1
|
Borsodi AK. Taxonomic diversity of extremophilic prokaryotes adapted to special environmental parameters in Hungary: a review. Biol Futur 2024; 75:183-192. [PMID: 38753295 DOI: 10.1007/s42977-024-00224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/26/2024] [Indexed: 06/18/2024]
Abstract
The taxonomic and metabolic diversity of prokaryotes and their adaptability to extreme environmental parameters have allowed extremophiles to find their optimal living conditions under extreme conditions for one or more environmental parameters. Natural habitats abundant in extremophilic microorganisms are relatively rare in Hungary. Nevertheless, alkaliphiles and halophiles can flourish in shallow alkaline lakes (soda pans) and saline (solonetz) soils, where extreme weather conditions favor the development of unique bacterial communities. In addition, the hot springs and thermal wells that supply spas and thermal baths and provide water for energy use are suitable colonization sites for thermophiles and hyperthermophiles. Polyextremophiles, adapted to multiple extreme circumstances, can be found in the aphotic, nutrient-poor and radioactive hypogenic caves of the Buda Thermal Karst, among others. The present article reviews the organization, taxonomic composition, and potential role of different extremophilic bacterial communities in local biogeochemical cycles, based on the most recent studies on extremophiles in Hungary.
Collapse
Affiliation(s)
- Andrea K Borsodi
- Department of Microbiology, Institute of Biology, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary.
| |
Collapse
|
2
|
Belykh E, Maystrenko T, Velegzhaninov I, Tavleeva M, Rasova E, Rybak A. Taxonomic Diversity and Functional Traits of Soil Bacterial Communities under Radioactive Contamination: A Review. Microorganisms 2024; 12:733. [PMID: 38674676 PMCID: PMC11051952 DOI: 10.3390/microorganisms12040733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Studies investigating the taxonomic diversity and structure of soil bacteria in areas with enhanced radioactive backgrounds have been ongoing for three decades. An analysis of data published from 1996 to 2024 reveals changes in the taxonomic structure of radioactively contaminated soils compared to the reference, showing that these changes are not exclusively dependent on contamination rates or pollutant compositions. High levels of radioactive exposure from external irradiation and a high radionuclide content lead to a decrease in the alpha diversity of soil bacterial communities, both in laboratory settings and environmental conditions. The effects of low or moderate exposure are not consistently pronounced or unidirectional. Functional differences among taxonomic groups that dominate in contaminated soil indicate a variety of adaptation strategies. Bacteria identified as multiple-stress tolerant; exhibiting tolerance to metals and antibiotics; producing antioxidant enzymes, low-molecular antioxidants, and radioprotectors; participating in redox reactions; and possessing thermophilic characteristics play a significant role. Changes in the taxonomic and functional structure, resulting from increased soil radionuclide content, are influenced by the combined effects of ionizing radiation, the chemical toxicity of radionuclides and co-contaminants, as well as the physical and chemical properties of the soil and the initial bacterial community composition. Currently, the quantification of the differential contributions of these factors based on the existing published studies presents a challenge.
Collapse
Affiliation(s)
- Elena Belykh
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Tatiana Maystrenko
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Ilya Velegzhaninov
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Marina Tavleeva
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
- Department of Biology, Institute of Natural Sciences, Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prospekt, Syktyvkar 167001, Russia
| | - Elena Rasova
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Anna Rybak
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| |
Collapse
|
3
|
Duo Saito RA, Moliné M, de Garcia V. Physiological characterization of polyextremotolerant yeasts from cold environments of Patagonia. Extremophiles 2024; 28:17. [PMID: 38342818 DOI: 10.1007/s00792-024-01334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/30/2023] [Indexed: 02/13/2024]
Abstract
Yeasts from cold environments have a wide range of strategies to prevent the negative effects of extreme conditions, including the production of metabolites of biotechnological interest. We investigated the growth profile and production of metabolites in yeast species isolated from cold environments. Thirty-eight strains were tested for their ability to grow at different temperatures (5-30 °C) and solute concentrations (3-12.5% NaCl and 50% glucose). All strains tested were able to grow at 5 °C, and 77% were able to grow with 5% NaCl at 18 °C. We were able to group strains based on different physicochemical/lifestyle profiles such as polyextremotolerant, osmotolerant, psychrotolerant, or psychrophilic. Five strains were selected to study biomass and metabolite production (glycerol, trehalose, ergosterol, and mycosporines). These analyses revealed that the accumulation pattern of trehalose and ergosterol was related to each lifestyle profile. Also, our findings would suggest that mycosporines does not have a role as an osmolyte. Non-conventional fermentative yeasts such as Phaffia tasmanica and Saccharomyces eubayanus may be of interest for trehalose production. This work contributes to the knowledge of non-conventional yeasts with biotechnological application from cold environments, including their growth profile, metabolites, and biomass production under different conditions.
Collapse
Affiliation(s)
- Rubí A Duo Saito
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET - Universidad Nacional del Comahue, Bariloche, Quintral, Argentina
| | - Martín Moliné
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), CONICET - Universidad Nacional del Comahue, Bariloche, Quintral, Argentina
| | - Virginia de Garcia
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN), CONICET - Universidad Nacional del Comahue, Neuquén, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Cavalcante SB, Dos Santos Biscaino C, Kreusch MG, da Silva AF, Duarte RTD, Robl D. The hidden rainbow: the extensive biotechnological potential of Antarctic fungi pigments. Braz J Microbiol 2023; 54:1675-1687. [PMID: 37286926 PMCID: PMC10484874 DOI: 10.1007/s42770-023-01011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
The Antarctic continent is an extreme environment recognized mainly by its subzero temperatures. Fungi are ubiquitous microorganisms that stand out even among Antarctic organisms, primarily due to secondary metabolites production with several biological activities. Pigments are examples of such metabolites, which mainly occur in response to hostile conditions. Various pigmented fungi have been isolated from the Antarctic continent, living in the soil, sedimentary rocks, snow, water, associated with lichens, mosses, rhizospheres, and zooplankton. Physicochemical extreme environments provide a suitable setup for microbial pigment production with unique characteristics. The biotechnological potential of extremophiles, combined with concerns over synthetic pigments, has led to a great interest in natural pigment alternatives. Besides biological activities provided by fungal pigments for surviving in extreme environments (e.g., photoprotection, antioxidant activity, and stress resistance), it may present an opportunity for biotechnological industries. This paper reviews the biotechnological potential of Antarctic fungal pigments, with a detailed discussion over the biological role of fungal pigments, potential industrial production of pigments from extremophilic fungi, pigments toxicity, current market perspective and published intellectual properties related to pigmented Antarctic fungi.
Collapse
Affiliation(s)
- Sabrina Barros Cavalcante
- Department of Microbiology, Immunology and Parasitlogy, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Carla Dos Santos Biscaino
- Department of Microbiology, Immunology and Parasitlogy, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Marianne Gabi Kreusch
- Department of Microbiology, Immunology and Parasitlogy, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - André Felipe da Silva
- Bioprocess and Biotechnology Engineering Undergraduate Program, Federal University of Tocantins (UFT), Gurupi, TO, Brazil
| | - Rubens Tadeu Delgado Duarte
- Department of Microbiology, Immunology and Parasitlogy, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Diogo Robl
- Department of Microbiology, Immunology and Parasitlogy, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
5
|
Ben Brahim R, Ellouzi H, Fouzai K, Asses N, Neffati M, Sabatier JM, Bulet P, Regaya I. Optimized Chemical Extraction Methods of Antimicrobial Peptides from Roots and Leaves of Extremophilic Plants: Anthyllis sericea and Astragalus armatus Collected from the Tunisian Desert. Antibiotics (Basel) 2022; 11:antibiotics11101302. [PMID: 36289960 PMCID: PMC9599020 DOI: 10.3390/antibiotics11101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022] Open
Abstract
Extraction methods depend mainly on the chemical nature of the extracted molecule. For these reasons, the selection of the extraction medium is a vital part of obtaining these molecules. The extraction of antimicrobial peptides (AMPs) from extremophile plants is important because of its potential pharmaceutical applications. This work focused on the evaluation of several solvents for the extraction of AMPs from the following two extremophile plants: Astragalus armatus and Anthyllis sericea from southern Tunisia. In order to identify the most efficient solvents and extraction solutions, we used sulfuric acid, dichloromethane, phosphate buffer, acetic acid and sodium acetate, and we tested them on leaves and roots of both the studied plants. The extracts obtained using sulfuric acid, dichloromethane and phosphate buffer extraction did not show any antimicrobial activity, whereas the acetic acid and sodium acetate extracts led to growth inhibition of some of the tested bacterial strains. The extracts of leaves and roots of An. sericea and As. armatus obtained by acetic acid and sodium acetate were proven to be active against Gram-positive bacteria and Gram-negative bacteria. Therefore, the most appropriate solvents to use for antimicrobial peptide extraction from both plants are acetic acid and sodium acetate.
Collapse
Affiliation(s)
- Raoua Ben Brahim
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif 2050, Tunisia
- Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia
- Correspondence: (R.B.B.); (I.R.); Tel.: +216-2854-7958 (R.B.B.); +216-9600-9080 (I.R.)
| | - Hasna Ellouzi
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif 2050, Tunisia
| | - Khaoula Fouzai
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif 2050, Tunisia
- Department of Biology, Faculty of Sciences of Bizerte, Carthage University, Bizerte 7021, Tunisia
| | - Nedra Asses
- Higher Institute of Sciences and Technologies of the Environment of Borj Cedria, University of Carthage, Amilcar 1054, Tunisia
| | - Mohammed Neffati
- Laboratory of Pastoral Ecosystems and Valorization of Spontaneous Plants, LR16IRA03, Institute of Arid Regions, University of Gabès, Médenine 4119, Tunisia
| | - Jean Marc Sabatier
- Institut de Neurophysiopathologie (INP), Faculté des Sciences Médicales et Paramédicales, Aix-Marseille Université, CNRS UMR 7051, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Philippe Bulet
- Plateform BioPark Archamps, 218 Avenue Marie Curie Archparc, 74160 Archamps, France
- CR University Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, 38700 Grenoble, France
| | - Imed Regaya
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, B.P. 901, Hammam-Lif 2050, Tunisia
- Higher Institute of Sciences and Technologies of the Environment of Borj Cedria, University of Carthage, Amilcar 1054, Tunisia
- Correspondence: (R.B.B.); (I.R.); Tel.: +216-2854-7958 (R.B.B.); +216-9600-9080 (I.R.)
| |
Collapse
|
6
|
Jiang X, Van Horn DJ, Okie JG, Buelow HN, Schwartz E, Colman DR, Feeser KL, Takacs-Vesbach CD. Limits to the three domains of life: lessons from community assembly along an Antarctic salinity gradient. Extremophiles 2022; 26:15. [PMID: 35296937 DOI: 10.1007/s00792-022-01262-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/10/2022] [Indexed: 02/01/2023]
Abstract
Extremophiles exist among all three domains of life; however, physiological mechanisms for surviving harsh environmental conditions differ among Bacteria, Archaea and Eukarya. Consequently, we expect that domain-specific variation of diversity and community assembly patterns exist along environmental gradients in extreme environments. We investigated inter-domain community compositional differences along a high-elevation salinity gradient in the McMurdo Dry Valleys, Antarctica. Conductivity for 24 soil samples collected along the gradient ranged widely from 50 to 8355 µS cm-1. Taxonomic richness varied among domains, with a total of 359 bacterial, 2 archaeal, 56 fungal, and 69 non-fungal eukaryotic operational taxonomic units (OTUs). Richness for bacteria, archaea, fungi, and non-fungal eukaryotes declined with increasing conductivity (all P < 0.05). Principal coordinate ordination analysis (PCoA) revealed significant (ANOSIM R = 0.97) groupings of low/high salinity bacterial OTUs, while OTUs from other domains were not significantly clustered. Bacterial beta diversity was unimodally distributed along the gradient and had a nested structure driven by species losses, whereas in fungi and non-fungal eukaryotes beta diversity declined monotonically without strong evidence of nestedness. Thus, while increased salinity acts as a stressor in all domains, the mechanisms driving community assembly along the gradient differ substantially between the domains.
Collapse
Affiliation(s)
- Xiaoben Jiang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - David J Van Horn
- Department of Biology, MSC03 2020 1UNM, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jordan G Okie
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, 85287, USA
| | - Heather N Buelow
- Department of Biology, MSC03 2020 1UNM, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Egbert Schwartz
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Daniel R Colman
- Department of Biology, MSC03 2020 1UNM, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Kelli L Feeser
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | | |
Collapse
|
7
|
Kiama CW, Njire MM, Kambura AK, Mugweru JN, Matiru VN, Wafula EN, Kagali RN, Kuja JO. Prokaryotic diversity and composition within equatorial lakes Olbolosat and Oloiden in Kenya (Africa). CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100066. [PMID: 34841356 PMCID: PMC8610316 DOI: 10.1016/j.crmicr.2021.100066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 01/04/2023] Open
Abstract
Total community 16S rDNA was used to determine the diversity and composition of bacteria and archaea within lakes Olbolosat and Oloiden in Kenya. The V3-V4 hypervariable region of the 16S rRNA gene was targeted since it's highly conserved and has a higher resolution for lower rank taxa. High throughput sequencing was performed on 15 samples obtained from the two lakes using the Illumina Miseq platform. Lakes Olbolosat and Oloiden shared 280 of 10,523 Amplicon Sequence Variants (ASVs) recovered while the four sample types (water, microbial mats, dry and wet sediments) shared 4 ASVs. The composition of ASVs in lake Olbolosat was highly dependent on Cu+, Fe2+, NH4 +, and Mn2+, while L. Oloiden was dependent on Mg2+, Na+, Ca2+, and K+. All the alpha diversity indices except Simpson were highest in the dry sediment sample (EC1 and 2) both from lake Oloiden. The abundant phyla included Proteobacteria (33.8%), Firmicutes (27.3%), Actinobacteriota (21.2%), Chloroflexi (6.8%), Cyanobacteria (3.8%), Acidobacteriota (2.8%), Planctomycetota (1.9%) and Bacteroidota (1.1%). Analysis of similarity (ANOSIM) revealed a significant difference in ASV composition between the two lakes (r = 0.191, p = 0.048), and between the sample types (r = 0.6667, p = 0.001). The interaction network for prokaryotic communities within the two lakes displayed Proteobacteria to be highly positively connected with other microbes. PERMANOVA results suggest that temperature controls the functioning of the two ecosystems.
Collapse
Affiliation(s)
- Catherine Wachera Kiama
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200 Nairobi, Kenya
| | - Moses Mucugi Njire
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200 Nairobi, Kenya
| | - Anne Kelly Kambura
- School of Agriculture, Earth and Environmental Sciences, Taita Taveta University, P. O. Box 635-80300 Voi, Kenya
| | | | - Viviene Njeri Matiru
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200 Nairobi, Kenya
| | - Eliud Nalianya Wafula
- Department of Physical and Biological Sciences, Bomet University College, P.O Box 701-20400, Bomet Kenya
| | - Robert Nesta Kagali
- Department of Zoology, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200 Nairobi, Kenya
| | - Josiah Ochieng Kuja
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200 Nairobi, Kenya
| |
Collapse
|
8
|
|
9
|
Varrella S, Barone G, Tangherlini M, Rastelli E, Dell’Anno A, Corinaldesi C. Diversity, Ecological Role and Biotechnological Potential of Antarctic Marine Fungi. J Fungi (Basel) 2021; 7:391. [PMID: 34067750 PMCID: PMC8157204 DOI: 10.3390/jof7050391] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 11/28/2022] Open
Abstract
The Antarctic Ocean is one of the most remote and inaccessible environments on our planet and hosts potentially high biodiversity, being largely unexplored and undescribed. Fungi have key functions and unique physiological and morphological adaptations even in extreme conditions, from shallow habitats to deep-sea sediments. Here, we summarized information on diversity, the ecological role, and biotechnological potential of marine fungi in the coldest biome on Earth. This review also discloses the importance of boosting research on Antarctic fungi as hidden treasures of biodiversity and bioactive molecules to better understand their role in marine ecosystem functioning and their applications in different biotechnological fields.
Collapse
Affiliation(s)
- Stefano Varrella
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Giulio Barone
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Largo Fiera della Pesca, 60125 Ancona, Italy;
| | - Michael Tangherlini
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica “Anton Dohrn”, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Eugenio Rastelli
- Department of Marine Biotechnology, Stazione Zoologica “Anton Dohrn”, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Antonio Dell’Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
10
|
A first look at the metabolic rate of Greenland sharks (Somniosus microcephalus) in the Canadian Arctic. Sci Rep 2020; 10:19297. [PMID: 33168918 PMCID: PMC7653932 DOI: 10.1038/s41598-020-76371-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolic rate is intricately linked to the ecology of organisms and can provide a framework to study the behaviour, life history, population dynamics, and trophic impact of a species. Acquiring measures of metabolic rate, however, has proven difficult for large water-breathing animals such as sharks, greatly limiting our understanding of the energetic lives of these highly threatened and ecologically important fish. Here, we provide the first estimates of resting and active routine metabolic rate for the longest lived vertebrate, the Greenland shark (Somniosus microcephalus). Estimates were acquired through field respirometry conducted on relatively large-bodied sharks (33–126 kg), including the largest individual shark studied via respirometry. We show that despite recording very low whole-animal resting metabolic rates for this species, estimates are within the confidence intervals predicted by derived interspecies allometric and temperature scaling relationships, suggesting this species may not be unique among sharks in this respect. Additionally, our results do not support the theory of metabolic cold adaptation which assumes that polar species maintain elevated metabolic rates to cope with the challenges of life at extreme cold temperatures.
Collapse
|
11
|
Fongaro G, Maia GA, Rogovski P, Cadamuro RD, Lopes JC, Moreira RS, Camargo AF, Scapini T, Stefanski FS, Bonatto C, Marques Souza DS, Stoco PH, Duarte RTD, Cabral da Cruz AC, Wagner G, Treichel H. Extremophile Microbial Communities and Enzymes for Bioenergetic Application Based on Multi-Omics Tools. Curr Genomics 2020; 21:240-252. [PMID: 33071618 PMCID: PMC7521039 DOI: 10.2174/1389202921999200601144137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/02/2020] [Accepted: 04/20/2020] [Indexed: 12/03/2022] Open
Abstract
Abstract: Genomic and proteomic advances in extremophile microorganism studies are increasingly demonstrating their ability to produce a variety of enzymes capable of converting biomass into bioenergy. Such microorganisms are found in environments with nutritional restrictions, anaerobic environments, high salinity, varying pH conditions and extreme natural environments such as hydrothermal vents, soda lakes, and Antarctic sediments. As extremophile microorganisms and their enzymes are found in widely disparate locations, they generate new possibilities and opportunities to explore biotechnological prospecting, including biofuels (biogas, hydrogen and ethanol) with an aim toward using multi-omics tools that shed light on biotechnological breakthroughs.
Collapse
Affiliation(s)
- Gislaine Fongaro
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Guilherme Augusto Maia
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Paula Rogovski
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Rafael Dorighello Cadamuro
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Joana Camila Lopes
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Renato Simões Moreira
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Aline Frumi Camargo
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Thamarys Scapini
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Fábio Spitza Stefanski
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Charline Bonatto
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Doris Sobral Marques Souza
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Patrícia Hermes Stoco
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Rubens Tadeu Delgado Duarte
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Ariadne Cristiane Cabral da Cruz
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Glauber Wagner
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Helen Treichel
- 1Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 2Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, Brazil; 3Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil; 4Department of Dentistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
12
|
Vogler M, Karan R, Renn D, Vancea A, Vielberg MT, Grötzinger SW, DasSarma P, DasSarma S, Eppinger J, Groll M, Rueping M. Crystal Structure and Active Site Engineering of a Halophilic γ-Carbonic Anhydrase. Front Microbiol 2020; 11:742. [PMID: 32411108 PMCID: PMC7199487 DOI: 10.3389/fmicb.2020.00742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/30/2020] [Indexed: 11/27/2022] Open
Abstract
Environments previously thought to be uninhabitable offer a tremendous wealth of unexplored microorganisms and enzymes. In this paper, we present the discovery and characterization of a novel γ-carbonic anhydrase (γ-CA) from the polyextreme Red Sea brine pool Discovery Deep (2141 m depth, 44.8°C, 26.2% salt) by single-cell genome sequencing. The extensive analysis of the selected gene helps demonstrate the potential of this culture-independent method. The enzyme was expressed in the bioengineered haloarchaeon Halobacterium sp. NRC-1 and characterized by X-ray crystallography and mutagenesis. The 2.6 Å crystal structure of the protein shows a trimeric arrangement. Within the γ-CA, several possible structural determinants responsible for the enzyme's salt stability could be highlighted. Moreover, the amino acid composition on the protein surface and the intra- and intermolecular interactions within the protein differ significantly from those of its close homologs. To gain further insights into the catalytic residues of the γ-CA enzyme, we created a library of variants around the active site residues and successfully improved the enzyme activity by 17-fold. As several γ-CAs have been reported without measurable activity, this provides further clues as to critical residues. Our study reveals insights into the halophilic γ-CA activity and its unique adaptations. The study of the polyextremophilic carbonic anhydrase provides a basis for outlining insights into strategies for salt adaptation, yielding enzymes with industrially valuable properties, and the underlying mechanisms of protein evolution.
Collapse
Affiliation(s)
- Malvina Vogler
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Center for Integrated Protein Science Munich, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Ram Karan
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Dominik Renn
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Alexandra Vancea
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Marie-Theres Vielberg
- Center for Integrated Protein Science Munich, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Stefan W. Grötzinger
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Priya DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jörg Eppinger
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Michael Groll
- Center for Integrated Protein Science Munich, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Magnus Rueping
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
13
|
Jin M, Gai Y, Guo X, Hou Y, Zeng R. Properties and Applications of Extremozymes from Deep-Sea Extremophilic Microorganisms: A Mini Review. Mar Drugs 2019; 17:md17120656. [PMID: 31766541 PMCID: PMC6950199 DOI: 10.3390/md17120656] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 01/09/2023] Open
Abstract
The deep sea, which is defined as sea water below a depth of 1000 m, is one of the largest biomes on the Earth, and is recognised as an extreme environment due to its range of challenging physical parameters, such as pressure, salinity, temperature, chemicals and metals (such as hydrogen sulphide, copper and arsenic). For surviving in such extreme conditions, deep-sea extremophilic microorganisms employ a variety of adaptive strategies, such as the production of extremozymes, which exhibit outstanding thermal or cold adaptability, salt tolerance and/or pressure tolerance. Owing to their great stability, deep-sea extremozymes have numerous potential applications in a wide range of industries, such as the agricultural, food, chemical, pharmaceutical and biotechnological sectors. This enormous economic potential combined with recent advances in sampling and molecular and omics technologies has led to the emergence of research regarding deep-sea extremozymes and their primary applications in recent decades. In the present review, we introduced recent advances in research regarding deep-sea extremophiles and the enzymes they produce and discussed their potential industrial applications, with special emphasis on thermophilic, psychrophilic, halophilic and piezophilic enzymes.
Collapse
Affiliation(s)
- Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Yingbao Gai
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
| | - Xun Guo
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
| | - Yanping Hou
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
| | - Runying Zeng
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Correspondence: ; Tel.: +86-592-2195323
| |
Collapse
|
14
|
Abstract
Microbes are the most abundant lifeforms on the planet and perform functions critical for all other life to exist. Environmental 'omic' technologies provide the capacity to discover the 'what, how and why' of indigenous species. However, in order to accurately interpret this data, sound conceptual frameworks are required. Here I argue that our understanding of microbes will advance much more effectively if we adopt a microbcentric, and not anthropocentric view of the world.
Collapse
Affiliation(s)
- Ricardo Cavicchioli
- School of Biotechnology and Biomolecular SciencesUNSW SydneySydneyNSWAustralia
| |
Collapse
|
15
|
Sajjad W, Zheng G, Ma X, Rafiq M, Irfan M, Xu W, Ali B. Culture-dependent hunt and characterization of iron-oxidizing bacteria in Baiyin Copper Mine, China, and their application in metals extraction. J Basic Microbiol 2018; 59:323-336. [DOI: 10.1002/jobm.201800433] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/01/2018] [Accepted: 11/30/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Wasim Sajjad
- Key Laboratory of Petroleum Resources; Gansu Province/Key Laboratory of Petroleum Resources Research; Institute of Geology and Geophysics; Chinese Academy of Sciences; Lanzhou PR China
- University of Chinese Academy of Sciences; Beijing PR China
| | - Guodong Zheng
- Key Laboratory of Petroleum Resources; Gansu Province/Key Laboratory of Petroleum Resources Research; Institute of Geology and Geophysics; Chinese Academy of Sciences; Lanzhou PR China
| | - Xiangxian Ma
- Key Laboratory of Petroleum Resources; Gansu Province/Key Laboratory of Petroleum Resources Research; Institute of Geology and Geophysics; Chinese Academy of Sciences; Lanzhou PR China
| | - Muhammad Rafiq
- Bristol Glaciology Centre; School of Geographical Sciences; Faculty of Sciences; University of Bristol; Bristol United Kingdom
| | - Muhammad Irfan
- Department of Microbiology and Cell Science Genetics Institute and Institute of Food and Agricultural Science University of Florida; Gainesville Florida
| | - Wang Xu
- Key Laboratory of Petroleum Resources; Gansu Province/Key Laboratory of Petroleum Resources Research; Institute of Geology and Geophysics; Chinese Academy of Sciences; Lanzhou PR China
- University of Chinese Academy of Sciences; Beijing PR China
| | - Barkat Ali
- University of Chinese Academy of Sciences; Beijing PR China
- State Key Laboratory of Cryosphere Science; Northwest Institute of Eco-Environment and Resources; University of Chinese Academy of Sciences; Lanzhou PR China
| |
Collapse
|
16
|
Kelly SA, Skvortsov T, Magill D, Quinn DJ, McGrath JW, Allen CCR, Moody TS, Gilmore BF. Characterization of a novel ω-transaminase from a Triassic salt mine metagenome. Biochem Biophys Res Commun 2018; 503:2936-2942. [PMID: 30119883 DOI: 10.1016/j.bbrc.2018.08.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 08/08/2018] [Indexed: 01/08/2023]
Abstract
Chiral amines are valuable building blocks for the pharmaceutical industry, and are increasingly synthesized by transaminase-mediated (TAm) synthesis. Currently available TAms, primarily isolated from the genomes of cultured mesophilic bacteria, often suffer from a number of drawbacks, including poor substrate range and an inability to tolerate the harsh conditions often demanded by industrial processes. These characteristics have, in part, driven the search for novel biocatalysts from both metagenomic sources and extreme environments. Herein, we report the isolation and characterization of an ω-TAm from a metagenome of a Triassic salt mine in Kilroot, N. Ireland, an extremely hypersaline environment formed circa 220-250 mya. The gene sequence was identified based on homology with existing bacterial TAms, synthesized within a pET28a(+) plasmid and expressed in E. coli BL21 DE3 cells. The resultant 49 kDa protein accepted (S)-methylbenzylamine (MBA) as amino donor and had a specific activity of 0.54 U/mg using α-ketoglutarate (ΑKG) as substrate. Molecular modeling and substrate docking indicated the presence of key residues, conserved in a number of other TAms. Despite the hypersaline environment from which it was isolated, the enzyme displayed low halotolerance, highlighting that not all biocatalysts will demonstrate the extreme characteristics associated with their source environment. This study does however reinforce the viability of mining metagenomic datasets as a means of discovering novel and functional biocatalysts, and adds to a currently scant list of such examples in the field of TAms.
Collapse
Affiliation(s)
- Stephen A Kelly
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, N. Ireland, UK
| | - Timofey Skvortsov
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, N. Ireland, UK
| | - Damian Magill
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 7BL, N. Ireland, UK
| | - Derek J Quinn
- Almac, Department of Biocatalysis & Isotope Chemistry, 20 Seagoe Industrial Estate, Craigavon, BT63 5QD, N. Ireland, UK
| | - John W McGrath
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 7BL, N. Ireland, UK
| | - Christopher C R Allen
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 7BL, N. Ireland, UK
| | - Thomas S Moody
- Almac, Department of Biocatalysis & Isotope Chemistry, 20 Seagoe Industrial Estate, Craigavon, BT63 5QD, N. Ireland, UK; Arran Chemical Company Limited, Unit 1 Monksland Industrial Estate, Athlone, Co. Roscommon, Ireland
| | - Brendan F Gilmore
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, N. Ireland, UK.
| |
Collapse
|
17
|
Couger B, Weirick T, Damásio ARL, Segato F, Polizeli MDLTDM, de Almeida RSC, Goldman GH, Prade RA. The Genome of a Thermo Tolerant, Pathogenic Albino Aspergillus fumigatus. Front Microbiol 2018; 9:1827. [PMID: 30154766 PMCID: PMC6102483 DOI: 10.3389/fmicb.2018.01827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/23/2018] [Indexed: 11/16/2022] Open
Abstract
Biotechnologists are interested in thermo tolerant fungi to manufacture enzymes active and stable at high temperatures, because they provide improved catalytic efficiency, strengthen enzyme substrate interactions, accelerate substrate enzyme conversion rates, enhance mass transfer, lower substrate viscosity, lessen contamination risk and offer the potential for enzyme recycling. Members of the genus Aspergillus live a wide variety of lifestyles, some embrace GRAS status routinely employed in food processing while others such as Aspergillus fumigatus are human pathogens. A. fumigatus produces melanins, pyomelanin protects the fungus against reactive oxygen species and DHN melanin produced by the pksP gene cluster confers the gray-greenish color. pksP mutants are attenuated in virulence. Here we report on the genomic DNA sequence of a thermo tolerant albino Aspergillus isolated from rain forest composted floors. Unexpectedly, the nucleotide sequence was 95.7% identical to the reported by Aspergillus fumigatus Af293. Genome size and predicted gene models were also highly similar, however differences in DNA content and conservation were observed. The albino strain, classified as Aspergillus fumigatus var. niveus, had 160 gene models not present in A. fumigatus Af293 and A. fumigatus Af293 had 647 not found in the albino strain. Furthermore, the major pigment generating gene cluster pksP appeared to have undergone genomic rearrangements and a key tyrosinase present in many aspergilli was missing from the genome. Remarkably however, despite the lack of pigmentation A. fumigatus var. niveus killed neutropenic mice and survived macrophage engulfment at similar rates as A. fumigatus Af293.
Collapse
Affiliation(s)
- Brian Couger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Tyler Weirick
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - André R. L. Damásio
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, São Paulo, Brazil
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Campinas São Paulo, Brazil
| | - Fernando Segato
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Campinas São Paulo, Brazil
- Departamento de Biotecnologia da Escola de Engenharia de Lorena, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Gustavo H. Goldman
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Campinas São Paulo, Brazil
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, São Paulo, Brazil
| | - Rolf A. Prade
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Campinas São Paulo, Brazil
| |
Collapse
|
18
|
Kelly SA, Megaw J, Caswell J, Scott CJ, Allen CCR, Moody TS, Gilmore BF. Isolation and Characterisation of a Halotolerant ω-Transaminase from a Triassic Period Salt Mine and Its Application to Biocatalysis. ChemistrySelect 2017. [DOI: 10.1002/slct.201701642] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Stephen A. Kelly
- School of Pharmacy; Queen's University Belfast; Belfast BT9 7BL, N. Ireland UK
| | - Julianne Megaw
- School of Pharmacy; Queen's University Belfast; Belfast BT9 7BL, N. Ireland UK
| | - Jill Caswell
- Department of Biocatalysis & Isotope Chemistry; Almac; Craigavon BT63 5QD, N. Ireland UK
| | - Christopher J. Scott
- School of Medicine, Dentistry and Biomedical Sciences; Queen's University Belfast; Belfast BT9 7BL, N. Ireland UK
| | | | - Thomas S. Moody
- Department of Biocatalysis & Isotope Chemistry; Almac; Craigavon BT63 5QD, N. Ireland UK
- Arran Chemical Company Limited, Unit 1 Monksland Industrial Estate; Athlone, Co. Roscommon Ireland
| | - Brendan F. Gilmore
- School of Pharmacy; Queen's University Belfast; Belfast BT9 7BL, N. Ireland UK
| |
Collapse
|
19
|
Ranawat P, Rawat S. Radiation resistance in thermophiles: mechanisms and applications. World J Microbiol Biotechnol 2017; 33:112. [DOI: 10.1007/s11274-017-2279-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/26/2017] [Indexed: 12/28/2022]
|
20
|
Williams TJ, Liao Y, Ye J, Kuchel RP, Poljak A, Raftery MJ, Cavicchioli R. Cold adaptation of the Antarctic haloarchaea
Halohasta litchfieldiae
and
Halorubrum lacusprofundi. Environ Microbiol 2017; 19:2210-2227. [DOI: 10.1111/1462-2920.13705] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/17/2017] [Accepted: 02/08/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Timothy J. Williams
- School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydney New South Wales2052 Australia
| | - Yan Liao
- School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydney New South Wales2052 Australia
| | - Jun Ye
- School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydney New South Wales2052 Australia
- Centre for Marine Bio‐InnovationThe University of New South WalesSydney New South Wales2052 Australia
| | - Rhiannon P. Kuchel
- Electron Microscopy UnitThe University of New South WalesSydney New South Wales2052 Australia
| | - Anne Poljak
- Bioanalytical Mass Spectrometry FacilityThe University of New South WalesSydney New South Wales2052 Australia
| | - Mark J. Raftery
- Bioanalytical Mass Spectrometry FacilityThe University of New South WalesSydney New South Wales2052 Australia
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydney New South Wales2052 Australia
| |
Collapse
|
21
|
Latorre M, Cortés MP, Travisany D, Di Genova A, Budinich M, Reyes-Jara A, Hödar C, González M, Parada P, Bobadilla-Fazzini RA, Cambiazo V, Maass A. The bioleaching potential of a bacterial consortium. BIORESOURCE TECHNOLOGY 2016; 218:659-666. [PMID: 27416516 DOI: 10.1016/j.biortech.2016.07.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/02/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
This work presents the molecular foundation of a consortium of five efficient bacteria strains isolated from copper mines currently used in state of the art industrial-scale biotechnology. The strains Acidithiobacillus thiooxidans Licanantay, Acidiphilium multivorum Yenapatur, Leptospirillum ferriphilum Pañiwe, Acidithiobacillus ferrooxidans Wenelen and Sulfobacillus thermosulfidooxidans Cutipay were selected for genome sequencing based on metal tolerance, oxidation activity and bioleaching of copper efficiency. An integrated model of metabolic pathways representing the bioleaching capability of this consortium was generated. Results revealed that greater efficiency in copper recovery may be explained by the higher functional potential of L. ferriphilum Pañiwe and At. thiooxidans Licanantay to oxidize iron and reduced inorganic sulfur compounds. The consortium had a greater capacity to resist copper, arsenic and chloride ion compared to previously described biomining strains. Specialization and particular components in these bacteria provided the consortium a greater ability to bioleach copper sulfide ores.
Collapse
Affiliation(s)
- Mauricio Latorre
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - María Paz Cortés
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - Dante Travisany
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - Alex Di Genova
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - Marko Budinich
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - Angélica Reyes-Jara
- Laboratorio de Microbiología y Probióticos, INTA, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Christian Hödar
- Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Mauricio González
- Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Pilar Parada
- BioSigma S.A., Loteo Los Libertadores, Lote 106, Colina, Chile
| | | | - Verónica Cambiazo
- Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Alejandro Maass
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Department of Mathematical Engineering, Universidad de Chile, Beauchef 851, 5th Floor, Santiago, Chile.
| |
Collapse
|
22
|
Badet T, Peyraud R, Raffaele S. Common protein sequence signatures associate with Sclerotinia borealis lifestyle and secretion in fungal pathogens of the Sclerotiniaceae. FRONTIERS IN PLANT SCIENCE 2015; 6:776. [PMID: 26442085 DOI: 10.3389/fpls.2015.00776issn=1664-462x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/10/2015] [Indexed: 05/25/2023]
Abstract
Fungal plant pathogens produce secreted proteins adapted to function outside fungal cells to facilitate colonization of their hosts. In many cases such as for fungi from the Sclerotiniaceae family the repertoire and function of secreted proteins remains elusive. In the Sclerotiniaceae, whereas Sclerotinia sclerotiorum and Botrytis cinerea are cosmopolitan broad host-range plant pathogens, Sclerotinia borealis has a psychrophilic lifestyle with a low optimal growth temperature, a narrow host range and geographic distribution. To spread successfully, S. borealis must synthesize proteins adapted to function in its specific environment. The search for signatures of adaptation to S. borealis lifestyle may therefore help revealing proteins critical for colonization of the environment by Sclerotiniaceae fungi. Here, we analyzed amino acids usage and intrinsic protein disorder in alignments of groups of orthologous proteins from the three Sclerotiniaceae species. We found that enrichment in Thr, depletion in Glu and Lys, and low disorder frequency in hot loops are significantly associated with S. borealis proteins. We designed an index to report bias in these properties and found that high index proteins were enriched among secreted proteins in the three Sclerotiniaceae fungi. High index proteins were also enriched in function associated with plant colonization in S. borealis, and in in planta-induced genes in S. sclerotiorum. We highlight a novel putative antifreeze protein and a novel putative lytic polysaccharide monooxygenase identified through our pipeline as candidate proteins involved in colonization of the environment. Our findings suggest that similar protein signatures associate with S. borealis lifestyle and with secretion in the Sclerotiniaceae. These signatures may be useful for identifying proteins of interest as targets for the management of plant diseases.
Collapse
Affiliation(s)
- Thomas Badet
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique, UMR441 Castanet-Tolosan, France ; Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, UMR2594 Castanet-Tolosan, France
| | - Rémi Peyraud
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique, UMR441 Castanet-Tolosan, France ; Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, UMR2594 Castanet-Tolosan, France
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique, UMR441 Castanet-Tolosan, France ; Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, UMR2594 Castanet-Tolosan, France
| |
Collapse
|
23
|
Yuan H, Peng L, Han Z, Xie JJ, Liu XP. Recombinant expression library of Pyrococcus furiosus constructed by high-throughput cloning: a useful tool for functional and structural genomics. Front Microbiol 2015; 6:943. [PMID: 26441878 PMCID: PMC4566052 DOI: 10.3389/fmicb.2015.00943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/25/2015] [Indexed: 11/28/2022] Open
Abstract
Hyperthermophile Pyrococcus furiosus grows optimally near 100°C and is an important resource of many industrial and molecular biological enzymes. To study the structure and function of P. furiosus proteins at whole genome level, we constructed expression plasmids of each P. furiosus gene using a ligase-independent cloning method, which was based on amplifying target gene and vector by PCR using phosphorothioate-modified primers and digesting PCR products by λ exonuclease. Our cloning method had a positive clone percentage of ≥ 80% in 96-well plate cloning format. Small-scale expression experiment showed that 55 out of 80 genes were efficiently expressed in Escherichia coli Strain Rosetta 2(DE3)pLysS. In summary, this recombinant expression library of P. furiosus provides a platform for functional and structural studies, as well as developing novel industrial enzymes. Our cloning scheme is adaptable to constructing recombinant expression library of other sequenced organisms.
Collapse
Affiliation(s)
- Hui Yuan
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Li Peng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Zhong Han
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Juan-Juan Xie
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Xi-Peng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
24
|
Guerriero G, Hausman JF, Strauss J, Ertan H, Siddiqui KS. Destructuring plant biomass: focus on fungal and extremophilic cell wall hydrolases. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 234:180-93. [PMID: 25804821 PMCID: PMC4937988 DOI: 10.1016/j.plantsci.2015.02.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 05/05/2023]
Abstract
The use of plant biomass as feedstock for biomaterial and biofuel production is relevant in the current bio-based economy scenario of valorizing renewable resources. Fungi, which degrade complex and recalcitrant plant polymers, secrete different enzymes that hydrolyze plant cell wall polysaccharides. The present review discusses the current research trends on fungal, as well as extremophilic cell wall hydrolases that can withstand extreme physico-chemical conditions required in efficient industrial processes. Secretomes of fungi from the phyla Ascomycota, Basidiomycota, Zygomycota and Neocallimastigomycota are presented along with metabolic cues (nutrient sensing, coordination of carbon and nitrogen metabolism) affecting their composition. We conclude the review by suggesting further research avenues focused on the one hand on a comprehensive analysis of the physiology and epigenetics underlying cell wall degrading enzyme production in fungi and on the other hand on the analysis of proteins with unknown function and metagenomics of extremophilic consortia. The current advances in consolidated bioprocessing, altered secretory pathways and creation of designer plants are also examined. Furthermore, recent developments in enhancing the activity, stability and reusability of enzymes based on synergistic, proximity and entropic effects, fusion enzymes, structure-guided recombination between homologous enzymes and magnetic enzymes are considered with a view to improving saccharification.
Collapse
Affiliation(s)
- Gea Guerriero
- Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, Luxembourg.
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, Luxembourg
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, Fungal Genetics and Genomics Unit, University of Natural Resources and Life Sciences Vienna (BOKU), University and Research Center Campus Tulln-Technopol, Tulln/Donau, Austria; Health and Environment Department, Austrian Institute of Technology GmbH - AIT, University and Research Center Campus Tulln-Technopol, Tulln/Donau, Austria
| | - Haluk Ertan
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia; Department of Molecular Biology and Genetics, Istanbul University, Turkey
| | - Khawar Sohail Siddiqui
- Biology Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia.
| |
Collapse
|
25
|
Badet T, Peyraud R, Raffaele S. Common protein sequence signatures associate with Sclerotinia borealis lifestyle and secretion in fungal pathogens of the Sclerotiniaceae. FRONTIERS IN PLANT SCIENCE 2015; 6:776. [PMID: 26442085 PMCID: PMC4585107 DOI: 10.3389/fpls.2015.00776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/10/2015] [Indexed: 05/04/2023]
Abstract
Fungal plant pathogens produce secreted proteins adapted to function outside fungal cells to facilitate colonization of their hosts. In many cases such as for fungi from the Sclerotiniaceae family the repertoire and function of secreted proteins remains elusive. In the Sclerotiniaceae, whereas Sclerotinia sclerotiorum and Botrytis cinerea are cosmopolitan broad host-range plant pathogens, Sclerotinia borealis has a psychrophilic lifestyle with a low optimal growth temperature, a narrow host range and geographic distribution. To spread successfully, S. borealis must synthesize proteins adapted to function in its specific environment. The search for signatures of adaptation to S. borealis lifestyle may therefore help revealing proteins critical for colonization of the environment by Sclerotiniaceae fungi. Here, we analyzed amino acids usage and intrinsic protein disorder in alignments of groups of orthologous proteins from the three Sclerotiniaceae species. We found that enrichment in Thr, depletion in Glu and Lys, and low disorder frequency in hot loops are significantly associated with S. borealis proteins. We designed an index to report bias in these properties and found that high index proteins were enriched among secreted proteins in the three Sclerotiniaceae fungi. High index proteins were also enriched in function associated with plant colonization in S. borealis, and in in planta-induced genes in S. sclerotiorum. We highlight a novel putative antifreeze protein and a novel putative lytic polysaccharide monooxygenase identified through our pipeline as candidate proteins involved in colonization of the environment. Our findings suggest that similar protein signatures associate with S. borealis lifestyle and with secretion in the Sclerotiniaceae. These signatures may be useful for identifying proteins of interest as targets for the management of plant diseases.
Collapse
Affiliation(s)
- Thomas Badet
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique, UMR441Castanet-Tolosan, France
- Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, UMR2594Castanet-Tolosan, France
| | - Rémi Peyraud
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique, UMR441Castanet-Tolosan, France
- Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, UMR2594Castanet-Tolosan, France
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique, UMR441Castanet-Tolosan, France
- Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, UMR2594Castanet-Tolosan, France
- *Correspondence: Sylvain Raffaele, Laboratoire des Interactions Plante Micro-organismes, 24 Chemin de Borde Rouge – Auzeville, 31326 Castanet Tolosan, France
| |
Collapse
|
26
|
da Silva JV, Fill TP, Lotufo LV, do Ó. Pessoa C, Rodrigues-Filho E. Biosynthesis of Bromoroquefortines in a High Saline Medium byPenicillium chrysogenum, a Terrestrial Endophyte Collected fromCoffea arabica. Helv Chim Acta 2014. [DOI: 10.1002/hlca.201300447] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Joghee NN, Jayaraman G. Biochemical changes induced by salt stress in halotolerant bacterial isolates are media dependent as well as species specific. Prep Biochem Biotechnol 2014; 46:8-14. [DOI: 10.1080/10826068.2014.970689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Tripathi L, Zhang Y, Lin Z. Bacterial sigma factors as targets for engineered or synthetic transcriptional control. Front Bioeng Biotechnol 2014; 2:33. [PMID: 25232540 PMCID: PMC4153023 DOI: 10.3389/fbioe.2014.00033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 08/20/2014] [Indexed: 11/20/2022] Open
Abstract
Sigma (σ) factors are the predominant constituents of transcription regulation in bacteria. σ Factors recruit the core RNA polymerase to recognize promoters with specific DNA sequences. Recently, engineering of transcriptional regulators has become a significant tool for strain engineering. The present review summarizes the recent advances in σ factor based engineering or synthetic design. The manipulation of σ factors presents insights into the bacterial stress tolerance and metabolite productivity. We envision more synthetic design based on σ factors that can be used to tune the regulatory network of bacteria.
Collapse
Affiliation(s)
- Lakshmi Tripathi
- Department of Chemical Engineering, Tsinghua University , Beijing , China
| | - Yan Zhang
- Department of Chemical Engineering, Tsinghua University , Beijing , China
| | - Zhanglin Lin
- Department of Chemical Engineering, Tsinghua University , Beijing , China
| |
Collapse
|
29
|
Adrio JL, Demain AL. Microbial enzymes: tools for biotechnological processes. Biomolecules 2014; 4:117-39. [PMID: 24970208 PMCID: PMC4030981 DOI: 10.3390/biom4010117] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/02/2014] [Accepted: 01/02/2014] [Indexed: 11/29/2022] Open
Abstract
Microbial enzymes are of great importance in the development of industrial bioprocesses. Current applications are focused on many different markets including pulp and paper, leather, detergents and textiles, pharmaceuticals, chemical, food and beverages, biofuels, animal feed and personal care, among others. Today there is a need for new, improved or/and more versatile enzymes in order to develop more novel, sustainable and economically competitive production processes. Microbial diversity and modern molecular techniques, such as metagenomics and genomics, are being used to discover new microbial enzymes whose catalytic properties can be improved/modified by different strategies based on rational, semi-rational and random directed evolution. Most industrial enzymes are recombinant forms produced in bacteria and fungi.
Collapse
Affiliation(s)
- Jose L Adrio
- Neol Biosolutions SA, BIC Granada, Granada 18016, Spain.
| | - Arnold L Demain
- Research Institute for Scientists Emeriti (R.I.S.E.), Drew University, Madison, NJ 07940, USA.
| |
Collapse
|
30
|
Jauzein C, Erdner DL. Stress-related responses in Alexandrium tamarense cells exposed to environmental changes. J Eukaryot Microbiol 2013; 60:526-38. [PMID: 23865757 DOI: 10.1111/jeu.12065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/04/2013] [Accepted: 05/02/2013] [Indexed: 11/30/2022]
Abstract
Organisms tend to be sensitive to drastic changes in environmental conditions. For unicellular microorganisms, variations in physico-chemical conditions are particularly challenging and may result in acclimation, entrance into quiescence, or death through necrotic or autocatalytic pathways. This study focuses on the thecate dinoflagellate Alexandrium tamarense. Cellular responses to oxidative, thermal, and nutrient stress were characterized using stress indicators, such as pigment content, efficiency of photosystem II or production of reactive oxygen species (ROS), as well as hallmarks of apoptosis including activity of caspase-like enzymes and expression of a metacaspase gene homolog. The formation of temporary cysts, a survival strategy of short-term quiescence, was also monitored. Cellular responses appeared to depend on multifactorial influences where type and intensity of stimulus as well as position in cell cycle may act in combination. Sequences of events observed implicate ROS production as a key determinant of stress-related pathways, playing potential roles in intracellular signaling, formation of temporary cysts, or cellular damage. Variations observed in caspase-like activities and metacaspase gene expression did not appear to be associated with programmed cell death pathways; our results suggest a wider range of functions for these proteases in phytoplankton cells, including roles in survival pathways and cell cycle progression.
Collapse
Affiliation(s)
- Cecile Jauzein
- Marine Science Institute, University of Texas, Port Aransas, Texas
| | | |
Collapse
|
31
|
Radiation Resistance in Extremophiles: Fending Off Multiple Attacks. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2013. [DOI: 10.1007/978-94-007-6488-0_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Role of Mn2+ and compatible solutes in the radiation resistance of thermophilic bacteria and archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2012; 2012:845756. [PMID: 23209374 PMCID: PMC3505630 DOI: 10.1155/2012/845756] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/18/2012] [Accepted: 10/13/2012] [Indexed: 01/28/2023]
Abstract
Radiation-resistant bacteria have garnered a great deal of attention from scientists seeking to expose the mechanisms underlying their incredible survival abilities. Recent analyses showed that the resistance to ionizing radiation (IR) in the archaeon Halobacterium salinarum is dependent upon Mn-antioxidant complexes responsible for the scavenging of reactive oxygen species (ROS) generated by radiation. Here we examined the role of the compatible solutes trehalose, mannosylglycerate, and di-myo-inositol phosphate in the radiation resistance of aerobic and anaerobic thermophiles. We found that the IR resistance of the thermophilic bacteria Rubrobacter xylanophilus and Rubrobacter radiotolerans was highly correlated to the accumulation of high intracellular concentration of trehalose in association with Mn, supporting the model of Mn2+-dependent ROS scavenging in the aerobes. In contrast, the hyperthermophilic archaea Thermococcus gammatolerans and Pyrococcus furiosus did not contain significant amounts of intracellular Mn, and we found no significant antioxidant activity from mannosylglycerate and di-myo-inositol phosphate in vitro. We therefore propose that the low levels of IR-generated ROS under anaerobic conditions combined with highly constitutively expressed detoxification systems in these anaerobes are key to their radiation resistance and circumvent the need for the accumulation of Mn-antioxidant complexes in the cell.
Collapse
|