1
|
Ozanic M, Marecic V, Knezevic M, Kelava I, Stojková P, Lindgren L, Bröms JE, Sjöstedt A, Abu Kwaik Y, Santic M. The type IV pili component PilO is a virulence determinant of Francisella novicida. PLoS One 2022; 17:e0261938. [PMID: 35077486 PMCID: PMC8789160 DOI: 10.1371/journal.pone.0261938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022] Open
Abstract
Francisella tularensis is a highly pathogenic intracellular bacterium that causes the disease tularemia. While its ability to replicate within cells has been studied in much detail, the bacterium also encodes a less characterised type 4 pili (T4P) system. T4Ps are dynamic adhesive organelles identified as major virulence determinants in many human pathogens. In F. tularensis, the T4P is required for adherence to the host cell, as well as for protein secretion. Several components, including pilins, a pili peptidase, a secretin pore and two ATPases, are required to assemble a functional T4P, and these are encoded within distinct clusters on the Francisella chromosome. While some of these components have been functionally characterised, the role of PilO, if any, still is unknown. Here, we examined the role of PilO in the pathogenesis of F. novicida. Our results show that the PilO is essential for pilus assembly on the bacterial surface. In addition, PilO is important for adherence of F. novicida to human monocyte-derived macrophages, secretion of effector proteins and intracellular replication. Importantly, the pilO mutant is attenuated for virulence in BALB/c mice regardless of the route of infection. Following intratracheal and intradermal infection, the mutant caused no histopathology changes, and demonstrated impaired phagosomal escape and replication within lung liver as well as spleen. Thus, PilO is an essential virulence determinant of F. novicida.
Collapse
Affiliation(s)
- Mateja Ozanic
- Faculty of Medicine, Department of Microbiology and Parasitology, University of Rijeka, Rijeka, Croatia
| | - Valentina Marecic
- Faculty of Medicine, Department of Microbiology and Parasitology, University of Rijeka, Rijeka, Croatia
| | - Masa Knezevic
- Faculty of Medicine, Department of Microbiology and Parasitology, University of Rijeka, Rijeka, Croatia
| | - Ina Kelava
- Faculty of Medicine, Department of Microbiology and Parasitology, University of Rijeka, Rijeka, Croatia
| | - Pavla Stojková
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Lena Lindgren
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Jeanette E. Bröms
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Anders Sjöstedt
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology and Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Marina Santic
- Faculty of Medicine, Department of Microbiology and Parasitology, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
2
|
Marghani D, Ma Z, Centone AJ, Huang W, Malik M, Bakshi CS. An AraC/XylS Family Transcriptional Regulator Modulates the Oxidative Stress Response of Francisella tularensis. J Bacteriol 2021; 203:e0018521. [PMID: 34543107 PMCID: PMC8570275 DOI: 10.1128/jb.00185-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022] Open
Abstract
Francisella tularensis is a Gram-negative bacterium that causes a fatal human disease known as tularemia. The Centers for Disease Control and Prevention have classified F. tularensis as a category A tier 1 select agent. The virulence mechanisms of Francisella are not entirely understood. Francisella possesses very few transcription regulators, and most of these regulate the expression of genes involved in intracellular survival and virulence. The F. tularensis genome sequence analysis reveals an AraC (FTL_0689) transcriptional regulator homologous to the AraC/XylS family of transcriptional regulators. In Gram-negative bacteria, AraC activates genes required for l-arabinose utilization and catabolism. The role of the FTL_0689 regulator in F. tularensis is not known. In this study, we characterized the role of FTL_0689 in the gene regulation of F. tularensis and investigated its contribution to intracellular survival and virulence. The results demonstrate that FTL_0689 in Francisella is not required for l-arabinose utilization. Instead, FTL_0689 specifically regulates the expression of the oxidative and global stress response, virulence, metabolism, and other key pathways genes required by Francisella when exposed to oxidative stress. The FTL_0689 mutant is attenuated for intramacrophage growth and virulence in mice. Based on the deletion mutant phenotype, FTL_0689 was termed osrR (oxidative stress response regulator). Altogether, this study elucidates the role of the osrR transcriptional regulator in tularemia pathogenesis. IMPORTANCE The virulence mechanisms of category A select agent Francisella tularensis, the causative agent of a fatal human disease known as tularemia, remain largely undefined. The present study investigated the role of a transcriptional regulator and its overall contribution to the oxidative stress resistance of F. tularensis. The results provide an insight into a novel gene regulatory mechanism, especially when Francisella is exposed to oxidative stress conditions. Understanding such Francisella- specific regulatory mechanisms will help identify potential targets for developing effective therapies and vaccines to prevent tularemia.
Collapse
Affiliation(s)
- Dina Marghani
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
| | - Zhuo Ma
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Anthony J. Centone
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
| | - Weihua Huang
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
| | - Meenakshi Malik
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Chandra Shekhar Bakshi
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
3
|
Rytter H, Jamet A, Ziveri J, Ramond E, Coureuil M, Lagouge-Roussey P, Euphrasie D, Tros F, Goudin N, Chhuon C, Nemazanyy I, de Moraes FE, Labate C, Guerrera IC, Charbit A. The pentose phosphate pathway constitutes a major metabolic hub in pathogenic Francisella. PLoS Pathog 2021; 17:e1009326. [PMID: 34339477 PMCID: PMC8360588 DOI: 10.1371/journal.ppat.1009326] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/12/2021] [Accepted: 07/14/2021] [Indexed: 11/19/2022] Open
Abstract
Metabolic pathways are now considered as intrinsic virulence attributes of pathogenic bacteria and thus represent potential targets for antibacterial strategies. Here we focused on the role of the pentose phosphate pathway (PPP) and its connections with other metabolic pathways in the pathophysiology of Francisella novicida. The involvement of the PPP in the intracellular life cycle of Francisella was first demonstrated by studying PPP inactivating mutants. Indeed, we observed that inactivation of the tktA, rpiA or rpe genes severely impaired intramacrophage multiplication during the first 24 hours. However, time-lapse video microscopy demonstrated that rpiA and rpe mutants were able to resume late intracellular multiplication. To better understand the links between PPP and other metabolic networks in the bacterium, we also performed an extensive proteo-metabolomic analysis of these mutants. We show that the PPP constitutes a major bacterial metabolic hub with multiple connections to glycolysis, the tricarboxylic acid cycle and other pathways, such as fatty acid degradation and sulfur metabolism. Altogether our study highlights how PPP plays a key role in the pathogenesis and growth of Francisella in its intracellular niche.
Collapse
Affiliation(s)
- Héloise Rytter
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Anne Jamet
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Jason Ziveri
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Elodie Ramond
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Mathieu Coureuil
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Pauline Lagouge-Roussey
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Daniel Euphrasie
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Fabiola Tros
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
| | - Nicolas Goudin
- Pole Bio-analyse d’images, Structure Fédérative de Recherche Necker INSERM US24- CNRS UMS 3633, Paris, France
| | - Cerina Chhuon
- Université de Paris, Paris, France
- Plateforme Protéome Institut Necker, PPN, Structure Fédérative de Recherche Necker INSERM US24-CNRS UMS 3633, Paris, France
| | - Ivan Nemazanyy
- Université de Paris, Paris, France
- Plateforme Etude du métabolisme, Structure Fédérative de Recherche Necker INSERM US24-CNRS UMS 3633, Paris, France
| | - Fabricio Edgar de Moraes
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Carlos Labate
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Ida Chiara Guerrera
- Université de Paris, Paris, France
- Plateforme Protéome Institut Necker, PPN, Structure Fédérative de Recherche Necker INSERM US24-CNRS UMS 3633, Paris, France
- * E-mail: (ICG); (AC)
| | - Alain Charbit
- Université de Paris, Paris, France
- INSERM U1151 - CNRS UMR 8253, Institut Necker-Enfants Malades. Team 7: Pathogénie des Infections Systémiques, Paris, France
- * E-mail: (ICG); (AC)
| |
Collapse
|
4
|
Kassinger SJ, van Hoek ML. Genetic Determinants of Antibiotic Resistance in Francisella. Front Microbiol 2021; 12:644855. [PMID: 34054749 PMCID: PMC8149597 DOI: 10.3389/fmicb.2021.644855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/25/2021] [Indexed: 12/21/2022] Open
Abstract
Tularemia, caused by Francisella tularensis, is endemic to the northern hemisphere. This zoonotic organism has historically been developed into a biological weapon. For this Tier 1, Category A select agent, it is important to expand our understanding of its mechanisms of antibiotic resistance (AMR). Francisella is unlike many Gram-negative organisms in that it does not have significant plasmid mobility, and does not express AMR mechanisms on plasmids; thus plasmid-mediated resistance does not occur naturally. It is possible to artificially introduce plasmids with AMR markers for cloning and gene expression purposes. In this review, we survey both the experimental research on AMR in Francisella and bioinformatic databases which contain genomic and proteomic data. We explore both the genetic determinants of intrinsic AMR and naturally acquired or engineered antimicrobial resistance as well as phenotypic resistance in Francisella. Herein we survey resistance to beta-lactams, monobactams, carbapenems, aminoglycosides, tetracycline, polymyxins, macrolides, rifampin, fosmidomycin, and fluoroquinolones. We also highlight research about the phenotypic AMR difference between planktonic and biofilm Francisella. We discuss newly developed methods of testing antibiotics against Francisella which involve the intracellular nature of Francisella infection and may better reflect the eventual clinical outcomes for new antibiotic compounds. Understanding the genetically encoded determinants of AMR in Francisella is key to optimizing the treatment of patients and potentially developing new antimicrobials for this dangerous intracellular pathogen.
Collapse
Affiliation(s)
| | - Monique L. van Hoek
- School of Systems Biology, George Mason University, Manassas, VA, United States
| |
Collapse
|
5
|
Ramsey KM, Ledvina HE, Tresko TM, Wandzilak JM, Tower CA, Tallo T, Schramm CE, Peterson SB, Skerrett SJ, Mougous JD, Dove SL. Tn-Seq reveals hidden complexity in the utilization of host-derived glutathione in Francisella tularensis. PLoS Pathog 2020; 16:e1008566. [PMID: 32492066 PMCID: PMC7340319 DOI: 10.1371/journal.ppat.1008566] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/07/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022] Open
Abstract
Host-derived glutathione (GSH) is an essential source of cysteine for the intracellular pathogen Francisella tularensis. In a comprehensive transposon insertion sequencing screen, we identified several F. tularensis genes that play central and previously unappreciated roles in the utilization of GSH during the growth of the bacterium in macrophages. We show that one of these, a gene we named dptA, encodes a proton-dependent oligopeptide transporter that enables growth of the organism on the dipeptide Cys-Gly, a key breakdown product of GSH generated by the enzyme γ-glutamyltranspeptidase (GGT). Although GGT was thought to be the principal enzyme involved in GSH breakdown in F. tularensis, our screen identified a second enzyme, referred to as ChaC, that is also involved in the utilization of exogenous GSH. However, unlike GGT and DptA, we show that the importance of ChaC in supporting intramacrophage growth extends beyond cysteine acquisition. Taken together, our findings provide a compendium of F. tularensis genes required for intracellular growth and identify new players in the metabolism of GSH that could be attractive targets for therapeutic intervention.
Collapse
Affiliation(s)
- Kathryn M. Ramsey
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Departments of Cell and Molecular Biology and Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Hannah E. Ledvina
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Tenayaann M. Tresko
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jamie M. Wandzilak
- Departments of Cell and Molecular Biology and Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Catherine A. Tower
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Thomas Tallo
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Caroline E. Schramm
- Division of Pulmonary, Critical Care and Sleep Medicine, Harborview Medical Center, University of Washington, Seattle, Washington, United States of America
| | - S. Brook Peterson
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Shawn J. Skerrett
- Division of Pulmonary, Critical Care and Sleep Medicine, Harborview Medical Center, University of Washington, Seattle, Washington, United States of America
| | - Joseph D. Mougous
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
| | - Simon L. Dove
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
6
|
Screen for fitness and virulence factors of Francisella sp. strain W12-1067 using amoebae. Int J Med Microbiol 2019; 309:151341. [PMID: 31451389 DOI: 10.1016/j.ijmm.2019.151341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/17/2019] [Accepted: 08/18/2019] [Indexed: 11/21/2022] Open
Abstract
Francisella tularensis is the causative agent of the human disease referred to as tularemia. Other Francisella species are known but less is understood about their virulence factors. The role of environmental amoebae in the life-cycle of Francisella is still under discussion. Francisella sp. strain W12-1067 (F-W12) is an environmental Francisella isolate recently identified in Germany which is negative for the Francisella pathogenicity island, but exhibits a putative alternative type VI secretion system. Putative virulence factors have been identified in silico in the genome of F-W12. In this work, we established a "scatter screen", used earlier for pathogenic Legionella, to verify experimentally and identify candidate fitness factors using a transposon mutant bank of F-W12 and Acanthamoeba lenticulata as host organism. In these experiments, we identified 79 scatter clones (amoeba sensitive), which were further analyzed by an infection assay identifying 9 known virulence factors, but also candidate fitness factors of F-W12 not yet described as fitness factors in Francisella. The majority of the identified genes encoded proteins involved in the synthesis or maintenance of the cell envelope (LPS, outer membrane, capsule) or in the metabolism (glycolysis, gluconeogenesis, pentose phosphate pathway). Further 13C-flux analysis of the Tn5 glucokinase mutant strain revealed that the identified gene indeed encodes the sole active glucokinase in F-W12. In conclusion, candidate fitness factors of the new Francisella species F-W12 were identified using the scatter screen method which might also be usable for other Francisella species.
Collapse
|
7
|
Cui G, Wang J, Qi X, Su J. Transcription Elongation Factor GreA Plays a Key Role in Cellular Invasion and Virulence of Francisella tularensis subsp. novicida. Sci Rep 2018; 8:6895. [PMID: 29720697 PMCID: PMC5932009 DOI: 10.1038/s41598-018-25271-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/18/2018] [Indexed: 01/24/2023] Open
Abstract
Francisella tularensis is a facultative intracellular Gram-negative bacterium that causes the zoonotic disease tularemia. We identified the transcription elongation factor GreA as a virulence factor in our previous study, but its role was not defined. Here, we investigate the effects of the inactivation of the greA gene, generating a greA mutant of F. tularensis subsp. novicida. Inactivation of greA impaired the bacterial invasion into and growth within host cells, and subsequently virulence in mouse infection model. A transcriptomic analysis (RNA-Seq) showed that the loss of GreA caused the differential expression of 196 bacterial genes, 77 of which were identified as virulence factors in previous studies. To confirm that GreA regulates the expression of virulence factors involved in cell invasion by Francisella, FTN_1186 (pepO) and FTN_1551 (ampD) gene mutants were generated. The ampD deletion mutant showed reduced invasiveness into host cells. These results strongly suggest that GreA plays an important role in the pathogenesis of Francisella by affecting the expression of virulence genes and provide new insights into the complex regulation of Francisella infection.
Collapse
Affiliation(s)
- Guolin Cui
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jun Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xinyi Qi
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jingliang Su
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
8
|
Spidlova P, Stojkova P, Dankova V, Senitkova I, Santic M, Pinkas D, Philimonenko V, Stulik J. Francisella tularensis D-Ala D-Ala Carboxypeptidase DacD Is Involved in Intracellular Replication and It Is Necessary for Bacterial Cell Wall Integrity. Front Cell Infect Microbiol 2018; 8:111. [PMID: 29692981 PMCID: PMC5903032 DOI: 10.3389/fcimb.2018.00111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/21/2018] [Indexed: 12/16/2022] Open
Abstract
D-alanyl-D-alanine carboxypeptidase, product of dacD gene in Francisella, belongs to penicillin binding proteins (PBPs) and is involved in remodeling of newly synthetized peptidoglycan. In E. coli, PBPs are synthetized in various growth phases and they are able to substitute each other to a certain extent. The DacD protein was found to be accumulated in fraction enriched in membrane proteins from severely attenuated dsbA deletion mutant strain. It has been presumed that the DsbA is not a virulence factor by itself but that its substrates, whose correct folding and topology are dependent on the DsbA oxidoreductase and/or isomerase activities, are the primary virulence factors. Here we demonstrate that Francisella DacD is required for intracellular replication and virulence in mice. The dacD insertion mutant strain showed higher sensitivity to acidic pH, high temperature and high osmolarity when compared to the wild-type. Eventually, transmission electron microscopy revealed differences in mutant bacteria in both the size and defects in outer membrane underlying its SDS and serum sensitivity. Taken together these results suggest DacD plays an important role in Francisella pathogenicity.
Collapse
Affiliation(s)
- Petra Spidlova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Pavla Stojkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Vera Dankova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Iva Senitkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Marina Santic
- Department of Microbiology and Parasitology, Medical Faculty, University of Rijeka, Rijeka, Croatia
| | - Dominik Pinkas
- Microscopy Center, Institute of Molecular Genetics ASCR v.v.i., Electron Microscopy Core Facility, Prague, Czechia
| | - Vlada Philimonenko
- Microscopy Center, Institute of Molecular Genetics ASCR v.v.i., Electron Microscopy Core Facility, Prague, Czechia
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics ASCR v.v.i., Prague, Czechia
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|
9
|
Matz LM, Kamdar KY, Holder ME, Metcalf GA, Weissenberger GM, Meng Q, Vee V, Han Y, Muzny DM, Gibbs RA, Johnson CL, Revell PA, Petrosino JF. Challenges of Francisella classification exemplified by an atypical clinical isolate. Diagn Microbiol Infect Dis 2018; 90:241-247. [PMID: 29329757 PMCID: PMC5857240 DOI: 10.1016/j.diagmicrobio.2017.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 01/09/2023]
Abstract
The accumulation of sequenced Francisella strains has made it increasingly apparent that the 16S rRNA gene alone is not enough to stratify the Francisella genus into precise and clinically useful classifications. Continued whole-genome sequencing of isolates will provide a larger base of knowledge for targeted approaches with broad applicability. Additionally, examination of genomic information on a case-by-case basis will help resolve outstanding questions regarding strain stratification. We report the complete genome sequence of a clinical isolate, designated here as F. novicida-like strain TCH2015, acquired from the lymph node of a 6-year-old male. Two features were atypical for F. novicida: exhibition of functional oxidase activity and additional gene content, including proposed virulence determinants. These differences, which could potentially impact virulence and clinical diagnosis, emphasize the need for more comprehensive methods to profile Francisella isolates. This study highlights the value of whole-genome sequencing, which will lead to a more robust database of environmental and clinical genomes and inform strategies to improve detection and classification of Francisella strains.
Collapse
Affiliation(s)
- L M Matz
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| | - K Y Kamdar
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Cancer and Hematology Centers, Texas Children's Hospital, Houston, TX, USA
| | - M E Holder
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - G A Metcalf
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - G M Weissenberger
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Q Meng
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - V Vee
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Y Han
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - D M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - R A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - C L Johnson
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA; Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - P A Revell
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA; Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - J F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
10
|
Sampath V, McCaig WD, Thanassi DG. Amino acid deprivation and central carbon metabolism regulate the production of outer membrane vesicles and tubes by Francisella. Mol Microbiol 2018; 107:523-541. [PMID: 29240272 DOI: 10.1111/mmi.13897] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 12/23/2022]
Abstract
Francisella tularensis is a highly virulent Gram-negative bacterial pathogen that causes the zoonotic disease tularemia. F. novicida, a model tularemia strain, produces spherical outer membrane vesicles (OMV), as well as novel tubular vesicles and extensions of the cell surface. These OMV and tubes (OMV/T) are produced in a regulated manner and contain known virulence factors. Mechanisms by which bacterial vesicles are produced and regulated are not well understood. We performed a genetic screen in F. novicida to decipher the molecular basis for regulated OMV/T formation, and identified both hypo- and hyper-vesiculating mutants. Mutations in fumA and tktA, involved in central carbon metabolism, and in FTN_0908 and FTN_1037, of unknown function, resulted in severe defects in OMV/T production. Cysteine deprivation was identified as the signal that triggers OMV/T formation in F. novicida during growth in rich medium. We also found that fully virulent F. tularensis produces OMV/T in a similarly regulated manner. Further analysis revealed that OMV/T production is responsive to deprivation of essential amino acids in addition to cysteine, and that the hypo-vesiculating mutants are defective in responding to this signal. Thus, amino acid starvation, such as encountered by Francisella during host cell invasion, regulates the production of membrane-derived structures.
Collapse
Affiliation(s)
- Vinaya Sampath
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY 11794, USA
| | - William D McCaig
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY 11794, USA
| | - David G Thanassi
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
11
|
Pavkova I, Kopeckova M, Klimentova J, Schmidt M, Sheshko V, Sobol M, Zakova J, Hozak P, Stulik J. The Multiple Localized Glyceraldehyde-3-Phosphate Dehydrogenase Contributes to the Attenuation of the Francisella tularensis dsbA Deletion Mutant. Front Cell Infect Microbiol 2017; 7:503. [PMID: 29322032 PMCID: PMC5732180 DOI: 10.3389/fcimb.2017.00503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/22/2017] [Indexed: 12/14/2022] Open
Abstract
The DsbA homolog of Francisella tularensis was previously demonstrated to be required for intracellular replication and animal death. Disruption of the dsbA gene leads to a pleiotropic phenotype that could indirectly affect a number of different cellular pathways. To reveal the broad effects of DsbA, we compared fractions enriched in membrane proteins of the wild-type FSC200 strain with the dsbA deletion strain using a SILAC-based quantitative proteomic analysis. This analysis enabled identification of 63 proteins with significantly altered amounts in the dsbA mutant strain compared to the wild-type strain. These proteins comprise a quite heterogeneous group including hypothetical proteins, proteins associated with membrane structures, and potential secreted proteins. Many of them are known to be associated with F. tularensis virulence. Several proteins were selected for further studies focused on their potential role in tularemia's pathogenesis. Of them, only the gene encoding glyceraldehyde-3-phosphate dehydrogenase, an enzyme of glycolytic pathway, was found to be important for full virulence manifestations both in vivo and in vitro. We next created a viable mutant strain with deleted gapA gene and analyzed its phenotype. The gapA mutant is characterized by reduced virulence in mice, defective replication inside macrophages, and its ability to induce a protective immune response against systemic challenge with parental wild-type strain. We also demonstrate the multiple localization sites of this protein: In addition to within the cytosol, it was found on the cell surface, outside the cells, and in the culture medium. Recombinant GapA was successfully obtained, and it was shown that it binds host extracellular serum proteins like plasminogen, fibrinogen, and fibronectin.
Collapse
Affiliation(s)
- Ivona Pavkova
- Department of Molecular Pathology, Faculty of Military Health Science, University of Defence, Hradec Kralove, Czechia
| | - Monika Kopeckova
- Department of Molecular Pathology, Faculty of Military Health Science, University of Defence, Hradec Kralove, Czechia
| | - Jana Klimentova
- Department of Molecular Pathology, Faculty of Military Health Science, University of Defence, Hradec Kralove, Czechia
| | - Monika Schmidt
- Department of Molecular Pathology, Faculty of Military Health Science, University of Defence, Hradec Kralove, Czechia
| | - Valeria Sheshko
- Department of Molecular Pathology, Faculty of Military Health Science, University of Defence, Hradec Kralove, Czechia
| | - Margarita Sobol
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics ASCR v.v.i., Prague, Czechia
| | - Jitka Zakova
- Department of Molecular Pathology, Faculty of Military Health Science, University of Defence, Hradec Kralove, Czechia
| | - Pavel Hozak
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics ASCR v.v.i., Prague, Czechia.,Microscopy Centre-LM & EM, Institute of Molecular Genetics ASCR v.v.i., Prague, Czechia.,Division BIOCEV, Laboratory of Epigenetics of the Cell Nucleus, Institute of Molecular Genetics ASCR v.v.i., Vestec, Czechia
| | - Jiri Stulik
- Department of Molecular Pathology, Faculty of Military Health Science, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|
12
|
Genetic Determinants of Salmonella enterica Serovar Typhimurium Proliferation in the Cytosol of Epithelial Cells. Infect Immun 2016; 84:3517-3526. [PMID: 27698022 DOI: 10.1128/iai.00734-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/26/2016] [Indexed: 11/20/2022] Open
Abstract
Intestinal epithelial cells provide an important colonization niche for Salmonella enterica serovar Typhimurium during gastrointestinal infections. In infected epithelial cells, a subpopulation of S Typhimurium bacteria damage their internalization vacuole, leading to escape from the Salmonella-containing vacuole (SCV) and extensive proliferation in the cytosol. Little is known about the bacterial determinants of nascent SCV lysis and subsequent survival and replication of Salmonella in the cytosol. To pinpoint S Typhimurium virulence factors responsible for these steps in the intracellular infectious cycle, we screened a S Typhimurium multigene deletion library in Caco-2 C2Bbe1 and HeLa epithelial cells for mutants that had an altered proportion of cytosolic bacteria compared to the wild type. We used a gentamicin protection assay in combination with a chloroquine resistance assay to quantify total and cytosolic bacteria, respectively, for each strain. Mutants of three S Typhimurium genes, STM1461 (ydgT), STM2829 (recA), and STM3952 (corA), had reduced cytosolic proliferation compared to wild-type bacteria, and one gene, STM2120 (asmA), displayed increased cytosolic replication. None of the mutants were affected for lysis of the nascent SCV or vacuolar replication in epithelial cells, indicating that these genes are specifically required for survival and proliferation of S Typhimurium in the epithelial cell cytosol. These are the first genes identified to contribute to this step of the S Typhimurium infectious cycle.
Collapse
|
13
|
Shakerley NL, Chandrasekaran A, Trebak M, Miller BA, Melendez JA. Francisella tularensis Catalase Restricts Immune Function by Impairing TRPM2 Channel Activity. J Biol Chem 2016; 291:3871-81. [PMID: 26679996 PMCID: PMC4759167 DOI: 10.1074/jbc.m115.706879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 12/16/2015] [Indexed: 12/12/2022] Open
Abstract
As an innate defense mechanism, macrophages produce reactive oxygen species that weaken pathogens and serve as secondary messengers involved in immune function. The Gram-negative bacterium Francisella tularensis utilizes its antioxidant armature to limit the host immune response, but the mechanism behind this suppression is not defined. Here we establish that F. tularensis limits Ca(2+) entry in macrophages, thereby limiting actin reorganization and IL-6 production in a redox-dependent fashion. Wild type (live vaccine strain) or catalase-deficient F. tularensis (ΔkatG) show distinct profiles in their H2O2 scavenging rates, 1 and 0.015 pm/s, respectively. Murine alveolar macrophages infected with ΔkatG display abnormally high basal intracellular Ca(2+) concentration that did not increase further in response to H2O2. Additionally, ΔkatG-infected macrophages displayed limited Ca(2+) influx in response to ionomycin, as a result of ionophore H2O2 sensitivity. Exogenously added H2O2 or H2O2 generated by ΔkatG likely oxidizes ionomycin and alters its ability to transport Ca(2+). Basal increases in cytosolic Ca(2+) and insensitivity to H2O2-mediated Ca(2+) entry in ΔkatG-infected cells are reversed by the Ca(2+) channel inhibitors 2-aminoethyl diphenylborinate and SKF-96365. 2-Aminoethyl diphenylborinate but not SKF-96365 abrogated ΔkatG-dependent increases in macrophage actin remodeling and IL-6 secretion, suggesting a role for H2O2-mediated Ca(2+) entry through the transient receptor potential melastatin 2 (TRPM2) channel in macrophages. Indeed, increases in basal Ca(2+), actin polymerization, and IL-6 production are reversed in TRPM2-null macrophages infected with ΔkatG. Together, our findings provide compelling evidence that F. tularensis catalase restricts reactive oxygen species to temper macrophage TRPM2-mediated Ca(2+) signaling and limit host immune function.
Collapse
Affiliation(s)
- Nicole L Shakerley
- From the Colleges of Nanoscale Science, State University of New York, Polytechnic Institute, Albany, New York 12203 and
| | - Akshaya Chandrasekaran
- From the Colleges of Nanoscale Science, State University of New York, Polytechnic Institute, Albany, New York 12203 and
| | - Mohamed Trebak
- From the Colleges of Nanoscale Science, State University of New York, Polytechnic Institute, Albany, New York 12203 and the Departments of Cellular & Molecular Physiology and
| | - Barbara A Miller
- Pediatrics and Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - J Andrés Melendez
- From the Colleges of Nanoscale Science, State University of New York, Polytechnic Institute, Albany, New York 12203 and
| |
Collapse
|
14
|
Rennert K, Otto P, Funke H, Huber O, Tomaso H, Mosig AS. A human macrophage-hepatocyte co-culture model for comparative studies of infection and replication of Francisella tularensis LVS strain and subspecies holarctica and mediasiatica. BMC Microbiol 2016; 16:2. [PMID: 26739172 PMCID: PMC4704405 DOI: 10.1186/s12866-015-0621-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/29/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Francisella tularensis, a gram-negative bacterium replicates intracellularly within macrophages and efficiently evades the innate immune response. It is able to infect and replicate within Kupffer cells, specialized tissue macrophages of the liver, and to modulate the immune response upon infection to its own advantage. Studies on Francisella tularensis liver infection were mostly performed in animal models and difficult to extrapolate to the human situation, since human infections and clinical observations are rare. RESULTS Using a human co-culture model of macrophages and hepatocytes we investigated the course of infection of three Francisella tularensis strains (subspecies holarctica--wildtype and live vaccine strain, and mediasiatica--wildtype) and analyzed the immune response triggered upon infection. We observed that hepatocytes support the intracellular replication of Franciscella species in macrophages accompanied by a specific immune response inducing TNFα, IL-1β, IL-6 and fractalkine (CX3CL1) secretion and the induction of apoptosis. CONCLUSIONS We could demonstrate that this human macrophage/hepatocyte co-culture model reflects strain-specific virulence of Francisella tularensis. We developed a suitable tool for more detailed in vitro studies on the immune response upon liver cell infection by F. tularensis.
Collapse
Affiliation(s)
- Knut Rennert
- Institute of Biochemistry II, Jena University Hospital, 07743, Jena, Germany.
| | - Peter Otto
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, 07743, Jena, Germany.
| | - Harald Funke
- Molecular Hemostaseology, Jena University Hospital, 07743, Jena, Germany.
| | - Otmar Huber
- Institute of Biochemistry II, Jena University Hospital, 07743, Jena, Germany. .,Center for Sepsis Control and Care, Jena University Hospital, Jena, 07747, Germany.
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses (IBIZ), Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, 07743, Jena, Germany.
| | - Alexander S Mosig
- Institute of Biochemistry II, Jena University Hospital, 07743, Jena, Germany. .,Center for Sepsis Control and Care, Jena University Hospital, Jena, 07747, Germany.
| |
Collapse
|
15
|
Barel M, Ramond E, Gesbert G, Charbit A. The complex amino acid diet of Francisella in infected macrophages. Front Cell Infect Microbiol 2015; 5:9. [PMID: 25705612 PMCID: PMC4319460 DOI: 10.3389/fcimb.2015.00009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/14/2015] [Indexed: 12/16/2022] Open
Abstract
Francisella tularensis, the agent of the zoonotic disease tularemia, is a highly infectious bacterium for a large number of animal species and can be transmitted to humans by various means. The bacterium is able to infect a variety of cell types but replicates in mammalian hosts mainly in the cytosol of infected macrophages. In order to resist the stressful and nutrient-restricted intracellular environments, it encounters during its systemic dissemination, Francisella has developed dedicated stress resistance mechanisms and adapted its metabolic and nutritional needs. Recent data form our laboratory and from several other groups have shown that Francisella simultaneously relies on multiple host amino acid sources during its intracellular life cycle. This review will summarize how intracellular Francisella use different amino acid sources, and their role in phagosomal escape and/or cytosolic multiplication and systemic dissemination. We will first summarize the data that we have obtained on two amino acid transporters involved in Francisella phagosomal escape and cytosolic multiplication i.e., the glutamate transporter GadC and the asparagine transporter AnsP, respectively. The specific contribution of glutamate and asparagine to the physiology of the bacterium will be evoked. Then, we will discuss how Francisella has adapted to obtain and utilize host amino acid resources, and notably the contribution of host transporters and autophagy process in the establishment of a nutrient-replete intracellular niche.
Collapse
Affiliation(s)
- Monique Barel
- Université Paris Descartes, Sorbonne Paris Cité Paris, France ; INSERM U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades Paris, France
| | - Elodie Ramond
- Université Paris Descartes, Sorbonne Paris Cité Paris, France ; INSERM U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades Paris, France
| | - Gael Gesbert
- Université Paris Descartes, Sorbonne Paris Cité Paris, France ; INSERM U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades Paris, France
| | - Alain Charbit
- Université Paris Descartes, Sorbonne Paris Cité Paris, France ; INSERM U1151 - Centre National de la Recherche Scientifique UMR 8253, Institut Necker-Enfants Malades Paris, France
| |
Collapse
|
16
|
Characterization of tetratricopeptide repeat-like proteins in Francisella tularensis and identification of a novel locus required for virulence. Infect Immun 2014; 82:5035-48. [PMID: 25245806 DOI: 10.1128/iai.01620-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Francisella tularensis is a highly infectious bacterium that causes the potentially lethal disease tularemia. This extremely virulent bacterium is able to replicate in the cytosolic compartments of infected macrophages. To invade macrophages and to cope with their intracellular environment, Francisella requires multiple virulence factors, which are still being identified. Proteins containing tetratricopeptide repeat (TPR)-like domains seem to be promising targets to investigate, since these proteins have been reported to be directly involved in virulence-associated functions of bacterial pathogens. Here, we studied the role of the FTS_0201, FTS_0778, and FTS_1680 genes, which encode putative TPR-like proteins in Francisella tularensis subsp. holarctica FSC200. Mutants defective in protein expression were prepared by TargeTron insertion mutagenesis. We found that the locus FTS_1680 and its ortholog FTT_0166c in the highly virulent Francisella tularensis type A strain SchuS4 are required for proper intracellular replication, full virulence in mice, and heat stress tolerance. Additionally, the FTS_1680-encoded protein was identified as a membrane-associated protein required for full cytopathogenicity in macrophages. Our study thus identifies FTS_1680/FTT_0166c as a new virulence factor in Francisella tularensis.
Collapse
|
17
|
Steiner DJ, Furuya Y, Metzger DW. Host-pathogen interactions and immune evasion strategies in Francisella tularensis pathogenicity. Infect Drug Resist 2014; 7:239-51. [PMID: 25258544 PMCID: PMC4173753 DOI: 10.2147/idr.s53700] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Francisella tularensis is an intracellular Gram-negative bacterium that causes life-threatening tularemia. Although the prevalence of natural infection is low, F. tularensis remains a tier I priority pathogen due to its extreme virulence and ease of aerosol dissemination. F. tularensis can infect a host through multiple routes, including the intradermal and respiratory routes. Respiratory infection can result from a very small inoculum (ten organisms or fewer) and is the most lethal form of infection. Following infection, F. tularensis employs strategies for immune evasion that delay the immune response, permitting systemic distribution and induction of sepsis. In this review we summarize the current knowledge of F. tularensis in an immunological context, with emphasis on the host response and bacterial evasion of that response.
Collapse
Affiliation(s)
- Don J Steiner
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Yoichi Furuya
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Dennis W Metzger
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| |
Collapse
|
18
|
Feng Y, Napier BA, Manandhar M, Henke SK, Weiss DS, Cronan JE. A Francisella virulence factor catalyses an essential reaction of biotin synthesis. Mol Microbiol 2013; 91:300-14. [PMID: 24313380 DOI: 10.1111/mmi.12460] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2013] [Indexed: 01/09/2023]
Abstract
We recently identified a gene (FTN_0818) required for Francisella virulence that seemed likely involved in biotin metabolism. However, the molecular function of this virulence determinant was unclear. Here we show that this protein named BioJ is the enzyme of the biotin biosynthesis pathway that determines the chain length of the biotin valeryl side-chain. Expression of bioJ allows growth of an Escherichia coli bioH strain on biotin-free medium, indicating functional equivalence of BioJ to the paradigm pimeloyl-ACP methyl ester carboxyl-esterase, BioH. BioJ was purified to homogeneity, shown to be monomeric and capable of hydrolysis of its physiological substrate methyl pimeloyl-ACP to pimeloyl-ACP, the precursor required to begin formation of the fused heterocyclic rings of biotin. Phylogenetic analyses confirmed that distinct from BioH, BioJ represents a novel subclade of the α/β-hydrolase family. Structure-guided mapping combined with site-directed mutagenesis revealed that the BioJ catalytic triad consists of Ser151, Asp248 and His278, all of which are essential for activity and virulence. The biotin synthesis pathway was reconstituted reaction in vitro and the physiological role of BioJ directly assayed. To the best of our knowledge, these data represent further evidence linking biotin synthesis to bacterial virulence.
Collapse
Affiliation(s)
- Youjun Feng
- Department of Microbiology, University of Illinois at Urbana-Champaign, IL, 61801, USA; Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, Zhejiang Province, China
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Our understanding of the virulence and pathogenesis of Francisella spp. has significantly advanced in recent years, including a new understanding that this organism can form biofilms. What is known so far about Francisella spp. biofilms is summarized here and future research questions are suggested. The molecular basis of biofilm production has begun to be studied, especially the role of extracellular carbohydrates and capsule, quorum sensing and two-component signaling systems. Further work has explored the contribution of amoebae, pili, outer-membrane vesicles, chitinases, and small molecules such as c-di-GMP to Francisella spp. biofilm formation. A role for Francisella spp. biofilm in feeding mosquito larvae has been suggested. As no strong role in virulence has been found yet, Francisella spp. biofilm formation is most likely a key mechanism for environmental survival and persistence. The significance and importance of Francisella spp.’s biofilm phenotype as a critical aspect of its microbial physiology is being developed. Areas for further studies include the potential role of Francisella spp. biofilms in the infection of mammalian hosts and virulence regulation.
Collapse
Affiliation(s)
- Monique L van Hoek
- School of Systems Biology and National Center for Biodefense and Infectious Diseases; George Mason University; Manassas, VA USA
| |
Collapse
|
20
|
Gesbert G, Ramond E, Rigard M, Frapy E, Dupuis M, Dubail I, Barel M, Henry T, Meibom K, Charbit A. Asparagine assimilation is critical for intracellular replication and dissemination of Francisella. Cell Microbiol 2013; 16:434-49. [PMID: 24134488 DOI: 10.1111/cmi.12227] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/10/2013] [Accepted: 10/11/2013] [Indexed: 12/28/2022]
Abstract
In order to develop a successful infectious cycle, intracellular bacterial pathogens must be able to adapt their metabolism to optimally utilize the nutrients available in the cellular compartments and tissues where they reside. Francisella tularensis, the agent of the zoonotic disease tularaemia, is a highly infectious bacterium for a large number of animal species. This bacterium replicates in its mammalian hosts mainly in the cytosol of infected macrophages. We report here the identification of a novel amino acid transporter of the major facilitator superfamily of secondary transporters that is required for bacterial intracellular multiplication and systemic dissemination. We show that inactivation of this transporter does not affect phagosomal escape but prevents multiplication in the cytosol of all cell types tested. Remarkably, the intracellular growth defect of the mutant was fully and specifically reversed by addition of asparagine or asparagine-containing dipeptides as well as by simultaneous addition of aspartic acid and ammonium. Importantly, bacterial virulence was also restored in vivo, in the mouse model, by asparagine supplementation. This work unravels thus, for the first time, the importance of asparagine for cytosolicmultiplication of Francisella. Amino acid transporters are likely to constitute underappreciated players in bacterial intracellular parasitism.
Collapse
Affiliation(s)
- Gael Gesbert
- Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche, 96 rue Didot 75993, Paris, Cedex 14, France; INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Marakasova ES, Akhmatova NK, Amaya M, Eisenhaber B, Eisenhaber F, van Hoek ML, Baranova AV. Prenylation: From bacteria to eukaryotes. Mol Biol 2013. [DOI: 10.1134/s0026893313050130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
22
|
Dieppedale J, Gesbert G, Ramond E, Chhuon C, Dubail I, Dupuis M, Guerrera IC, Charbit A. Possible links between stress defense and the tricarboxylic acid (TCA) cycle in Francisella pathogenesis. Mol Cell Proteomics 2013; 12:2278-92. [PMID: 23669032 PMCID: PMC3734585 DOI: 10.1074/mcp.m112.024794] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 05/01/2013] [Indexed: 12/16/2022] Open
Abstract
Francisella tularensis is a highly infectious bacterium causing the zoonotic disease tularemia. In vivo, this facultative intracellular bacterium survives and replicates mainly in the cytoplasm of infected cells. We have recently identified a genetic locus, designated moxR that is important for stress resistance and intramacrophage survival of F. tularensis. In the present work, we used tandem affinity purification coupled to mass spectrometry to identify in vivo interacting partners of three proteins encoded by this locus: the MoxR-like ATPase (FTL_0200), and two proteins containing motifs predicted to be involved in protein-protein interactions, bearing von Willebrand A (FTL_0201) and tetratricopeptide (FTL_0205) motifs. The three proteins were designated here for simplification, MoxR, VWA1, and TPR1, respectively. MoxR interacted with 31 proteins, including various enzymes. VWA1 interacted with fewer proteins, but these included the E2 component of 2-oxoglutarate dehydrogenase and TPR1. The protein TPR1 interacted with one hundred proteins, including the E1 and E2 subunits of both oxoglutarate and pyruvate dehydrogenase enzyme complexes, and their common E3 subunit. Remarkably, chromosomal deletion of either moxR or tpr1 impaired pyruvate dehydrogenase and oxoglutarate dehydrogenase activities, supporting the hypothesis of a functional role for the interaction of MoxR and TPR1 with these complexes. Altogether, this work highlights possible links between stress resistance and metabolism in F. tularensis virulence.
Collapse
Affiliation(s)
- Jennifer Dieppedale
- From the ‡Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche. 96 rue Didot 75993 Paris Cedex 14 – France
- §INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Gael Gesbert
- From the ‡Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche. 96 rue Didot 75993 Paris Cedex 14 – France
- §INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Elodie Ramond
- From the ‡Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche. 96 rue Didot 75993 Paris Cedex 14 – France
- §INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Cerina Chhuon
- From the ‡Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche. 96 rue Didot 75993 Paris Cedex 14 – France
- ¶Plateau Protéome Necker, PPN, IFR94, Université Paris-Descartes, Faculté de Médecine René Descartes, Paris 75015 France
| | - Iharilalao Dubail
- From the ‡Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche. 96 rue Didot 75993 Paris Cedex 14 – France
- §INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Marion Dupuis
- From the ‡Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche. 96 rue Didot 75993 Paris Cedex 14 – France
- §INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| | - Ida Chiara Guerrera
- From the ‡Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche. 96 rue Didot 75993 Paris Cedex 14 – France
- ¶Plateau Protéome Necker, PPN, IFR94, Université Paris-Descartes, Faculté de Médecine René Descartes, Paris 75015 France
| | - Alain Charbit
- From the ‡Université Paris Descartes, Sorbonne Paris Cité, Bâtiment Leriche. 96 rue Didot 75993 Paris Cedex 14 – France
- §INSERM, U1002, Unité de Pathogénie des Infections Systémiques, Paris, France
| |
Collapse
|
23
|
Woolard MD, Barrigan LM, Fuller JR, Buntzman AS, Bryan J, Manoil C, Kawula TH, Frelinger JA. Identification of Francisella novicida mutants that fail to induce prostaglandin E(2) synthesis by infected macrophages. Front Microbiol 2013; 4:16. [PMID: 23403609 PMCID: PMC3568750 DOI: 10.3389/fmicb.2013.00016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/24/2013] [Indexed: 11/13/2022] Open
Abstract
Francisella tularensis is the causative agent of tularemia. We have previously shown that infection with F. tularensis Live Vaccine Strain (LVS) induces macrophages to synthesize prostaglandin E2 (PGE2). Synthesis of PGE2 by F. tularensis infected macrophages results in decreased T cell proliferation in vitro and increased bacterial survival in vivo. Although we understand some of the biological consequences of F. tularensis induced PGE2 synthesis by macrophages, we do not understand the cellular pathways (neither host nor bacterial) that result in up-regulation of the PGE2 biosynthetic pathway in F. tularensis infected macrophages. We took a genetic approach to begin to understand the molecular mechanisms of bacterial induction of PGE2 synthesis from infected macrophages. To identify F. tularensis genes necessary for the induction of PGE2 in primary macrophages, we infected cells with individual mutants from the closely related strain F. tularensis subspecies novicida U112 (U112) two allele mutant library. Twenty genes were identified that when disrupted resulted in U112 mutant strains unable to induce the synthesis of PGE2 by infected macrophages. Fourteen of the genes identified are located within the Francisella pathogenicity island (FPI). Genes in the FPI are required for F. tularensis to escape from the phagosome and replicate in the cytosol, which might account for the failure of U112 with transposon insertions within the FPI to induce PGE2. This implies that U112 mutant strains that do not grow intracellularly would also not induce PGE2. We found that U112 clpB::Tn grows within macrophages yet fails to induce PGE2, while U112 pdpA::Tn does not grow yet does induce PGE2. We also found that U112 iglC::Tn neither grows nor induces PGE2. These findings indicate that there is dissociation between intracellular growth and the ability of F. tularensis to induce PGE2 synthesis. These mutants provide a critical entrée into the pathways used in the host for PGE2 induction.
Collapse
Affiliation(s)
- Matthew D Woolard
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport Shreveport, LA, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Tetratricopeptide repeat motifs in the world of bacterial pathogens: role in virulence mechanisms. Infect Immun 2012; 81:629-35. [PMID: 23264049 DOI: 10.1128/iai.01035-12] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tetratricopeptide repeat (TPR) structural motif is known to occur in a wide variety of proteins present in prokaryotic and eukaryotic organisms. The TPR motif represents an elegant module for the assembly of various multiprotein complexes, and thus, TPR-containing proteins often play roles in vital cell processes. As the TPR profile is well defined, the complete TPR protein repertoire of a bacterium with a known genomic sequence can be predicted. This provides a tremendous opportunity for investigators to identify new TPR-containing proteins and study them in detail. In the past decade, TPR-containing proteins of bacterial pathogens have been reported to be directly related to virulence-associated functions. In this minireview, we summarize the current knowledge of the TPR-containing proteins involved in virulence mechanisms of bacterial pathogens while highlighting the importance of TPR motifs for the proper functioning of class II chaperones of a type III secretion system in the pathogenesis of Yersinia, Pseudomonas, and Shigella.
Collapse
|
25
|
Link between intraphagosomal biotin and rapid phagosomal escape in Francisella. Proc Natl Acad Sci U S A 2012; 109:18084-9. [PMID: 23071317 DOI: 10.1073/pnas.1206411109] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cytosolic bacterial pathogens require extensive metabolic adaptations within the host to replicate intracellularly and cause disease. In phagocytic cells such as macrophages, these pathogens must respond rapidly to nutrient limitation within the harsh environment of the phagosome. Many cytosolic pathogens escape the phagosome quickly (15-60 min) and thereby subvert this host defense, reaching the cytosol where they can replicate. Although a great deal of research has focused on strategies used by bacteria to resist antimicrobial phagosomal defenses and transiently pass through this compartment, the metabolic requirements of bacteria in the phagosome are largely uncharacterized. We previously identified a Francisella protein, FTN_0818, as being essential for intracellular replication and involved in virulence in vivo. We now show that FTN_0818 is involved in biotin biosynthesis and required for rapid escape from the Francisella-containing phagosome (FCP). Addition of biotin complemented the phagosomal escape defect of the FTN_0818 mutant, demonstrating that biotin is critical for promoting rapid escape during the short time that the bacteria are in the phagosome. Biotin also rescued the attenuation of the FTN_0818 mutant during infection in vitro and in vivo, highlighting the importance of this process. The key role of biotin in phagosomal escape implies biotin may be a limiting factor during infection. We demonstrate that a bacterial metabolite is required for phagosomal escape of an intracellular pathogen, providing insight into the link between bacterial metabolism and virulence, likely serving as a paradigm for other cytosolic pathogens.
Collapse
|
26
|
Subversion of host recognition and defense systems by Francisella spp. Microbiol Mol Biol Rev 2012; 76:383-404. [PMID: 22688817 DOI: 10.1128/mmbr.05027-11] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Francisella tularensis is a gram-negative intracellular pathogen and the causative agent of the disease tularemia. Inhalation of as few as 10 bacteria is sufficient to cause severe disease, making F. tularensis one of the most highly virulent bacterial pathogens. The initial stage of infection is characterized by the "silent" replication of bacteria in the absence of a significant inflammatory response. Francisella achieves this difficult task using several strategies: (i) strong integrity of the bacterial surface to resist host killing mechanisms and the release of inflammatory bacterial components (pathogen-associated molecular patterns [PAMPs]), (ii) modification of PAMPs to prevent activation of inflammatory pathways, and (iii) active modulation of the host response by escaping the phagosome and directly suppressing inflammatory pathways. We review the specific mechanisms by which Francisella achieves these goals to subvert host defenses and promote pathogenesis, highlighting as-yet-unanswered questions and important areas for future study.
Collapse
|
27
|
Ramakrishnan G, Sen B, Johnson R. Paralogous outer membrane proteins mediate uptake of different forms of iron and synergistically govern virulence in Francisella tularensis tularensis. J Biol Chem 2012; 287:25191-202. [PMID: 22661710 DOI: 10.1074/jbc.m112.371856] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Francisella tularensis subsp. tularensis is a highly infectious bacterium causing acute disease in mammalian hosts. Mechanisms for the acquisition of iron within the iron-limiting host environment are likely to be critical for survival of this intracellular pathogen. FslE (FTT0025) and FupA (FTT0918) are paralogous proteins that are predicted to form β-barrels in the outer membrane of virulent strain Schu S4 and are unique to Francisella species. Previous studies have implicated both FupA, initially identified as a virulence factor and FslE, encoded by the siderophore biosynthetic operon, in iron acquisition. Using single and double mutants, we demonstrated that these paralogs function in concert to promote growth under iron limitation. We used a (55)Fe transport assay to demonstrate that FslE is involved in siderophore-mediated ferric iron uptake, whereas FupA facilitates high affinity ferrous iron uptake. Optimal replication within J774A.1 macrophage-like cells required at least one of these uptake systems to be functional. In a mouse model of tularemia, the ΔfupA mutant was attenuated, but the ΔfslE ΔfupA mutant was significantly more attenuated, implying that the two systems of iron acquisition function synergistically to promote virulence. These studies highlight the importance of specific iron acquisition functions, particularly that of ferrous iron, for virulence of F. tularensis in the mammalian host.
Collapse
Affiliation(s)
- Girija Ramakrishnan
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia 22901, USA.
| | | | | |
Collapse
|
28
|
Abstract
To help define the biological functions of nonessential genes of Francisella novicida, we measured the growth of arrayed members of a comprehensive transposon mutant library under a variety of nutrition and stress conditions. Mutant phenotypes were identified for 37% of the genes, corresponding to ten carbon source utilization pathways, nine amino acid- and nucleotide-biosynthetic pathways, ten intrinsic antibiotic resistance traits, and six other stress resistance traits. The greatest surprise of the analysis was the large number of genotype-phenotype relationships that were not predictable from studies of Escherichia coli and other model species. The study identified candidate genes for a missing glycolysis function (phosphofructokinase), an unusual proline-biosynthetic pathway, parallel outer membrane lipid asymmetry maintenance systems, and novel antibiotic resistance functions. The analysis provides an evaluation of annotation predictions, identifies cases in which fundamental processes differ from those in model species, and helps create an empirical foundation for understanding virulence and other complex processes. The value of genome sequences as foundations for analyzing complex traits in nonmodel organisms is limited by the need to rely almost exclusively on sequence similarities to predict gene functions in annotations. Many genes cannot be assigned functions, and some predictions are incorrect or incomplete. Due to these limitations, genome-scale experimental approaches that test and extend bioinformatics-based predictions are sorely needed. In this study, we describe such an approach based on phenotypic analysis of a comprehensive, sequence-defined transposon mutant library.
Collapse
|
29
|
Asare R, Abu Kwaik Y. Molecular complexity orchestrates modulation of phagosome biogenesis and escape to the cytosol of macrophages by Francisella tularensis. Environ Microbiol 2011. [DOI: 10.1111/j.1462-2920.2011.02650.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Amaya M, Baranova A, van Hoek ML. Protein prenylation: a new mode of host-pathogen interaction. Biochem Biophys Res Commun 2011; 416:1-6. [PMID: 22079293 DOI: 10.1016/j.bbrc.2011.10.142] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 10/28/2011] [Indexed: 01/10/2023]
Abstract
Post translational modifications are required for proteins to be fully functional. The three step process, prenylation, leads to farnesylation or geranylgeranylation, which increase the hydrophobicity of the prenylated protein for efficient anchoring into plasma membranes and/or organellar membranes. Prenylated proteins function in a number of signaling and regulatory pathways that are responsible for basic cell operations. Well characterized prenylated proteins include Ras, Rac and Rho. Recently, pathogenic prokaryotic proteins, such as SifA and AnkB, have been shown to be prenylated by eukaryotic host cell machinery, but their functions remain elusive. The identification of other bacterial proteins undergoing this type of host-directed post-translational modification shows promise in elucidating host-pathogen interactions to develop new therapeutics. This review incorporates new advances in the study of protein prenylation into a broader aspect of biology with a focus on host-pathogen interaction.
Collapse
Affiliation(s)
- Moushimi Amaya
- School of Systems Biology, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA
| | | | | |
Collapse
|
31
|
Macrophage replication screen identifies a novel Francisella hydroperoxide resistance protein involved in virulence. PLoS One 2011; 6:e24201. [PMID: 21915295 PMCID: PMC3167825 DOI: 10.1371/journal.pone.0024201] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 08/02/2011] [Indexed: 11/25/2022] Open
Abstract
Francisella tularensis is a Gram-negative facultative intracellular pathogen and the causative agent of tularemia. Recently, genome-wide screens have identified Francisella genes required for virulence in mice. However, the mechanisms by which most of the corresponding proteins contribute to pathogenesis are still largely unknown. To further elucidate the roles of these virulence determinants in Francisella pathogenesis, we tested whether each gene was required for replication of the model pathogen F. novicida within macrophages, an important virulence trait. Fifty-three of the 224 genes tested were involved in intracellular replication, including many of those within the Francisella pathogenicity island (FPI), validating our results. Interestingly, over one third of the genes identified are annotated as hypothetical, indicating that F. novicida likely utilizes novel virulence factors for intracellular replication. To further characterize these virulence determinants, we selected two hypothetical genes to study in more detail. As predicted by our screen, deletion mutants of FTN_0096 and FTN_1133 were attenuated for replication in macrophages. The mutants displayed differing levels of attenuation in vivo, with the FTN_1133 mutant being the most attenuated. FTN_1133 has sequence similarity to the organic hydroperoxide resistance protein Ohr, an enzyme involved in the bacterial response to oxidative stress. We show that FTN_1133 is required for F. novicida resistance to, and degradation of, organic hydroperoxides as well as resistance to the action of the NADPH oxidase both in macrophages and mice. Furthermore, we demonstrate that F. holarctica LVS, a strain derived from a highly virulent human pathogenic species of Francisella, also requires this protein for organic hydroperoxide resistance as well as replication in macrophages and mice. This study expands our knowledge of Francisella's largely uncharacterized intracellular lifecycle and demonstrates that FTN_1133 is an important novel mediator of oxidative stress resistance.
Collapse
|
32
|
Al-Khodor S, Abu Kwaik Y. Triggering Ras signalling by intracellular Francisella tularensis through recruitment of PKCα and βI to the SOS2/GrB2 complex is essential for bacterial proliferation in the cytosol. Cell Microbiol 2011; 12:1604-21. [PMID: 20618341 DOI: 10.1111/j.1462-5822.2010.01494.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intracellular proliferation of Francisella tularensis is essential for manifestation of the fatal disease tularaemia, and is classified as a category A bioterrorism agent. The F. tularensis-containing phagosome (FCP) matures into a late endosome-like phagosome with limited fusion to lysosomes, followed by rapid bacterial escape into the cytosol. The Francisella pathogenicity island (FPI) encodes a type VI-like secretion system, and the FPI-encoded IglC is essential for evasion of lysosomal fusion and phagosomal escape. Many host signalling events are likely to be modulated by F. tularensis to render the cell permissive for intracellular proliferation but they are not fully understood. Here we show that within 15 min of infection, intracellular F. tularensis ssp. novicida triggers IglC-dependent temporal activation of Ras, but attached extracellular bacteria fail to trigger Ras activation, which has never been shown for other intracellular pathogens. Intracellular F. tularensis ssp. novicida triggers activation of Ras through recruitment of PKCα and PKCβI to the SOS2/GrB2 complex. Silencing of SOS2, GrB2 and PKCα and PKCβI by RNAi has no effect on evasion of lysosomal fusion and bacterial escape into the cytosol but renders the cytosol non-permissive for replication of F. tularensis ssp. novicida. Since Ras activation promotes cell survival, we show that silencing of SOS2, GrB2 and PKCα and βI is associated with rapid early activation of caspase-3 within 8 h post infection. However, silencing of SOS2, GrB2 and PKCα and βI does not affect phosphorylation of Akt or Erk, indicating that activation of the PI3K/Akt and the Erk signalling cascade are independent of the F. tularensis-triggered Ras activation. We conclude that intracellular F. tularensis ssp. novicida triggers temporal and early activation of Ras through the SOS2/GrB2/PKCα/PKCβI quaternary complex. Temporal and rapid trigger of Ras signalling by intracellular F. tularensis is essential for intracellular bacterial proliferation within the cytosol, and this is associated with downregulation of early caspase-3 activation.
Collapse
Affiliation(s)
- Souhaila Al-Khodor
- Department of Microbiology and Immunology, College of Medicine, Department of Biology, University of Louisville, Louisville, KY 40202, USA
| | | |
Collapse
|
33
|
Su J, Asare R, Yang J, Nair MKM, Mazurkiewicz JE, Abu-Kwaik Y, Zhang JR. The capBCA Locus is Required for Intracellular Growth of Francisella tularensis LVS. Front Microbiol 2011; 2:83. [PMID: 21747799 PMCID: PMC3128946 DOI: 10.3389/fmicb.2011.00083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 04/07/2011] [Indexed: 12/18/2022] Open
Abstract
Francisella tularensis is the causative agent of tularemia and a category A bioterrorism agent. The molecular basis for the extreme virulence of F. tularensis remains unclear. Our recent study found that capBCA, three neighboring genes, are necessary for the infection of F. tularensis live vaccine strain (LVS) in a respiratory infection mouse model. We here show that the capBCA genes are necessary for in vivo growth of F. tularensis LVS in the lungs, spleens, and livers of BALB/c mice. Unmarked deletion of capBCA in type A strain Schu S4 resulted in significant attenuation in virulence although the level of the attenuation in Schu S4 was much less profound than in LVS. We further demonstrated that CapB protein is produced at a low level under the in vitro culture conditions, and capB alone is necessary for in vivo growth of F. tularensis LVS in the lungs of BALB/c mice. Finally, deletional mutations in capB alone or capBCA significantly impaired intracellular growth of F. tularensis LVS in cultured macrophages, thus suggesting that the capBCA genes are necessary for intracellular adaptation of F. tularensis. The requirement of this gene locus in intracellular adaption at least in part explains the significant attenuation of F. tularensis capBCA mutants in virulence.
Collapse
Affiliation(s)
- Jingliang Su
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural UniversityBeijing, China
| | - Rexford Asare
- Department of Microbiology and Immunology, College of MedicineLouisville, KY, USA
| | - Jun Yang
- Center for Immunology and Microbial Disease, Albany Medical CollegeAlbany, NY, USA
| | | | | | - Yousef Abu-Kwaik
- Department of Microbiology and Immunology, College of MedicineLouisville, KY, USA
| | - Jing-Ren Zhang
- Center for Immunology and Microbial Disease, Albany Medical CollegeAlbany, NY, USA
- Center for Infectious Disease Research, School of Medicine, Tsinghua UniversityBeijing, China
| |
Collapse
|
34
|
Akimana C, Kwaik YA. Francisella-arthropod vector interaction and its role in patho-adaptation to infect mammals. Front Microbiol 2011; 2:34. [PMID: 21687425 PMCID: PMC3109307 DOI: 10.3389/fmicb.2011.00034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 02/07/2011] [Indexed: 11/13/2022] Open
Abstract
Francisella tularensis is a Gram-negative, intracellular, zoonotic bacterium, and is the causative agent of tularemia with a broad host range. Arthropods such as ticks, mosquitoes, and flies maintain F. tularensis in nature by transmitting the bacteria among small mammals. While the tick is largely believed to be a biological vector of F. tularensis, transmission by mosquitoes and flies is largely believed to be mechanical on the mouthpart through interrupted feedings. However, the mechanism of infection of the vectors by F. tularensis is not well understood. Since F. tularensis has not been localized in the salivary gland of the primary human biting ticks, it is thought that bacterial transmission by ticks is through mechanical inoculation of tick feces containing F. tularensis into the skin wound. Drosophila melanogaster is an established good arthropod model for arthropod vectors of tularemia, where F. tularensis infects hemocytes, and is found in hemolymph, as seen in ticks. In addition, phagosome biogenesis and robust intracellular proliferation of F. tularensis in arthropod-derived cells are similar to that in mammalian macrophages. Furthermore, bacterial factors required for infectivity of mammals are often required for infectivity of the fly by F. tularensis. Several host factors that contribute to F. tularensis intracellular pathogenesis in D. melanogaster have been identified, and F. tularensis targets some of the evolutionarily conserved eukaryotic processes to enable intracellular survival and proliferation in evolutionarily distant hosts.
Collapse
Affiliation(s)
- Christine Akimana
- Department of Microbiology and Immunology, College of Medicine, University of Louisville Louisville, KY, USA
| | | |
Collapse
|
35
|
Asare R, Kwaik YA. Exploitation of host cell biology and evasion of immunity by francisella tularensis. Front Microbiol 2011; 1:145. [PMID: 21687747 PMCID: PMC3109322 DOI: 10.3389/fmicb.2010.00145] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 12/21/2010] [Indexed: 12/13/2022] Open
Abstract
Francisella tularensis is an intracellular bacterium that infects humans and many small mammals. During infection, F. tularensis replicates predominantly in macrophages but also proliferate in other cell types. Entry into host cells is mediate by various receptors. Complement-opsonized F. tularensis enters into macrophages by looping phagocytosis. Uptake is mediated in part by Syk, which may activate actin rearrangement in the phagocytic cup resulting in the engulfment of F. tularensis in a lipid raft rich phagosome. Inside the host cells, F. tularensis resides transiently in an acidified late endosome-like compartment before disruption of the phagosomal membrane and escape into the cytosol, where bacterial proliferation occurs. Modulation of phagosome biogenesis and escape into the cytosol is mediated by the Francisella pathogenicity island-encoded type VI-like secretion system. Whilst inside the phagosome, F. tularensis temporarily induce proinflammatory cytokines in PI3K/Akt-dependent manner, which is counteracted by the induction of SHIP that negatively regulates PI3K/Akt activation and promotes bacterial escape into the cytosol. Interestingly, F. tularensis subverts CD4 T cells-mediated killing by inhibiting antigen presentation by activated macrophages through ubiquitin-dependent degradation of MHC II molecules on activated macrophages. In the cytosol, F. tularensis is recognized by the host cell inflammasome, which is down-regulated by F. tularensis that also inhibits caspase-1 and ASC activity. During late stages of intracellular proliferation, caspase-3 is activated but apoptosis is delayed through activation of NF-κB and Ras, which ensures cell viability.
Collapse
Affiliation(s)
- Rexford Asare
- Department of Microbiology and Immunology, School of Medicine, University of Louisville Louisville, KY, USA
| | | |
Collapse
|
36
|
Chong A, Celli J. The francisella intracellular life cycle: toward molecular mechanisms of intracellular survival and proliferation. Front Microbiol 2010; 1:138. [PMID: 21687806 PMCID: PMC3109316 DOI: 10.3389/fmicb.2010.00138] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 12/05/2010] [Indexed: 11/13/2022] Open
Abstract
The tularemia-causing bacterium Francisella tularensis is a facultative intracellular organism with a complex intracellular lifecycle that ensures its survival and proliferation in a variety of mammalian cell types, including professional phagocytes. Because this cycle is essential to Francisella pathogenesis and virulence, much research has focused on deciphering the mechanisms of its intracellular survival and replication and characterizing both bacterial and host determinants of the bacterium's intracellular cycle. Studies of various strains and host cell models have led to the consensual paradigm of Francisella as a cytosolic pathogen, but also to some controversy about its intracellular cycle. In this review, we will detail major findings that have advanced our knowledge of Francisella intracellular survival strategies and also attempt to reconcile discrepancies that exist in our molecular understanding of the Francisella–phagocyte interactions.
Collapse
Affiliation(s)
- Audrey Chong
- Tularemia Pathogenesis Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health Hamilton, MT, USA
| | | |
Collapse
|
37
|
Meibom KL, Charbit A. Francisella tularensis metabolism and its relation to virulence. Front Microbiol 2010; 1:140. [PMID: 21687763 PMCID: PMC3109416 DOI: 10.3389/fmicb.2010.00140] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 12/13/2010] [Indexed: 01/08/2023] Open
Abstract
Francisella tularensis is a Gram-negative bacterium capable of causing the zoonotic disease tularaemia in a large number of mammalian species and in arthropods. F. tularensis is a facultative intracellular bacterium that infects and replicates in vivo mainly inside macrophages. During its systemic dissemination, F. tularensis must cope with very different life conditions (such as survival in different target organs or tissues and/or survival in the blood stream…) and may thus encounter a broad variety of carbon substrates, nitrogen, phosphor, and sulfur sources, as well as very low concentrations of essential ions. The development of recent genome-wide genetic screens have led to the identification of hundreds of genes participating to variable extents to Francisella virulence. Remarkably, an important proportion of the genes identified are related to metabolic and nutritional functions. However, the relationship between nutrition and the in vivo life cycle of F. tularensis is yet poorly understood. In this review, we will address the importance of metabolism and nutrition for F. tularensis pathogenesis, focusing specifically on amino acid and carbohydrate requirements.
Collapse
|
38
|
Bröms JE, Sjöstedt A, Lavander M. The Role of the Francisella Tularensis Pathogenicity Island in Type VI Secretion, Intracellular Survival, and Modulation of Host Cell Signaling. Front Microbiol 2010; 1:136. [PMID: 21687753 PMCID: PMC3109350 DOI: 10.3389/fmicb.2010.00136] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 12/02/2010] [Indexed: 11/13/2022] Open
Abstract
Francisella tularensis is a highly virulent gram-negative intracellular bacterium that causes the zoonotic disease tularemia. Essential for its virulence is the ability to multiply within host cells, in particular monocytic cells. The bacterium has developed intricate means to subvert host immune mechanisms and thereby facilitate its intracellular survival by preventing phagolysosomal fusion followed by escape into the cytosol, where it multiplies. Moreover, it targets and manipulates numerous host cell signaling pathways, thereby ameliorating the otherwise bactericidal capacity. Many of the underlying molecular mechanisms still remain unknown but key elements, directly or indirectly responsible for many of the aforementioned mechanisms, rely on the expression of proteins encoded by the Francisella pathogenicity island (FPI), suggested to constitute a type VI secretion system. We here describe the current knowledge regarding the components of the FPI and the roles that have been ascribed to them.
Collapse
Affiliation(s)
- Jeanette E Bröms
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Umeå University Umeå, Sweden
| | | | | |
Collapse
|
39
|
Akimana C, Al-Khodor S, Abu Kwaik Y. Host factors required for modulation of phagosome biogenesis and proliferation of Francisella tularensis within the cytosol. PLoS One 2010; 5:e11025. [PMID: 20552012 PMCID: PMC2883998 DOI: 10.1371/journal.pone.0011025] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 05/13/2010] [Indexed: 01/07/2023] Open
Abstract
Francisella tularensis is a highly infectious facultative intracellular bacterium that can be transmitted between mammals by arthropod vectors. Similar to many other intracellular bacteria that replicate within the cytosol, such as Listeria, Shigella, Burkholderia, and Rickettsia, the virulence of F. tularensis depends on its ability to modulate biogenesis of its phagosome and to escape into the host cell cytosol where it proliferates. Recent studies have identified the F. tularensis genes required for modulation of phagosome biogenesis and escape into the host cell cytosol within human and arthropod-derived cells. However, the arthropod and mammalian host factors required for intracellular proliferation of F. tularensis are not known. We have utilized a forward genetic approach employing genome-wide RNAi screen in Drosophila melanogaster-derived cells. Screening a library of approximately 21,300 RNAi, we have identified at least 186 host factors required for intracellular bacterial proliferation. We silenced twelve mammalian homologues by RNAi in HEK293T cells and identified three conserved factors, the PI4 kinase PI4KCA, the ubiquitin hydrolase USP22, and the ubiquitin ligase CDC27, which are also required for replication in human cells. The PI4KCA and USP22 mammalian factors are not required for modulation of phagosome biogenesis or phagosomal escape but are required for proliferation within the cytosol. In contrast, the CDC27 ubiquitin ligase is required for evading lysosomal fusion and for phagosomal escape into the cytosol. Although F. tularensis interacts with the autophagy pathway during late stages of proliferation in mouse macrophages, this does not occur in human cells. Our data suggest that F. tularensis utilizes host ubiquitin turnover in distinct mechanisms during the phagosomal and cytosolic phases and phosphoinositide metabolism is essential for cytosolic proliferation of F. tularensis. Our data will facilitate deciphering molecular ecology, patho-adaptation of F. tularensis to the arthropod vector and its role in bacterial ecology and patho-evolution to infect mammals.
Collapse
Affiliation(s)
- Christine Akimana
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Souhaila Al-Khodor
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, Kentucky, United States of America
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
40
|
Asare R, Akimana C, Jones S, Abu Kwaik Y. Molecular bases of proliferation of Francisella tularensis in arthropod vectors. Environ Microbiol 2010; 12:2587-612. [PMID: 20482589 DOI: 10.1111/j.1462-2920.2010.02230.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Arthropod vectors are important vehicles for transmission of Francisella tularensis between mammals, but very little is known about the F. tularensis-arthropod vector interaction. Drosophila melanogaster has been recently developed as an arthropod vector model for F. tularensis. We have shown that intracellular trafficking of F. tularensis within human monocytes-derived macrophages and D. melanogaster-derived S2 cells is very similar. Within both evolutionarily distant host cells, the Francisella-containing phagosome matures to a late endosome-like phagosome with limited fusion to lysosomes followed by rapid bacterial escape into the cytosol where the bacterial proliferate. To decipher the molecular bases of intracellular proliferation of F. tularensis within arthropod-derived cells, we screened a comprehensive library of mutants of F. tularensis ssp. novicida for their defect in intracellular proliferation within D. melanogaster-derived S2 cells. Our data show that 394 genes, representing 22% of the genome, are required for intracellular proliferation within D. melanogaster-derived S2 cells, including many of the Francisella Pathogenicity Island (FPI) genes that are also required for proliferation within mammalian macrophages. Functional gene classes that exhibit growth defect include metabolic (25%), FPI (2%), type IV pili (1%), transport (16%) and DNA modification (5%). Among 168 most defective mutants in intracellular proliferation in S2 cells, 80 are defective in lethality and proliferation within adult D. melanogaster. The observation that only 135 of the 394 mutants that are defective in S2 cells are also defective in human macrophages indicates that F. tularensis utilize common as well as distinct mechanisms to proliferate within mammalian and arthropod cells. Our studies will facilitate deciphering the molecular aspects of F. tularensis-arthropod vector interaction and its patho-adaptation to infect mammals.
Collapse
Affiliation(s)
- Rexford Asare
- Department of Microbiology and Immunology, University of Louisville College of Medicine, Louisville, KY 40292, USA
| | | | | | | |
Collapse
|