1
|
Chou J, Li MZ, Wey B, Mumtaz M, Ramroop JR, Singh S, Govind S. Venomous Cargo: Diverse Toxin-Related Proteins Are Associated with Extracellular Vesicles in Parasitoid Wasp Venom. Pathogens 2025; 14:255. [PMID: 40137740 PMCID: PMC11944595 DOI: 10.3390/pathogens14030255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Unusual membrane-bound particles are present in the venom of the parasitoid wasps that parasitize Drosophila melanogaster. These venom particles harbor about 400 proteins and suppress the encapsulation of a wasp egg. Whereas the proteins in the particles of Leptopilina boulardi venom modify host hemocyte properties, those in L. heterotoma kill host hemocytes. The mechanisms underlying this differential effect are not well understood. The proteome of the L. heterotoma venom particles has been described before, but that of L. boulardi has not been similarly examined. Using sequence-based programs, we report the presence of conserved proteins in both proteomes with strong enrichment in the endomembrane and exosomal cell components. Extracellular vesicle markers are present in both proteomes, as are numerous toxins. Both proteomes also contain proteins lacking any annotation. Among these, we identified the proteins with structural similarity to the ADP-ribosyltransferase enzymes involved in bacterial virulence. We propose that invertebrate fluids like parasitoid venom contain functional extracellular vesicles that deliver toxins and virulence factors from a parasite to a host. Furthermore, the presence of such vesicles may not be uncommon in the venom of other animals. An experimental verification of the predicted toxin functions will clarify the cellular mechanisms underlying successful parasitism.
Collapse
Affiliation(s)
- Jennifer Chou
- Department of Biology, The City College of New York, New York, NY 10031, USA
| | - Michael Z. Li
- Department of Biology, The City College of New York, New York, NY 10031, USA
| | - Brian Wey
- Department of Biology, The City College of New York, New York, NY 10031, USA
| | - Mubasshir Mumtaz
- Department of Biology, Brooklyn College, Brooklyn, NY 11210, USA
| | - Johnny R. Ramroop
- Department of Biology, The City College of New York, New York, NY 10031, USA
| | - Shaneen Singh
- Department of Biology, Brooklyn College, Brooklyn, NY 11210, USA
- PhD Program in Biology, The Graduate Center, City University of New York, New York, NY 10016, USA
- PhD Program in Biochemistry, The Graduate Center, City University of New York, New York, NY 10016, USA
| | - Shubha Govind
- Department of Biology, The City College of New York, New York, NY 10031, USA
- PhD Program in Biology, The Graduate Center, City University of New York, New York, NY 10016, USA
- PhD Program in Biochemistry, The Graduate Center, City University of New York, New York, NY 10016, USA
| |
Collapse
|
2
|
Zhang H, Tao S, Chen H, Fang Y, Xu Y, Han AX, Ma F, Liang W. Type II Toxin-Antitoxin Systems in Escherichia coli. Infect Drug Resist 2025; 18:1083-1096. [PMID: 40027916 PMCID: PMC11869752 DOI: 10.2147/idr.s501485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/30/2024] [Indexed: 03/05/2025] Open
Abstract
The toxin-antitoxin (TA) system is widespread in prokaryotes and archaea, comprising toxins and antitoxins that counterbalance each other. Based on the nature and mode of action of antitoxins, they are classified into eight groups (type I to VIII). Both the toxins and the antitoxins are proteins in type II TA systems, and the antitoxin gene is usually upstream of the toxin gene. Both genes are organized in an operon and expression of which is regulated at the transcriptional level by the antitoxin-toxin complex, which binds the operon DNA through the DNA-binding domain of the antitoxin. The TA system plays a crucial role in various cellular processes, such as programmed cell death, cell growth, persistence, and virulence. Currently, Type II TA systems have been used as a target for developing new antibacterial agents for treatment. Therefore, the focus of this review is to understand the unique response of Type II TA in Escherichia coli to stress and its contribution to the maintenance of resistant strains. Here, we review the Type II TA system in E. coli and describe their regulatory mechanisms and biological functions. Understanding how TA promotes phenotypic heterogeneity and pathogenesis mechanisms may help to develop new treatments for infections caused by pathogens rationally.
Collapse
Affiliation(s)
- He Zhang
- Department of Medical Laboratory, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Shuan Tao
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Huimin Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Yewei Fang
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Yao Xu
- School of Medicine, Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - A-Xiang Han
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| | - Fang Ma
- Department of Medical Laboratory, Bengbu Medical University, Bengbu, Anhui, People’s Republic of China
| | - Wei Liang
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, People’s Republic of China
| |
Collapse
|
3
|
Chen R, Zhao H, Zhou J, Liu A, Guo Y, Wu K, Xiang Y, Lei J, Jiang S, Xie W. Structural insights into the Shigella flexneri GmvAT toxin-antitoxin system. FEBS Lett 2025. [PMID: 39973444 DOI: 10.1002/1873-3468.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/21/2025]
Abstract
Toxin-antitoxin (TA) systems are common bicistronic gene elements in bacteria and are critical for stress responses. The toxin members of the GNAT/RHH TA family can acetylate certain aminoacylated tRNA molecules and inhibit global protein translation. One member named GmvT is important for virulence plasmid maintenance in Shigella flexneri, but the underlying mechanism remains poorly understood. Here, we report the cocrystal structures of GmvT in two forms. The binding of the antitoxin mainly relies on the backbone of the toxin while the cofactor is free of contacts with the antitoxin, supported by follow-up in vitro and in vivo studies. Our study provides insight into the protein-protein/protein-ligand interactions of the GmvAT pair and the structural basis for molecular recognition.
Collapse
Affiliation(s)
- Ran Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, China
| | - Hui Zhao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, China
| | - Jie Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, China
| | - Aoyun Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, China
| | - Yinfeng Guo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Kejue Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yongle Xiang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, China
| | - Jinping Lei
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Songshan Jiang
- Department of Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wei Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
4
|
Hossain A, Gnanagobal H, Cao T, Chakraborty S, Chukwu-Osazuwa J, Soto-Dávila M, Vasquez I, Santander J. Role of cold shock proteins B and D in Aeromonas salmonicida subsp. salmonicida physiology and virulence in lumpfish ( Cyclopterus lumpus). Infect Immun 2024; 92:e0001124. [PMID: 38920386 PMCID: PMC11320987 DOI: 10.1128/iai.00011-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Cold shock proteins (Csp) are pivotal nucleic acid binding proteins known for their crucial roles in the physiology and virulence of various bacterial pathogens affecting plant, insect, and mammalian hosts. However, their significance in bacterial pathogens of teleost fish remains unexplored. Aeromonas salmonicida subsp. salmonicida (hereafter A. salmonicida) is a psychrotrophic pathogen and the causative agent of furunculosis in marine and freshwater fish. Four csp genes (cspB, cspD, cspA, and cspC) have been identified in the genome of A. salmonicida J223 (wild type). Here, we evaluated the role of DNA binding proteins, CspB and CspD, in A. salmonicida physiology and virulence in lumpfish (Cyclopterus lumpus). A. salmonicida ΔcspB, ΔcspD, and the double ΔcspBΔcspD mutants were constructed and characterized. A. salmonicida ΔcspB and ΔcspBΔcspD mutants showed a faster growth at 28°C, and reduced virulence in lumpfish. A. salmonicida ΔcspD showed a slower growth at 28°C, biofilm formation, lower survival in low temperatures and freezing conditions (-20°C, 0°C, and 4°C), deficient in lipopolysaccharide synthesis, and low virulence in lumpfish. Additionally, ΔcspBΔcspD mutants showed less survival in the presence of bile compared to the wild type. Transcriptome analysis revealed that 200, 37, and 921 genes were differentially expressed in ΔcspB, ΔcspD, and ΔcspBΔcspD, respectively. In ΔcspB and ΔcspBΔcspD virulence genes in the chromosome and virulence plasmid were downregulated. Our analysis indicates that CspB and CspD mostly act as a transcriptional activator, influencing cell division (e.g., treB), virulence factors (e.g., aexT), and ultimately virulence.
Collapse
Affiliation(s)
- Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Joy Chukwu-Osazuwa
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Manuel Soto-Dávila
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, Ocean Science Center, St. John's, Newfoundland, Canada
| |
Collapse
|
5
|
Fernández-García L, Gao X, Kirigo J, Song S, Battisti ME, Garcia-Contreras R, Tomas M, Guo Y, Wang X, Wood TK. Single-cell analysis reveals that cryptic prophage protease LfgB protects Escherichia coli during oxidative stress by cleaving antitoxin MqsA. Microbiol Spectr 2024; 12:e0347123. [PMID: 38206055 PMCID: PMC10846083 DOI: 10.1128/spectrum.03471-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024] Open
Abstract
Although toxin/antitoxin (TA) systems are ubiquitous, beyond phage inhibition and mobile element stabilization, their role in host metabolism is obscure. One of the best-characterized TA systems is MqsR/MqsA of Escherichia coli, which has been linked previously to protecting gastrointestinal species during the stress it encounters from the bile salt deoxycholate as it colonizes humans. However, some recent whole-population studies have challenged the role of toxins such as MqsR in bacterial physiology since the mqsRA locus is induced over a hundred-fold during stress, but a phenotype was not found upon its deletion. Here, we investigate further the role of MqsR/MqsA by utilizing single cells and demonstrate that upon oxidative stress, the TA system MqsR/MqsA has a heterogeneous effect on the transcriptome of single cells. Furthermore, we discovered that MqsR activation leads to induction of the poorly characterized yfjXY ypjJ yfjZF operon of cryptic prophage CP4-57. Moreover, deletion of yfjY makes the cells sensitive to H2O2, acid, and heat stress, and this phenotype was complemented. Hence, we recommend yfjY be renamed to lfgB (less fatality gene B). Critically, MqsA represses lfgB by binding the operon promoter, and LfgB is a protease that degrades MqsA to derepress rpoS and facilitate the stress response. Therefore, the MqsR/MqsA TA system facilitates the stress response through cryptic phage protease LfgB.IMPORTANCEThe roles of toxin/antitoxin systems in cell physiology are few and include phage inhibition and stabilization of genetic elements; yet, to date, there are no single-transcriptome studies for toxin/antitoxin systems and few insights for prokaryotes from this novel technique. Therefore, our results with this technique are important since we discover and characterize a cryptic prophage protease that is regulated by the MqsR/MqsA toxin/antitoxin system in order to regulate the host response to oxidative stress.
Collapse
Affiliation(s)
- Laura Fernández-García
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Microbiology Department, Hospital A Coruña (HUAC), A Coruña, Spain
- Microbiology Translational and Multidisciplinary (MicroTM)‐Research Institute Biomedical A Coruña (INIBIC) and Microbiology, University of A Coruña (UDC), A Coruña, Spain
| | - Xinyu Gao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Institute of Oceanology, Chinese Academy of Sciences, Nansha, Guangzhou, China
- Guangdong Key Laboratory of Marine Materia Medica, Chinese Academy of Sciences, Nansha, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea, Chinese Academy of Sciences, China, Nansha,, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Joy Kirigo
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Sooyeon Song
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Animal Science, Jeonbuk National University, Jeonju-Si, Jellabuk-Do, South Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju-Si, Jellabuk-Do, South Korea
| | - Michael E. Battisti
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Rodolfo Garcia-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Maria Tomas
- Microbiology Department, Hospital A Coruña (HUAC), A Coruña, Spain
- Microbiology Translational and Multidisciplinary (MicroTM)‐Research Institute Biomedical A Coruña (INIBIC) and Microbiology, University of A Coruña (UDC), A Coruña, Spain
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Institute of Oceanology, Chinese Academy of Sciences, Nansha, Guangzhou, China
- Guangdong Key Laboratory of Marine Materia Medica, Chinese Academy of Sciences, Nansha, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea, Chinese Academy of Sciences, China, Nansha,, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Institute of Oceanology, Chinese Academy of Sciences, Nansha, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
6
|
Cardoza E, Singh H. From Stress Tolerance to Virulence: Recognizing the Roles of Csps in Pathogenicity and Food Contamination. Pathogens 2024; 13:69. [PMID: 38251376 PMCID: PMC10819108 DOI: 10.3390/pathogens13010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Be it for lab studies or real-life situations, bacteria are constantly exposed to a myriad of physical or chemical stresses that selectively allow the tolerant to survive and thrive. In response to environmental fluctuations, the expression of cold shock domain family proteins (Csps) significantly increases to counteract and help cells deal with the harmful effects of stresses. Csps are, therefore, considered stress adaptation proteins. The primary functions of Csps include chaperoning nucleic acids and regulating global gene expression. In this review, we focus on the phenotypic effects of Csps in pathogenic bacteria and explore their involvement in bacterial pathogenesis. Current studies of csp deletions among pathogenic strains indicate their involvement in motility, host invasion and stress tolerance, proliferation, cell adhesion, and biofilm formation. Through their RNA chaperone activity, Csps regulate virulence-associated genes and thereby contribute to bacterial pathogenicity. Additionally, we outline their involvement in food contamination and discuss how foodborne pathogens utilize the stress tolerance roles of Csps against preservation and sanitation strategies. Furthermore, we highlight how Csps positively and negatively impact pathogens and the host. Overall, Csps are involved in regulatory networks that influence the expression of genes central to stress tolerance and virulence.
Collapse
Affiliation(s)
| | - Harinder Singh
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS University, Vile Parle West, Mumbai 400056, India
| |
Collapse
|
7
|
Petrova O, Semenova E, Parfirova O, Tsers I, Gogoleva N, Gogolev Y, Nikolaichik Y, Gorshkov V. RpoS-Regulated Genes and Phenotypes in the Phytopathogenic Bacterium Pectobacterium atrosepticum. Int J Mol Sci 2023; 24:17348. [PMID: 38139177 PMCID: PMC10743746 DOI: 10.3390/ijms242417348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The alternative sigma factor RpoS is considered to be one of the major regulators providing stress resistance and cross-protection in bacteria. In phytopathogenic bacteria, the effects of RpoS have not been analyzed with regard to cross-protection, and genes whose expression is directly or indirectly controlled by RpoS have not been determined at the whole-transcriptome level. Our study aimed to determine RpoS-regulated genes and phenotypes in the phytopathogenic bacterium Pectobacterium atrosepticum. Knockout of the rpoS gene in P. atrosepticum affected the long-term starvation response, cross-protection, and virulence toward plants with enhanced immune status. The whole-transcriptome profiles of the wild-type P. atrosepticum strain and its ΔrpoS mutant were compared under different experimental conditions, and functional gene groups whose expression was affected by RpoS were determined. The RpoS promoter motif was inferred within the promoter regions of the genes affected by rpoS deletion, and the P. atrosepticum RpoS regulon was predicted. Based on RpoS-controlled phenotypes, transcriptome profiles, and RpoS regulon composition, the regulatory role of RpoS in P. atrosepticum is discussed.
Collapse
Affiliation(s)
- Olga Petrova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (E.S.); (O.P.); (I.T.); (N.G.); (Y.G.)
| | - Elizaveta Semenova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (E.S.); (O.P.); (I.T.); (N.G.); (Y.G.)
| | - Olga Parfirova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (E.S.); (O.P.); (I.T.); (N.G.); (Y.G.)
| | - Ivan Tsers
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (E.S.); (O.P.); (I.T.); (N.G.); (Y.G.)
| | - Natalia Gogoleva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (E.S.); (O.P.); (I.T.); (N.G.); (Y.G.)
| | - Yuri Gogolev
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (E.S.); (O.P.); (I.T.); (N.G.); (Y.G.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Yevgeny Nikolaichik
- Department of Molecular Biology, Belarusian State University, 220030 Minsk, Belarus;
| | - Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420111 Kazan, Russia; (O.P.); (E.S.); (O.P.); (I.T.); (N.G.); (Y.G.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
8
|
Shrestha P, Karmacharya J, Han SR, Lee JH, Oh TJ. Elucidation of cold adaptation in Glaciimonas sp. PAMC28666 with special focus on trehalose biosynthesis. Front Microbiol 2023; 14:1280775. [PMID: 37920266 PMCID: PMC10618363 DOI: 10.3389/fmicb.2023.1280775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
Glaciimonas sp. PAMC28666, an extremophilic bacterium thriving in Antarctic soil and belonging to the Oxalobacteraceae family, represents the only complete genome of its genus available in the NCBI database. Its genome measures 5.2 Mb and comprises 4,476 genes (4,350 protein-coding and 72 non-coding). Phylogenetic analysis shows the strain PAMC28666 in a unique branch within the genus Glaciimonas, closely related to Glaciimonas alpine Cr9-12, supported by robust bootstrap values. In addition, strain PAMC28666 showed 77.08 and 23.3% ANI and DDH, respectively, with Glaciimonas sp. PCH181.This study focuses on how polar strain PAMC28666 responds to freeze-thaw conditions, Experimental results revealed a notable survival rate of 47.28% when subjected to a temperature of 15°C for a period of 10 days. Notably, two genes known to be responsive to cold stress, Trehalose 6-phosphate synthase (otsA) and Trehalose 6-phosphate phosphatase (otsB), exhibited increased expression levels as the temperature shifted from 25°C to 15°C. The upregulation of otsAB and the consequent synthesis of trehalose play pivotal roles in enhancing the cold resistance of strain PAMC28666, offering valuable insights into the correlation between trehalose production and adaptation to cold stress. Furthermore, research into this neglected cold-adapted variation, like Glaciimonas sp. PAMC28666, has the potential to shed light on how trehalose is produced in cold-adapted environments Additionally, there is potential to extract trehalose compounds from this strain for diverse biotechnological applications, including food and cosmetics, with ongoing research exploring its unique properties.
Collapse
Affiliation(s)
- Prasansah Shrestha
- Department of Life Sciences and Biochemical Engineering, Graduate School, SunMoon University, Asan, Republic of Korea
| | - Jayram Karmacharya
- Department of Life Sciences and Biochemical Engineering, Graduate School, SunMoon University, Asan, Republic of Korea
| | - So-Ra Han
- Department of Life Sciences and Biochemical Engineering, Graduate School, SunMoon University, Asan, Republic of Korea
- Genome-Based Bio-IT Convergence Institute, Asan, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, Republic of Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Materials, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Sciences and Biochemical Engineering, Graduate School, SunMoon University, Asan, Republic of Korea
- Genome-Based Bio-IT Convergence Institute, Asan, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, Republic of Korea
| |
Collapse
|
9
|
Pizzolato-Cezar LR, Spira B, Machini MT. Bacterial toxin-antitoxin systems: Novel insights on toxin activation across populations and experimental shortcomings. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100204. [PMID: 38024808 PMCID: PMC10643148 DOI: 10.1016/j.crmicr.2023.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
The alarming rise in hard-to-treat bacterial infections is of great concern to human health. Thus, the identification of molecular mechanisms that enable the survival and growth of pathogens is of utmost urgency for the development of more efficient antimicrobial therapies. In challenging environments, such as presence of antibiotics, or during host infection, metabolic adjustments are essential for microorganism survival and competitiveness. Toxin-antitoxin systems (TASs) consisting of a toxin with metabolic modulating activity and a cognate antitoxin that antagonizes that toxin are important elements in the arsenal of bacterial stress defense. However, the exact physiological function of TA systems is highly debatable and with the exception of stabilization of mobile genetic elements and phage inhibition, other proposed biological functions lack a broad consensus. This review aims at gaining new insights into the physiological effects of TASs in bacteria and exploring the experimental shortcomings that lead to discrepant results in TAS research. Distinct control mechanisms ensure that only subsets of cells within isogenic cultures transiently develop moderate levels of toxin activity. As a result, TASs cause phenotypic growth heterogeneity rather than cell stasis in the entire population. It is this feature that allows bacteria to thrive in diverse environments through the creation of subpopulations with different metabolic rates and stress tolerance programs.
Collapse
Affiliation(s)
- Luis R. Pizzolato-Cezar
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Beny Spira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - M. Teresa Machini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Boss L, Kędzierska B. Bacterial Toxin-Antitoxin Systems' Cross-Interactions-Implications for Practical Use in Medicine and Biotechnology. Toxins (Basel) 2023; 15:380. [PMID: 37368681 DOI: 10.3390/toxins15060380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Toxin-antitoxin (TA) systems are widely present in bacterial genomes. They consist of stable toxins and unstable antitoxins that are classified into distinct groups based on their structure and biological activity. TA systems are mostly related to mobile genetic elements and can be easily acquired through horizontal gene transfer. The ubiquity of different homologous and non-homologous TA systems within a single bacterial genome raises questions about their potential cross-interactions. Unspecific cross-talk between toxins and antitoxins of non-cognate modules may unbalance the ratio of the interacting partners and cause an increase in the free toxin level, which can be deleterious to the cell. Moreover, TA systems can be involved in broadly understood molecular networks as transcriptional regulators of other genes' expression or modulators of cellular mRNA stability. In nature, multiple copies of highly similar or identical TA systems are rather infrequent and probably represent a transition stage during evolution to complete insulation or decay of one of them. Nevertheless, several types of cross-interactions have been described in the literature to date. This implies a question of the possibility and consequences of the TA system cross-interactions, especially in the context of the practical application of the TA-based biotechnological and medical strategies, in which such TAs will be used outside their natural context, will be artificially introduced and induced in the new hosts. Thus, in this review, we discuss the prospective challenges of system cross-talks in the safety and effectiveness of TA system usage.
Collapse
Affiliation(s)
- Lidia Boss
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, 80-309 Gdańsk, Poland
| | - Barbara Kędzierska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, 80-309 Gdańsk, Poland
| |
Collapse
|
11
|
Lin J, Guo Y, Yao J, Tang K, Wang X. Applications of toxin-antitoxin systems in synthetic biology. ENGINEERING MICROBIOLOGY 2023; 3:100069. [PMID: 39629251 PMCID: PMC11610964 DOI: 10.1016/j.engmic.2023.100069] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 12/07/2024]
Abstract
Toxin-antitoxin (TA) systems are ubiquitous in bacteria and archaea. Most are composed of two neighboring genetic elements, a stable toxin capable of inhibiting crucial cellular processes, including replication, transcription, translation, cell division and membrane integrity, and an unstable antitoxin to counteract the toxicity of the toxin. Many new discoveries regarding the biochemical properties of the toxin and antitoxin components have been made since the first TA system was reported nearly four decades ago. The physiological functions of TA systems have been hotly debated in recent decades, and it is now increasingly clear that TA systems are important immune systems in prokaryotes. In addition to being involved in biofilm formation and persister cell formation, these modules are antiphage defense systems and provide host defenses against various phage infections via abortive infection. In this review, we explore the potential applications of TA systems based on the recent progress made in elucidating TA functions. We first describe the most recent classification of TA systems and then introduce the biochemical functions of toxins and antitoxins, respectively. Finally, we primarily focus on and devote considerable space to the application of TA complexes in synthetic biology.
Collapse
Affiliation(s)
- Jianzhong Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianyun Yao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Lewis AM, Willard DJ, H. Manesh MJ, Sivabalasarma S, Albers SV, Kelly RM. Stay or Go: Sulfolobales Biofilm Dispersal Is Dependent on a Bifunctional VapB Antitoxin. mBio 2023; 14:e0005323. [PMID: 37036347 PMCID: PMC10127717 DOI: 10.1128/mbio.00053-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
A type II VapB14 antitoxin regulates biofilm dispersal in the archaeal thermoacidophile Sulfolobus acidocaldarius through traditional toxin neutralization but also through noncanonical transcriptional regulation. Type II VapC toxins are ribonucleases that are neutralized by their proteinaceous cognate type II VapB antitoxin. VapB antitoxins have a flexible tail at their C terminus that covers the toxin's active site, neutralizing its activity. VapB antitoxins also have a DNA-binding domain at their N terminus that allows them to autorepress not only their own promoters but also distal targets. VapB14 antitoxin gene deletion in S. acidocaldarius stunted biofilm and planktonic growth and increased motility structures (archaella). Conversely, planktonic cells were devoid of archaella in the ΔvapC14 cognate toxin mutant. VapB14 is highly conserved at both the nucleotide and amino acid levels across the Sulfolobales, extremely unusual for type II antitoxins, which are typically acquired through horizontal gene transfer. Furthermore, homologs of VapB14 are found across the Crenarchaeota, in some Euryarchaeota, and even bacteria. S. acidocaldarius vapB14 and its homolog in the thermoacidophile Metallosphaera sedula (Msed_0871) were both upregulated in biofilm cells, supporting the role of the antitoxin in biofilm regulation. In several Sulfolobales species, including M. sedula, homologs of vapB14 and vapC14 are not colocalized. Strikingly, Sulfuracidifex tepidarius has an unpaired VapB14 homolog and lacks a cognate VapC14, illustrating the toxin-independent conservation of the VapB14 antitoxin. The findings here suggest that a stand-alone VapB-type antitoxin was the product of selective evolutionary pressure to influence biofilm formation in these archaea, a vital microbial community behavior. IMPORTANCE Biofilms allow microbes to resist a multitude of stresses and stay proximate to vital nutrients. The mechanisms of entering and leaving a biofilm are highly regulated to ensure microbial survival, but are not yet well described in archaea. Here, a VapBC type II toxin-antitoxin system in the thermoacidophilic archaeon Sulfolobus acidocaldarius was shown to control biofilm dispersal through a multifaceted regulation of the archaeal motility structure, the archaellum. The VapC14 toxin degrades an RNA that causes an increase in archaella and swimming. The VapB14 antitoxin decreases archaella and biofilm dispersal by binding the VapC14 toxin and neutralizing its activity, while also repressing the archaellum genes. VapB14-like antitoxins are highly conserved across the Sulfolobales and respond similarly to biofilm growth. In fact, VapB14-like antitoxins are also found in other archaea, and even in bacteria, indicating an evolutionary pressure to maintain this protein and its role in biofilm formation.
Collapse
Affiliation(s)
- April M. Lewis
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Daniel J. Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Mohamad J. H. Manesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Shamphavi Sivabalasarma
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBBS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
13
|
Sonika S, Singh S, Mishra S, Verma S. Toxin-antitoxin systems in bacterial pathogenesis. Heliyon 2023; 9:e14220. [PMID: 37101643 PMCID: PMC10123168 DOI: 10.1016/j.heliyon.2023.e14220] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Toxin-Antitoxin (TA) systems are abundant in prokaryotes and play an important role in various biological processes such as plasmid maintenance, phage inhibition, stress response, biofilm formation, and dormant persister cell generation. TA loci are abundant in pathogenic intracellular micro-organisms and help in their adaptation to the harsh host environment such as nutrient deprivation, oxidation, immune response, and antimicrobials. Several studies have reported the involvement of TA loci in establishing successful infection, intracellular survival, better colonization, adaptation to host stresses, and chronic infection. Overall, the TA loci play a crucial role in bacterial virulence and pathogenesis. Nonetheless, there are some controversies about the role of TA system in stress response, biofilm and persister formation. In this review, we describe the role of the TA systems in bacterial virulence. We discuss the important features of each type of TA system and the recent discoveries identifying key contributions of TA loci in bacterial pathogenesis.
Collapse
Affiliation(s)
- Sonika Sonika
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Samer Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Saurabh Mishra
- Department of Biochemistry, Institute of Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Shashikala Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
14
|
Wachter S, Cockrell DC, Miller HE, Virtaneva K, Kanakabandi K, Darwitz B, Heinzen RA, Beare PA. The endogenous Coxiella burnetii plasmid encodes a functional toxin-antitoxin system. Mol Microbiol 2022; 118:744-764. [PMID: 36385554 PMCID: PMC10098735 DOI: 10.1111/mmi.15001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Coxiella burnetii is the causative agent of Q fever. All C. burnetii isolates encode either an autonomously replicating plasmid (QpH1, QpDG, QpRS, or QpDV) or QpRS-like chromosomally integrated plasmid sequences. The role of the ORFs present in these sequences is unknown. Here, the role of the ORFs encoded on QpH1 was investigated. Using a new C. burnetii shuttle vector (pB-TyrB-QpH1ori), we cured the C. burnetii Nine Mile Phase II strain of QpH1. The ΔQpH1 strain grew normally in axenic media but had a significant growth defect in Vero cells, indicating QpH1 was important for C. burnetii virulence. We developed an inducible CRISPR interference system to examine the role of individual QpH1 plasmid genes. CRISPRi of cbuA0027 resulted in significant growth defects in axenic media and THP-1 cells. The cbuA0028/cbuA0027 operon encodes CBUA0028 (ToxP) and CBUA0027 (AntitoxP), which are homologous to the HigB2 toxin and HigA2 antitoxin, respectively, from Vibrio cholerae. Consistent with toxin-antitoxin systems, overexpression of toxP resulted in a severe intracellular growth defect that was rescued by co-expression of antitoxP. ToxP inhibited protein translation. AntitoxP bound the toxP promoter (PtoxP) and ToxP, with the resulting complex binding also PtoxP. In summary, our data indicate that C. burnetii maintains an autonomously replicating plasmid because of a plasmid-based toxin-antitoxin system.
Collapse
Affiliation(s)
- Shaun Wachter
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.,Vaccine and Infectious Disease Organization, Saskatoon, Saskatchewan, Canada
| | - Diane C Cockrell
- Vector-Pathogen-Host Interaction unit, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | | | - Kimmo Virtaneva
- Genomics Research Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Kishore Kanakabandi
- Genomics Research Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Benjamin Darwitz
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Robert A Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Paul A Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.,Genomics Research Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
15
|
Nam D, Motegi W, Ishimori K, Uchida T. Heme binding to cold shock protein D, CspD, from Vibrio cholerae. Biochem Biophys Res Commun 2022; 624:151-156. [DOI: 10.1016/j.bbrc.2022.07.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022]
|
16
|
Chattopadhyay I, J RB, Usman TMM, Varjani S. Exploring the role of microbial biofilm for industrial effluents treatment. Bioengineered 2022; 13:6420-6440. [PMID: 35227160 PMCID: PMC8974063 DOI: 10.1080/21655979.2022.2044250] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Biofilm formation on biotic or abiotic surfaces is caused by microbial cells of a single or heterogeneous species. Biofilm protects microbes from stressful environmental conditions, toxic action of chemicals, and antimicrobial substances. Quorum sensing (QS) is the generation of autoinducers (AIs) by bacteria in a biofilm to communicate with one other. QS is responsible for the growth of biofilm, synthesis of exopolysaccharides (EPS), and bioremediation of environmental pollutants. EPS is used for wastewater treatment due to its three-dimensional matrix which is composed of proteins, polysaccharides, humic-like substances, and nucleic acids. Autoinducers mediate significantly the degradation of environmental pollutants. Acyl-homoserine lactone (AHL) producing bacteria as well as quorum quenching enzyme or bacteria can effectively improve the performance of wastewater treatment. Biofilms-based reactors due to their economic and ecofriendly nature are used for the treatment of industrial wastewaters. Electrodes coated with electro-active biofilm (EAB) which are obtained from sewage sludge, activated sludge, or industrial and domestic effluents are getting popularity in bioremediation. Microbial fuel cells are involved in wastewater treatment and production of energy from wastewater. Synthetic biological systems such as genome editing by CRISPR-Cas can be used for the advanced bioremediation process through modification of metabolic pathways in quorum sensing within microbial communities. This narrative review discusses the impacts of QS regulatory approaches on biofilm formation, extracellular polymeric substance synthesis, and role of microbial community in bioremediation of pollutants from industrial effluents.
Collapse
Affiliation(s)
| | - Rajesh Banu J
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - T M Mohamed Usman
- Department of Civil Engineering, PET Engineering College, Vallioor, Tirunelveli, India
| | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, India
| |
Collapse
|
17
|
de Souza-Neto RR, Carvalho IGB, Martins PMM, Picchi SC, Tomaz JP, Caserta R, Takita MA, de Souza AA. MqsR toxin as a biotechnological tool for plant pathogen bacterial control. Sci Rep 2022; 12:2794. [PMID: 35181693 PMCID: PMC8857320 DOI: 10.1038/s41598-022-06690-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/23/2021] [Indexed: 11/09/2022] Open
Abstract
Type II toxin-antitoxin (TA) systems are widespread in bacteria and are involved in important cell features, such as cell growth inhibition and antimicrobial tolerance, through the induction of persister cells. Overall, these characteristics are associated with bacterial survival under stress conditions and represent a significant genetic mechanism to be explored for antibacterial molecules. We verified that even though Xylella fastidiosa and Xanthomonas citri subsp. citri share closely related genomes, they have different Type II TA system contents. One important difference is the absence of mqsRA in X. citri. The toxin component of this TA system has been shown to inhibit the growth of X. fastidiosa. Thus, the absence of mqsRA in X. citri led us to explore the possibility of using the MqsR toxin to impair X. citri growth. We purified MqsR and confirmed that the toxin was able to inhibit X. citri. Subsequently, transgenic citrus plants producing MqsR showed a significant reduction in citrus canker and citrus variegated chlorosis symptoms caused, respectively, by X. citri and X. fastidiosa. This study demonstrates that the use of toxins from TA systems is a promising strategy to be explored aiming bacterial control.
Collapse
Affiliation(s)
- Reinaldo Rodrigues de Souza-Neto
- Citrus Research Center, Agronomic Institute - IAC, Cordeirópolis, SP, Brazil.,Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | | | | | | | - Juarez Pires Tomaz
- Rural Development Institute of Parana - IAPAR-EMATER, Londrina, PR, Brazil
| | - Raquel Caserta
- Citrus Research Center, Agronomic Institute - IAC, Cordeirópolis, SP, Brazil
| | | | | |
Collapse
|
18
|
Vos MR, Piraino B, LaBreck CJ, Rahmani N, Trebino CE, Schoenle M, Peti W, Camberg JL, Page R. Degradation of the E. coli antitoxin MqsA by the proteolytic complex ClpXP is regulated by zinc occupancy and oxidation. J Biol Chem 2021; 298:101557. [PMID: 34974059 PMCID: PMC8808172 DOI: 10.1016/j.jbc.2021.101557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/19/2022] Open
Abstract
It is well established that the antitoxins of toxin-antitoxin (TA) systems are selectively degraded by bacterial proteases in response to stress. However, how distinct stressors result in the selective degradation of specific antitoxins remains unanswered. MqsRA is a TA system activated by various stresses, including oxidation. Here, we reconstituted the Escherichia coli ClpXP proteolytic machinery in vitro to monitor degradation of MqsRA TA components. We show that the MqsA antitoxin is a ClpXP proteolysis substrate, and that its degradation is regulated by both zinc occupancy in MqsA and MqsR toxin binding. Using NMR chemical shift perturbation mapping, we show that MqsA is targeted directly to ClpXP via the ClpX substrate targeting N-domain, and ClpX mutations that disrupt N-domain binding inhibit ClpXP mediated degradation in vitro. Finally, we discovered that MqsA contains a cryptic N-domain recognition sequence that is accessible only in the absence of zinc and MqsR toxin, both of which stabilize the MqsA fold. This recognition sequence is transplantable and sufficient to target a fusion protein for degradation in vitro and in vivo. Based on these results, we propose a model in which stress selectively targets nascent, zinc-free MqsA, resulting in exposure of the ClpX recognition motif for ClpXP mediated degradation.
Collapse
Affiliation(s)
- Margaret R Vos
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, USA; Graduate Program in Molecular Biology and Biochemistry, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Benjamin Piraino
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Christopher J LaBreck
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Negar Rahmani
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Catherine E Trebino
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA
| | - Marta Schoenle
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Jodi L Camberg
- Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA.
| | - Rebecca Page
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, USA.
| |
Collapse
|
19
|
Margalit A, Carolan JC, Walsh F. Global protein responses of multi-drug resistant plasmid containing Escherichia coli to ampicillin, cefotaxime, imipenem and ciprofloxacin. J Glob Antimicrob Resist 2021; 28:90-96. [PMID: 34922055 DOI: 10.1016/j.jgar.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES This study compared the proteomics of Escherichia coli containing the multi-drug resistance pEK499 plasmid under antimicrobial stress and no antimicrobial. METHODS We utilised mass spectrometry-based proteomics to compare the proteomes of the bacteria and plasmid under antimicrobial stress and no antimicrobial. RESULTS Our analysis identified statistically significant differentially abundant proteins common to groups exposed to the β-lactam antimicrobials but not ciprofloxacin, indicating a β-lactam stress response to exposure from this class of drugs, irrespective of β-lactam resistance or susceptibility. Data arising from comparisons of the proteomes of ciprofloxacin-treated E. coli and controls detected an increase in the relative abundance of proteins associated with ribosomes, translation, the TCA-cycle and several proteins associated with detoxification and a decrease in the relative abundances of proteins associated with stress response, including oxidative stress. We identified changes in proteins associated with persister formation in the presence of ciprofloxacin but not the β-lactams. The plasmid proteome differed across each treatment and did not follow the pattern of antimicrobial - AMR protein associations: a relative increase in the amount of blaCTX-M-15 in the presence of cefotaxime and ciprofloxacin but not the other β-lactams, suggesting regulation of the blaCTX-M-15 protein production. CONCLUSIONS The proteomic data from the this study provided novel insights into the proteins produced from the chromosome and plasmid under different antimicrobial stresses. These data also identified novel proteins not previously associated with AMR or antimicrobials responses in pathogens, which may well represent potential targets of AMR inhibition.
Collapse
Affiliation(s)
- Anatte Margalit
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - James C Carolan
- Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Fiona Walsh
- Department of Biology, Maynooth University, Co. Kildare, Ireland.
| |
Collapse
|
20
|
Csp1, a Cold Shock Protein Homolog in Xylella fastidiosa Influences Cell Attachment, Pili Formation, and Gene Expression. Microbiol Spectr 2021; 9:e0159121. [PMID: 34787465 PMCID: PMC8597638 DOI: 10.1128/spectrum.01591-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial cold shock-domain proteins are conserved nucleic acid binding chaperones that play important roles in stress adaptation and pathogenesis. Csp1 is a temperature-independent cold shock protein homolog in Xylella fastidiosa, a bacterial plant pathogen of grapevine and other economically important crops. Csp1 contributes to stress tolerance and virulence in X. fastidiosa. However, besides general single-stranded nucleic acid binding activity, little is known about the specific function(s) of Csp1. To further investigate the role(s) of Csp1, we compared phenotypic differences and transcriptome profiles between the wild type and a csp1 deletion mutant (Δcsp1). Csp1 contributes to attachment and long-term survival and influences gene expression. We observed reduced cell-to-cell attachment and reduced attachment to surfaces with the Δcsp1 strain compared to those with the wild type. Transmission electron microscopy imaging revealed that Δcsp1 was deficient in pili formation compared to the wild type and complemented strains. The Δcsp1 strain also showed reduced survival after long-term growth in vitro. Long-read nanopore transcriptome sequencing (RNA-Seq) analysis revealed changes in expression of several genes important for attachment and biofilm formation in Δcsp1 compared to that in the wild type. One gene of interest, pilA1, which encodes a type IV pili subunit protein, was upregulated in Δcsp1. Deleting pilA1 in X. fastidiosa strain Stag's Leap increased surface attachment in vitro and reduced virulence in grapevines. X. fastidiosa virulence depends on bacterial attachment to host tissue and movement within and between xylem vessels. Our results show that the impact of Csp1 on virulence may be due to changes in expression of attachment genes. IMPORTANCE Xylella fastidiosa is a major threat to the worldwide agriculture industry. Despite its global importance, many aspects of X. fastidiosa biology and pathogenicity are poorly understood. There are currently few effective solutions to suppress X. fastidiosa disease development or eliminate bacteria from infected plants. Recently, disease epidemics due to X. fastidiosa have greatly expanded, increasing the need for better disease prevention and control strategies. Our studies show a novel connection between cold shock protein Csp1 and pili abundance and attachment, which have not been reported for X. fastidiosa. Understanding how pathogenesis-related gene expression is regulated can aid in developing novel pathogen and disease control strategies. We also streamlined a bioinformatics protocol to process and analyze long-read nanopore bacterial RNA-Seq data, which will benefit the research community, particularly those working with non-model bacterial species.
Collapse
|
21
|
Martini CL, Coronado AZ, Melo MCN, Gobbi CN, Lopez ÚS, de Mattos MC, Amorim TT, Botelho AMN, Vasconcelos ATR, Almeida LGP, Planet PJ, Zingali RB, Figueiredo AMS, Ferreira-Carvalho BT. Cellular Growth Arrest and Efflux Pumps Are Associated With Antibiotic Persisters in Streptococcus pyogenes Induced in Biofilm-Like Environments. Front Microbiol 2021; 12:716628. [PMID: 34621249 PMCID: PMC8490960 DOI: 10.3389/fmicb.2021.716628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pyogenes (group A Streptococcus-GAS) is an important pathogen for humans. GAS has been associated with severe and invasive diseases. Despite the fact that these bacteria remain universally susceptible to penicillin, therapeutic failures have been reported in some GAS infections. Many hypotheses have been proposed to explain these antibiotic-unresponsive infections; however, none of them have fully elucidated this phenomenon. In this study, we show that GAS strains have the ability to form antimicrobial persisters when inoculated on abiotic surfaces to form a film of bacterial agglomerates (biofilm-like environment). Our data suggest that efflux pumps were possibly involved in this phenomenon. In fact, gene expression assays by real-time qRT-PCR showed upregulation of some genes associated with efflux pumps in persisters arising in the presence of penicillin. Phenotypic reversion assay and whole-genome sequencing indicated that this event was due to non-inherited resistance mechanisms. The persister cells showed downregulation of genes associated with protein biosynthesis and cell growth, as demonstrated by gene expression assays. Moreover, the proteomic analysis revealed that susceptible cells express higher levels of ribosome proteins. It is remarkable that previous studies have reported the recovery of S. pyogenes viable cells from tissue biopsies of patients presented with GAS invasive infections and submitted to therapy with antibiotics. The persistence phenomenon described herein brings new insights into the origin of therapeutic failures in S. pyogenes infections. Multifactorial mechanisms involving protein synthesis inhibition, cell growth impairment and efflux pumps seem to play roles in the formation of antimicrobial persisters in S. pyogenes.
Collapse
Affiliation(s)
- Caroline Lopes Martini
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Amada Zambrana Coronado
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Celeste Nunes Melo
- Departamento de Microbiologia e Parasitologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Clarice Neffa Gobbi
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Úrsula Santos Lopez
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Correa de Mattos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thais Tavares Amorim
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Maria Nunes Botelho
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Paul J Planet
- Department of Pediatrics, Perelman College of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, United States.,Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Russolina Benedeta Zingali
- Unidade de Espectrometria de Massas e Proteomica - UEMP, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Agnes Marie Sá Figueiredo
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
22
|
Carvalho IGB, Merfa MV, Teixeira-Silva NS, Martins PMM, Takita MA, de Souza AA. Overexpression of mqsR in Xylella fastidiosa Leads to a Priming Effect of Cells to Copper Stress Tolerance. Front Microbiol 2021; 12:712564. [PMID: 34616378 PMCID: PMC8488296 DOI: 10.3389/fmicb.2021.712564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Copper-based compounds are widely used in agriculture as a chemical strategy to limit the spread of multiple plant diseases; however, the continuous use of this heavy metal has caused environmental damage as well as the development of copper-resistant strains. Thus, it is important to understand how the bacterial phytopathogens evolve to manage with this metal in the field. The MqsRA Toxin-Antitoxin system has been recently described for its function in biofilm formation and copper tolerance in Xylella fastidiosa, a plant-pathogen bacterium responsible for economic damage in several crops worldwide. Here we identified differentially regulated genes by X. fastidiosa MqsRA by assessing changes in global gene expression with and without copper. Results show that mqsR overexpression led to changes in the pattern of cell aggregation, culminating in a global phenotypic heterogeneity, indicative of persister cell formation. This phenotype was also observed in wild-type cells but only in the presence of copper. This suggests that MqsR regulates genes that alter cell behavior in order to prime them to respond to copper stress, which is supported by RNA-Seq analysis. To increase cellular tolerance, proteolysis and efflux pumps and regulator related to multidrug resistance are induced in the presence of copper, in an MqsR-independent response. In this study we show a network of genes modulated by MqsR that is associated with induction of persistence in X. fastidiosa. Persistence in plant-pathogenic bacteria is an important genetic tolerance mechanism still neglected for management of phytopathogens in agriculture, for which this work expands the current knowledge and opens new perspectives for studies aiming for a more efficient control in the field.
Collapse
Affiliation(s)
| | - Marcus Vinicius Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | | | | | - Marco Aurélio Takita
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis, Brazil
| | | |
Collapse
|
23
|
Song Y, Zhang S, Luo G, Shen Y, Li C, Zhu Y, Huang Q, Mou X, Tang X, Liu T, Wu S, Tong A, He Y, Bao R. Type II Antitoxin HigA Is a Key Virulence Regulator in Pseudomonas aeruginosa. ACS Infect Dis 2021; 7:2930-2940. [PMID: 34554722 DOI: 10.1021/acsinfecdis.1c00401] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacterial type II toxin-antitoxin (TA) systems are abundant genetic elements and are involved in a diverse array of physiological processes. These systems encode an antitoxin protein that directly binds and effectively neutralizes the protein toxin. Recent studies have highlighted the key roles of type II TA modules in bacterial virulence and pathogenesis, but the underlying mechanisms remain unclear. Here, we investigated the antitoxin HigA in Pseudomonas aeruginosa infection. Proteomic analysis of the higA deletion strain revealed an enhanced expression of pathogenic proteins. We further verified that HigA negatively controlled T3SS and T6SS expression by directly interacting with the promoter regions of the regulators amrZ and exsA, respectively. In other words, the reversal of HigA-mediated transcriptional inhibition on stress stimulation could induce virulence genes. These findings confirm the crucial roles of the type II antitoxin in bacterial infection, which highlights the potential of the HigBA TA system as an antibacterial treatment target.
Collapse
Affiliation(s)
- Yingjie Song
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| | - Siping Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, P.R. China
| | - Guihua Luo
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| | - Yalin Shen
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| | - Changcheng Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| | - Yibo Zhu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| | - Qin Huang
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| | - Xingyu Mou
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| | - Xinyue Tang
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| | - Tonggen Liu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| | - Siying Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610044, China
| | - Aiping Tong
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| | - Yongxing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, P.R. China
| | - Rui Bao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610093, China
| |
Collapse
|
24
|
Cardoza E, Singh H. Involvement of CspC in response to diverse environmental stressors in Escherichia coli. J Appl Microbiol 2021; 132:785-801. [PMID: 34260797 DOI: 10.1111/jam.15219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/23/2022]
Abstract
The ability of Escherichia coli surviving a cold shock lies mainly with the induction of a few Csps termed as 'Major cold shock proteins'. Regardless of high sequence similarity among the nine homologous members, CspC appears to be functionally diverse in conferring the cell adaptability to various stresses based on fundamental properties of the protein including nucleic acid binding, nucleic acid melting and regulatory activity. Spanning three different stress regulons of acid, oxidative and heat, CspC regulates gene expression and transcript stability of stress proteins and bestows upon the cell tolerance to lethal-inducing agents ultimately helping it adapt to severe environmental assaults. While its exact role in cellular physiology is still to be detailed, understanding the transcriptional and translational control will likely provide insights into the mechanistic role of CspC under stress conditions. To this end, we review the knowledge on stress protein regulation by CspC and highlight its activity in response to stressors thereby elucidating its role as a major Csp player in response to one too many environmental triggers. The knowledge presented here could see various downstream applications in engineering microbes for industrial, agricultural and research applications in order to achieve high product efficiency and to aid bacteria cope with environmentally harsh conditions.
Collapse
Affiliation(s)
- Evieann Cardoza
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Mumbai, India
| | - Harinder Singh
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Mumbai, India
| |
Collapse
|
25
|
Kamruzzaman M, Wu AY, Iredell JR. Biological Functions of Type II Toxin-Antitoxin Systems in Bacteria. Microorganisms 2021; 9:microorganisms9061276. [PMID: 34208120 PMCID: PMC8230891 DOI: 10.3390/microorganisms9061276] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
After the first discovery in the 1980s in F-plasmids as a plasmid maintenance system, a myriad of toxin-antitoxin (TA) systems has been identified in bacterial chromosomes and mobile genetic elements (MGEs), including plasmids and bacteriophages. TA systems are small genetic modules that encode a toxin and its antidote and can be divided into seven types based on the nature of the antitoxin molecules and their mechanism of action to neutralise toxins. Among them, type II TA systems are widely distributed in chromosomes and plasmids and the best studied so far. Maintaining genetic material may be the major function of type II TA systems associated with MGEs, but the chromosomal TA systems contribute largely to functions associated with bacterial physiology, including the management of different stresses, virulence and pathogenesis. Due to growing interest in TA research, extensive work has been conducted in recent decades to better understand the physiological roles of these chromosomally encoded modules. However, there are still controversies about some of the functions associated with different TA systems. This review will discuss the most current findings and the bona fide functions of bacterial type II TA systems.
Collapse
Affiliation(s)
- Muhammad Kamruzzaman
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Correspondence: (M.K.); (J.R.I.)
| | - Alma Y. Wu
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
| | - Jonathan R. Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Westmead Hospital, Westmead, NSW 2145, Australia
- Correspondence: (M.K.); (J.R.I.)
| |
Collapse
|
26
|
Wilmaerts D, De Loose PJ, Vercauteren S, De Smedt S, Verstraeten N, Michiels J. Functional analysis of cysteine residues of the Hok/Gef type I toxins in Escherichia coli. FEMS Microbiol Lett 2021; 368:6296419. [PMID: 34114031 DOI: 10.1093/femsle/fnab069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/08/2021] [Indexed: 01/04/2023] Open
Abstract
The Hok/Gef family consists of structurally similar, single-span membrane peptides that all contain a positively charged N-terminal domain, an α-helix and a periplasmic C-terminal domain. Hok/Gef peptides have previously been described to play distinct physiological roles. Indeed, while HokB has been implicated in bacterial persistence, other members of the Hok/Gef family are known to induce cell lysis. However, the generalizability of previously published studies is problematic, as they have all used different expression systems. Therefore, we conducted a systematic study of the nine Hok/Gef peptides of Escherichia coli. We observed rapid cell death following expression of hokA, hokC, hokD, hokE, pndA1, hok or srnB, while expression of hokB or pndA2 does not result in cell lysis. A remarkable feature of Hok/Gef peptides is the presence of conserved periplasmic tyrosine and/or cysteine residues. For the HokB peptide, one of these residues has previously been implicated in intermolecular dimerization, which is essential for HokB to exert its role in persistence. To assess the role of the periplasmic cysteine and tyrosine residues in other Hok/Gef peptides and to decipher whether these residues determine peptide toxicity, an array of substitution mutants were constructed. We found that these residues are important activators of toxicity for Hok, HokA and HokE peptides. Despite the loss of the cell killing phenotype in HokS31_Y48, HokAS29_S46 and HokES29_Y46, these peptides do not exert a persister phenotype. More research is needed to fully comprehend why HokB is the sole peptide of the Hok/Gef family that mediates persistence.
Collapse
Affiliation(s)
- Dorien Wilmaerts
- KU Leuven Centre of Microbial and Plant Genetics, VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| | - Pieter-Jan De Loose
- KU Leuven Centre of Microbial and Plant Genetics, VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| | - Silke Vercauteren
- KU Leuven Centre of Microbial and Plant Genetics, VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| | - Sandrien De Smedt
- KU Leuven Centre of Microbial and Plant Genetics, VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| | - Natalie Verstraeten
- KU Leuven Centre of Microbial and Plant Genetics, VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| | - Jan Michiels
- KU Leuven Centre of Microbial and Plant Genetics, VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| |
Collapse
|
27
|
Xia K, Ma J, Liang X. Impacts of type II toxin-antitoxin systems on cell physiology and environmental behavior in acetic acid bacteria. Appl Microbiol Biotechnol 2021; 105:4357-4367. [PMID: 34021811 DOI: 10.1007/s00253-021-11357-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/08/2021] [Accepted: 05/16/2021] [Indexed: 12/19/2022]
Abstract
Acetic acid bacteria (AAB) are a group of Gram-negative and strictly aerobic microorganisms widely used in vinegar industry, especially the species belonging to the genera Acetobacter and Komagataeibacter. The environments inhabited by AAB during the vinegar fermentation, in particular those natural traditional bioprocesses, are complex and dynamically changed, usually accompanied by diverse microorganisms, bacteriophages, and the increasing acetic acid concentration. For this reason, how AAB survive to such harsh niches has always been an interesting research field. Previous omic analyses (e.g., genomics, proteomics, and transcriptomics) have provided abundant clues for the metabolic pathways and bioprocesses indispensable for the acid stress adaptation of AAB. Nevertheless, it is far from fully understanding what factors regulate these modular mechanisms overtly and covertly upon shifting environments. Bacterial toxin-antitoxin systems (TAS), usually consisting of a pair of genes encoding a stable toxin and an unstable antitoxin that is capable of counteracting the toxin, have been uncovered to have a variety of biological functions. Recent studies focusing on the role of TAS in Acetobacter pasteurianus suggest that TAS contribute substantially to the acid stress resistance. In this mini review, we discuss the biological functions of type II TAS in the context of AAB with regard to the acid stress resistance, persister formation and resuscitation, genome stability, and phage immunity. KEY POINTS: • Type II TAS act as regulators in the acid stress resistance of AAB. • Type II TAS are implicated in the formation of acid-tolerant persister cells in AAB. • Type II TAS are potential factors responsible for phage immunity and genome stability.
Collapse
Affiliation(s)
- Kai Xia
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jiawen Ma
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.,Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xinle Liang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China. .,Institute of Food Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
28
|
Ray S, Da Costa R, Thakur S, Nandi D. Salmonella Typhimurium encoded cold shock protein E is essential for motility and biofilm formation. MICROBIOLOGY-SGM 2021; 166:460-473. [PMID: 32159509 DOI: 10.1099/mic.0.000900] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability of bacteria to form biofilms increases their survival under adverse environmental conditions. Biofilms have enormous medical and environmental impact; consequently, the factors that influence biofilm formation are an important area of study. In this investigation, the roles of two cold shock proteins (CSP) during biofilm formation were investigated in Salmonella Typhimurium, which is a major foodborne pathogen. Among all CSP transcripts studied, the expression of cspE (STM14_0732) was higher during biofilm growth. The cspE deletion strain (ΔcspE) did not form biofilms on a cholesterol coated glass surface; however, complementation with WT cspE, but not the F30V mutant, was able to rescue this phenotype. Transcript levels of other CSPs demonstrated up-regulation of cspA (STM14_4399) in ΔcspE. The cspA deletion strain (ΔcspA) did not affect biofilm formation; however, ΔcspEΔcspA exhibited higher biofilm formation compared to ΔcspE. Most likely, the higher cspA amounts in ΔcspE reduced biofilm formation, which was corroborated using cspA over-expression studies. Further functional studies revealed that ΔcspE and ΔcspEΔcspA exhibited slow swimming but no swarming motility. Although cspA over-expression did not affect motility, cspE complementation restored the swarming motility of ΔcspE. The transcript levels of the major genes involved in motility in ΔcspE demonstrated lower expression of the class III (fliC, motA, cheY), but not class I (flhD) or class II (fliA, fliL), flagellar regulon genes. Overall, this study has identified the interplay of two CSPs in regulating two biological processes: CspE is essential for motility in a CspA-independent manner whereas biofilm formation is CspA-dependent.
Collapse
Affiliation(s)
- Semanti Ray
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Rochelle Da Costa
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Samriddhi Thakur
- Department of Undergraduate Studies, Indian Insitute of Science, Bangalore-560012, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
29
|
Zhao W, Ren Z, Luo Y, Cheng J, Wang J, Wang Y, Yang Z, Yao X, Zhong Z, Yang W, Wu X. Metagenomics analysis of the gut microbiome in healthy and bacterial pneumonia forest musk deer. Genes Genomics 2021; 43:43-53. [PMID: 33428153 DOI: 10.1007/s13258-020-01029-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The forest musk deer (FMD, Moschus berezovskii) is an threatened species in China. Bacterial pneumonia was found to seriously restrict the development of FMD captive breeding. Historical evidence has demonstrated the relationship between immune system and intestinal Lactobacillus in FMD. OBJECTIVE We sought to elucidate the differences in the gut microbiota of healthy and bacterial pneumonia FMD. METHODS The bacterial pneumonia FMD was demonstrated by bacterial and pathological diagnosis, and the gut microbiome of healthy and bacterial pneumonia FMD was sequenced and analysed. RESULTS There are three pathogens (Pseudomonas aeruginosa, Streptococcus equinus and Trueperella pyogenes) isolated from the bacterial pneumonia FMD individuals. Compared with the healthy group, the abundance of Firmicutes and Proteobacteria in the pneumonia group was changed, and a high level of Proteobacteria was found in the pneumonia group. In addition, a higher abundance of Acinetobacter (p = 0.01) was observed in the population of the pneumonia group compared with the healthy group. Several potentially harmful bacteria and disease-related KEGG subsystems were only found in the gut of the bacterial pneumonia group. Analysis of KEGG revealed that many genes related to type IV secretion system, type IV pilus, lipopolysaccharide export system, HTH-type transcriptional regulator/antitoxin MqsA, and ArsR family transcriptional regulator were significantly enriched in the metagenome of the bacterial pneumonia FMD. CONCLUSION Our results demonstrated that the gut microbiome was significantly altered in the bacterial pneumonia group. Overall, our research improves the understanding of the potential role of the gut microbiota in the FMD bacterial pneumonia.
Collapse
Affiliation(s)
- Wei Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, People's Republic of China
| | - Ziwei Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, People's Republic of China
| | - Yan Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, People's Republic of China.
| | - Jianguo Cheng
- Sichuan Institute of Musk Deer Breeding, Chengdu, 610000, Sichuan, People's Republic of China
| | - Jie Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, People's Republic of China
| | - Yin Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, People's Republic of China
| | - Zexiao Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, People's Republic of China
| | - Xueping Yao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, People's Republic of China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, People's Republic of China
| | - Wei Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, People's Republic of China
| | - Xi Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 610000, Sichuan, People's Republic of China
| |
Collapse
|
30
|
Liu S, Brul S, Zaat SAJ. Bacterial Persister-Cells and Spores in the Food Chain: Their Potential Inactivation by Antimicrobial Peptides (AMPs). Int J Mol Sci 2020; 21:E8967. [PMID: 33260797 PMCID: PMC7731242 DOI: 10.3390/ijms21238967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
The occurrence of bacterial pathogens in the food chain has caused a severe impact on public health and welfare in both developing and developed countries. Moreover, the existence of antimicrobial-tolerant persisting morphotypes of these pathogens including both persister-cells as well as bacterial spores contributes to difficulty in elimination and in recurrent infection. Therefore, comprehensive understanding of the behavior of these persisting bacterial forms in their environmental niche and upon infection of humans is necessary. Since traditional antimicrobials fail to kill persisters and spores due to their (extremely) low metabolic activities, antimicrobial peptides (AMPs) have been intensively investigated as one of the most promising strategies against these persisting bacterial forms, showing high efficacy of inactivation. In addition, AMP-based foodborne pathogen detection and prevention of infection has made significant progress. This review focuses on recent research on common bacterial pathogens in the food chain, their persisting morphotypes, and on AMP-based solutions. Challenges in research and application of AMPs are described.
Collapse
Affiliation(s)
- Shiqi Liu
- Swammerdam Institute for Life Sciences, Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Stanley Brul
- Swammerdam Institute for Life Sciences, Department of Molecular Biology and Microbial Food Safety, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Sebastian A. J. Zaat
- Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
31
|
Pleiotropic roles of cold shock proteins with special emphasis on unexplored cold shock protein member of Plasmodium falciparum. Malar J 2020; 19:382. [PMID: 33109193 PMCID: PMC7592540 DOI: 10.1186/s12936-020-03448-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
The cold shock domain (CSD) forms the hallmark of the cold shock protein family that provides the characteristic feature of binding with nucleic acids. While much of the information is available on bacterial, plants and human cold shock proteins, their existence and functions in the malaria parasite remains undefined. In the present review, the available information on functions of well-characterized cold shock protein members in different organisms has been collected and an attempt was made to identify the presence and role of cold shock proteins in malaria parasite. A single Plasmodium falciparum cold shock protein (PfCoSP) was found in P. falciparum which is reported to be essential for parasite survival. Essentiality of PfCoSP underscores its importance in malaria parasite life cycle. In silico tools were used to predict the features of PfCoSP and to identify its homologues in bacteria, plants, humans, and other Plasmodium species. Modelled structures of PfCoSP and its homologues in Plasmodium species were compared with human cold shock protein 'YBOX-1' (Y-box binding protein 1) that provide important insights into their functioning. PfCoSP model was subjected to docking with B-form DNA and RNA to reveal a number of residues crucial for their interaction. Transcriptome analysis and motifs identified in PfCoSP implicate its role in controlling gene expression at gametocyte, ookinete and asexual blood stages of malaria parasite. Overall, this review emphasizes the functional diversity of the cold shock protein family by discussing their known roles in gene expression regulation, cold acclimation, developmental processes like flowering transition, and flower and seed development, and probable function in gametocytogenesis in case of malaria parasite. This enables readers to view the cold shock protein family comprehensively.
Collapse
|
32
|
Deng Z, Luo XM, Liu J, Wang H. Quorum Sensing, Biofilm, and Intestinal Mucosal Barrier: Involvement the Role of Probiotic. Front Cell Infect Microbiol 2020; 10:538077. [PMID: 33102249 PMCID: PMC7546212 DOI: 10.3389/fcimb.2020.538077] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
The intestine is a particularly dynamic environment in which the host constantly interacts with trillions of symbiotic bacteria called the microbiota. Using quorum sensing (QS) communication, bacteria can coordinate their social behavior and influence host cell activities in a non-invasive manner. Nowadays, a large amount of research has greatly spurred the understanding of how bacterial QS communication regulates bacterial cooperative behaviors due to coexistence and host-microbe interactions. In this review, we discuss bacterial QS in the gut and its role in biofilm formation. As a biological barrier, the mucosal immune system can effectively prevent pathogenic microorganisms and other immunogenic components from entering the internal environment of the host. We focus on the relationship between biofilm and intestinal mucosal immunity, and how probiotic bacteria may regulate them. This review is to provide a theoretical basis for the development of new techniques including probiotics targeting the intestinal barrier function, thereby improving gut health.
Collapse
Affiliation(s)
- Zhaoxi Deng
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jianxin Liu
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Haifeng Wang
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Science, Zhejiang University, Hangzhou, China
- *Correspondence: Haifeng Wang
| |
Collapse
|
33
|
LeRoux M, Culviner PH, Liu YJ, Littlehale ML, Laub MT. Stress Can Induce Transcription of Toxin-Antitoxin Systems without Activating Toxin. Mol Cell 2020; 79:280-292.e8. [PMID: 32533919 PMCID: PMC7368831 DOI: 10.1016/j.molcel.2020.05.028] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/02/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Toxin-antitoxin (TA) systems are ubiquitous genetic elements in bacterial genomes, but their functions are controversial. Although they are frequently postulated to regulate cell growth following stress, few null phenotypes for TA systems have been reported. Here, we show that TA transcript levels can increase substantially in response to stress, but toxin is not liberated. We find that the growth of an Escherichia coli strain lacking ten TA systems encoding endoribonuclease toxins is not affected following exposure to six stresses that each trigger TA transcription. Additionally, using RNA sequencing, we find no evidence of mRNA cleavage following stress. Stress-induced transcription arises from antitoxin degradation and relief of transcriptional autoregulation. Importantly, although free antitoxin is readily degraded in vivo, antitoxin bound to toxin is protected from proteolysis, preventing release of active toxin. Thus, transcription is not a reliable marker of TA activity, and TA systems do not strongly promote survival following individual stresses.
Collapse
Affiliation(s)
- Michele LeRoux
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter H Culviner
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yue J Liu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Megan L Littlehale
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
34
|
Evaluating the Potential for Cross-Interactions of Antitoxins in Type II TA Systems. Toxins (Basel) 2020; 12:toxins12060422. [PMID: 32604745 PMCID: PMC7354431 DOI: 10.3390/toxins12060422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/21/2023] Open
Abstract
The diversity of Type-II toxin–antitoxin (TA) systems in bacterial genomes requires tightly controlled interaction specificity to ensure protection of the cell, and potentially to limit cross-talk between toxin–antitoxin pairs of the same family of TA systems. Further, there is a redundant use of toxin folds for different cellular targets and complexation with different classes of antitoxins, increasing the apparent requirement for the insulation of interactions. The presence of Type II TA systems has remained enigmatic with respect to potential benefits imparted to the host cells. In some cases, they play clear roles in survival associated with unfavorable growth conditions. More generally, they can also serve as a “cure” against acquisition of highly similar TA systems such as those found on plasmids or invading genetic elements that frequently carry virulence and resistance genes. The latter model is predicated on the ability of these highly specific cognate antitoxin–toxin interactions to form cross-reactions between chromosomal antitoxins and invading toxins. This review summarizes advances in the Type II TA system models with an emphasis on antitoxin cross-reactivity, including with invading genetic elements and cases where toxin proteins share a common fold yet interact with different families of antitoxins.
Collapse
|
35
|
Comparative Genomics and Evolutionary Analysis of RNA-Binding Proteins of Burkholderia cenocepacia J2315 and Other Members of the B. cepacia Complex. Genes (Basel) 2020; 11:genes11020231. [PMID: 32098200 PMCID: PMC7074383 DOI: 10.3390/genes11020231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
RNA-binding proteins (RBPs) are important regulators of cellular functions, playing critical roles on the survival of bacteria and in the case of pathogens, on their interaction with the host. RBPs are involved in transcriptional, post-transcriptional, and translational processes. However, except for model organisms like Escherichia coli, there is little information about the identification or characterization of RBPs in other bacteria, namely in members of the Burkholderia cepacia complex (Bcc). Bcc is a group of bacterial species associated with a poor clinical prognosis in cystic fibrosis patients. These species have some of the largest bacterial genomes, and except for the presence of two-distinct Hfq-like proteins, their RBP repertoire has not been analyzed so far. Using in silico approaches, we identified 186 conventional putative RBPs in Burkholderia cenocepacia J2315, an epidemic and multidrug resistant pathogen of cystic fibrosis patients. Here we describe the comparative genomics and phylogenetic analysis of RBPs present in multiple copies and predicted to play a role in transcription, protein synthesis, and RNA decay in Bcc bacteria. In addition to the two different Hfq chaperones, five cold shock proteins phylogenetically close to E. coli CspD protein and three distinct RhlE-like helicases could be found in the B. cenocepacia J2315 genome. No RhlB, SrmB, or DeaD helicases could be found in the genomes of these bacteria. These results, together with the multiple copies of other proteins generally involved in RNA degradation, suggest the existence, in B. cenocepacia and in other Bcc bacteria, of some extra and unexplored functions for the mentioned RBPs, as well as of alternative mechanisms involved in RNA regulation and metabolism in these bacteria.
Collapse
|
36
|
Liu Y, Tan X, Cheng H, Gong J, Zhang Y, Wang D, Ding W. The cold shock family gene cspD3 is involved in the pathogenicity of Ralstonia solanacearum CQPS-1 to tobacco. Microb Pathog 2020; 142:104091. [PMID: 32088390 DOI: 10.1016/j.micpath.2020.104091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 10/25/2022]
Abstract
Cold shock proteins (Csps) are small and highly conserved proteins that have target RNA- and DNA-binding activities. Csps play roles in different cellular processes and show functional redundancy. Ralstonia solanacearum, the agent of bacterial wilt, has 4 or 5 Csps based on genome analysis. However, the functions of all Csps in R. solanacearum remain unclear. According to phylogenetic analysis, the Csps from R. solanacearum are clustered into a group with CspD from E. coli. Here, we studied the role of CspD3, which was closer to CspD of E. coli in the phylogenetic tree. A cspD3 deletion strain was constructed to assess its effect on the phenotype of R. solanacearum, including growth, biofilm formation, motility, and virulence. The results showed that cspD3 of R. solanacearum was not necessary for normal growth, cold-shock adaptation, or biofilm formation. However, deletion of cspD3 in R. solanacearum CQPS-1 led to increased swimming motility, and the mean diameters of swimming haloes produced by the ΔcspD3 mutant were 1.3-fold larger than those produced by wild-type strain and 1.2-fold larger than those produced by the complemented strain. More importantly, the virulence of the cspD3 deletion mutant on susceptible tobacco plants was significantly attenuated compared to the wild-type strain. At 20 days after inoculation, the disease index of the ΔcspD3 mutant was 2.27, which was reduced by 1.6-fold relative to the wild-type strain. To assess the molecular response influenced by cspD3, the expressions of the main motility-associated genes and virulence-associated genes including flgM, fliA, pehS, pehR, hrpG, xpsR, and prhI in R. solanacearum were measured. The results showed that the expressions of hrpG, xpsR, and prhI were significantly decreased in cspD3 deletion mutant. Collectively, our findings showed that Csps are involved in the regulation of motility and virulence in R. solanacearum.
Collapse
Affiliation(s)
- Ying Liu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Xi Tan
- College of Plant Protection, Southwest University, Chongqing, China
| | - Haojin Cheng
- College of Plant Protection, Southwest University, Chongqing, China
| | - Jie Gong
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yong Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Daibin Wang
- Chongqing Tobacco Science Research Institute, Chongqing, China.
| | - Wei Ding
- College of Plant Protection, Southwest University, Chongqing, China.
| |
Collapse
|
37
|
Reassessing the Role of the Type II MqsRA Toxin-Antitoxin System in Stress Response and Biofilm Formation: mqsA Is Transcriptionally Uncoupled from mqsR. mBio 2019; 10:mBio.02678-19. [PMID: 31848281 PMCID: PMC6918082 DOI: 10.1128/mbio.02678-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxin-antitoxin (TA) systems are broadly distributed modules whose biological roles remain mostly unknown. The mqsRA system is a noncanonical TA system in which the toxin and antitoxins genes are organized in operon but with the particularity that the toxin gene precedes that of the antitoxin. This system was shown to regulate global processes such as resistance to bile salts, motility, and biofilm formation. In addition, the MqsA antitoxin was shown to be a master regulator that represses the transcription of the csgD, cspD, and rpoS global regulator genes, thereby displaying a pleiotropic regulatory role. Here, we identified two promoters located in the toxin sequence driving the constitutive expression of mqsA, allowing thereby excess production of the MqsA antitoxin compared to the MqsR toxin. Our results show that both antitoxin-specific and operon promoters are not regulated by stresses such as amino acid starvation, oxidative shock, or bile salts. Moreover, we show that the MqsA antitoxin is not a global regulator as suggested, since the expression of csgD, cspD and rpoS is similar in wild-type and ΔmqsRA mutant strains. Moreover, these two strains behave similarly in terms of biofilm formation and sensitivity to oxidative stress or bile salts.IMPORTANCE There is growing controversy regarding the role of chromosomal toxin-antitoxin systems in bacterial physiology. mqsRA is a peculiar toxin-antitoxin system, as the gene encoding the toxin precedes that of the antitoxin. This system was previously shown to play a role in stress response and biofilm formation. In this work, we identified two promoters specifically driving the constitutive expression of the antitoxin, thereby decoupling the expression of antitoxin from the toxin. We also showed that mqsRA contributes neither to the regulation of biofilm formation nor to the sensitivity to oxidative stress and bile salts. Finally, we were unable to confirm that the MqsA antitoxin is a global regulator. Altogether, our data are ruling out the involvement of the mqsRA system in Escherichia coli regulatory networks.
Collapse
|
38
|
Towards Exploring Toxin-Antitoxin Systems in Geobacillus: A Screen for Type II Toxin-Antitoxin System Families in a Thermophilic Genus. Int J Mol Sci 2019; 20:ijms20235869. [PMID: 31771094 PMCID: PMC6929052 DOI: 10.3390/ijms20235869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/12/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022] Open
Abstract
The toxin-antitoxin (TA) systems have been attracting attention due to their role in regulating stress responses in prokaryotes and their biotechnological potential. Much recognition has been given to type II TA system of mesophiles, while thermophiles have received merely limited attention. Here, we are presenting the putative type II TA families encoded on the genomes of four Geobacillus strains. We employed the TA finder tool to mine for TA-coding genes and manually curated the results using protein domain analysis tools. We also used the NCBI BLAST, Operon Mapper, ProOpDB, and sequence alignment tools to reveal the geobacilli TA features. We identified 28 putative TA pairs, distributed over eight TA families. Among the identified TAs, 15 represent putative novel toxins and antitoxins, belonging to the MazEF, MNT-HEPN, ParDE, RelBE, and XRE-COG2856 TA families. We also identified a potentially new TA composite, AbrB-ParE. Furthermore, we are suggesting the Geobacillus acetyltransferase TA (GacTA) family, which potentially represents one of the unique TA families with a reverse gene order. Moreover, we are proposing a hypothesis on the xre-cog2856 gene expression regulation, which seems to involve the c-di-AMP. This study aims for highlighting the significance of studying TAs in Geobacillus and facilitating future experimental research.
Collapse
|
39
|
MazF activation causes ACA sequence-independent and selective alterations in RNA levels in Escherichia coli. Arch Microbiol 2019; 202:105-114. [PMID: 31485711 DOI: 10.1007/s00203-019-01726-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022]
Abstract
Escherichia coli MazF is a toxin protein that cleaves RNA at ACA sequences. Its activation has been thought to cause growth inhibition, primarily through indiscriminate cleavage of RNA. To investigate responses following MazF activation, transcriptomic profiles of mazF-overexpressing and non-overexpressing E. coli K12 cells were compared. Analyses of differentially expressed genes demonstrated that the presence and the number of ACA trimers in RNA was unrelated to cellular RNA levels. Mapping differentially expressed genes onto the chromosome identified two chromosomal segments in which upregulated genes formed clusters, and these segments were absent in the chromosomes of E. coli strains other than K12. These results suggest that MazF regulates selective, rather than indiscriminate, categories of genes, and is involved in the regulation of horizontally acquired genes. We conclude that the primary role of MazF is not only cleaving RNA indiscriminately but also generating a specific cellular state.
Collapse
|
40
|
Donegan NP, Manna AC, Tseng CW, Liu GY, Cheung AL. CspA regulation of Staphylococcus aureus carotenoid levels and σ B activity is controlled by YjbH and Spx. Mol Microbiol 2019; 112:532-551. [PMID: 31074903 DOI: 10.1111/mmi.14273] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2019] [Indexed: 01/06/2023]
Abstract
Staphyloxanthin, a carotenoid in S. aureus, is a powerful antioxidant against oxidative stresses. The crtOPQMN operon driving pigment synthesis is under the control of σB . CspA, a cold shock protein, is known to control σB activity. To ascertain genes that regulate cspA, we screened a transposon library that exhibited reduced cspA expression and pigmentation. We found that the adaptor protein YjbH activates cspA expression. Spx, the redox-sensitive transcriptional regulator and a proteolytic target for YjbH and ClpXP, complexes with αCTD of RNAP prior to binding the cspA promoter to repress cspA activity. Increased cspA expression in trans in the inactive spx C10A mutant of JE2 did not enhance pigment production while it did in JE2, suggesting that cspA is downstream to Spx in pigmentation control. As the staphyloxanthin pigment is critical to S. aureus survival in human hosts, we demonstrated that the cspA and yjbH mutants survived less well than the parent in whole blood killing assay. Collectively, our studies suggest a pathway wherein YjbH and ClpXP proteolytically cleave Spx, a repressor of cspA transcription, to affect σB -dependent carotenoid expression, thus providing a critical link between intracellular redox sensing by Spx and carotenoid production to improve S. aureus survival during infections.
Collapse
Affiliation(s)
- Niles P Donegan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Adhar C Manna
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Ching Wen Tseng
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - George Y Liu
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ambrose L Cheung
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
41
|
Zhang L, Yu W, Tang Y, Li H, Ma X, Liu Z. RNA chaperone hfq mediates persistence to multiple antibiotics in Aeromonas veronii. Microb Pathog 2019; 132:124-128. [PMID: 31054368 DOI: 10.1016/j.micpath.2019.04.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
Abstract
Pathogenic Aeromonas veronii results in great healthy and economic losses in fishes and human. The multiple drug tolerance of bacterial persister is the major cause for recurrent infections. Ubiquitous RNA-binding protein Hfq is liable for antibiotic tolerance and persisiter production. We showed that the hfq deletion in A. veronii retarded the growth, reduced the tolerances to diverse antibiotics, and lowered the persistence. Such effects might be mediated by the downregulations of RelE, CspD, ClpB, RpoS, OxyR, and upregulation of OppB. Our study supports the role of Hfq in persister formation and provides clues for the avoidance of recalcitrant infections.
Collapse
Affiliation(s)
- Lin Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences and Pharmacy, Hainan University, 570228, Haikou, China.
| | - Wenjing Yu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences and Pharmacy, Hainan University, 570228, Haikou, China.
| | - Yanqiong Tang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences and Pharmacy, Hainan University, 570228, Haikou, China.
| | - Hong Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences and Pharmacy, Hainan University, 570228, Haikou, China.
| | - Xiang Ma
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences and Pharmacy, Hainan University, 570228, Haikou, China.
| | - Zhu Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life Sciences and Pharmacy, Hainan University, 570228, Haikou, China.
| |
Collapse
|
42
|
Maddela NR, Sheng B, Yuan S, Zhou Z, Villamar-Torres R, Meng F. Roles of quorum sensing in biological wastewater treatment: A critical review. CHEMOSPHERE 2019; 221:616-629. [PMID: 30665091 DOI: 10.1016/j.chemosphere.2019.01.064] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/23/2018] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Quorum sensing (QS) and quorum quenching (QQ) are increasingly reported in biological wastewater treatment processes because of their inherent roles in biofilm development, bacterial aggregation, granulation, colonization, and biotransformation of pollutants. As such, the fundamentals and ubiquitous nature of QS bacteria are critical for fully understanding the process of the wastewater treatment system. In this article, the details of QS-based strategies related to community behaviors and phenotypes in wastewater treatment systems were reviewed. The molecular aspects and coexistence of QS and QQ bacteria were also mentioned, which provide evidence that future wastewater treatment will indispensably rely on QS-based strategies. In addition, recent attempts focusing on the use of QQ for biofilm or biofouling control were also summarized. Nevertheless, there are still several challenges and knowledge gaps that warrant future targeted research on the ecological niche, abundance, and community of QS- and QQ-bacteria in environmental settings or engineered systems.
Collapse
Affiliation(s)
- Naga Raju Maddela
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, PR China; Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
| | - Binbin Sheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, PR China
| | - Shasha Yuan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, PR China
| | - Zhongbo Zhou
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, PR China
| | - Ronald Villamar-Torres
- Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier 34090, France; Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí, Campus Experimental "La Teodomira", Santa Ana 131301, Ecuador
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, PR China.
| |
Collapse
|
43
|
Giuliodori AM, Fabbretti A, Gualerzi C. Cold-Responsive Regions of Paradigm Cold-Shock and Non-Cold-Shock mRNAs Responsible for Cold Shock Translational Bias. Int J Mol Sci 2019; 20:E457. [PMID: 30678142 PMCID: PMC6386945 DOI: 10.3390/ijms20030457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/12/2019] [Accepted: 01/16/2019] [Indexed: 01/16/2023] Open
Abstract
In Escherichia coli, the mRNA transcribed from the main cold-shock gene cspA is a thermosensor, which at low temperature adopts a conformation particularly suitable for translation in the cold. Unlike cspA, its paralogue cspD is expressed only at 37 °C, is toxic so cannot be hyper-expressed in E. coli and is poorly translated in vitro, especially at low temperature. In this work, chimeric mRNAs consisting of different segments of cspA and cspD were constructed to determine if parts of cspA could confer cold-responsive properties to cspD to improve its expression. The activities of these chimeric mRNAs in translation and in partial steps of translation initiation such as formation of 30S initiation complexes and 50S subunits docking to 30S complexes to yield 70S initiation complexes were analyzed. We show that the 5' untranslated region (5'UTR) of cspA mRNA is sufficient to improve the translation of cspD mRNA at 37 °C whereas both the 5'UTR and the region immediately downstream the cspA mRNA initiation triplet are essential for translation at low temperature. Furthermore, the translational apparatus of cold-stressed cells contains trans-active elements targeting both 5'UTR and downstream regions of cspA mRNA, thereby improving translation of specific chimeric constructs at both 15 and 37 °C.
Collapse
Affiliation(s)
| | - Attilio Fabbretti
- Laboratory of Genetics, University of Camerino, 62032 Camerino, Italy.
| | - Claudio Gualerzi
- Laboratory of Genetics, University of Camerino, 62032 Camerino, Italy.
| |
Collapse
|
44
|
Mets T, Kasvandik S, Saarma M, Maiväli Ü, Tenson T, Kaldalu N. Fragmentation of Escherichia coli mRNA by MazF and MqsR. Biochimie 2019; 156:79-91. [DOI: 10.1016/j.biochi.2018.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/06/2018] [Indexed: 01/21/2023]
|
45
|
Switzer A, Evangelopoulos D, Figueira R, de Carvalho LPS, Brown DR, Wigneshweraraj S. A novel regulatory factor affecting the transcription of methionine biosynthesis genes in Escherichia coli experiencing sustained nitrogen starvation. Microbiology (Reading) 2018; 164:1457-1470. [DOI: 10.1099/mic.0.000683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Amy Switzer
- 1MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Dimitrios Evangelopoulos
- 2Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Rita Figueira
- 1MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Luiz Pedro S. de Carvalho
- 2Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Daniel R. Brown
- 1MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | | |
Collapse
|
46
|
Zhang Y, Xia B, Li M, Shi J, Long Y, Jin Y, Bai F, Cheng Z, Jin S, Wu W. HigB Reciprocally Controls Biofilm Formation and the Expression of Type III Secretion System Genes through Influencing the Intracellular c-di-GMP Level in Pseudomonas aeruginosa. Toxins (Basel) 2018; 10:toxins10110424. [PMID: 30355991 PMCID: PMC6265988 DOI: 10.3390/toxins10110424] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 11/16/2022] Open
Abstract
Toxin-antitoxin (TA) systems play important roles in bacteria persister formation. Increasing evidence demonstrate the roles of TA systems in regulating virulence factors in pathogenic bacteria. The toxin HigB in Pseudomonas aeruginosa contributes to persister formation and regulates the expression of multiple virulence factors and biofilm formation. However, the regulatory mechanism remains elusive. In this study, we explored the HigB mediated regulatory pathways. We demonstrate that HigB decreases the intracellular level of c-di-GMP, which is responsible for the increased expression of the type III secretion system (T3SS) genes and repression of biofilm formation. By analyzing the expression levels of the known c-di-GMP metabolism genes, we find that three c-di-GMP hydrolysis genes are up regulated by HigB, namely PA2133, PA2200 and PA3825. Deletion of the three genes individually or simultaneously diminishes the HigB mediated regulation on the expression of T3SS genes and biofilm formation. Therefore, our results reveal novel functions of HigB in P. aeruginosa.
Collapse
Affiliation(s)
- Yueying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Bin Xia
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Mei Li
- Meishan Product Quality Supervision and Inspection Institute and National Pickle Quality Inspection Center, Meishan 620000, China.
| | - Jing Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Yuqing Long
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Shouguang Jin
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
47
|
Phenotypic heterogeneity: a bacterial virulence strategy. Microbes Infect 2018; 20:570-577. [DOI: 10.1016/j.micinf.2018.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 11/21/2022]
|
48
|
A toxin-antitoxin system is essential for the stability of mosquitocidal plasmid pBsph of Lysinibacillus sphaericus. Microbiol Res 2018; 214:114-122. [PMID: 30031473 DOI: 10.1016/j.micres.2018.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/13/2018] [Accepted: 06/23/2018] [Indexed: 11/22/2022]
Abstract
Lysinibacillus sphaericus C3-41 carries a large low-copy-number plasmid pBsph, which encodes binary toxin proteins. Our previous study found that the transcriptional activator TubX plays an important role in the newly identified type Ⅲ TubRZC replication/partition system in pBsph, and that a vector consisting of tubRZC and tubX is not as stable as pBsph, indicating the presence of other maintenance module(s). In this study, we identified that orf9 and orf10 are necessary for the stability of pBsph by a series of deletion and complementation experiments. Bioinformatics analysis showed that ORF9 contains a PIN domain of VapBC toxin-antitoxin (TA) system, whereas ORF10 share no significant sequence similarity to any of the characterized antitoxins in the database. Further studies revealed that orf9 and orf10 are transcribed as an operon. The overexpression of ORF9 repressed the growth of both Escherichia coli and L. sphaericus, which can be alleviated by overexpression of ORF10. The deletion of orf10 individually or orf9-10 together resulted a decrease on plasmid stability which was restored by the complementation of corresponding gene(s), suggesting that ORF10 plays an important role in plasmid stability. In addition, it was found the plasmid stability is related with the transcription level of tubRZ, and overexpression of TubRZ could neutralize the negative effect on plasmid stability caused by the deletion of orf9-orf10. Moreover, the recombinant vector containing tubRZC, tubX and orf9-10 was more stable than the ones containing only tubRZC and either tubX or orf9-10. The data indicate that the plasmid maintenance system on pBsph includes orf9-orf10 TA system.
Collapse
|
49
|
Adaptation to the coupling of glycolysis to toxic methylglyoxal production in tpiA deletion strains of Escherichia coli requires synchronized and counterintuitive genetic changes. Metab Eng 2018; 48:82-93. [PMID: 29842925 DOI: 10.1016/j.ymben.2018.05.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/03/2018] [Accepted: 05/23/2018] [Indexed: 11/21/2022]
Abstract
Methylglyoxal is a highly toxic metabolite that can be produced in all living organisms. Methylglyoxal was artificially elevated by removal of the tpiA gene from a growth optimized Escherichia coli strain. The initial response to elevated methylglyoxal and its toxicity was characterized, and detoxification mechanisms were studied using adaptive laboratory evolution. We found that: 1) Multi-omics analysis revealed biological consequences of methylglyoxal toxicity, which included attack on macromolecules including DNA and RNA and perturbation of nucleotide levels; 2) Counter-intuitive cross-talk between carbon starvation and inorganic phosphate signalling was revealed in the tpiA deletion strain that required mutations in inorganic phosphate signalling mechanisms to alleviate; and 3) The split flux through lower glycolysis depleted glycolytic intermediates requiring a host of synchronized and coordinated mutations in non-intuitive network locations in order to re-adjust the metabolic flux map to achieve optimal growth. Such mutations included a systematic inactivation of the Phosphotransferase System (PTS) and alterations in cell wall biosynthesis enzyme activity. This study demonstrated that deletion of major metabolic genes followed by ALE was a productive approach to gain novel insight into the systems biology underlying optimal phenotypic states.
Collapse
|
50
|
Martins PMM, Merfa MV, Takita MA, De Souza AA. Persistence in Phytopathogenic Bacteria: Do We Know Enough? Front Microbiol 2018; 9:1099. [PMID: 29887856 PMCID: PMC5981161 DOI: 10.3389/fmicb.2018.01099] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/08/2018] [Indexed: 01/05/2023] Open
Abstract
Phytopathogenic bacteria affect a wide range of crops worldwide and have a negative impact in agriculture due to their associated economic losses and environmental impacts. Together with other biotic and abiotic stress factors, they pose a threat to global food production. Therefore, understanding bacterial survival strategies is an essential step toward the development of new strategies to control plant diseases. One mechanism used by bacteria to survive under stress conditions is the formation of persister cells. Persisters are a small fraction of phenotypic variants within an isogenic population that exhibits multidrug tolerance without undergoing genetic changes. They are dormant cells that survive treatment with antimicrobials by inactivating the metabolic functions that are disrupted by these compounds. They are thus responsible for the recalcitrance of many human diseases, and in the same way, they are thought to contribute to the survival of bacterial phytopathogens under a range of stresses they face in the environment. It is believed that persister cells of bacterial phytopathogens may lead to the reoccurrence of disease by recovering growth and recolonizing the host plant after the end of stress. However, compared to human pathogens, little is known about persister cells in phytopathogens, especially about their genetic regulation. In this review, we describe the overall knowledge on persister cells and their regulation in bacterial phytopathogens, focusing on their ability to survive stress conditions, to recover from dormancy and to maintain virulence.
Collapse
Affiliation(s)
- Paula M. M. Martins
- Laboratório de Biotecnologia, Centro de Citricultura, Instituto Agronômico de Campinas, Cordeiropolis, Brazil
| | - Marcus V. Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Marco A. Takita
- Laboratório de Biotecnologia, Centro de Citricultura, Instituto Agronômico de Campinas, Cordeiropolis, Brazil
| | - Alessandra A. De Souza
- Laboratório de Biotecnologia, Centro de Citricultura, Instituto Agronômico de Campinas, Cordeiropolis, Brazil
| |
Collapse
|