomposition. Recent Arctic warming deepens the Cryosols´ active layer, making more topsoil and cryoOM carbon accessible for microbial transformation. To quantify bacteria, archaea and selected microbial groups (methanogens - mcrA gene and diazotrophs - nifH gene) and to investigate bacterial and archaeal diversity, we collected 83 soil samples from four different soil horizons of three distinct tundra types located in Qikiqtaruk (Hershel Island, Western Canada). In general, the abundance of bacteria and diazotrophs decreased from topsoil to permafrost, but not for cryoOM. No such difference was observed for archaea and methanogens. CryoOM was enriched with oligotrophic (slow-growing microorganism) taxa capable of recalcitrant OM degradation. We found distinct microbial patterns in each tundra type: topsoil from wet-polygonal tundra had the lowest abundance of bacteria and diazotrophs, but the highest abundance of methanogens. Wet-polygonal tundra, therefore, represented a hotspot for methanogenesis. Oligotrophic and copiotrophic (fast-growing microorganism) genera of methanogens and diazotrophs were distinctly distributed in topsoil and cryoOM, resulting in different rates of nitrogen flux into these horizons affecting OM vulnerability and potential CO2 and CH4 release.
Collapse
Affiliation(s)
- Milan Varsadiya
- Department of Ecosystems Biology, University of South Bohemia in České Budějovice, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8 17487 Greifswald, Germany
| | - Gustaf Hugelius
- Department of Physical Geography, Stockholm University, 106 91, Stockholm, Sweden
| | - Jiří Bárta
- Department of Ecosystems Biology, University of South Bohemia in České Budějovice, Branišovská 31, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
15
|
Miao S, Qiao Y, Jin J, Wang Y, Tang C. Greater variation of bacterial community structure in soybean- than maize-grown Mollisol soils in responses to seven-year elevated CO 2 and temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142836. [PMID: 33160664 DOI: 10.1016/j.scitotenv.2020.142836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/12/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
Changes in rhizodeposits of crops under elevated CO2 (eCO2) and elevated temperature (eT) may substantially impact on soil microbial community, which in turn affects soil carbon and nutrient cycling. However, the responses of soil bacterial community to long-term eCO2 and eT are not fully understood. A seven-year field experiment using open-top chambers was carried out with soybean (Glycine max L. Merr.) and maize (Zea mays L.) grown in a Mollisol soil under ambient CO2 (380 ppm), eT (2.1 °C increase in air temperature) and eTeCO2 (elevated temperature plus elevated CO2, 2.1 °C increase in air temperature and 700 ppm CO2). Soil DNA was extracted for Illumina MiSeq sequencing. The principal coordinate analysis showed that changes of bacterial community structure due to eT and eTeCO2 were greater in soybean- than maize-grown soils. The eT increased the relative abundances of Gaiella and Bacillus in Actinobacteria and Firmicutes, but decreased those of Nocardioides and H16 in Actinobacteria and Proteobacteria, respectively. The magnitudes of responses of seven genera sensitive to eT varied between soybean- and maize-grown soils. The eTeCO2 decreased the relative abundance of Bacillus and increased those of Gaiella, Streptomyces and Mizugakiibacter. The abundances of Gaiella, Gemmatimonas, and Mizugakiibacter under eTeCO2 were higher in soybean- than maize-grown soils. The redundancy analysis showed that soil organic C, moisture, nitrate, microbial biomass N and Olsen-P significantly affected soil bacterial community composition. All these results indicate that long-term eT increased the abundance of bacterial community and shifted their composition compared to the ambient control. In addition, the bacterial community composition under eTeCO2 was more stable in maize- than soybean-grown soils. The study suggests that warming and crop species may interactively affect the stability of bacterial community linking to the sustainability of soil eco-function in future cropping systems.
Collapse
Affiliation(s)
- Shujie Miao
- School of Applied Meteorology, Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing 210044, China
| | - Yunfa Qiao
- School of Applied Meteorology, Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing 210044, China
| | - Jian Jin
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; Department of Animal, Plant & Soil Sciences, Centre for AgriBioscience, La Trobe University (Melbourne Campus), Bundoora, Vic 3086, Australia.
| | - Yanhong Wang
- Experimental Center, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Caixian Tang
- Department of Animal, Plant & Soil Sciences, Centre for AgriBioscience, La Trobe University (Melbourne Campus), Bundoora, Vic 3086, Australia
| |
Collapse
|
16
|
Ogola HJO, Selvarajan R, Tekere M. Local Geomorphological Gradients and Land Use Patterns Play Key Role on the Soil Bacterial Community Diversity and Dynamics in the Highly Endemic Indigenous Afrotemperate Coastal Scarp Forest Biome. Front Microbiol 2021; 12:592725. [PMID: 33716998 PMCID: PMC7943610 DOI: 10.3389/fmicb.2021.592725] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/28/2021] [Indexed: 12/26/2022] Open
Abstract
Southern Afrotemperate forests are small multi-layered and highly fragmented biodiversity rich biomes that support unique flora and fauna endemism. However, little is known about the microbial community and their contribution to these ecosystems. In this study, high throughput sequencing analysis was used to investigate the soil bacterial community structure and function, and understand the effect of local topography/geomorphological formations and land use patterns on a coastal scarp forest. Soil samples were collected from three forest topography sites: upper (steeper gradients, 30-55°; open canopy cover, <30%), mid (less steep, 15-30°; continuous forest canopy, >80%), and lower (flatter gradient, <15°; open canopy cover, 20-65%), and from the adjacent sugarcane farms. Results indicated that forest soils were dominated by members of phyla Proteobacteria (mainly members of α-proteobacteria), Actinobacteria, Acidobacteria, Firmicutes, and Planctomycetes, while Actinobacteria and to a lesser extent β-proteobacteria and γ-proteobacteria dominated SC soils. The core bacterial community clustered by habitat (forest vs. sugarcane farm) and differed significantly between the forest topography sites. The Rhizobiales (genera Variibacter, Bradyrhizobium, and unclassified Rhizobiales) and Rhodospirallales (unclassified Rhodospirillum DA111) were more abundant in forest mid and lower topographies. Steeper forest topography (forest_upper) characterized by the highly leached sandy/stony acidic soils, low in organic nutrients (C and N) and plant densities correlated to significant reduction of bacterial diversity and richness, associating significantly with members of order Burkholderiales (Burkholderia-Paraburkholderia, Delftia, and Massilia) as the key indicator taxa. In contrast, changes in the total nitrogen (TN), soil organic matter (SOM), and high acidity (low pH) significantly influenced bacterial community structure in sugarcane farm soils, with genus Acidothermus (Frankiales) and uncultured Solirubrobacterales YNFP111 were the most abundant indicator taxa. Availability of soil nutrients (TN and SOM) was the strongest driver of metabolic functions related to C fixation and metabolism, N and S cycling; these processes being significantly abundant in forest than sugarcane farm soils. Overall, these results revealed that the local topographical/geomorphological gradients and sugarcane farming affect both soil characteristics and forest vegetation (canopy coverage), that indirectly drives the structure and composition of bacterial communities in scarp forest soils.
Collapse
Affiliation(s)
- Henry Joseph Oduor Ogola
- Department of Environmental Science, University of South Africa, Florida Science Campus, Roodepoort, South Africa
- School of Agricultural and Food Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Ramganesh Selvarajan
- Department of Environmental Science, University of South Africa, Florida Science Campus, Roodepoort, South Africa
| | - Memory Tekere
- Department of Environmental Science, University of South Africa, Florida Science Campus, Roodepoort, South Africa
| |
Collapse
|
17
|
Competitive Exclusion and Metabolic Dependency among Microorganisms Structure the Cellulose Economy of an Agricultural Soil. mBio 2021; 12:mBio.03099-20. [PMID: 33402535 PMCID: PMC8545098 DOI: 10.1128/mbio.03099-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microorganisms that degrade cellulose utilize extracellular reactions that yield free by-products which can promote interactions with noncellulolytic organisms. We hypothesized that these interactions determine the ecological and physiological traits governing the fate of cellulosic carbon (C) in soil. We performed comparative genomics with genome bins from a shotgun metagenomic-stable isotope probing experiment to characterize the attributes of cellulolytic and noncellulolytic taxa accessing 13C from cellulose. We hypothesized that cellulolytic taxa would exhibit competitive traits that limit access, while noncellulolytic taxa would display greater metabolic dependency, such as signatures of adaptive gene loss. We tested our hypotheses by evaluating genomic traits indicative of competitive exclusion or metabolic dependency, such as antibiotic production, growth rate, surface attachment, biomass degrading potential, and auxotrophy. The most 13C-enriched taxa were cellulolytic Cellvibrio (Gammaproteobacteria) and Chaetomium (Ascomycota), which exhibited a strategy of self-sufficiency (prototrophy), rapid growth, and competitive exclusion via antibiotic production. Auxotrophy was more prevalent in cellulolytic Actinobacteria than in cellulolytic Proteobacteria, demonstrating differences in dependency among cellulose degraders. Noncellulolytic taxa that accessed 13C from cellulose (Planctomycetales, Verrucomicrobia, and Vampirovibrionales) were also more dependent, as indicated by patterns of auxotrophy and 13C labeling (i.e., partial labeling or labeling at later stages). Major 13C-labeled cellulolytic microbes (e.g., Sorangium, Actinomycetales, Rhizobiales, and Caulobacteraceae) possessed adaptations for surface colonization (e.g., gliding motility, hyphae, attachment structures) signifying the importance of surface ecology in decomposing particulate organic matter. Our results demonstrated that access to cellulosic C was accompanied by ecological trade-offs characterized by differing degrees of metabolic dependency and competitive exclusion.
Collapse
|
18
|
Zhou G, Gao S, Chang D, Rees RM, Cao W. Using milk vetch (Astragalus sinicus L.) to promote rice straw decomposition by regulating enzyme activity and bacterial community. BIORESOURCE TECHNOLOGY 2021; 319:124215. [PMID: 33049439 DOI: 10.1016/j.biortech.2020.124215] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
The present study determined the dynamic changes of enzyme activity and bacterial community in rice straw (RS) and milk vetch (MV) co-decomposing process. Results showed that mixing RS and MV promoted decomposition. The mixture enhanced β-glucosidase and β-cellobiohydrolase activities relative to its monospecific residue during the mid-late stage of decomposition. The mixture enhanced Enterobacteriaceae (monosaccharide decomposing bacteria) abundance during the initial stage of decomposition, and the abundance of Hydrogenispora, Bacteroides, Ruminiclostridium, and Acidobacteriaceae that could hydrolyze fiber during the mid-late stage of decomposition relative to single RS and MV, respectively, which would benefit mixture decomposition. Furthermore, more interconnected and competitive relations existed between the bacteria in the mixture. These results indicated that mixing RS and MV promoted residue decomposition by increasing hydrolytic enzyme activities and changing bacterial community. This study concluded that co-incorporating RS and MV may be recommended as a promising practice for the efficient utilization of RS resources.
Collapse
Affiliation(s)
- Guopeng Zhou
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Songjuan Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Danna Chang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Robert M Rees
- Scotland's Rural College (SRUC), West Mains Road, Edinburgh EH9 3JG, UK
| | - Weidong Cao
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
19
|
Kong Y, Kuzyakov Y, Ruan Y, Zhang J, Wang T, Wang M, Guo S, Shen Q, Ling N. DNA Stable-Isotope Probing Delineates Carbon Flows from Rice Residues into Soil Microbial Communities Depending on Fertilization. Appl Environ Microbiol 2020; 86:e02151-19. [PMID: 31953339 PMCID: PMC7082572 DOI: 10.1128/aem.02151-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/12/2020] [Indexed: 11/20/2022] Open
Abstract
Decomposition of crop residues in soil is mediated by microorganisms whose activities vary with fertilization. The complexity of active microorganisms and their interactions utilizing residues is impossible to disentangle without isotope applications. Thus, 13C-labeled rice residues were employed, and DNA stable-isotope probing (DNA-SIP) combined with high-throughput sequencing was applied to identify microbes active in assimilating residue carbon (C). Manure addition strongly modified microbial community compositions involved in the C flow from rice residues. Relative abundances of the bacterial genus Lysobacter and fungal genus Syncephalis were increased, but abundances of the bacterial genus Streptomyces and fungal genus Trichoderma were decreased in soils receiving mineral fertilizers plus manure (NPKM) compared to levels in soils receiving only mineral fertilizers (NPK). Microbes involved in the flow of residue C formed a more complex network in NPKM than in NPK soils because of the necessity to decompose more diverse organic compounds. The fungal species (Jugulospora rotula and Emericellopsis terricola in NPK and NPKM soils, respectively) were identified as keystone species in the network and may significantly contribute to residue C decomposition. Most of the fungal genera in NPKM soils, especially Chaetomium, Staphylotrichum, Penicillium, and Aspergillus, responded faster to residue addition than those in NPK soils. This is connected with the changes in the composition of the rice residue during degradation and with fungal adaptation (abundance and activity) to continuous manure input. Our findings provide fundamental information about the roles of key microbial groups in residue decomposition and offer important cues on manipulating the soil microbiome for residue utilization and C sequestration in soil.IMPORTANCE Identifying and understanding the active microbial communities and interactions involved in plant residue utilization are key questions to elucidate the transformation of soil organic matter (SOM) in agricultural ecosystems. Microbial community composition responds strongly to management, but little is known about specific microbial groups involved in plant residue utilization and, consequently, microbial functions under different methods of fertilization. We combined DNA stable-isotope (13C) probing and high-throughput sequencing to identify active fungal and bacterial groups degrading residues in soils after 3 years of mineral fertilization with and without manure. Manuring changed the active microbial composition and complexified microbial interactions involved in residue C flow. Most fungal genera, especially Chaetomium, Staphylotrichum, Penicillium, and Aspergillus, responded to residue addition faster in soils that historically had received manure. We generated a valuable library of microorganisms involved in plant residue utilization for future targeted research to exploit specific functions of microbial groups in organic matter utilization and C sequestration.
Collapse
Affiliation(s)
- Yali Kong
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, Göttingen, Germany
- Agro-Technology Institute, RUDN University, Moscow, Russia
| | - Yang Ruan
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Junwei Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Tingting Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Min Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Ning Ling
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
20
|
Soil properties influence bacterial abundance and diversity under different land-use regimes in semi-arid environments. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2019.e00246] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
21
|
Harkes P, van Steenbrugge JJM, van den Elsen SJJ, Suleiman AKA, de Haan JJ, Holterman MHM, Helder J. Shifts in the Active Rhizobiome Paralleling Low Meloidogyne chitwoodi Densities in Fields Under Prolonged Organic Soil Management. FRONTIERS IN PLANT SCIENCE 2020; 10:1697. [PMID: 31998352 PMCID: PMC6965313 DOI: 10.3389/fpls.2019.01697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Plants manipulate their rhizosphere community in a species and even a plant life stage-dependent manner. In essence plants select, promote and (de)activate directly the local bacterial and fungal community, and indirectly representatives of the next trophic level, protists and nematodes. By doing so, plants enlarge the pool of bioavailable nutrients and maximize local disease suppressiveness within the boundaries set by the nature of the local microbial community. MiSeq sequencing of specific variable regions of the 16S or 18S ribosomal DNA (rDNA) is widely used to map microbial shifts. As current RNA extraction procedures are time-consuming and expensive, the rRNA-based characterization of the active microbial community is taken along less frequently. Recently, we developed a relatively fast and affordable protocol for the simultaneous extraction of rDNA and rRNA from soil. Here, we investigated the long-term impact of three type of soil management, two conventional and an organic regime, on soil biota in fields naturally infested with the Columbian root-knot nematode Meloidogyne chitwoodi with pea (Pisum sativum) as the main crop. For all soil samples, large differences were observed between resident (rDNA) and active (rRNA) microbial communities. Among the four organismal group under investigation, the bacterial community was most affected by the main crop, and unweighted and weighted UniFrac analyses (explaining respectively 16.4% and 51.3% of the observed variation) pointed at a quantitative rather than a qualitative shift. LEfSe analyses were employed for each of the four organismal groups to taxonomically pinpoint the effects of soil management. Concentrating on the bacterial community in the pea rhizosphere, organic soil management resulted in a remarkable activation of members of the Burkholderiaceae, Enterobacteriaceae, and Pseudomonadaceae. Prolonged organic soil management was also accompanied by significantly higher densities of bacterivorous nematodes, whereas levels of M. chitwoodi had dropped drastically. Though present and active in the fields under investigation Orbiliaceae, a family harboring numerous nematophagous fungi, was not associated with the M. chitwoodi decline. A closer look revealed that a local accumulation and activation of Pseudomonas, a genus that includes a number of nematode-suppressive species, paralleled the lower M. chitwoodi densities. This study underlines the relevance of taking along both resident and active fractions of multiple organismal groups while mapping the impact of e.g. crops and soil management regimes.
Collapse
Affiliation(s)
- Paula Harkes
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | | | | | - Afnan Khalil Ahmad Suleiman
- Department of Microbial Ecology, NIOO-KNAW, Wageningen, Netherlands
- Department of Microbiological Water Quality and Health, KWR Watercycle Research Institute, PE Nieuwegein, Netherlands
| | - Johannes Jan de Haan
- Open Teelten, Department of Wageningen Plant Research, Wageningen University & Research, Lelystad, Netherlands
| | | | - Johannes Helder
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
22
|
Qiu C, Feng Y, Wu M, Liu M, Li W, Li Z. NanoFe 3O 4 accelerates methanogenic straw degradation by improving energy metabolism. BIORESOURCE TECHNOLOGY 2019; 292:121930. [PMID: 31401356 DOI: 10.1016/j.biortech.2019.121930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
The impacts of nanoFe3O4 on the composition of degradation products, microbial community, and microbial metabolic functions during rice straw anaerobic degradation were investigated. Under nanoFe3O4 addition, CH4 production and straw degradation increased by 81% and 10.4%, respectively, in paddy soil enrichment. Coupling product chemistry and microbial community during straw degradation found that nanoFe3O4 effectively promoted the hydrolysis-acidification-methanogenesis of straw, which made lignin-, lipid-, protein-, tannin-like and VFAs products rapidly increase and then quickly decrease. Moreover, the relative abundance of Clostridiaceae and Methanosarcina corresponded with increased hydrolysis and acetoclastic methanogenesis with nanoFe3O4 addition. Cellular processes, environmental information processing and metabolism, especially energy metabolism, were enhanced functions of the microbial community during straw degradation with nanoFe3O4. The nanoFe3O4 addition may improve the electron transfer efficiency, stimulate energy release, reduce Gibbs free energy of the half reaction of organic carbon oxidation (ΔGcox0) and promote energy metabolism to accelerate straw degradation and CH4 generation.
Collapse
Affiliation(s)
- Cunpu Qiu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Youzhi Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Meng Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ming Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Weitao Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, PR China
| | - Zhongpei Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, PR China; University of the Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
23
|
Ávila MP, Oliveira-Junior ES, Reis MP, Hester ER, Diamantino C, Veraart AJ, Lamers LPM, Kosten S, Nascimento AMA. The Water Hyacinth Microbiome: Link Between Carbon Turnover and Nutrient Cycling. MICROBIAL ECOLOGY 2019; 78:575-588. [PMID: 30706113 DOI: 10.1007/s00248-019-01331-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Water hyacinth (WH), a large floating plant, plays an important role in the biogeochemistry and ecology of many freshwaters globally. Its biogeochemical impact on wetland functioning is strongly mediated by the microbiome associated with its roots. However, little is known about the structure and function of this WH rhizobiome and its relation to wetland ecosystem functioning. Here, we unveil the core and transient rhizobiomes of WH and their key biogeochemical functions in two of the world's largest wetlands: the Amazon and the Pantanal. WH hosts a highly diverse microbial community shaped by spatiotemporal changes. Proteobacteria lineages were most common, followed by Actinobacteria and Planctomycetes. Deltaproteobacteria and Sphingobacteriia predominated in the core microbiome, potentially associated with polysaccharide degradation and fermentation of plant-derived carbon. Conversely, a plethora of lineages were transient, including highly abundant Acinetobacter, Acidobacteria subgroup 6, and methanotrophs, thus assuring diverse taxonomic signatures in the two different wetlands. Our findings point out that methanogenesis is a key driver of, and proxy for, community structure, especially during seasonal plant decline. We provide ecologically relevant insights into the WH microbiome, which is a key element linking plant-associated carbon turnover with other biogeochemical fluxes in tropical wetlands.
Collapse
Affiliation(s)
- Marcelo P Ávila
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Ernandes S Oliveira-Junior
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Mariana P Reis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Eric R Hester
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Cristiane Diamantino
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Annelies J Veraart
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Leon P M Lamers
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Sarian Kosten
- Department of Aquatic Ecology and Environmental Biology, Institute for Water and Wetland Research, Radboud University, Nijmegen, The Netherlands
| | - Andréa M A Nascimento
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
24
|
Dukunde A, Schneider D, Schmidt M, Veldkamp E, Daniel R. Tree Species Shape Soil Bacterial Community Structure and Function in Temperate Deciduous Forests. Front Microbiol 2019; 10:1519. [PMID: 31338079 PMCID: PMC6629791 DOI: 10.3389/fmicb.2019.01519] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/18/2019] [Indexed: 01/23/2023] Open
Abstract
Amplicon-based analysis of 16S rRNA genes and transcripts was used to assess the effect of tree species composition on soil bacterial community structure and function in a temperate deciduous forest. Samples were collected from mono and mixed stands of Fagus sylvatica (beech), Carpinus betulus (hornbeam), Tilia sp. (lime), and Quercus sp. (oak) in spring, summer, and autumn. Soil bacterial community exhibited similar taxonomic composition at total (DNA-based) and potentially active community (RNA-based) level, with fewer taxa present at active community level. Members of Rhizobiales dominated at both total and active bacterial community level, followed by members of Acidobacteriales, Solibacterales, Rhodospirillales, and Xanthomonadales. Bacterial communities at total and active community level showed a significant positive correlation with tree species identity (mono stands) and to a lesser extent with tree species richness (mixed stands). Approximately 58 and 64% of indicator operational taxonomic units (OTUs) showed significant association with only one mono stand at total and active community level, respectively, indicating a strong impact of tree species on soil bacterial community composition. Soil C/N ratio, pH, and P content similarly exhibited a significant positive correlation with soil bacterial communities, which was attributed to direct and indirect effects of forest stands. Seasonality was the strongest driver of predicted metabolic functions related to C fixation and degradation, and N metabolism. Carbon and nitrogen metabolic processes were significantly abundant in spring, while C degradation gene abundances increased from summer to autumn, corresponding to increased litterfall and decomposition. The results revealed that in a spatially homogenous forest soil, tree species diversity and richness are dominant drivers of structure and composition in soil bacterial communities.
Collapse
Affiliation(s)
- Amélie Dukunde
- Göttingen Genomics Laboratory, Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Dominik Schneider
- Göttingen Genomics Laboratory, Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Marcus Schmidt
- Soil Science of Tropical and Subtropical Ecosystems, Faculty of Forest Sciences and Forest Ecology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany
| | - Edzo Veldkamp
- Soil Science of Tropical and Subtropical Ecosystems, Faculty of Forest Sciences and Forest Ecology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Göttingen Genomics Laboratory, Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| |
Collapse
|
25
|
Wieczorek AS, Schmidt O, Chatzinotas A, von Bergen M, Gorissen A, Kolb S. Ecological Functions of Agricultural Soil Bacteria and Microeukaryotes in Chitin Degradation: A Case Study. Front Microbiol 2019; 10:1293. [PMID: 31281293 PMCID: PMC6596343 DOI: 10.3389/fmicb.2019.01293] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/23/2019] [Indexed: 11/24/2022] Open
Abstract
Chitin provides a valuable carbon and nitrogen source for soil microorganisms and is a major component of particulate organic matter in agricultural soils. To date, there is no information on interaction and interdependence in chitin-degrading soil microbiomes. Since microbial chitin degradation occurs under both oxic and anoxic conditions and both conditions occur simultaneously in soil, the comparison of the active microbiome members under both conditions can reveal key players for the overall degradation in aerated soil. A time-resolved 16S rRNA stable isotope probing experiment was conducted with soil material from the top soil layer of a wheat-covered field. [13CU]-chitin was largely mineralized within 20 days under oxic conditions. Cellvibrio, Massilia, and several Bacteroidetes families were identified as initially active chitin degraders. Subsequently, Planctomycetes and Verrucomicrobia were labeled by assimilation of 13C carbon either from [13CU]-chitin or from 13C-enriched components of primary chitin degraders. Bacterial predators (e.g., Bdellovibrio and Bacteriovorax) were labeled, too, and non-labeled microeukaryotic predators (Alveolata) increased their relative abundance toward the end of the experiment (70 days), indicating that chitin degraders were subject to predation. Trophic interactions differed substantially under anoxic and oxic conditions. Various fermentation types occurred along with iron respiration. While Acidobacteria and Chloroflexi were the first taxa to be labeled, although at a low 13C level, Firmicutes and uncultured Bacteroidetes were predominantly labeled at a much higher 13C level during the later stages, suggesting that the latter two bacterial taxa were mainly responsible for the degradation of chitin and also provided substrates for iron reducers. Eventually, our study revealed that (1) hitherto unrecognized Bacteria were involved in a chitin-degrading microbial food web of an agricultural soil, (2) trophic interactions were substantially shaped by the oxygen availability, and (3) detectable predation was restricted to oxic conditions. The gained insights into trophic interactions foster our understanding of microbial chitin degradation, which is in turn crucial for an understanding of soil carbon dynamics.
Collapse
Affiliation(s)
- Adam S Wieczorek
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Oliver Schmidt
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, University of Leipzig, Leipzig, Germany.,Department of Chemistry and Bioscience, University of Aalborg, Aalborg, Denmark
| | | | - Steffen Kolb
- Microbial Biogeochemistry, RA Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| |
Collapse
|
26
|
Changes in Plant Rhizosphere Microbial Communities under Different Vegetation Restoration Patterns in Karst and Non-karst Ecosystems. Sci Rep 2019; 9:8761. [PMID: 31217455 PMCID: PMC6584648 DOI: 10.1038/s41598-019-44985-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 05/24/2019] [Indexed: 11/08/2022] Open
Abstract
Understanding how patterns of recovery and geological conditions affect microbial communities is important for determining the stability of karst ecosystems. Here, we investigated the diversity and composition of microorganisms in karst and non-karst environments under natural restoration and artificial rehabilitation conditions. The results showed no significant differences in soil microbial diversity, but the microbial communities associated with geological conditions and tree species differed significantly. Variation partitioning analysis (VPA) showed that a total of 77.3% of the variation in bacteria and a total of 69.3% of the variation in fungi could be explained by vegetation type and geological background. There were significant differences in six bacterial classes (Actinobacteria, Alphaproteobacteria, Ktedonobacteria, TK10, Gammaproteobacteria, and Anaerolineae) and nine fungal classes (Eurotiomycetes, Agaricomycetes, unclassified _p_Ascomycota, Sordariomycetes, Tremellomycetes, norank_k_Fungi, Pezizomycetes, Leotiomycetes and Archaeorhizomycetes) among the soils collected from six plots. A Spearman correlation heatmap showed that the microbial community was affected by the major soil properties. Principal coordinates analysis indicated that the microbial community of Pinus yunnanensis in the artificial forest, which was established for the protection of the environment was most similar to that in the natural secondary forest in the karst ecosystem. These findings further our understanding of microbial responses to vegetation restoration and geological conditions.
Collapse
|
27
|
Divergent microbial communities in groundwater and overlying soils exhibit functional redundancy for plant-polysaccharide degradation. PLoS One 2019; 14:e0212937. [PMID: 30865693 PMCID: PMC6415789 DOI: 10.1371/journal.pone.0212937] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/12/2019] [Indexed: 11/19/2022] Open
Abstract
Light driven primary production by plants is the main source of biomass in terrestrial ecosystems. But also in subsurface habitats like aquifers, life is fueled largely by this plant-derived biomass. Here, we investigate the degradation of plant-derived polysaccharides in a groundwater microbiome to identify the microbial key players involved, and compare them to those from soil of the groundwater recharge area. We quantified the activities of enzymes degrading the abundant plant polymers starch, cellulose and hemicellulose in oligotrophic groundwater samples, despite the low cell numbers present. Normalized to 16S rRNA gene copy numbers, these activities were only one order of magnitude lower than in soil. Stimulation of the groundwater microbiome with either starch or cellulose and hemicellulose led to changes of the enzymatic activity ratios, indicating autochthonous production of enzymes in response to the plant polymers. Furthermore, DNA stable isotope probing with 13C labelled plant polymers allowed us to identify microbes involved in the degradation of these compounds. In (hemi)cellulose microcosms, Bacteroidia and Candidatus Parcubacteria were active, while the active community in starch microcosms mostly comprised Candidatus Saccharibacteria, Cytophagia, and Actinobacteria. Not a single one of the active OTUs was also found to be labelled in soil microcosms. This indicates that the degradation of plant-derived polysaccharides in groundwater is driven by organisms completely distinct from those active in soil. The involvement of members of the candidate phyla Cand. Parcubacteria and Cand. Saccharibacteria, organisms known to be abundant in groundwater, in plant-derived organic matter degradation might strongly impact subsurface carbon cycling.
Collapse
|
28
|
Organic Farming Improves Soil Microbial Abundance and Diversity under Greenhouse Condition: A Case Study in Shanghai (Eastern China). SUSTAINABILITY 2018. [DOI: 10.3390/su10103825] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Agricultural practices have significant impacts on soil properties and microbial communities; however, little is known about their responses to open field and plastic tunnels under organic and conventional farming. We therefore investigated the responses of soil chemical variables and microbial communities to different agricultural management and cultivation types, including organic management in open field (OF), organic management in plastic tunnels (OP), conventional management in open field (CF) and conventional management in plastic tunnels (CP), by using a pyrosequencing approach of 16S rRNA gene amplicon. Both factors had significant influences on the soil properties and microbial communities. Organic farming increased the nutrient-related soil variables compared to conventional farming regardless of cultivation type, especially for the available N and P, which were increased by 137% and 711%, respectively, in OP compared to CP. Additionally, OP had the highest microbial abundance and diversity among treatments, whereas no difference was found between OF, CF and CP. Furthermore, OP possessed diverse differential bacteria which were mainly related to the organic material turnover (e.g., Roseiflexus, Planctomyces and Butyrivibrio) and plant growth promotion (e.g., Nostoc, Glycomyces and Bacillus). Redundancy analysis (RDA) showed that pH, electrical conductivity (EC), nutrient levels (e.g., available N and available P) and total Zn content were significantly correlated to the structure of the microbial community. Overall, our results showed that the long-term organic farming with high fertilizer input increased soil nutrient levels and microbial abundance and diversity under plastic-tunnel condition compared to other cultivation systems.
Collapse
|
29
|
Linking Uncultivated Microbial Populations and Benthic Carbon Turnover by Using Quantitative Stable Isotope Probing. Appl Environ Microbiol 2018; 84:AEM.01083-18. [PMID: 29980553 PMCID: PMC6122004 DOI: 10.1128/aem.01083-18] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 06/28/2018] [Indexed: 11/20/2022] Open
Abstract
Little is known about the ecological role of uncultivated microbial populations in carbon turnover in benthic environments. To better understand this, we used quantitative stable isotope probing (qSIP) to quantify the abundance of diverse, specific groups of uncultivated bacteria and archaea involved in autotrophy and heterotrophy in a benthic lacustrine habitat. Our results provide quantitative evidence for active heterotrophic and autotrophic metabolism of several poorly understood microbial groups, thus demonstrating their relevance for carbon turnover in benthic settings. Archaeal ammonia oxidizers were significant drivers of in situ “dark” primary production supporting the growth of heterotrophic bacteria. These findings expand our understanding of the microbial populations within benthic food webs and the role of uncultivated microbes in benthic carbon turnover. Benthic environments harbor highly diverse and complex microbial communities that control carbon fluxes, but the role of specific uncultivated microbial groups in organic matter turnover is poorly understood. In this study, quantitative DNA stable isotope probing (DNA-qSIP) was used for the first time to link uncultivated populations of bacteria and archaea to carbon turnover in lacustrine surface sediments. After 1-week incubations in the dark with [13C]bicarbonate, DNA-qSIP showed that ammonia-oxidizing archaea (AOA) were the dominant active chemolithoautotrophs involved in the production of new organic matter. Natural 13C-labeled organic matter was then obtained by incubating sediments in the dark for 2.5 months with [13C]bicarbonate, followed by extraction and concentration of high-molecular-weight (HMW) (>50-kDa) organic matter. qSIP showed that the labeled organic matter was turned over within 1 week by 823 microbial populations (operational taxonomic units [OTUs]) affiliated primarily with heterotrophic Proteobacteria, Chloroflexi, Verrucomicrobia, and Bacteroidetes. However, several OTUs affiliated with the candidate microbial taxa Latescibacteria, Omnitrophica, Aminicentantes, Cloacimonates, AC1, Bathyarchaeota, and Woesearchaeota, groups known only from genomic signatures, also contributed to biomass turnover. Of these 823 labeled OTUs, 52% (primarily affiliated with Proteobacteria) also became labeled in 1-week incubations with [13C]bicarbonate, indicating that they turned over carbon faster than OTUs that were labeled only in incubations with 13C-labeled HMW organic matter. These taxa consisted primarily of uncultivated populations within the Firmicutes, Bacteroidetes, Verrucomicrobia, and Chloroflexi, highlighting their ecological importance. Our study helps define the role of several poorly understood, uncultivated microbial groups in the turnover of benthic carbon derived from “dark” primary production. IMPORTANCE Little is known about the ecological role of uncultivated microbial populations in carbon turnover in benthic environments. To better understand this, we used quantitative stable isotope probing (qSIP) to quantify the abundance of diverse, specific groups of uncultivated bacteria and archaea involved in autotrophy and heterotrophy in a benthic lacustrine habitat. Our results provide quantitative evidence for active heterotrophic and autotrophic metabolism of several poorly understood microbial groups, thus demonstrating their relevance for carbon turnover in benthic settings. Archaeal ammonia oxidizers were significant drivers of in situ “dark” primary production supporting the growth of heterotrophic bacteria. These findings expand our understanding of the microbial populations within benthic food webs and the role of uncultivated microbes in benthic carbon turnover.
Collapse
|
30
|
Stern N, Mejia J, He S, Yang Y, Ginder-Vogel M, Roden EE. Dual Role of Humic Substances As Electron Donor and Shuttle for Dissimilatory Iron Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5691-5699. [PMID: 29658273 PMCID: PMC6211804 DOI: 10.1021/acs.est.7b06574] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Dissimilatory iron-reducing bacteria (DIRB) are known to use humic substances (HS) as electron shuttles for dissimilatory iron reduction (DIR) by transferring electrons to HS-quinone moieties, which in turn rapidly reduce Fe(III) oxides. However, the potential for HS to serve as a source of organic carbon (OC) that can donate electrons for DIR is unknown. We studied whether humic acids (HA) and humins (HM) recovered from peat soil by sodium pyrophosphate extraction could serve as both electron shuttles and electron donors for DIR by freshwater sediment microorganisms. Both HA and HM served as electron shuttles in cultures amended with glucose. However, only HA served as an electron donor for DIR. Metagenomes from HA-containing cultures had an overrepresentation of genes involved in polysaccharide and to a lesser extent aromatic compound degradation, suggesting complex OC metabolism. Genomic searches for the porin-cytochrome complex involved in DIR resulted in matches to Ignavibacterium/Melioribacter, DIRB capable of polymeric OC metabolism. These results indicate that such taxa may have played a role in both DIR and decomposition of complex OC. Our results suggest that decomposition of HS coupled to DIR and other anaerobic pathways could play an important role in soil and sediment OC metabolism.
Collapse
Affiliation(s)
- Noah Stern
- Department of Civil and Environmental Engineering, Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jacqueline Mejia
- Department of Civil and Environmental Engineering, Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Shaomei He
- Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yu Yang
- Department of Civil and Environmental Engineering, University of Nevada-Reno, Reno, Nevada 89557, United States
| | - Matthew Ginder-Vogel
- Department of Civil and Environmental Engineering, Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Eric E. Roden
- Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
31
|
Linking Nitrogen Load to the Structure and Function of Wetland Soil and Rhizosphere Microbial Communities. mSystems 2018; 3:mSystems00214-17. [PMID: 29404427 PMCID: PMC5790874 DOI: 10.1128/msystems.00214-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/04/2018] [Indexed: 01/21/2023] Open
Abstract
Microorganisms living within the rhizospheres of wetland plants significantly contribute to greenhouse gas emissions. Understanding how microbes produce these gases under conditions that have been imposed by human activities (i.e., nitrogen pollution) is important to the development of future management strategies. Our results illustrate that within the rhizosphere of the wetland plant Juncus acutiflorus, physiological differences associated with nitrogen availability can influence microbial activity linked to greenhouse gas production. By pairing taxonomic information and environmental conditions like nitrogen availability with functional outputs of a system such as greenhouse gas fluxes, we present a framework to link certain taxa to both nitrogen load and greenhouse gas production. We view this type of combined information as essential in moving forward in our understanding of complex systems such as rhizosphere microbial communities. Wetland ecosystems are important reservoirs of biodiversity and significantly contribute to emissions of the greenhouse gases CO2, N2O, and CH4. High anthropogenic nitrogen (N) inputs from agriculture and fossil fuel combustion have been recognized as a severe threat to biodiversity and ecosystem functioning, such as control of greenhouse gas emissions. Therefore, it is important to understand how increased N input into pristine wetlands affects the composition and activity of microorganisms, especially in interaction with dominant wetland plants. In a series of incubations analyzed over 90 days, we disentangled the effects of N fertilization on the microbial community in bulk soil and the rhizosphere of Juncus acutiflorus, a common and abundant graminoid wetland plant. We observed an increase in greenhouse gas emissions when N is increased in incubations with J. acutiflorus, changing the system from a greenhouse gas sink to a source. Using 16S rRNA gene amplicon sequencing, we determined that the bacterial orders Opitutales, subgroup 6 Acidobacteria, and Sphingobacteriales significantly responded to high N availability. Based on metagenomic data, we hypothesize that these groups are contributing to the increased greenhouse gas emissions. These results indicated that increased N input leads to shifts in microbial activity within the rhizosphere, altering N cycling dynamics. Our study provides a framework for connecting environmental conditions of wetland bulk and rhizosphere soil to the structure and metabolic output of microbial communities. IMPORTANCE Microorganisms living within the rhizospheres of wetland plants significantly contribute to greenhouse gas emissions. Understanding how microbes produce these gases under conditions that have been imposed by human activities (i.e., nitrogen pollution) is important to the development of future management strategies. Our results illustrate that within the rhizosphere of the wetland plant Juncus acutiflorus, physiological differences associated with nitrogen availability can influence microbial activity linked to greenhouse gas production. By pairing taxonomic information and environmental conditions like nitrogen availability with functional outputs of a system such as greenhouse gas fluxes, we present a framework to link certain taxa to both nitrogen load and greenhouse gas production. We view this type of combined information as essential in moving forward in our understanding of complex systems such as rhizosphere microbial communities.
Collapse
|
32
|
Taubert M, Stöckel S, Geesink P, Girnus S, Jehmlich N, von Bergen M, Rösch P, Popp J, Küsel K. Tracking active groundwater microbes with D2O labelling to understand their ecosystem function. Environ Microbiol 2017; 20:369-384. [DOI: 10.1111/1462-2920.14010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/16/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Martin Taubert
- Aquatic Geomicrobiology, Institute of Biodiversity; Friedrich Schiller University Jena, Dornburger Str. 159; 07743 Jena Germany
| | - Stephan Stöckel
- Institute of Physical Chemistry and Abbe Center of Photonics; Friedrich Schiller University Jena, Helmholtzweg 4; 07743 Jena Germany
| | - Patricia Geesink
- Aquatic Geomicrobiology, Institute of Biodiversity; Friedrich Schiller University Jena, Dornburger Str. 159; 07743 Jena Germany
| | - Sophie Girnus
- Institute of Physical Chemistry and Abbe Center of Photonics; Friedrich Schiller University Jena, Helmholtzweg 4; 07743 Jena Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology; Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15; 04318 Leipzig Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology; Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15; 04318 Leipzig Germany
- Institute of Biochemistry, Pharmacy and Psychology; University of Leipzig, Brüderstraße 32; 04103 Leipzig Germany
- Department of Chemistry and Bioscience; University of Aalborg, Fredrik Bajers Vej 7H; 9220 Aalborg East Denmark
| | - Petra Rösch
- Institute of Physical Chemistry and Abbe Center of Photonics; Friedrich Schiller University Jena, Helmholtzweg 4; 07743 Jena Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics; Friedrich Schiller University Jena, Helmholtzweg 4; 07743 Jena Germany
- Leibniz-Institute of Photonic Technology, Albert-Einstein-Straße 9; 07745 Jena Germany
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Biodiversity; Friedrich Schiller University Jena, Dornburger Str. 159; 07743 Jena Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5E; 04103 Leipzig Germany
| |
Collapse
|
33
|
Djemiel C, Grec S, Hawkins S. Characterization of Bacterial and Fungal Community Dynamics by High-Throughput Sequencing (HTS) Metabarcoding during Flax Dew-Retting. Front Microbiol 2017; 8:2052. [PMID: 29104570 PMCID: PMC5655573 DOI: 10.3389/fmicb.2017.02052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/06/2017] [Indexed: 11/13/2022] Open
Abstract
Flax dew-retting is a key step in the industrial extraction of fibers from flax stems and is dependent upon the production of a battery of hydrolytic enzymes produced by micro-organisms during this process. To explore the diversity and dynamics of bacterial and fungal communities involved in this process we applied a high-throughput sequencing (HTS) DNA metabarcoding approach (16S rRNA/ITS region, Illumina Miseq) on plant and soil samples obtained over a period of 7 weeks in July and August 2014. Twenty-three bacterial and six fungal phyla were identified in soil samples and 11 bacterial and four fungal phyla in plant samples. Dominant phyla were Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes (bacteria) and Ascomycota, Basidiomycota, and Zygomycota (fungi) all of which have been previously associated with flax dew-retting except for Bacteroidetes and Basidiomycota that were identified for the first time. Rare phyla also identified for the first time in this process included Acidobacteria, CKC4, Chlorobi, Fibrobacteres, Gemmatimonadetes, Nitrospirae and TM6 (bacteria), and Chytridiomycota (fungi). No differences in microbial communities and colonization dynamics were observed between early and standard flax harvests. In contrast, the common agricultural practice of swath turning affects both bacterial and fungal community membership and structure in straw samples and may contribute to a more uniform retting. Prediction of community function using PICRUSt indicated the presence of a large collection of potential bacterial enzymes capable of hydrolyzing backbones and side-chains of cell wall polysaccharides. Assignment of functional guild (functional group) using FUNGuild software highlighted a change from parasitic to saprophytic trophic modes in fungi during retting. This work provides the first exhaustive description of the microbial communities involved in flax dew-retting and will provide a valuable benchmark in future studies aiming to evaluate the effects of other parameters (e.g., year-to year and site variability etc.) on this complex process.
Collapse
Affiliation(s)
- Christophe Djemiel
- Univ. Lille, Centre National de la Recherche Scientifique, UMR 8576 - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Sébastien Grec
- Univ. Lille, Centre National de la Recherche Scientifique, UMR 8576 - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Simon Hawkins
- Univ. Lille, Centre National de la Recherche Scientifique, UMR 8576 - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
34
|
Zang X, Liu M, Wang H, Fan Y, Zhang H, Liu J, Xing E, Xu X, Li H. The distribution of active β-glucosidase-producing microbial communities in composting. Can J Microbiol 2017; 63:998-1008. [PMID: 28892642 DOI: 10.1139/cjm-2017-0368] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The composting ecosystem is a suitable source for the discovery of novel microorganisms and secondary metabolites. Cellulose degradation is an important part of the global carbon cycle, and β-glucosidases complete the final step of cellulose hydrolysis by converting cellobiose to glucose. This work analyzes the succession of β-glucosidase-producing microbial communities that persist throughout cattle manure - rice straw composting, and evaluates their metabolic activities and community advantage during the various phases of composting. Fungal and bacterial β-glucosidase genes belonging to glycoside hydrolase families 1 and 3 (GH1 and GH3) amplified from DNA were classified and gene abundance levels were analyzed. The major reservoirs of β-glucosidase genes were the fungal phylum Ascomycota and the bacterial phyla Firmicutes, Actinobacteria, Proteobacteria, and Deinococcus-Thermus. This indicates that a diverse microbial community utilizes cellobiose. The succession of dominant bacteria was also detected during composting. Firmicutes was the dominant bacteria in the thermophilic phase of composting; there was a shift to Actinomycetes in the maturing stage. Proteobacteria accounted for the highest proportions during the heating and thermophilic phases of composting. By contrast, the fungal phylum Ascomycota was a minor microbial community constituent in thermophilic phase of composting. Combined with the analysis of the temperature, cellulose degradation rate and the carboxymethyl cellulase and β-glucosidase activities showed that the bacterial GH1 family β-glucosidase genes make greater contribution in cellulose degradation at the later thermophilic stage of composting. In summary, even GH1 bacteria families β-glucosidase genes showing low abundance in DNA may be functionally important in the later thermophilic phase of composting. The results indicate that a complex community of bacteria and fungi expresses β-glucosidases in compost. Several β-glucosidase-producing bacteria and fungi identified in this study may represent potential indicators of composting in cellulose degradation.
Collapse
Affiliation(s)
- Xiangyun Zang
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Meiting Liu
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China.,College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Han Wang
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China.,College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yihong Fan
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China.,College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Haichang Zhang
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China.,College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jiawen Liu
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China.,College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Enlu Xing
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China.,College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xiuhong Xu
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China.,College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Hongtao Li
- College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China.,College of Resources and Environmental Sciences, Northeast Agricultural University, Harbin 150030, People's Republic of China
| |
Collapse
|
35
|
Gui H, Purahong W, Hyde KD, Xu J, Mortimer PE. The Arbuscular Mycorrhizal Fungus Funneliformis mosseae Alters Bacterial Communities in Subtropical Forest Soils during Litter Decomposition. Front Microbiol 2017; 8:1120. [PMID: 28676797 PMCID: PMC5476864 DOI: 10.3389/fmicb.2017.01120] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/01/2017] [Indexed: 12/25/2022] Open
Abstract
Bacterial communities and arbuscular mycorrhizal fungi (AMF) co-occur in the soil, however, the interaction between these two groups during litter decomposition remains largely unexplored. In order to investigate the effect of AMF on soil bacterial communities, we designed dual compartment microcosms, where AMF (Funneliformis mosseae) was allowed access (AM) to, or excluded (NM) from, a compartment containing forest soil and litterbags. Soil samples from this compartment were analyzed at 0, 90, 120, 150, and 180 days. For each sample, Illumina sequencing was used to assess any changes in the soil bacterial communities. We found that most of the obtained operational taxonomic units (OTUs) from both treatments belonged to the phylum of Proteobacteria, Acidobacteria, and Actinobacteria. The community composition of bacteria at phylum and class levels was slightly influenced by both time and AMF. In addition, time and AMF significantly affected bacterial genera (e.g., Candidatus Solibacter, Dyella, Phenylobacterium) involved in litter decomposition. Opposite to the bacterial community composition, we found that overall soil bacterial OTU richness and diversity are relatively stable and were not significantly influenced by either time or AMF inoculation. OTU richness at phylum and class levels also showed consistent results with overall bacterial OTU richness. Our study provides new insight into the influence of AMF on soil bacterial communities at the genus level.
Collapse
Affiliation(s)
- Heng Gui
- Key laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- World Agroforestry Centre, East and Central AsiaKunming, China
- Centre of Excellence in Fungal Research, Mae Fah Luang UniversityChiang Rai, Thailand
- School of Science, Mae Fah Luang UniversityChiang Rai, Thailand
| | - Witoon Purahong
- Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental ResearchHalle, Germany
| | - Kevin D. Hyde
- Centre of Excellence in Fungal Research, Mae Fah Luang UniversityChiang Rai, Thailand
- School of Science, Mae Fah Luang UniversityChiang Rai, Thailand
| | - Jianchu Xu
- Key laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- World Agroforestry Centre, East and Central AsiaKunming, China
| | - Peter E. Mortimer
- Key laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- World Agroforestry Centre, East and Central AsiaKunming, China
| |
Collapse
|
36
|
Wilhelm RC, Cardenas E, Leung H, Szeitz A, Jensen LD, Mohn WW. Long-Term Enrichment of Stress-Tolerant Cellulolytic Soil Populations following Timber Harvesting Evidenced by Multi-Omic Stable Isotope Probing. Front Microbiol 2017; 8:537. [PMID: 28443069 PMCID: PMC5386986 DOI: 10.3389/fmicb.2017.00537] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/14/2017] [Indexed: 12/23/2022] Open
Abstract
Soil management is vital for maintaining the productivity of commercial forests, yet the long-term impact of timber harvesting on soil microbial communities remains largely a matter of conjecture. Decomposition of plant biomass, comprised mainly of lignocellulose, has a broad impact on nutrient cycling, microbial activity and physicochemical characteristics of soil. At "Long-term Soil Productivity Study" sites in California dominated by Ponderosa pine, we tested whether clear-cut timber harvesting, accompanied by varying degrees of organic matter (OM) removal, affected the activity and structure of the cellulose-degrading microbial populations 16 years after harvesting. Using a variety of experimental approaches, including stable isotope probing with 13C-labeled cellulose in soil microcosms, we demonstrated that harvesting led to a decrease in net respiration and cellulolytic activity. The decrease in cellulolytic activity was associated with an increased relative abundance of thermophilic, cellulolytic fungi (Chaetomiaceae), coupled with a decreased relative abundance of cellulolytic bacteria, particularly members of Opitutaceae, Caulobacter, and Streptomycetaceae. In general, harvesting led to an increase in stress-tolerant taxa (i.e., also non-cellulolytic taxa), though our results indicated that OM retention mitigated population shifts via buffering against abiotic changes. Stable-isotope probing improved shotgun metagenome assembly by 20-fold and enabled the recovery of 10 metagenome-assembled genomes of cellulolytic bacteria and fungi. Our study demonstrates the putative cellulolytic activity of a number of uncultured taxa and highlights the mineral soil layer as a reservoir of uncharacterized diversity of cellulose-degraders. It also and contributes to a growing body of research showing persistent changes in microbial community structure in the decades following forest harvesting.
Collapse
Affiliation(s)
- Roland C. Wilhelm
- Department of Microbiology and Immunology, Life Sciences Institute, University of British ColumbiaVancouver, BC, Canada
| | - Erick Cardenas
- Department of Microbiology and Immunology, Life Sciences Institute, University of British ColumbiaVancouver, BC, Canada
| | - Hilary Leung
- Department of Microbiology and Immunology, Life Sciences Institute, University of British ColumbiaVancouver, BC, Canada
| | - András Szeitz
- Pharmaceutical Analytical Suite, Faculty of Pharmaceutical Sciences, University of British ColumbiaVancouver, BC, Canada
| | - Lionel D. Jensen
- Department of Microbiology and Immunology, Life Sciences Institute, University of British ColumbiaVancouver, BC, Canada
| | - William W. Mohn
- Department of Microbiology and Immunology, Life Sciences Institute, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
37
|
Distinct Anaerobic Bacterial Consumers of Cellobiose-Derived Carbon in Boreal Fens with Different CO2/CH4 Production Ratios. Appl Environ Microbiol 2017; 83:AEM.02533-16. [PMID: 27913414 DOI: 10.1128/aem.02533-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/28/2016] [Indexed: 11/20/2022] Open
Abstract
Northern peatlands in general have high methane (CH4) emissions, but individual peatlands show considerable variation as CH4 sources. Particularly in nutrient-poor peatlands, CH4 production can be low and exceeded by carbon dioxide (CO2) production from unresolved anaerobic processes. To clarify the role anaerobic bacterial degraders play in this variation, we compared consumers of cellobiose-derived carbon in two fens differing in nutrient status and the ratio of CO2 to CH4 produced. After [13C]cellobiose amendment, the mesotrophic fen produced equal amounts of CH4 and CO2 The oligotrophic fen had lower CH4 production but produced 3 to 59 times more CO2 than CH4 RNA stable-isotope probing revealed that in the mesotrophic fen with higher CH4 production, cellobiose-derived carbon was mainly assimilated by various recognized fermenters of Firmicutes and by Proteobacteria The oligotrophic peat with excess CO2 production revealed a wider variety of cellobiose-C consumers, including Firmicutes and Proteobacteria, but also more unconventional degraders, such as Telmatobacter-related Acidobacteria and subphylum 3 of Verrucomicrobia Prominent and potentially fermentative Planctomycetes and Chloroflexi did not appear to process cellobiose-C. Our results show that anaerobic degradation resulting in different levels of CH4 production can involve distinct sets of bacterial degraders. By distinguishing cellobiose degraders from the total community, this study contributes to defining anaerobic bacteria that process cellulose-derived carbon in peat. Several of the identified degraders, particularly fermenters and potential Fe(III) or humic substance reducers in the oligotrophic peat, represent promising candidates for resolving the origin of excess CO2 production in peatlands. IMPORTANCE Peatlands are major sources of the greenhouse gas methane (CH4), yet in many peatlands, CO2 production from unresolved anaerobic processes exceeds CH4 production. Anaerobic degradation produces the precursors of CH4 production but also represents competing processes. We show that anaerobic degradation leading to high or low CH4 production involved distinct sets of bacteria. Well-known fermenters dominated in a peatland with high CH4 production, while novel and unconventional degraders could be identified in a site where CO2 production greatly exceeds CH4 production. Our results help identify and assign functions to uncharacterized bacteria that promote or inhibit CH4 production and reveal bacteria potentially producing the excess CO2 in acidic peat. This study contributes to understanding the microbiological basis for different levels of CH4 emission from peatlands.
Collapse
|
38
|
Gocke MI, Huguet A, Derenne S, Kolb S, Dippold MA, Wiesenberg GLB. Disentangling interactions between microbial communities and roots in deep subsoil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:135-145. [PMID: 27744199 DOI: 10.1016/j.scitotenv.2016.09.184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
Soils, paleosols and terrestrial sediments serve as archives for studying climate change, and represent important terrestrial carbon pools. Archive functioning relies on the chronological integrity of the respective units. Incorporation of younger organic matter (OM) e.g. by plant roots and associated microorganisms into deep subsoil and underlying soil parent material may reduce reliability of paleoenvironmental records and stability of buried OM. Long-term effects of sedimentary characteristics and deep rooting on deep subsoil microbial communities remain largely unknown. We characterized fossil and living microbial communities based on molecular markers in a Central European Late Pleistocene loess-paleosol sequence containing recent and ancient roots with ages of several millenia. The molecular approach, comprising free and phospholipid fatty acids (FAs), core and intact polar glycerol dialkyl glycerol tetraethers (GDGTs), as well as 16S rRNA genes from bacterial DNA, revealed the presence of living microorganisms along the sequence, with bacterial community composition comparable to that of modern topsoils. Up to 88% redundancy between bacterial genetic fingerprint and molecular signature of fossil microorganisms suggested a time-integrated signal of the molecular markers accumulated over a time span potentially lasting from sedimentation over one or more rooting phases until today. Free FAs, core GDGTs and DNA, considered as remains of fossil microorganisms, corresponded with ancient and recent root quantities, whereas phospholipid FAs and intact polar GDGTs, presumably derived from living microorganisms, correlated only with living roots. The biogeochemical and ecological disequilibrium induced by postsedimentary rooting may entail long-term microbial processes like OM mineralization, which may continue even millenia after the lifetime of the root. Deep roots and their fossil remains have been observed in various terrestrial settings, and roots as well as associated microorganisms cause both, OM incorporation and mineralization. Therefore, these findings are crucial for improved understanding of OM dynamics and carbon sequestration potential in deep subsoils.
Collapse
Affiliation(s)
- Martina I Gocke
- Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Arnaud Huguet
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7619, METIS, 75005 Paris, France.
| | - Sylvie Derenne
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7619, METIS, 75005 Paris, France.
| | - Steffen Kolb
- Leibniz Center for Agricultural Landscape Research, Landscape Biogeochemistry, Eberswalder Straße 84, 15374 Müncheberg, Germany.
| | - Michaela A Dippold
- Department of Agricultural Soil Science, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany.
| | - Guido L B Wiesenberg
- Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
39
|
Identification of the Core Set of Carbon-Associated Genes in a Bioenergy Grassland Soil. PLoS One 2016; 11:e0166578. [PMID: 27855202 PMCID: PMC5113961 DOI: 10.1371/journal.pone.0166578] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/31/2016] [Indexed: 01/30/2023] Open
Abstract
Despite the central role of soil microbial communities in global carbon (C) cycling, little is known about soil microbial community structure and even less about their metabolic pathways. Efforts to characterize soil communities often focus on identifying differences in gene content across environmental gradients, but an alternative question is what genes are similar in soils. These genes may indicate critical species or potential functions that are required in all soils. Here we identified the "core" set of C cycling sequences widely present in multiple soil metagenomes from a fertilized prairie (FP). Of 226,887 sequences associated with known enzymes involved in the synthesis, metabolism, and transport of carbohydrates, 843 were identified to be consistently prevalent across four replicate soil metagenomes. This core metagenome was functionally and taxonomically diverse, representing five enzyme classes and 99 enzyme families within the CAZy database. Though it only comprised 0.4% of all CAZy-associated genes identified in FP metagenomes, the core was found to be comprised of functions similar to those within cumulative soils. The FP CAZy-associated core sequences were present in multiple publicly available soil metagenomes and most similar to soils sharing geographic proximity. In soil ecosystems, where high diversity remains a key challenge for metagenomic investigations, these core genes represent a subset of critical functions necessary for carbohydrate metabolism, which can be targeted to evaluate important C fluxes in these and other similar soils.
Collapse
|
40
|
Kramer S, Dibbern D, Moll J, Huenninghaus M, Koller R, Krueger D, Marhan S, Urich T, Wubet T, Bonkowski M, Buscot F, Lueders T, Kandeler E. Resource Partitioning between Bacteria, Fungi, and Protists in the Detritusphere of an Agricultural Soil. Front Microbiol 2016; 7:1524. [PMID: 27725815 PMCID: PMC5035733 DOI: 10.3389/fmicb.2016.01524] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/12/2016] [Indexed: 01/31/2023] Open
Abstract
The flow of plant-derived carbon in soil is a key component of global carbon cycling. Conceptual models of trophic carbon fluxes in soil have assumed separate bacterial and fungal energy channels in the detritusphere, controlled by both substrate complexity and recalcitrance. However, detailed understanding of the key populations involved and niche-partitioning between them is limited. Here, a microcosm experiment was performed to trace the flow of detritusphere C from substrate analogs (glucose, cellulose) and plant biomass amendments (maize leaves, roots) in an agricultural soil. Carbon flow was traced by rRNA stable isotope probing and amplicon sequencing across three microbial kingdoms. Distinct lineages within the Actinobacteria, Bacteroidetes, Gammaproteobacteria, Basidiomycota, Ascomycota as well as Peronosporomycetes were identified as important primary substrate consumers. A dynamic succession of primary consumers was observed especially in the cellulose treatments, but also in plant amendments over time. While intra-kingdom niche partitioning was clearly observed, distinct bacterial and fungal energy channels were not apparent. Furthermore, while the diversity of primary substrate consumers did not notably increase with substrate complexity, consumer succession and secondary trophic links to bacterivorous and fungivorous microbes resulted in increased food web complexity in the more recalcitrant substrates. This suggests that rather than substrate-defined energy channels, consumer succession as well as intra- and inter-kingdom cross-feeding should be considered as mechanisms supporting food web complexity in the detritusphere.
Collapse
Affiliation(s)
- Susanne Kramer
- Institute of Soil Science and Land Evaluation, University of Hohenheim Stuttgart, Germany
| | - Dörte Dibbern
- Institute of Groundwater Ecology, Helmholtz Zentrum München - German Research Center for Environmental Health Neuherberg, Germany
| | - Julia Moll
- Department of Soil Ecology, Helmholtz Centre for Environmental Research Leipzig-HalleHalle, Germany; Institute of Biology, University of LeipzigLeipzig, Germany
| | - Maike Huenninghaus
- Department of Terrestrial Ecology, Institute of Zoology, University of Cologne Köln, Germany
| | - Robert Koller
- Department of Terrestrial Ecology, Institute of Zoology, University of Cologne Köln, Germany
| | - Dirk Krueger
- Department of Soil Ecology, Helmholtz Centre for Environmental Research Leipzig-Halle Halle, Germany
| | - Sven Marhan
- Institute of Soil Science and Land Evaluation, University of Hohenheim Stuttgart, Germany
| | - Tim Urich
- Department of Bacterial Physiology, Institute for Microbiology, Ernst-Moritz-Arndt University of Greifswald Greifswald, Germany
| | - Tesfaye Wubet
- Department of Soil Ecology, Helmholtz Centre for Environmental Research Leipzig-HalleHalle, Germany; German Centre for Integrative Biodiversity Research (iDiv)Leipzig, Germany
| | - Michael Bonkowski
- Department of Terrestrial Ecology, Institute of Zoology, University of Cologne Köln, Germany
| | - François Buscot
- Department of Soil Ecology, Helmholtz Centre for Environmental Research Leipzig-HalleHalle, Germany; Institute of Biology, University of LeipzigLeipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv)Leipzig, Germany
| | - Tillmann Lueders
- Institute of Groundwater Ecology, Helmholtz Zentrum München - German Research Center for Environmental Health Neuherberg, Germany
| | - Ellen Kandeler
- Institute of Soil Science and Land Evaluation, University of Hohenheim Stuttgart, Germany
| |
Collapse
|
41
|
Pepe-Ranney C, Campbell AN, Koechli CN, Berthrong S, Buckley DH. Unearthing the Ecology of Soil Microorganisms Using a High Resolution DNA-SIP Approach to Explore Cellulose and Xylose Metabolism in Soil. Front Microbiol 2016; 7:703. [PMID: 27242725 PMCID: PMC4867679 DOI: 10.3389/fmicb.2016.00703] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/27/2016] [Indexed: 11/13/2022] Open
Abstract
We explored microbial contributions to decomposition using a sophisticated approach to DNA Stable Isotope Probing (SIP). Our experiment evaluated the dynamics and ecological characteristics of functionally defined microbial groups that metabolize labile and structural C in soils. We added to soil a complex amendment representing plant derived organic matter substituted with either (13)C-xylose or (13)C-cellulose to represent labile and structural C pools derived from abundant components of plant biomass. We found evidence for (13)C-incorporation into DNA from (13)C-xylose and (13)C-cellulose in 49 and 63 operational taxonomic units (OTUs), respectively. The types of microorganisms that assimilated (13)C in the (13)C-xylose treatment changed over time being predominantly Firmicutes at day 1 followed by Bacteroidetes at day 3 and then Actinobacteria at day 7. These (13)C-labeling dynamics suggest labile C traveled through different trophic levels. In contrast, microorganisms generally metabolized cellulose-C after 14 days and did not change to the same extent in phylogenetic composition over time. Microorganisms that metabolized cellulose-C belonged to poorly characterized but cosmopolitan soil lineages including Verrucomicrobia, Chloroflexi, and Planctomycetes.
Collapse
Affiliation(s)
| | | | | | - Sean Berthrong
- Department of Biological Sciences, Butler UniversityIndianapolis, IN, USA
| | - Daniel H. Buckley
- School of Integrative Plant Sciences, Cornell UniversityIthaca, NY, USA
| |
Collapse
|
42
|
Rinta-Kanto JM, Sinkko H, Rajala T, Al-Soud WA, Sørensen SJ, Tamminen MV, Timonen S. Natural decay process affects the abundance and community structure of Bacteria and Archaea in Picea abies logs. FEMS Microbiol Ecol 2016; 92:fiw087. [PMID: 27127195 DOI: 10.1093/femsec/fiw087] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2016] [Indexed: 11/14/2022] Open
Abstract
Prokaryotes colonize decaying wood and contribute to the degradation process, but the dynamics of prokaryotic communities during wood decay is still poorly understood. We studied the abundance and community composition of Bacteria and Archaea inhabiting naturally decaying Picea abies logs and tested the hypothesis that the variations in archaeal and bacterial abundances and community composition are coupled with environmental parameters related to the decay process. The data set comprises >500 logs at different decay stages from five geographical locations in south and central Finland. The results show that Bacteria and Archaea are an integral and dynamic component of decaying wood biota. The abundances of bacterial and archaeal 16S rRNA genes increase as wood decay progresses. Changes in bacterial community composition are clearly linked to the loss of density of wood, while specific fungal-bacterial interactions may also affect the distribution of bacterial taxa in decaying wood. Thaumarchaeota were prominent members of the archaeal populations colonizing decaying wood, providing further evidence of the versatility and cosmopolitan nature of this phylum in the environment. The composition and dynamics of the prokaryotic community suggest that they are an active component of biota that are involved in processing substrates in decaying wood material.
Collapse
Affiliation(s)
- J M Rinta-Kanto
- University of Helsinki, Department of Food and Environmental Sciences, Division of Microbiology, Viikinkaari 9, 00014 Helsinki, Finland
| | - H Sinkko
- University of Helsinki, Department of Food and Environmental Sciences, Division of Microbiology, Viikinkaari 9, 00014 Helsinki, Finland
| | - T Rajala
- Natural Resources Institute Finland, Jokiniemenkuja 1, 01370 Vantaa, Finland
| | - W A Al-Soud
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | - S J Sørensen
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | - M V Tamminen
- Swiss Federal Institute of Technology Zurich, Universitätstrasse 8-22, 8006 Zurich, Switzerland
| | - S Timonen
- University of Helsinki, Department of Food and Environmental Sciences, Division of Microbiology, Viikinkaari 9, 00014 Helsinki, Finland
| |
Collapse
|
43
|
Shan L, Yu Y, Zhu Z, Zhao W, Wang H, Ambuchi JJ, Feng Y. Microbial community analysis in a combined anaerobic and aerobic digestion system for treatment of cellulosic ethanol production wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:17789-17798. [PMID: 26160121 DOI: 10.1007/s11356-015-4938-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/22/2015] [Indexed: 06/04/2023]
Abstract
This study investigated the microbial diversity established in a combined system composed of a continuous stirred tank reactor (CSTR), expanded granular sludge bed (EGSB) reactor, and sequencing batch reactor (SBR) for treatment of cellulosic ethanol production wastewater. Excellent wastewater treatment performance was obtained in the combined system, which showed a high chemical oxygen demand removal efficiency of 95.8% and completely eliminated most complex organics revealed by gas chromatography-mass spectrometry (GC-MS). Denaturing gradient gel electrophoresis (DGGE) analysis revealed differences in the microbial community structures of the three reactors. Further identification of the microbial populations suggested that the presence of Lactobacillus and Prevotella in CSTR played an active role in the production of volatile fatty acids (VFAs). The most diverse microorganisms with analogous distribution patterns of different layers were observed in the EGSB reactor, and bacteria affiliated with Firmicutes, Synergistetes, and Thermotogae were associated with production of acetate and carbon dioxide/hydrogen, while all acetoclastic methanogens identified belonged to Methanosaetaceae. Overall, microorganisms associated with the ability to degrade cellulose, hemicellulose, and other biomass-derived organic carbons were observed in the combined system. The results presented herein will facilitate the development of an improved cellulosic ethanol production wastewater treatment system.
Collapse
Affiliation(s)
- Lili Shan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Yanling Yu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, China
| | - Zebing Zhu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Wei Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Haiman Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - John J Ambuchi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
44
|
Microbiota Dynamics Associated with Environmental Conditions and Potential Roles of Cellulolytic Communities in Traditional Chinese Cereal Starter Solid-State Fermentation. Appl Environ Microbiol 2015; 81:5144-56. [PMID: 26002897 DOI: 10.1128/aem.01325-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/16/2015] [Indexed: 12/25/2022] Open
Abstract
Traditional Chinese solid-state fermented cereal starters contain highly complex microbial communities and enzymes. Very little is known, however, about the microbial dynamics related to environmental conditions, and cellulolytic communities have never been proposed to exist during cereal starter fermentation. In this study, we performed Illumina MiSeq sequencing combined with PCR-denaturing gradient gel electrophoresis to investigate microbiota, coupled with clone library construction to trace cellulolytic communities in both fermentation stages. A succession of microbial assemblages was observed during the fermentation of starters. Lactobacillales and Saccharomycetales dominated the initial stages, with a continuous decline in relative abundance. However, thermotolerant and drought-resistant Bacillales, Eurotiales, and Mucorales were considerably accelerated during the heating stages, and these organisms dominated until the end of fermentation. Enterobacteriales were consistently ubiquitous throughout the process. For the cellulolytic communities, only the genera Sanguibacter, Beutenbergia, Agrobacterium, and Erwinia dominated the initial fermentation stages. In contrast, stages at high incubation temperature induced the appearance and dominance of Bacillus, Aspergillus, and Mucor. The enzymatic dynamics of amylase and glucoamylase also showed a similar trend, with the activities clearly increased in the first 7 days and subsequently decreased until the end of fermentation. Furthermore, β-glucosidase activity continuously and significantly increased during the fermentation process. Evidently, cellulolytic potential can adapt to environmental conditions by changes in the community structure during the fermentation of starters.
Collapse
|
45
|
Dohrmann AB, Walz M, Löwen A, Tebbe CC. Clostridium cluster I and their pathogenic members in a full-scale operating biogas plant. Appl Microbiol Biotechnol 2014; 99:3585-98. [DOI: 10.1007/s00253-014-6261-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 11/24/2022]
|
46
|
Berlemont R, Allison SD, Weihe C, Lu Y, Brodie EL, Martiny JBH, Martiny AC. Cellulolytic potential under environmental changes in microbial communities from grassland litter. Front Microbiol 2014; 5:639. [PMID: 25505459 PMCID: PMC4243572 DOI: 10.3389/fmicb.2014.00639] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/06/2014] [Indexed: 12/02/2022] Open
Abstract
In many ecosystems, global changes are likely to profoundly affect microorganisms. In Southern California, changes in precipitation and nitrogen deposition may influence the composition and functional potential of microbial communities and their resulting ability to degrade plant material. To test whether such environmental changes impact the distribution of functional groups involved in leaf litter degradation, we determined how the genomic diversity of microbial communities in a semi-arid grassland ecosystem changed under reduced precipitation or increased N deposition. We monitored communities seasonally over a period of 2 years to place environmental change responses into the context of natural variation. Fungal and bacterial communities displayed strong seasonal patterns, Fungi being mostly detected during the dry season whereas Bacteria were common during wet periods. Most putative cellulose degraders were associated with 33 bacterial genera and predicted to constitute 18% of the microbial community. Precipitation reduction reduced bacterial abundance and cellulolytic potential whereas nitrogen addition did not affect the cellulolytic potential of the microbial community. Finally, we detected a strong correlation between the frequencies of genera of putative cellulose degraders and cellulase genes. Thus, microbial taxonomic composition was predictive of cellulolytic potential. This work provides a framework for how environmental changes affect microorganisms responsible for plant litter deconstruction.
Collapse
Affiliation(s)
- Renaud Berlemont
- Department of Earth System Science, University of California, IrvineIrvine, CA, USA
- Department of Biological Science, California State UniversityLong Beach, CA, USA
| | - Steven D. Allison
- Department of Earth System Science, University of California, IrvineIrvine, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, IrvineIrvine, CA, USA
| | - Claudia Weihe
- Department of Ecology and Evolutionary Biology, University of California, IrvineIrvine, CA, USA
| | - Ying Lu
- Department of Ecology and Evolutionary Biology, University of California, IrvineIrvine, CA, USA
| | - Eoin L. Brodie
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
- Department of Environmental Science, Policy and Management, University of CaliforniaBerkeley, CA, USA
| | - Jennifer B. H. Martiny
- Department of Ecology and Evolutionary Biology, University of California, IrvineIrvine, CA, USA
| | - Adam C. Martiny
- Department of Earth System Science, University of California, IrvineIrvine, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, IrvineIrvine, CA, USA
| |
Collapse
|
47
|
Gittel A, Bárta J, Kohoutová I, Schnecker J, Wild B, Čapek P, Kaiser C, Torsvik VL, Richter A, Schleper C, Urich T. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland. Front Microbiol 2014; 5:541. [PMID: 25360132 PMCID: PMC4199454 DOI: 10.3389/fmicb.2014.00541] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/29/2014] [Indexed: 01/04/2023] Open
Abstract
Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gasses to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen site. We assessed microbial community structure and diversity (SSU rRNA gene tag sequencing, quantification of bacteria, archaea and fungi), and measured hydrolytic and oxidative enzyme activities. Sampling site and thus abiotic factors had a significant impact on microbial community structure, diversity and activity, the wet fen site exhibiting higher potential enzyme activities and presumably being a hot spot for anaerobic degradation processes such as fermentation and methanogenesis. Lowest fungal to bacterial ratios were found in topsoils that had been relocated by cryoturbation ("buried topsoils"), resulting from a decrease in fungal abundance compared to recent ("unburied") topsoils. Actinobacteria (in particular Intrasporangiaceae) accounted for a major fraction of the microbial community in buried topsoils, but were only of minor abundance in all other soil horizons. It was indicated that the distribution pattern of Actinobacteria and a variety of other bacterial classes was related to the activity of phenol oxidases and peroxidases supporting the hypothesis that bacteria might resume the role of fungi in oxidative enzyme production and degradation of phenolic and other complex substrates in these soils. Our study sheds light on the highly diverse, but poorly-studied communities in permafrost-affected soils in Greenland and their role in OC degradation.
Collapse
Affiliation(s)
- Antje Gittel
- Department of Biology, Centre for Geobiology, University of BergenBergen, Norway
- Department of Bioscience, Center for Geomicrobiology, Aarhus UniversityAarhus, Denmark
| | - Jiří Bárta
- Department of Ecosystems Biology, University of South BohemiaČeské Budějovice, Czech Republic
| | - Iva Kohoutová
- Department of Ecosystems Biology, University of South BohemiaČeské Budějovice, Czech Republic
| | - Jörg Schnecker
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of ViennaVienna, Austria
- Austrian Polar Research InstituteVienna, Austria
| | - Birgit Wild
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of ViennaVienna, Austria
- Austrian Polar Research InstituteVienna, Austria
| | - Petr Čapek
- Department of Ecosystems Biology, University of South BohemiaČeské Budějovice, Czech Republic
| | - Christina Kaiser
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of ViennaVienna, Austria
| | - Vigdis L. Torsvik
- Department of Biology, Centre for Geobiology, University of BergenBergen, Norway
| | - Andreas Richter
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of ViennaVienna, Austria
- Austrian Polar Research InstituteVienna, Austria
| | - Christa Schleper
- Department of Biology, Centre for Geobiology, University of BergenBergen, Norway
- Austrian Polar Research InstituteVienna, Austria
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
| | - Tim Urich
- Austrian Polar Research InstituteVienna, Austria
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of ViennaVienna, Austria
| |
Collapse
|
48
|
Abstract
Soil microbial diversity represents the largest global reservoir of novel microorganisms and enzymes. In this study, we coupled functional metagenomics and DNA stable-isotope probing (DNA-SIP) using multiple plant-derived carbon substrates and diverse soils to characterize active soil bacterial communities and their glycoside hydrolase genes, which have value for industrial applications. We incubated samples from three disparate Canadian soils (tundra, temperate rainforest, and agricultural) with five native carbon (12C) or stable-isotope-labeled (13C) carbohydrates (glucose, cellobiose, xylose, arabinose, and cellulose). Indicator species analysis revealed high specificity and fidelity for many uncultured and unclassified bacterial taxa in the heavy DNA for all soils and substrates. Among characterized taxa, Actinomycetales (Salinibacterium), Rhizobiales (Devosia), Rhodospirillales (Telmatospirillum), and Caulobacterales (Phenylobacterium and Asticcacaulis) were bacterial indicator species for the heavy substrates and soils tested. Both Actinomycetales and Caulobacterales (Phenylobacterium) were associated with metabolism of cellulose, and Alphaproteobacteria were associated with the metabolism of arabinose; members of the order Rhizobiales were strongly associated with the metabolism of xylose. Annotated metagenomic data suggested diverse glycoside hydrolase gene representation within the pooled heavy DNA. By screening 2,876 cloned fragments derived from the 13C-labeled DNA isolated from soils incubated with cellulose, we demonstrate the power of combining DNA-SIP, multiple-displacement amplification (MDA), and functional metagenomics by efficiently isolating multiple clones with activity on carboxymethyl cellulose and fluorogenic proxy substrates for carbohydrate-active enzymes. The ability to identify genes based on function, instead of sequence homology, allows the discovery of genes that would not be identified through sequence alone. This is arguably the most powerful application of metagenomics for the recovery of novel genes and a natural partner of the stable-isotope-probing approach for targeting active-yet-uncultured microorganisms. We expanded on previous efforts to combine stable-isotope probing and metagenomics, enriching microorganisms from multiple soils that were active in degrading plant-derived carbohydrates, followed by construction of a cellulose-based metagenomic library and recovery of glycoside hydrolases through functional metagenomics. The major advance of our study was the discovery of active-yet-uncultivated soil microorganisms and enrichment of their glycoside hydrolases. We recovered positive cosmid clones in a higher frequency than would be expected with direct metagenomic analysis of soil DNA. This study has generated an invaluable metagenomic resource that future research will exploit for genetic and enzymatic potential.
Collapse
|
49
|
Pinnell LJ, Dunford E, Ronan P, Hausner M, Neufeld JD. Recovering glycoside hydrolase genes from active tundra cellulolytic bacteria. Can J Microbiol 2014; 60:469-76. [PMID: 24983351 DOI: 10.1139/cjm-2014-0193] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteria responsible for cellulose hydrolysis in situ are poorly understood, largely because of the relatively recent development of cultivation-independent methods for their detection and characterization. This study combined DNA stable-isotope probing (DNA-SIP) and metagenomics for identifying active bacterial communities that assimilated carbon from glucose and cellulose in Arctic tundra microcosms. Following DNA-SIP, bacterial fingerprint analysis of gradient fractions confirmed isotopic enrichment. Sequenced fingerprint bands and clone library analysis of 16S rRNA genes identified active bacterial taxa associated with cellulose-associated labelled DNA, including Bacteroidetes (Sphingobacteriales), Betaproteobacteria (Burkholderiales), Alphaproteobacteria (Caulobacteraceae), and Chloroflexi (Anaerolineaceae). We also compared glycoside hydrolase metagenomic profiles from bulk soil and heavy DNA recovered from DNA-SIP incubations. Active populations consuming [(13)C]glucose and [(13)C]cellulose were distinct, based on ordinations of light and heavy DNA. Metagenomic analysis demonstrated a ∼3-fold increase in the relative abundance of glycoside hydrolases in DNA-SIP libraries over bulk-soil libraries. The data also indicate that multiple displacement amplification introduced bias into the resulting metagenomic analysis. This research identified DNA-SIP incubation conditions for glucose and cellulose that were suitable for Arctic tundra soil and confirmed that DNA-SIP enrichment can increase target gene frequencies in metagenomic libraries.
Collapse
Affiliation(s)
- Lee J Pinnell
- a Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | | | | | | | | |
Collapse
|
50
|
Schmidt O, Horn MA, Kolb S, Drake HL. Temperature impacts differentially on the methanogenic food web of cellulose-supplemented peatland soil. Environ Microbiol 2014; 17:720-34. [PMID: 24813682 DOI: 10.1111/1462-2920.12507] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 05/07/2014] [Indexed: 11/29/2022]
Abstract
The impact of temperature on the largely unresolved intermediary ecosystem metabolism and associated unknown microbiota that link cellulose degradation and methane production in soils of a moderately acidic (pH 4.5) fen was investigated. Supplemental [(13) C]cellulose stimulated the accumulation of propionate, acetate and carbon dioxide as well as initial methane production in anoxic peat soil slurries at 15°C and 5°C. Accumulation of organic acids at 15°C was twice as fast as that at 5°C. 16S rRNA [(13) C]cellulose stable isotope probing identified novel unclassified Bacteria (79% identity to the next cultured relative Fibrobacter succinogenes), unclassified Bacteroidetes (89% identity to Prolixibacter bellariivorans), Porphyromonadaceae, Acidobacteriaceae and Ruminococcaceae as main anaerobic degraders of cellulose-derived carbon at both 15°C and 5°C. Holophagaceae and Spirochaetaceae were more abundant at 15°C. Clostridiaceae dominated the degradation of cellulose-derived carbon only at 5°C. Methanosarcina was the dominant methanogenic taxa at both 15°C and 5°C. Relative abundance of Methanocella increased at 15°C whereas that of Methanoregula and Methanosaeta increased at 5°C. Thaumarchaeota closely related to Nitrosotalea (presently not known to grow anaerobically) were abundant at 5°C but absent at 15°C indicating that Nitrosotalea sp. might be capable of anaerobic growth at low temperatures in peat.
Collapse
Affiliation(s)
- Oliver Schmidt
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, 95440, Germany
| | | | | | | |
Collapse
|