1
|
Capasso S, Fusaro B, Lorenti E, Sánchez J, Diaz JI. Ixodes uriae (The seabird tick). Trends Parasitol 2024; 40:932-933. [PMID: 39127536 DOI: 10.1016/j.pt.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Affiliation(s)
- Sofia Capasso
- Department of Anatomy, Cell Biology, and Zoology, Faculty of Sciences, University of Extremadura, Avenida de Elvas, 06006 Badajoz, Spain; Centro de Estudios Parasitológicos y de Vectores (CCT La Plata-CONICET-UNLP), Boulevard 120 s/n e/61 y 62,1900 La Plata, Argentina.
| | - Bruno Fusaro
- Centro de Estudios Parasitológicos y de Vectores (CCT La Plata-CONICET-UNLP), Boulevard 120 s/n e/61 y 62,1900 La Plata, Argentina; Instituto Antártico Argentino (DNA), 25 de Mayo 1143, San Martín, Buenos Aires, Argentina
| | - Eliana Lorenti
- Centro de Estudios Parasitológicos y de Vectores (CCT La Plata-CONICET-UNLP), Boulevard 120 s/n e/61 y 62,1900 La Plata, Argentina
| | - Juliana Sánchez
- Centro de Bioinvestigaciones (CeBio), Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires - CITNOBA (CONICET-UNNOBA-UNSAdA), Pergamino, Argentina
| | - Julia Inés Diaz
- Centro de Estudios Parasitológicos y de Vectores (CCT La Plata-CONICET-UNLP), Boulevard 120 s/n e/61 y 62,1900 La Plata, Argentina
| |
Collapse
|
2
|
Koutantou M, Drancourt M, Angelakis E. Prevalence of Lyme Disease and Relapsing Fever Borrelia spp. in Vectors, Animals, and Humans within a One Health Approach in Mediterranean Countries. Pathogens 2024; 13:512. [PMID: 38921809 PMCID: PMC11206712 DOI: 10.3390/pathogens13060512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The genus Borrelia has been divided into Borreliella spp., which can cause Lyme Disease (LD), and Borrelia spp., which can cause Relapsing Fever (RF). The distribution of genus Borrelia has broadened due to factors such as climate change, alterations in land use, and enhanced human and animal mobility. Consequently, there is an increasing necessity for a One Health strategy to identify the key components in the Borrelia transmission cycle by monitoring the human-animal-environment interactions. The aim of this study is to summarize all accessible data to increase our understanding and provide a comprehensive overview of Borrelia distribution in the Mediterranean region. Databases including PubMed, Google Scholar, and Google were searched to determine the presence of Borreliella and Borrelia spp. in vectors, animals, and humans in countries around the Mediterranean Sea. A total of 3026 were identified and screened and after exclusion of papers that did not fulfill the including criteria, 429 were used. After examination of the available literature, it was revealed that various species associated with LD and RF are prevalent in vectors, animals, and humans in Mediterranean countries and should be monitored in order to effectively manage and prevent potential infections.
Collapse
Affiliation(s)
- Myrto Koutantou
- Diagnostic Department and Public Health Laboratories, Hellenic Pasteur Institute, 11521 Athens, Greece
| | | | - Emmanouil Angelakis
- Diagnostic Department and Public Health Laboratories, Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
3
|
Margos G, Hofmann M, Casjens S, Dupraz M, Heinzinger S, Hartberger C, Hepner S, Schmeusser M, Sing A, Fingerle V, McCoy KD. Genome diversity of Borrelia garinii in marine transmission cycles does not match host associations but reflects the strains evolutionary history. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 115:105502. [PMID: 37716446 DOI: 10.1016/j.meegid.2023.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/15/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Borrelia burgdorferi sensu lato is a species complex of spirochetal bacteria that occupy different ecological niches which is reflected in their reservoir host- and vector-associations. Borrelia genomes possess numerous linear and circular plasmids. Proteins encoded by plasmid genes play a major role in host- and vector-interaction and are important for Borrelia niche adaptation. However, the plasmid composition and therewith the gene repertoire may vary even in strains of a single species. Borrelia garinii, one of the six human pathogenic species, is common in Europe (vector Ixodes ricinus), Asia (vector Ixodes persulcatus) and in marine birds (vector Ixodes uriae). For the latter, only a single culture isolate (Far04) and its genome were previously available. The genome was rather small containing only one circular and six linear plasmids with a notable absence of cp32 plasmids. To further investigate B. garinii from marine transmission cycles and to explore i) whether the small number of plasmids found in isolate Far04 is a common feature in B. garinii from marine birds and presents an adaptation to this particular niche and ii) whether there may be a correlation between genome type and host species, we initiated in vitro cultures from live I. uriae collected in 2017 and 2018 from marine avian hosts and their nests. Hosts included common guillemots, Atlantic Puffin, razorbill, and kittiwake. We obtained 17 novel isolates of which 10 were sequenced using Illumina technology, one also with Pacific Bioscience technology. The 10 genomes segregated into five different genome types defined by plasmid types (based on PFam32 loci). We show that the genomes of seabird associated B. garinii contain fewer plasmids (6-9) than B. garinii from terrestrial avian species (generally ≥10), potentially suggesting niche adaptation. However, genome type did not match an association with the diverse avian seabird hosts investigated but matched the clonal complex they originated from, perhaps reflecting the isolates evolutionary history. Questions that should be addressed in future studies are (i) how is plasmid diversity related to host- and/or vector adaptation; (ii) do the different seabird species differ in reservoir host competence, and (iii) can the genome types found in seabirds use terrestrial birds as reservoir hosts.
Collapse
Affiliation(s)
- Gabriele Margos
- National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany.
| | - Markus Hofmann
- National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany.
| | - Sherwood Casjens
- Pathology Department, School of Medicine, University of Utah, 15 North Medical Drive East Ste. #1100, Salt Lake City, UT 84112, USA.
| | - Marlene Dupraz
- MIVEGEC, University of Montpellier - CNRS - IRD, Centre IRD, Domaine La Valette - 900, rue Jean François BRETON, 34090 Montpellier, France
| | - Susanne Heinzinger
- National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany.
| | - Christine Hartberger
- National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany.
| | - Sabrina Hepner
- National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany.
| | - Mercy Schmeusser
- National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany.
| | - Andreas Sing
- National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany.
| | - Volker Fingerle
- National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764 Oberschleissheim, Germany.
| | - Karen D McCoy
- MIVEGEC, University of Montpellier - CNRS - IRD, Centre IRD, Domaine La Valette - 900, rue Jean François BRETON, 34090 Montpellier, France.
| |
Collapse
|
4
|
Keve G, Sándor AD, Hornok S. Hard ticks (Acari: Ixodidae) associated with birds in Europe: Review of literature data. Front Vet Sci 2022; 9:928756. [PMID: 36090176 PMCID: PMC9453168 DOI: 10.3389/fvets.2022.928756] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Hard ticks (Acari: Ixodidae) are considered the most important transmitters of pathogens in the temperate zone that covers most of Europe. In the era of climate change tick-borne diseases are predicted to undergo geographical range expansion toward the north through regions that are connected to southern areas of the continent by bird migration. This alone would justify the importance of synthesized knowledge on the association of tick species with avian hosts, yet birds also represent the most taxonomically and ecologically diverse part of urban vertebrate fauna. Birds frequently occur in gardens and near animal keeping facilities, thus playing a significant role in the dispersal of ticks and tick-borne pathogens in synanthropic environments. The primary aim of this review is to provide a comprehensive reference source (baseline data) for future studies, particularly in the context of discovering new tick-host associations after comparison with already published data. The records on the ixodid tick infestations of birds were assessed from nearly 200 papers published since 1952. In this period, 37 hard tick species were reported from 16 orders of avian hosts in Europe. Here we compile a list of these tick species, followed by the English and Latin name of all reported infested bird species, as well as the tick developmental stage and country of origin whenever this information was available. These data allowed a first-hand analysis of general trends regarding how and at which developmental stage of ticks tend to infest avian hosts. Five tick species that were frequently reported from birds and show a broad geographical distribution in the Western Palearctic (Ixodes arboricola, I. frontalis, I. ricinus, Haemaphysalis concinna and Hyalomma marginatum) were also selected for statistical comparisons. Differences were demonstrated between these tick species regarding their association with bird species that typically feed from the ground and those that rarely occur at the soil level. The ecology of these five bird-infesting tick species is also illustrated here according to avian orders, taking into account the ecology (habitat type) and activity (circadian rhythm and feeding level) of most bird species that represent a certain order.
Collapse
Affiliation(s)
- Gergő Keve
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- ELKH-ÁTE Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Budapest, Hungary
| | - Attila D. Sándor
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- ELKH-ÁTE Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Budapest, Hungary
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- *Correspondence: Attila D. Sándor
| | - Sándor Hornok
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- ELKH-ÁTE Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Budapest, Hungary
| |
Collapse
|
5
|
Rataud A, Henry PY, Moutailler S, Marsot M. Research effort on birds' reservoir host potential for Lyme borreliosis: A systematic review and perspectives. Transbound Emerg Dis 2021; 69:2512-2522. [PMID: 34453490 DOI: 10.1111/tbed.14305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 01/05/2023]
Abstract
Zoonotic tick-borne diseases threat human and animal health. Understanding the role of hosts in the production of infected ticks in an epidemiological system is essential to be able to design effective measures to reduce the exposure of humans and animals to infectious tick bites. The reservoir host potential, that is, number of infected ticks produced by a host species, depends on three components: tick production, realized reservoir competence and host density. The parameters and factors that determine the reservoir host potential need to be characterized to achieve a robust understanding of the dynamics of pathogen-tick-host systems, and thus to mitigate the acarological risk of emerging infections. Few studies have investigated the role of birds in the local spread of Lyme borreliosis Borrelia. Knowledge of the research effort on the reservoir host potential of birds in Lyme borreliosis Borrelia circulation is necessary to prioritize future research on this topic. We provide a systematic review of the research effort on components of the reservoir host potential of wild birds for Lyme borreliosis Borrelia circulation, and factors that modulate these components in the European epidemiological system. Our review of 242 selected publications showed that tick production has been 1.4 and 21 times more studied than realized reservoir competence and bird density respectively. Only one study achieved to characterize the global host reservoir potential of birds in a given epidemiological system. Investigated factors were mostly related to bird species identity, individual characteristics of birds and tick characteristics, whereas the influence of bird life-history traits have been largely under-investigated. Because simultaneous characterization of all parameters is notoriously complex, interdisciplinary research is needed to combine and accumulate independent field and laboratory investigations targeting each parameter on specific epidemiological system or host species. This can help gain an integrated appraisal of the functioning of the studied system at a local scale.
Collapse
Affiliation(s)
- Amalia Rataud
- Université Paris Est, ANSES, Laboratory for Animal Health, Epidemiology Unit, Maisons-Alfort, France
| | - Pierre-Yves Henry
- Mécanismes Adaptatifs et Evolution (MECADEV UMR 7179), Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Brunoy, France.,Centre de Recherches sur la Biologie des Populations d'Oiseaux (CRBPO), Centre d'Ecologie et des Sciences de la Conservation (CESCO UMR 7204), Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, Paris, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Maud Marsot
- Université Paris Est, ANSES, Laboratory for Animal Health, Epidemiology Unit, Maisons-Alfort, France
| |
Collapse
|
6
|
Wolcott KA, Margos G, Fingerle V, Becker NS. Host association of Borrelia burgdorferi sensu lato: A review. Ticks Tick Borne Dis 2021; 12:101766. [PMID: 34161868 DOI: 10.1016/j.ttbdis.2021.101766] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022]
Abstract
Borrelia burgdorferi sensu lato (Bbsl) is a bacterial species complex that includes the etiological agents of the most frequently reported vector-borne disease in the Northern hemisphere, Lyme borreliosis. It currently comprises > 20 named and proposed genospecies that use vertebrate hosts and tick vectors for transmission in the Americas and Eurasia. Host (and vector) associations influence geographic distribution and speciation in Bbsl, which is of particular relevance to human health. To target gaps in knowledge for future efforts to understand broad patterns of the Bbsl-tick-host system and how they relate to human health, the present review aims to give a comprehensive summary of the literature on host association in Bbsl. Of 465 papers consulted (404 after exclusion criteria were applied), 96 sought to experimentally establish reservoir competence of 143 vertebrate host species for Bbsl. We recognize xenodiagnosis as the strongest method used, however it is infrequent (20% of studies) probably due to difficulties in maintaining tick vectors and/or wild host species in the lab. Some well-established associations were not experimentally confirmed according to our definition (ex: Borrelia garinii, Ixodes uriae and sea birds). We conclude that our current knowledge on host association in Bbsl is mostly derived from a subset of host, vector and bacterial species involved, providing an incomplete knowledge of the physiology, ecology and evolutionary history of these interactions. More studies are needed on all host, vector and bacterial species globally involved with a focus on non-rodent hosts and Asian Bbsl complex species, especially with experimental research that uses xenodiagnosis and genomics to analyze existing host associations in different ecosystems.
Collapse
Affiliation(s)
- Katherine A Wolcott
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany; National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | - Gabriele Margos
- National Reference Centre for Borrelia at the Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764, Oberschleissheim, Germany
| | - Volker Fingerle
- National Reference Centre for Borrelia at the Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764, Oberschleissheim, Germany
| | - Noémie S Becker
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
7
|
Norte AC, Boyer PH, Castillo-Ramirez S, Chvostáč M, Brahami MO, Rollins RE, Woudenberg T, Didyk YM, Derdakova M, Núncio MS, de Carvalho IL, Margos G, Fingerle V. The Population Structure of Borrelia lusitaniae Is Reflected by a Population Division of Its Ixodes Vector. Microorganisms 2021; 9:microorganisms9050933. [PMID: 33925391 PMCID: PMC8145215 DOI: 10.3390/microorganisms9050933] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 01/29/2023] Open
Abstract
Populations of vector-borne pathogens are shaped by the distribution and movement of vector and reservoir hosts. To study what impact host and vector association have on tick-borne pathogens, we investigated the population structure of Borrelia lusitaniae using multilocus sequence typing (MLST). Novel sequences were acquired from questing ticks collected in multiple North African and European locations and were supplemented by publicly available sequences at the Borrelia Pubmlst database (accessed on 11 February 2020). Population structure of B. lusitaniae was inferred using clustering and network analyses. Maximum likelihood phylogenies for two molecular tick markers (the mitochondrial 16S rRNA locus and a nuclear locus, Tick-receptor of outer surface protein A, trospA) were used to confirm the morphological species identification of collected ticks. Our results confirmed that B. lusitaniae does indeed form two distinguishable populations: one containing mostly European samples and the other mostly Portuguese and North African samples. Of interest, Portuguese samples clustered largely based on being from north (European) or south (North African) of the river Targus. As two different Ixodes species (i.e., I. ricinus and I. inopinatus) may vector Borrelia in these regions, reference samples were included for I. inopinatus but did not form monophyletic clades in either tree, suggesting some misidentification. Even so, the trospA phylogeny showed a monophyletic clade containing tick samples from Northern Africa and Portugal south of the river Tagus suggesting a population division in Ixodes on this locus. The pattern mirrored the clustering of B. lusitaniae samples, suggesting a potential co-evolution between tick and Borrelia populations that deserve further investigation.
Collapse
Affiliation(s)
- Ana Cláudia Norte
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal;
- Centre for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Águas de Moura, 2965-575 Setúbal, Portugal; (M.S.N.); (I.L.d.C.)
| | - Pierre H. Boyer
- CHRU Strasbourg, UR7290 Lyme Borreliosis Group, ITI InnoVec, Fédération de Médecine Translationnelle de Strasbourg, Institut de Bactériologie, University of Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, France;
| | - Santiago Castillo-Ramirez
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, CP 62210, Mexico;
| | - Michal Chvostáč
- Institute of Zoology, Slovak Academy of Sciences, 84506 Bratislava, Slovakia; (M.C.); (Y.M.D.); (M.D.)
| | - Mohand O. Brahami
- Laboratory of Ecology and Biology of Terrestrial Ecosystems, Faculty Biological and Agronomic Sciences, University Mouloud Mammeri, 15000 Tizi-Ouzou, Algeria;
| | - Robert E. Rollins
- Division of Evolutionary Biology, LMU Munich, Faculty of Biology, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany;
| | - Tom Woudenberg
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany; (T.W.); (V.F.)
| | - Yuliya M. Didyk
- Institute of Zoology, Slovak Academy of Sciences, 84506 Bratislava, Slovakia; (M.C.); (Y.M.D.); (M.D.)
- Department of Acarology, I. I. Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, B. Khmelnytskogo 15, 01030 Kyiv, Ukraine
| | - Marketa Derdakova
- Institute of Zoology, Slovak Academy of Sciences, 84506 Bratislava, Slovakia; (M.C.); (Y.M.D.); (M.D.)
| | - Maria Sofia Núncio
- Centre for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Águas de Moura, 2965-575 Setúbal, Portugal; (M.S.N.); (I.L.d.C.)
- Environmental Health Institute, Medicine Faculty, University of Lisbon, 1649-026 Lisbon, Portugal
| | - Isabel Lopes de Carvalho
- Centre for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Águas de Moura, 2965-575 Setúbal, Portugal; (M.S.N.); (I.L.d.C.)
- Environmental Health Institute, Medicine Faculty, University of Lisbon, 1649-026 Lisbon, Portugal
| | - Gabriele Margos
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany; (T.W.); (V.F.)
- Correspondence: or ; Tel.: +49-9131-6808-5883
| | - Volker Fingerle
- National Reference Center for Borrelia, Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany; (T.W.); (V.F.)
| |
Collapse
|
8
|
Abstract
The genus Borrelia consists of evolutionarily and genetically diverse bacterial species that cause a variety of diseases in humans and domestic animals. These vector-borne spirochetes can be classified into two major evolutionary groups, the Lyme borreliosis clade and the relapsing fever clade, both of which have complex transmission cycles during which they interact with multiple host species and arthropod vectors. Molecular, ecological, and evolutionary studies have each provided significant contributions towards our understanding of the natural history, biology and evolutionary genetics of Borrelia species; however, integration of these studies is required to identify the evolutionary causes and consequences of the genetic variation within and among Borrelia species. For example, molecular and genetic studies have identified the adaptations that maximize fitness components throughout the Borrelia lifecycle and enhance transmission efficacy but provide limited insights into the evolutionary pressures that have produced them. Ecological studies can identify interactions between Borrelia species and the vertebrate hosts and arthropod vectors they encounter and the resulting impact on the geographic distribution and abundance of spirochetes but not the genetic or molecular basis underlying these interactions. In this review we discuss recent findings on the evolutionary genetics from both of the evolutionarily distinct clades of Borrelia species. We focus on connecting molecular interactions to the ecological processes that have driven the evolution and diversification of Borrelia species in order to understand the current distribution of genetic and molecular variation within and between Borrelia species.
Collapse
Affiliation(s)
- Zachary J. Oppler
- Department of Biology, University of Pennsylvania, 433 South University Ave, Philadelphia, PA 19104, USA
| | - Kayleigh R. O’Keeffe
- Department of Biology, University of Pennsylvania, 433 South University Ave, Philadelphia, PA 19104, USA
| | - Karen D. McCoy
- Centre for Research on the Ecology and Evolution of Diseases (CREES), MiVEGEC, University of Montpellier – CNRS - IRD, Montpellier, France
| | - Dustin Brisson
- Department of Biology, University of Pennsylvania, 433 South University Ave, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Mtierová Z, Derdáková M, Chvostáč M, Didyk YM, Mangová B, Rusňáková Tarageľová V, Selyemová D, Šujanová A, Václav R. Local Population Structure and Seasonal Variability of Borrelia garinii Genotypes in Ixodes ricinus Ticks, Slovakia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3607. [PMID: 32455590 PMCID: PMC7277216 DOI: 10.3390/ijerph17103607] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 11/16/2022]
Abstract
Lyme disease (LD) is the most common tick-borne human disease in Europe, and Borrelia garinii, which is associated with avian reservoirs, is one of the most genetically diverse and widespread human pathogenic genospecies from the B. burgdorferi sensu lato (s.l.) complex. The clinical manifestations of LD are known to vary between regions and depend on the genetic strain even within Borrelia genospecies. It is thus of importance to explore the genetic diversity of such pathogenic borreliae for the wide range of host and ecological contexts. In this study, multilocus sequence typing (MLST) was employed to investigate the local population structure of B. garinii in Ixodes ricinus ticks. The study took place in a natural wetland in Slovakia, temporally encompassing spring and autumn bird migration periods as well as the breeding period of resident birds. In total, we examined 369 and 255 ticks collected from 78 birds and local vegetation, respectively. B. burgdorferi s.l. was detected in 43.4% (160/369) of ticks recovered from birds and in 26.3% (67/255) of questing ticks, respectively. Considering the ticks from bird hosts, the highest prevalence was found for single infections with B. garinii (22.5%). Infection intensity of B. garinii in bird-feeding ticks was significantly higher than that in questing ticks. We identified ten B. garinii sequence types (STs) occurring exclusively in bird-feeding ticks, two STs occurring exclusively in questing ticks, and one ST (ST 244) occurring in both ticks from birds and questing ticks. Four B. garinii STs were detected for the first time herein. With the exception of ST 93, we detected different STs in spring and summer for bird-feeding ticks. Our results are consistent with previous studies of the low geographic structuring of B. garinii genotypes. However, our study reveals some consistency in local ST occurrence and a geographic signal for one of the clonal complexes.
Collapse
Affiliation(s)
- Zuzana Mtierová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia; (Z.M.); (M.D.); (M.C.); (Y.M.D.); (B.M.); (V.R.T.); (D.S.); (A.Š.)
| | - Markéta Derdáková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia; (Z.M.); (M.D.); (M.C.); (Y.M.D.); (B.M.); (V.R.T.); (D.S.); (A.Š.)
| | - Michal Chvostáč
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia; (Z.M.); (M.D.); (M.C.); (Y.M.D.); (B.M.); (V.R.T.); (D.S.); (A.Š.)
| | - Yuliya M. Didyk
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia; (Z.M.); (M.D.); (M.C.); (Y.M.D.); (B.M.); (V.R.T.); (D.S.); (A.Š.)
- Schmalhausen Institute of Zoology, NAS of Ukraine, B. Khmelnytskogo 15, 01030 Kyiv, Ukraine
| | - Barbara Mangová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia; (Z.M.); (M.D.); (M.C.); (Y.M.D.); (B.M.); (V.R.T.); (D.S.); (A.Š.)
| | - Veronika Rusňáková Tarageľová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia; (Z.M.); (M.D.); (M.C.); (Y.M.D.); (B.M.); (V.R.T.); (D.S.); (A.Š.)
| | - Diana Selyemová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia; (Z.M.); (M.D.); (M.C.); (Y.M.D.); (B.M.); (V.R.T.); (D.S.); (A.Š.)
| | - Alžbeta Šujanová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia; (Z.M.); (M.D.); (M.C.); (Y.M.D.); (B.M.); (V.R.T.); (D.S.); (A.Š.)
| | - Radovan Václav
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia; (Z.M.); (M.D.); (M.C.); (Y.M.D.); (B.M.); (V.R.T.); (D.S.); (A.Š.)
| |
Collapse
|
10
|
Lebert I, Agoulon A, Bastian S, Butet A, Cargnelutti B, Cèbe N, Chastagner A, Léger E, Lourtet B, Masseglia S, McCoy KD, Merlet J, Noël V, Perez G, Picot D, Pion A, Poux V, Rames JL, Rantier Y, Verheyden H, Vourc'h G, Plantard O. Distribution of ticks, tick-borne pathogens and the associated local environmental factors including small mammals and livestock, in two French agricultural sites: the OSCAR database. Biodivers Data J 2020; 8:e50123. [PMID: 32431559 PMCID: PMC7217980 DOI: 10.3897/bdj.8.e50123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/27/2020] [Indexed: 11/12/2022] Open
Abstract
Background In Europe, ticks are major vectors of both human and livestock pathogens (e.g. Lyme disease, granulocytic anaplasmosis, bovine babesiosis). Agricultural landscapes, where animal breeding is a major activity, constitute a mosaic of habitat types of various quality for tick survival and are used at different frequencies by wild and domestic hosts across seasons. This habitat heterogeneity, in time and space, conditions the dynamics of these host-vector-pathogen systems and thus drives acarological risk (defined as the density of infected ticks). The principal objective of the OSCAR project (2011-2016) was to examine the links between this heterogeneity and acarological risk for humans and their domestic animals. Here, we present the data associated with this project. New information This paper reports a database on the distribution and densities of I. ricinus ticks - the most common tick species in French agricultural landscapes - and the prevalence of three tick-borne pathogens (Anaplasma phagocytophilum, Borrelia spp. and Babesia spp.) in two sites in north-western ("Zone Atelier Armorique": ZA site) and south-western ("Vallées et Coteaux de Gascogne": VG site) France. The distribution and density of ticks along a gradient of wooded habitats, as well as biotic variables, such as the presence and abundance of their principal domestic (livestock) and wild hosts (small mammals), were measured from forest cores and edges to more or less isolated hedges, all bordering meadows. Ticks, small mammals and information on local environmental conditions were collected along 90 transects in each of the two sites in spring and autumn 2012 and 2013 and in spring 2014, corresponding to the main periods of tick activity. Local environmental conditions were recorded along each tick and small mammal transect: habitat type, vegetation type and characteristics, slope and traces of livestock presence. Samples consisted of questing ticks collected on the vegetation (mainly I. ricinus nymphs), biopsies of captured small mammals and ticks fixed on small mammals. In the VG site, livestock occurrence and abundance were recorded each week along each tick transect.A total of 29004 questing ticks and 1230 small mammals were captured during the study across the two sites and over the five field campaigns. All questing nymphs (N = 12287) and questing adults (N = 646) were identified to species. Ticks from small mammals (N = 1359) were also identified to life stage. Questing nymphs (N = 4518 I. ricinus) and trapped small mammals (N = 908) were analysed for three pathogenic agents: A. phagocytophilum, Borrelia spp. and Babesia spp.In the VG site, the average prevalence in I. ricinus nymphs for A. phagocytophilum, Borrelia spp. and Babesia spp. were, respectively 1.9% [95% CI: 1.2-2.5], 2.5% [95% CI: 1.8-3.2] and 2.7% [95% CI: 2.0-3.4]. In small mammals, no A. phagocytophilum was detected, but the prevalence for Borrelia spp. was 4.2% [95% CI: 0.9-7.5]. On this site, there was no screening of small mammals for Babesia spp. In ZA site, the average prevalence in nymphs for A. phagocytophilum, Borrelia spp. and Babesia were, respectively 2.2% [95% CI: 1.6-2.7], 3.0% [95% CI: 2.3-3.6] and 3.1% [95% CI: 2.5-3.8]. In small mammals, the prevalence of A. phagocytophilum and Borrelia spp. were, respectively 6.9% [95% CI: 4.9-8.9] and 4.1% [95% CI: 2.7-5.9]. A single animal was found positive for Babesia microti at this site amongst the 597 tested.
Collapse
Affiliation(s)
- Isabelle Lebert
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, F-63122, Saint-Genès Champanelle, France Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA F-63122, Saint-Genès Champanelle France
| | - Albert Agoulon
- INRAE, BIOEPAR, Oniris, F-44307, Nantes, France INRAE, BIOEPAR, Oniris F-44307, Nantes France
| | - Suzanne Bastian
- INRAE, BIOEPAR, Oniris, F-44307, Nantes, France INRAE, BIOEPAR, Oniris F-44307, Nantes France
| | - Alain Butet
- Université Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, 35000 Rennes, France Université Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553 35000 Rennes France
| | - Bruno Cargnelutti
- CEFS, Université de Toulouse, INRAE, F-31326, Castanet-Tolosan, France CEFS, Université de Toulouse, INRAE F-31326, Castanet-Tolosan France
| | - Nicolas Cèbe
- CEFS, Université de Toulouse, INRAE, F-31326, Castanet-Tolosan, France CEFS, Université de Toulouse, INRAE F-31326, Castanet-Tolosan France
| | - Amélie Chastagner
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, F-63122, Saint-Genès Champanelle, France Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA F-63122, Saint-Genès Champanelle France
| | - Elsa Léger
- MIVEGEC, Université Montpellier-CNRS-IRD, 911 Avenue Agropolis, 34394 Montpellier, France MIVEGEC, Université Montpellier-CNRS-IRD, 911 Avenue Agropolis 34394 Montpellier France
| | - Bruno Lourtet
- CEFS, Université de Toulouse, INRAE, F-31326, Castanet-Tolosan, France CEFS, Université de Toulouse, INRAE F-31326, Castanet-Tolosan France
| | - Sébastien Masseglia
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, F-63122, Saint-Genès Champanelle, France Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA F-63122, Saint-Genès Champanelle France
| | - Karen D McCoy
- MIVEGEC, Université Montpellier-CNRS-IRD, 911 Avenue Agropolis, 34394 Montpellier, France MIVEGEC, Université Montpellier-CNRS-IRD, 911 Avenue Agropolis 34394 Montpellier France
| | - Joël Merlet
- CEFS, Université de Toulouse, INRAE, F-31326, Castanet-Tolosan, France CEFS, Université de Toulouse, INRAE F-31326, Castanet-Tolosan France
| | - Valérie Noël
- MIVEGEC, Université Montpellier-CNRS-IRD, 911 Avenue Agropolis, 34394 Montpellier, France MIVEGEC, Université Montpellier-CNRS-IRD, 911 Avenue Agropolis 34394 Montpellier France
| | - Grégoire Perez
- INRAE, BIOEPAR, Oniris, F-44307, Nantes, France INRAE, BIOEPAR, Oniris F-44307, Nantes France.,Université Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, 35000 Rennes, France Université Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553 35000 Rennes France
| | - Denis Picot
- CEFS, Université de Toulouse, INRAE, F-31326, Castanet-Tolosan, France CEFS, Université de Toulouse, INRAE F-31326, Castanet-Tolosan France
| | - Angélique Pion
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, F-63122, Saint-Genès Champanelle, France Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA F-63122, Saint-Genès Champanelle France
| | - Valérie Poux
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, F-63122, Saint-Genès Champanelle, France Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA F-63122, Saint-Genès Champanelle France
| | - Jean-Luc Rames
- CEFS, Université de Toulouse, INRAE, F-31326, Castanet-Tolosan, France CEFS, Université de Toulouse, INRAE F-31326, Castanet-Tolosan France
| | - Yann Rantier
- Université Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, 35000 Rennes, France Université Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553 35000 Rennes France
| | - Hélène Verheyden
- CEFS, Université de Toulouse, INRAE, F-31326, Castanet-Tolosan, France CEFS, Université de Toulouse, INRAE F-31326, Castanet-Tolosan France
| | - Gwenael Vourc'h
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, F-63122, Saint-Genès Champanelle, France Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA F-63122, Saint-Genès Champanelle France
| | - Olivier Plantard
- INRAE, BIOEPAR, Oniris, F-44307, Nantes, France INRAE, BIOEPAR, Oniris F-44307, Nantes France
| |
Collapse
|
11
|
Norte AC, Margos G, Becker NS, Albino Ramos J, Núncio MS, Fingerle V, Araújo PM, Adamík P, Alivizatos H, Barba E, Barrientos R, Cauchard L, Csörgő T, Diakou A, Dingemanse NJ, Doligez B, Dubiec A, Eeva T, Flaisz B, Grim T, Hau M, Heylen D, Hornok S, Kazantzidis S, Kováts D, Krause F, Literak I, Mänd R, Mentesana L, Morinay J, Mutanen M, Neto JM, Nováková M, Sanz JJ, Pascoal da Silva L, Sprong H, Tirri IS, Török J, Trilar T, Tyller Z, Visser ME, Lopes de Carvalho I. Host dispersal shapes the population structure of a tick-borne bacterial pathogen. Mol Ecol 2020; 29:485-501. [PMID: 31846173 DOI: 10.1111/mec.15336] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/02/2019] [Accepted: 12/11/2019] [Indexed: 01/25/2023]
Abstract
Birds are hosts for several zoonotic pathogens. Because of their high mobility, especially of longdistance migrants, birds can disperse these pathogens, affecting their distribution and phylogeography. We focused on Borrelia burgdorferi sensu lato, which includes the causative agents of Lyme borreliosis, as an example for tick-borne pathogens, to address the role of birds as propagation hosts of zoonotic agents at a large geographical scale. We collected ticks from passerine birds in 11 European countries. B. burgdorferi s.l. prevalence in Ixodes spp. was 37% and increased with latitude. The fieldfare Turdus pilaris and the blackbird T. merula carried ticks with the highest Borrelia prevalence (92 and 58%, respectively), whereas robin Erithacus rubecula ticks were the least infected (3.8%). Borrelia garinii was the most prevalent genospecies (61%), followed by B. valaisiana (24%), B. afzelii (9%), B. turdi (5%) and B. lusitaniae (0.5%). A novel Borrelia genospecies "Candidatus Borrelia aligera" was also detected. Multilocus sequence typing (MLST) analysis of B. garinii isolates together with the global collection of B. garinii genotypes obtained from the Borrelia MLST public database revealed that: (a) there was little overlap among genotypes from different continents, (b) there was no geographical structuring within Europe, and (c) there was no evident association pattern detectable among B. garinii genotypes from ticks feeding on birds, questing ticks or human isolates. These findings strengthen the hypothesis that the population structure and evolutionary biology of tick-borne pathogens are shaped by their host associations and the movement patterns of these hosts.
Collapse
Affiliation(s)
- Ana Cláudia Norte
- MARE - Marine and Environmental Sciences Centre, University of Coimbra, Coimbra, Portugal.,Center for Vector and Infectious Diseases Research, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Gabriele Margos
- German National Reference Centre for Borrelia (NRZ), Bavarian Health and Food Safety Authority (LGL), Oberschleissheim, Germany
| | - Noémie S Becker
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
| | - Jaime Albino Ramos
- MARE - Marine and Environmental Sciences Centre, University of Coimbra, Coimbra, Portugal
| | - Maria Sofia Núncio
- Center for Vector and Infectious Diseases Research, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Volker Fingerle
- German National Reference Centre for Borrelia (NRZ), Bavarian Health and Food Safety Authority (LGL), Oberschleissheim, Germany
| | - Pedro Miguel Araújo
- MARE - Marine and Environmental Sciences Centre, University of Coimbra, Coimbra, Portugal
| | - Peter Adamík
- Department of Zoology, Palacky University, Olomouc, Czech Republic
| | | | - Emilio Barba
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva (ICBiBE), Universidad de Valencia, Valencia, Spain
| | - Rafael Barrientos
- Department of Biodiversity, Ecology and Evolution, Universidad Complutense de Madrid, Madrid, Spain
| | - Laure Cauchard
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Tibor Csörgő
- Ócsa Bird Ringing Station, Ócsa, Hungary.,Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Anastasia Diakou
- Laboratory of Parasitology and Parasitic Diseases, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig Maximilians University of Munich, Planegg-Martinsried, Germany
| | - Blandine Doligez
- CNRS - Department of Biometry and Evolutionary Biology (LBBE) - University Lyon 1, University of Lyon, Villeurbanne, France
| | - Anna Dubiec
- Museum and Institute of Zoology, Polish Academy of Sciences, Warszawa, Poland
| | - Tapio Eeva
- Department of Biology, University of Turku, Turku, Finland
| | - Barbara Flaisz
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Tomas Grim
- Department of Zoology, Palacky University, Olomouc, Czech Republic
| | - Michaela Hau
- Evolutionary Physiology Laboratory, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Dieter Heylen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.,Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
| | - Sándor Hornok
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Savas Kazantzidis
- Forest Research Institute, Hellenic Agricultural Organization "DEMETER", Thesaloniki, Greece
| | - David Kováts
- Ócsa Bird Ringing Station, Ócsa, Hungary.,Hungarian Biodiversity Research Society, Budapest, Hungary
| | | | - Ivan Literak
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Raivo Mänd
- Department of Zoology, University of Tartu, Tartu, Estonia
| | - Lucia Mentesana
- Evolutionary Physiology Laboratory, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Jennifer Morinay
- CNRS - Department of Biometry and Evolutionary Biology (LBBE) - University Lyon 1, University of Lyon, Villeurbanne, France.,Department of Ecology and Evolution, Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Marko Mutanen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Júlio Manuel Neto
- Department of Biology, Molecular Ecology and Evolution Lab, University of Lund, Lund, Sweden
| | - Markéta Nováková
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Juan José Sanz
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Luís Pascoal da Silva
- Department of Life Sciences, CFE - Centre for Functional Ecology - Science for People & the Planet, University of Coimbra, Coimbra, Portugal.,CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Porto, Portugal
| | - Hein Sprong
- National Institute of Public Health and Environment (RIVM), Laboratory for Zoonoses and Environmental Microbiology, Bilthoven, The Netherlands
| | - Ina-Sabrina Tirri
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - János Török
- Behavioural Ecology Group, Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary
| | - Tomi Trilar
- Slovenian Museum of Natural History, Ljubljana, Slovenia
| | - Zdeněk Tyller
- Department of Zoology, Palacky University, Olomouc, Czech Republic.,Museum of the Moravian Wallachia Region, Vsetín, Czech Republic
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Isabel Lopes de Carvalho
- Center for Vector and Infectious Diseases Research, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| |
Collapse
|
12
|
Munro HJ, Ogden NH, Mechai S, Lindsay LR, Robertson GJ, Whitney H, Lang AS. Genetic diversity of Borrelia garinii from Ixodes uriae collected in seabird colonies of the northwestern Atlantic Ocean. Ticks Tick Borne Dis 2019; 10:101255. [PMID: 31280947 DOI: 10.1016/j.ttbdis.2019.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 10/26/2022]
Abstract
The occurrence of Borrelia garinii in seabird ticks, Ixodes uriae, associated with different species of colonial seabirds has been studied since the early 1990s. Research on the population structure of this bacterium in ticks from seabird colonies in the northeastern Atlantic Ocean has revealed admixture between marine and terrestrial tick populations. We studied B. garinii genetic diversity and population structure in I. uriae collected from seabird colonies in the northwestern Atlantic Ocean, in Newfoundland and Labrador, Canada. We applied a multi-locus sequence typing (MLST) scheme to B. garinii found in ticks from four species of seabirds. The B. garinii strains found in this seabird colony ecosystem were diverse. Some were very similar to strains from Asia and Europe, including some obtained from human clinical samples, while others formed a divergent group specific to this region of the Atlantic Ocean. Our findings highlight the genetic complexity of B. garinii circulating in seabird ticks and their avian hosts but also demonstrate surprisingly close connections between B. garinii in this ecosystem and terrestrial sources in Eurasia. Genetic similarities among B. garinii from seabird ticks and humans indicate the possibility that B. garinii circulating within seabird tick-avian host transmission cycles could directly, or indirectly via connectivity with terrestrial transmission cycles, have consequences for human health.
Collapse
Affiliation(s)
- Hannah J Munro
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3X9, Canada.
| | - Nicholas H Ogden
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, J2S 2M2, Canada; Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, J2S 2M2, Canada.
| | - Samir Mechai
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, Québec, J2S 2M2, Canada; Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, J2S 2M2, Canada.
| | - L Robbin Lindsay
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada.
| | - Gregory J Robertson
- Wildlife Research Division, Environment and Climate Change Canada, Mount Pearl, Newfoundland and Labrador, A1N 4T3, Canada.
| | - Hugh Whitney
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3X9, Canada.
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3X9, Canada.
| |
Collapse
|
13
|
Khan JS, Provencher JF, Forbes MR, Mallory ML, Lebarbenchon C, McCoy KD. Parasites of seabirds: A survey of effects and ecological implications. ADVANCES IN MARINE BIOLOGY 2019; 82:1-50. [PMID: 31229148 PMCID: PMC7172769 DOI: 10.1016/bs.amb.2019.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Parasites are ubiquitous in the environment, and can cause negative effects in their host species. Importantly, seabirds can be long-lived and cross multiple continents within a single annual cycle, thus their exposure to parasites may be greater than other taxa. With changing climatic conditions expected to influence parasite distribution and abundance, understanding current level of infection, transmission pathways and population-level impacts are integral aspects for predicting ecosystem changes, and how climate change will affect seabird species. In particular, a range of micro- and macro-parasites can affect seabird species, including ticks, mites, helminths, viruses and bacteria in gulls, terns, skimmers, skuas, auks and selected phalaropes (Charadriiformes), tropicbirds (Phaethontiformes), penguins (Sphenisciformes), tubenoses (Procellariiformes), cormorants, frigatebirds, boobies, gannets (Suliformes), and pelicans (Pelecaniformes) and marine seaducks and loons (Anseriformes and Gaviiformes). We found that the seabird orders of Charadriiformes and Procellariiformes were most represented in the parasite-seabird literature. While negative effects were reported in seabirds associated with all the parasite groups, most effects have been studied in adults with less information known about how parasites may affect chicks and fledglings. We found studies most often reported on negative effects in seabird hosts during the breeding season, although this is also the time when most seabird research occurs. Many studies report that external factors such as condition of the host, pollution, and environmental conditions can influence the effects of parasites, thus cumulative effects likely play a large role in how parasites influence seabirds at both the individual and population level. With an increased understanding of parasite-host dynamics it is clear that major environmental changes, often those associated with human activities, can directly or indirectly affect the distribution, abundance, or virulence of parasites and pathogens.
Collapse
Affiliation(s)
- Junaid S Khan
- Canadian Wildlife Service, Environment and Climate Change Canada, Gatineau, QC, Canada
| | - Jennifer F Provencher
- Canadian Wildlife Service, Environment and Climate Change Canada, Gatineau, QC, Canada.
| | - Mark R Forbes
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - Mark L Mallory
- Department of Biology, Acadia University, Wolfville, NS, Canada
| | - Camille Lebarbenchon
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical, INSERM 1187, CNRS 9192, IRD 249, GIP CYROI, Saint Denis, La Réunion, France
| | - Karen D McCoy
- MIVEGEC, UMR 5290 CNRS-IRD-University of Montpellier, Centre IRD, Montpellier, France
| |
Collapse
|
14
|
Moon KL, Chown SL, Loh SM, Oskam CL, Fraser CI. Australian penguin ticks screened for novel Borrelia species. Ticks Tick Borne Dis 2017; 9:410-414. [PMID: 29275874 DOI: 10.1016/j.ttbdis.2017.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
Lyme borreliosis (or Lyme Disease) is an emerging threat to human health in the Northern Hemisphere caused by tick-borne bacteria from the Borrelia burgdorferi sensu lato (Bbsl) complex. Seabirds are important reservoir hosts of some members of the Bbsl complex in the Northern Hemisphere, and some evidence suggests this may be true of penguins in the Southern Hemisphere. While the Bbsl complex has not been detected in Australia, a novel Borrelia species ('Candidatus Borrelia tachyglossi') was recently sequenced from native ticks (Ixodes holocyclus and Bothriocroton concolor) parasitising echidnas (Tachyglossus aculeatus), suggesting unidentified borreliae may be circulating amongst native wildlife and their ticks. In the present study, we investigated whether ticks parasitising little penguins (Eudyptula novaehollandiae) harbour native or introduced Borrelia bacteria. We chose this penguin species because it is heavily exploited by ticks during the breeding season, lives in close proximity to other potential reservoir hosts (including native wildlife and migratory seabirds), and is known to be infected with other tick-borne pathogens (Babesia). We screened over 230 penguin ticks (Ixodes spp.) from colonies in south-eastern Australia, and found no evidence of Borrelia DNA. The apparent absence or rarity of the bacterium in south-eastern Australia has important implications for identifying potential tick-borne pathogens in an understudied region.
Collapse
Affiliation(s)
- Katherine L Moon
- Fenner School of Environment and Society, Australian National University, Acton, ACT 2601, Australia; School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia.
| | - Steven L Chown
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Siew-May Loh
- Vector & Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Charlotte L Oskam
- Vector & Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Ceridwen I Fraser
- Fenner School of Environment and Society, Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
15
|
Kowalec M, Szewczyk T, Welc-Falęciak R, Siński E, Karbowiak G, Bajer A. Ticks and the city - are there any differences between city parks and natural forests in terms of tick abundance and prevalence of spirochaetes? Parasit Vectors 2017; 10:573. [PMID: 29157278 PMCID: PMC5697153 DOI: 10.1186/s13071-017-2391-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/19/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ixodes ricinus ticks are commonly encountered in either natural or urban areas, contributing to Lyme disease agents Borreliella [(Borrelia burgdorferi (sensu lato)] spp. and Borrelia miyamotoi enzootic cycles in cities. It is an actual problem whether urbanization affects pathogen circulation and therefore risk of infection. The aim of the study was to evaluate main tick-borne disease risk factors in natural, endemic areas of north-east (NE) Poland (Białowieża) and urban areas of central Poland (Warsaw), measuring tick abundance/density, prevalence of infection with spirochaetes and diversity of these pathogens in spring-early summer and late summer-autumn periods between 2012 and 2015. METHODS Questing I. ricinus ticks were collected from three urban sites in Warsaw, central Poland and three natural sites in Białowieża, NE Poland. A total of 2993 ticks were analyzed for the presence of Borreliella spp. and/or Borrelia miyamotoi DNA by PCR. Tick abundance was analyzed by General Linear Models (GLM). Prevalence and distribution of spirochaetes was analyzed by Maximum Likelihood techniques based on log-linear analysis of contingency tables (HILOGLINEAR). Species typing and molecular phylogenetic analysis based on the sequenced flaB marker were carried out. RESULTS Overall 4617 I. ricinus ticks were collected (2258 nymphs and 2359 adults). We report well established population of ticks in urban areas (10.1 ± 0.9 ticks/100 m2), as in endemic natural areas with higher mean tick abundance (16.5 ± 1.5 ticks/100 m2). Tick densities were the highest in spring-early summer in both types of areas. We observed no effect of the type of area on Borreliella spp. and B. miyamotoi presence in ticks, resulting in similar prevalence of spirochaetes in urban and natural areas [10.9% (95% CI: 9.7-12.2%) vs 12.4% (95% CI: 10.1-15.1%), respectively]. Prevalence of spirochaetes was significantly higher in the summer-autumn period than in the spring-early summer [15.0% (95% CI: 12.8-17.5%) vs 10.4% (95% CI: 9.2-11.6%), respectively]. We have detected six species of bacteria present in both types of areas, with different frequencies: dominance of B. afzelii (69.3%) in urban and B. garinii (48.1%) in natural areas. Although we observed higher tick densities in forests than in maintained parks, the prevalence of spirochaetes was significantly higher in the latter [9.8% (95% CI: 8.6-11.0%) vs 17.5% (95% CI: 14.4-20.5%)]. CONCLUSIONS Surprisingly, a similar risk of infection with Borreliella spp. and/or B. miyamotoi was discovered in highly- and low-transformed areas. We suggest that the awareness of presence of these disease agents in cities should be raised.
Collapse
Affiliation(s)
- Maciej Kowalec
- Department of Parasitology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Tomasz Szewczyk
- W. Stefański Institute of Parasitology of the Polish Academy of Sciences, 51/55 Twarda Street, 00-818, Warsaw, Poland
| | - Renata Welc-Falęciak
- Department of Parasitology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Edward Siński
- Department of Parasitology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Grzegorz Karbowiak
- W. Stefański Institute of Parasitology of the Polish Academy of Sciences, 51/55 Twarda Street, 00-818, Warsaw, Poland
| | - Anna Bajer
- Department of Parasitology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland.
| |
Collapse
|
16
|
Evidence for Borrelia bavariensis Infections of Ixodes uriae within Seabird Colonies of the North Atlantic Ocean. Appl Environ Microbiol 2017; 83:AEM.01087-17. [PMID: 28802273 DOI: 10.1128/aem.01087-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/01/2017] [Indexed: 11/20/2022] Open
Abstract
The first report of members of the spirochete genus Borrelia in the seabird tick, Ixodes uriae, and seabird colonies occurred during the early 1990s. Since then, Borrelia spp. have been detected in these ticks and seabird colonies around the world. To date, the primary species detected has been Borrelia garinii, with rare occurrences of Borrelia burgdorferi sensu stricto and Borrelia lusitaniae. During our research on Borrelia and I. uriae in seabird colonies of Newfoundland and Labrador, Canada, we have identified Borrelia bavariensis in I. uriae To our knowledge, B. bavariensis has previously been found only in the Eurasian tick species Ixodes persulcatus and Ixodes ricinus, and it was believed to be a rodent-specific Borrelia ecotype. We found B. bavariensis within I. uriae from three seabird colonies over three calendar years. We also reanalyzed B. garinii sequences collected from I. uriae from Eurasian seabird colonies and determined that sequences from two Russian seabird colonies likely also represent B. bavariensis The Canadian B. bavariensis sequences from I. uriae analyzed in this study cluster with previously described sequences from Asia. Overall, this is an important discovery that illustrates and expands the range of hosts and vectors for B. bavariensis, and it raises questions regarding the possible mechanisms of pathogen dispersal from Asia to North America.IMPORTANCE To our knowledge, this is the first documentation of B. bavariensis outside Eurasia. Additionally, the bacterium was found in a marine ecosystem involving the seabird tick I. uriae and its associated seabird hosts. This indicates that the epizootiology of B. bavariensis transmission is much different from what had been described, with this species previously believed to be a rodent-specific ecotype, and it indicates that this pathogen is established, or establishing, much more widely.
Collapse
|
17
|
Marchant A, Le Coupanec A, Joly C, Perthame E, Sertour N, Garnier M, Godard V, Ferquel E, Choumet V. Infection of Ixodes ricinus by Borrelia burgdorferi sensu lato in peri-urban forests of France. PLoS One 2017; 12:e0183543. [PMID: 28846709 PMCID: PMC5573218 DOI: 10.1371/journal.pone.0183543] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/07/2017] [Indexed: 12/21/2022] Open
Abstract
Lyme borreliosis is the most common tick-borne disease in the northern hemisphere. In Europe, it is transmitted by Ixodes ticks that carry bacteria belonging to the Borrelia burgdorferi sensu lato complex. The objective of this work was to explore eco-epidemiological factors of Lyme borreliosis in peri-urban forests of France (Sénart, Notre-Dame and Rambouillet). We investigated whether the introduction of Tamias sibiricus in Sénart could alter the density of infected ticks. Moreover, the density and tick infection were investigated according to the tree species found in various patches of Sénart forest. For this purpose, ticks were sampled during 3 years. In the Sénart forest, the density of nymph and adult ticks showed no significant difference between 2008, 2009 and 2011. The nymph density varied significantly as a function of the month of collection. Regarding the nymphs, a higher rate of infection and infected density were found in 2009. Plots with chipmunks (C) presented a lower density of both nymphs and adult ticks than plots without chipmunks (NC) did. A higher rate of infection of nymphs with Borrelia was seen in C plots. The prevalence of the various species of Borrelia was also found to vary between C and NC plots with the year of the collect. The presence of chestnut trees positively influenced the density of both nymphs and adults. The infected nymph density showed a significant difference depending on the peri-urban forest studied, Sénart being higher than Rambouillet. The prevalence of Borrelia species also differed between the various forests studied. Concerning the putative role that Tamias sibiricus may play in the transmission of Borrelia, our results suggest that its presence is correlated with a higher rate of infection of questing ticks by Borrelia genospecies and if its population increases, it could play a significant role in the risk of transmission of Lyme borreliosis.
Collapse
Affiliation(s)
- Axelle Marchant
- Centre National de Référence des Borrelia, Institut Pasteur, Paris, France
| | - Alain Le Coupanec
- Centre National de Référence des Borrelia, Institut Pasteur, Paris, France
| | - Claire Joly
- Centre National de Référence des Borrelia, Institut Pasteur, Paris, France
| | - Emeline Perthame
- Institut Pasteur – Bioinformatics and Biostatistics Hub – C3BI, USR 3756 IP CNRS –Bioinformatique et Biostatistique, Paris, France
| | - Natacha Sertour
- Centre National de Référence des Borrelia, Institut Pasteur, Paris, France
| | - Martine Garnier
- Centre National de Référence des Borrelia, Institut Pasteur, Paris, France
| | - Vincent Godard
- CNRS-UMR7533/LADYSS, Université de Paris 8 - Saint-Denis, France
| | - Elisabeth Ferquel
- Centre National de Référence des Borrelia, Institut Pasteur, Paris, France
| | - Valerie Choumet
- Centre National de Référence des Borrelia, Institut Pasteur, Paris, France
- Unité Environnement et Risques Infectieux, Institut Pasteur, Paris, France
| |
Collapse
|
18
|
Patterson JW, Duncan AM, McIntyre KC, Lloyd VK. Evidence for genetic hybridization between Ixodes scapularis and Ixodes cookei. CAN J ZOOL 2017. [DOI: 10.1139/cjz-2016-0134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ixodes scapularis Say, 1821 (the black-legged tick) is becoming established in Canada. The northwards expansion of I. scapularis leads to contact between I. scapularis and Ixodes cookei Packard, 1869, a well-established tick species in Eastern Canada. Examination of I. cookei and I. scapularis collected from New Brunswick revealed ticks with ambiguous morphologies, with either a mixture or intermediate traits typical of I. scapularis and I. cookei, including in characteristics typically used as species identifiers. Genetic analysis to determine if these ticks represent hybrids revealed that four had I. cookei derived mitochondrial DNA but I. scapularis nuclear DNA. In one case, the nuclear sequence showed evidence of heterozygosity for I. scapularis and I. cookei sequences, whereas in the others, the nuclear DNA appeared to be entirely derived from I. scapularis. These data strongly suggest genetic hybridization between these two species. Ixodes cookei and hybrid ticks were readily collected from humans and companion animals and specimens infected with Borrelia burgdorferi Johnson et al., 1984, the causative agent of Lyme disease, were identified. These findings raise the issue of genetic introgression of I. scapularis genes into I. cookei and warrant reassessment of the capacity of I. cookei and I. cookei × I. scapularis hybrids to vector Borrelia infection.
Collapse
Affiliation(s)
- James W. Patterson
- Department of Biology, Mount Allison University, 35B York Street, Sackville, NB E4L 1G7, Canada
- Department of Biology, Mount Allison University, 35B York Street, Sackville, NB E4L 1G7, Canada
| | - Anna M. Duncan
- Department of Biology, Mount Allison University, 35B York Street, Sackville, NB E4L 1G7, Canada
- Department of Biology, Mount Allison University, 35B York Street, Sackville, NB E4L 1G7, Canada
| | - Kelsey C. McIntyre
- Department of Biology, Mount Allison University, 35B York Street, Sackville, NB E4L 1G7, Canada
- Department of Biology, Mount Allison University, 35B York Street, Sackville, NB E4L 1G7, Canada
| | - Vett K. Lloyd
- Department of Biology, Mount Allison University, 35B York Street, Sackville, NB E4L 1G7, Canada
- Department of Biology, Mount Allison University, 35B York Street, Sackville, NB E4L 1G7, Canada
| |
Collapse
|
19
|
Estrada-Peña A, Roura X, Sainz A, Miró G, Solano-Gallego L. Species of ticks and carried pathogens in owned dogs in Spain: Results of a one-year national survey. Ticks Tick Borne Dis 2017; 8:443-452. [DOI: 10.1016/j.ttbdis.2017.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 10/20/2022]
|
20
|
Heylen D, Krawczyk A, Lopes de Carvalho I, Núncio MS, Sprong H, Norte AC. Bridging of cryptic Borrelia cycles in European songbirds. Environ Microbiol 2017; 19:1857-1867. [PMID: 28152581 DOI: 10.1111/1462-2920.13685] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/30/2017] [Indexed: 12/15/2022]
Abstract
The principal European vector for Borrelia burgdorferi s.l., the causative agents of Lyme disease, is the host-generalist tick Ixodes ricinus. Almost all terrestrial host-specialist ticks have been supposed not to contribute to the terrestrial Borrelia transmission cycles. Through an experiment with blackbirds, we show successful transmission by the widespread I. frontalis, an abundant bird-specialized tick that infests a broad range of songbirds. In the first phase of the experiment, we obtained Borrelia-infected I. frontalis (infection rate: 19%) and I. ricinus (17%) nymphs by exposing larvae to wild blackbirds that carried several genospecies (Borrelia turdi, B. valaisiana, B. burgdorferi s.s.). In the second phase, pathogen-free blackbirds were exposed to these infected nymphs. Both tick species were able to infect the birds, as indicated by the analysis of xenodiagnostic I. ricinus larvae which provided evidence for both co-feeding and systemic transmission (infection rates: 10%-60%). Ixodes frontalis was shown to transmit B. turdi spirochetes, while I. ricinus transmitted both B. turdi and B. valaisiana. Neither species transmitted B. burgdorferi s.s. European enzootic cycles of Borrelia between songbirds and their ornithophilic ticks do exist, with I. ricinus potentially acting as a bridging vector towards mammals, including man.
Collapse
Affiliation(s)
- Dieter Heylen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Aleksandra Krawczyk
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment (RIVM), Bilthoven, the Netherlands
| | - Isabel Lopes de Carvalho
- Center for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Maria Sofia Núncio
- Center for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Hein Sprong
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment (RIVM), Bilthoven, the Netherlands
| | - Ana Cláudia Norte
- Center for Vector and Infectious Diseases Research, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.,MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
21
|
Multilocus Sequence Analysis of Phylogroup 1 and 2 Oral Treponeme Strains. Appl Environ Microbiol 2017; 83:AEM.02499-16. [PMID: 27864174 DOI: 10.1128/aem.02499-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/14/2016] [Indexed: 02/08/2023] Open
Abstract
More than 75 "species-level" phylotypes of spirochete bacteria belonging to the genus Treponema reside within the human oral cavity. The majority of these oral treponeme phylotypes correspond to as-yet-uncultivated taxa or strains of uncertain standing in taxonomy. Here, we analyze phylogenetic and taxonomic relationships between oral treponeme strains using a multilocus sequence analysis (MLSA) scheme based on the highly conserved 16S rRNA, pyrH, recA, and flaA genes. We utilized this MLSA scheme to analyze genetic data from a curated collection of oral treponeme strains (n = 71) of diverse geographical origins. This comprises phylogroup 1 (n = 23) and phylogroup 2 (n = 48) treponeme strains, including all relevant American Type Culture Collection reference strains. The taxonomy of all strains was confirmed or inferred via the analysis of ca. 1,450-bp 16S rRNA gene sequences using a combination of bioinformatic and phylogenetic approaches. Taxonomic and phylogenetic relationships between the respective treponeme strains were further investigated by analyzing individual and concatenated flaA (1,074-nucleotide [nt]), recA (1,377-nt), and pyrH (696-nt) gene sequence data sets. Our data confirmed the species differentiation between Treponema denticola (n = 41) and Treponema putidum (n = 7) strains. Notably, our results clearly supported the differentiation of the 23 phylogroup 1 treponeme strains into five distinct "species-level" phylotypes. These respectively corresponded to "Treponema vincentii" (n = 11), Treponema medium (n = 1), "Treponema sinensis" (Treponema sp. IA; n = 4), Treponema sp. IB (n = 3), and Treponema sp. IC (n = 4). In conclusion, our MLSA-based approach can be used to effectively discriminate oral treponeme taxa, confirm taxonomic assignment, and enable the delineation of species boundaries with high confidence. IMPORTANCE Periodontal diseases are caused by persistent polymicrobial biofilm infections of the gums and underlying tooth-supporting structures and have a complex and variable etiology. Although Treponema denticola is strongly associated with periodontal diseases, the etiological roles of other treponeme species/phylotypes are less well defined. This is due to a paucity of formal species descriptions and a poor understanding of genetic relationships between oral treponeme taxa. Our study directly addresses these issues. It represents one of the most comprehensive analyses of oral treponeme strains performed to date, including isolates from North America, Europe, and Asia. We envisage that our results will greatly facilitate future metagenomic efforts aimed at characterizing the clinical distributions of oral treponeme species/phylotypes, helping investigators to establish a more detailed understanding of their etiological roles in periodontal diseases and other infectious diseases. Our results are also directly relevant to various polymicrobial tissue infections in animals, which also involve treponeme populations.
Collapse
|
22
|
Becker NS, Margos G, Blum H, Krebs S, Graf A, Lane RS, Castillo-Ramírez S, Sing A, Fingerle V. Recurrent evolution of host and vector association in bacteria of the Borrelia burgdorferi sensu lato species complex. BMC Genomics 2016; 17:734. [PMID: 27632983 PMCID: PMC5025617 DOI: 10.1186/s12864-016-3016-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/13/2016] [Indexed: 11/12/2022] Open
Abstract
Background The Borrelia burgdorferi sensu lato (s.l.) species complex consists of tick-transmitted bacteria and currently comprises approximately 20 named and proposed genospecies some of which are known to cause Lyme Borreliosis. Species have been defined via genetic distances and ecological niches they occupy. Understanding the evolutionary relationship of species of the complex is fundamental to explaining patterns of speciation. This in turn forms a crucial basis to frame testable hypotheses concerning the underlying processes including host and vector adaptations. Results Illumina Technology was used to obtain genome-wide sequence data for 93 strains of 14 named genospecies of the B. burgdorferi species complex and genomic data already published for 18 additional strain (including one new species) was added. Phylogenetic reconstruction based on 114 orthologous single copy genes shows that the genospecies represent clearly distinguishable taxa with recent and still ongoing speciation events apparent in Europe and Asia. The position of Borrelia species in the phylogeny is consistent with host associations constituting a major driver for speciation. Interestingly, the data also demonstrate that vector associations are an additional driver for diversification in this tick-borne species complex. This is particularly obvious in B. bavariensis, a rodent adapted species that has diverged from the bird-associated B. garinii most likely in Asia. It now consists of two populations one of which most probably invaded Europe following adaptation to a new vector (Ixodes ricinus) and currently expands its distribution range. Conclusions The results imply that genotypes/species with novel properties regarding host or vector associations have evolved recurrently during the history of the species complex and may emerge at any time. We suggest that the finding of vector associations as a driver for diversification may be a general pattern for tick-borne pathogens. The core genome analysis presented here provides an important source for investigations of the underlying mechanisms of speciation in tick-borne pathogens. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3016-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Noémie S Becker
- Faculty of Biology, Division of Evolutionary Biology, Ludwig Maximilians University of Munich, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany.
| | - Gabriele Margos
- National Reference Centre for Borrelia at the Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764, Oberschleissheim, Germany
| | - Helmut Blum
- Gene Center, Laboratory for Functional Genome Analysis, Ludwig Maximilians University of Munich, Feodor-Lynen-Strasse 25, 81377, Munich, Germany
| | - Stefan Krebs
- Gene Center, Laboratory for Functional Genome Analysis, Ludwig Maximilians University of Munich, Feodor-Lynen-Strasse 25, 81377, Munich, Germany
| | - Alexander Graf
- Gene Center, Laboratory for Functional Genome Analysis, Ludwig Maximilians University of Munich, Feodor-Lynen-Strasse 25, 81377, Munich, Germany
| | - Robert S Lane
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, CP 62210, Cuernavaca, Morelos, Mexico
| | - Andreas Sing
- National Reference Centre for Borrelia at the Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764, Oberschleissheim, Germany
| | - Volker Fingerle
- National Reference Centre for Borrelia at the Bavarian Health and Food Safety Authority, Veterinärstr. 2, 85764, Oberschleissheim, Germany
| |
Collapse
|
23
|
Boulinier T, Kada S, Ponchon A, Dupraz M, Dietrich M, Gamble A, Bourret V, Duriez O, Bazire R, Tornos J, Tveraa T, Chambert T, Garnier R, McCoy KD. Migration, Prospecting, Dispersal? What Host Movement Matters for Infectious Agent Circulation? Integr Comp Biol 2016; 56:330-42. [PMID: 27252195 DOI: 10.1093/icb/icw015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Spatial disease ecology is emerging as a new field that requires the integration of complementary approaches to address how the distribution and movements of hosts and parasites may condition the dynamics of their interactions. In this context, migration, the seasonal movement of animals to different zones of their distribution, is assumed to play a key role in the broad scale circulation of parasites and pathogens. Nevertheless, migration is not the only type of host movement that can influence the spatial ecology, evolution, and epidemiology of infectious diseases. Dispersal, the movement of individuals between the location where they were born or bred to a location where they breed, has attracted attention as another important type of movement for the spatial dynamics of infectious diseases. Host dispersal has notably been identified as a key factor for the evolution of host-parasite interactions as it implies gene flow among local host populations and thus can alter patterns of coevolution with infectious agents across spatial scales. However, not all movements between host populations lead to dispersal per se. One type of host movement that has been neglected, but that may also play a role in parasite spread is prospecting, i.e., movements targeted at selecting and securing new habitat for future breeding. Prospecting movements, which have been studied in detail in certain social species, could result in the dispersal of infectious agents among different host populations without necessarily involving host dispersal. In this article, we outline how these various types of host movements might influence the circulation of infectious disease agents and discuss methodological approaches that could be used to assess their importance. We specifically focus on examples from work on colonial seabirds, ticks, and tick-borne infectious agents. These are convenient biological models because they are strongly spatially structured and involve relatively simple communities of interacting species. Overall, this review emphasizes that explicit consideration of the behavioral and population ecology of hosts and parasites is required to disentangle the relative roles of different types of movement for the spread of infectious diseases.
Collapse
Affiliation(s)
- Thierry Boulinier
- *UMR 5175 CEFE, CNRS - Université Montpellier - Université P. Valéry - EPHE, 34293 Montpellier, France
| | - Sarah Kada
- *UMR 5175 CEFE, CNRS - Université Montpellier - Université P. Valéry - EPHE, 34293 Montpellier, France
| | - Aurore Ponchon
- Eco-ethology Research Group, ISPA, 1149-041 Lisbon, Portugal
| | - Marlène Dupraz
- MIVEGEC, CNRS-IRD-Université Montpellier, UMR 5190, 34394 Montpellier, France
| | - Muriel Dietrich
- Department of Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | - Amandine Gamble
- *UMR 5175 CEFE, CNRS - Université Montpellier - Université P. Valéry - EPHE, 34293 Montpellier, France
| | - Vincent Bourret
- *UMR 5175 CEFE, CNRS - Université Montpellier - Université P. Valéry - EPHE, 34293 Montpellier, France
| | - Olivier Duriez
- *UMR 5175 CEFE, CNRS - Université Montpellier - Université P. Valéry - EPHE, 34293 Montpellier, France
| | - Romain Bazire
- *UMR 5175 CEFE, CNRS - Université Montpellier - Université P. Valéry - EPHE, 34293 Montpellier, France
| | - Jérémy Tornos
- *UMR 5175 CEFE, CNRS - Université Montpellier - Université P. Valéry - EPHE, 34293 Montpellier, France
| | - Torkild Tveraa
- Norwegian Institute for Nature Research, Fram Center, 9296 Tromsoe, Norway
| | - Thierry Chambert
- Department of Ecosystem Science and Management, Pennsylvania State University, PA 16802, USA
| | - Romain Garnier
- **Department of Veterinary Medicine, Disease Dynamics Unit, University of Cambridge, Cambridge CB3 0ES, UK
| | - Karen D McCoy
- MIVEGEC, CNRS-IRD-Université Montpellier, UMR 5190, 34394 Montpellier, France
| |
Collapse
|
24
|
Muñoz-Leal S, González-Acuña D. The tick Ixodes uriae (Acari: Ixodidae): Hosts, geographical distribution, and vector roles. Ticks Tick Borne Dis 2015; 6:843-68. [PMID: 26249749 DOI: 10.1016/j.ttbdis.2015.07.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 06/30/2015] [Accepted: 07/21/2015] [Indexed: 11/30/2022]
Abstract
The seabird tick Ixodes uriae White 1852, has the most extensive geographical distribution of all tick species, including Afrotropical, Australasian, Nearctic, Neotropical and Palearctic Zoogeographic Regions. Additionally, this tick species parasitizes a wide range of seabirds and constitutes a host for several viral and bacterial agents. Considering the current biological knowledge about this tick species, in this article we list localities, hosts, tick-borne microorganisms and viruses transmitted by I. uriae described in the literature and include new geographical records.
Collapse
Affiliation(s)
- Sebastián Muñoz-Leal
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo, SP 05508-270, Brasil; Departamento de Ciencias Pecuarias, Facultad de Ciencias Veterinarias, Universidad de Concepción, Av. Vicente Méndez 595, CP 3780000, Chillán (Biobío), Chile.
| | - Daniel González-Acuña
- Departamento de Ciencias Pecuarias, Facultad de Ciencias Veterinarias, Universidad de Concepción, Av. Vicente Méndez 595, CP 3780000, Chillán (Biobío), Chile.
| |
Collapse
|
25
|
Witsenburg F, Clément L, López-Baucells A, Palmeirim J, Pavlinić I, Scaravelli D, Ševčík M, Dutoit L, Salamin N, Goudet J, Christe P. How a haemosporidian parasite of bats gets around: the genetic structure of a parasite, vector and host compared. Mol Ecol 2015; 24:926-40. [PMID: 25641066 DOI: 10.1111/mec.13071] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/20/2014] [Accepted: 01/02/2015] [Indexed: 01/10/2023]
Abstract
Parasite population structure is often thought to be largely shaped by that of its host. In the case of a parasite with a complex life cycle, two host species, each with their own patterns of demography and migration, spread the parasite. However, the population structure of the parasite is predicted to resemble only that of the most vagile host species. In this study, we tested this prediction in the context of a vector-transmitted parasite. We sampled the haemosporidian parasite Polychromophilus melanipherus across its European range, together with its bat fly vector Nycteribia schmidlii and its host, the bent-winged bat Miniopterus schreibersii. Based on microsatellite analyses, the wingless vector, and not the bat host, was identified as the least structured population and should therefore be considered the most vagile host. Genetic distance matrices were compared for all three species based on a mitochondrial DNA fragment. Both host and vector populations followed an isolation-by-distance pattern across the Mediterranean, but not the parasite. Mantel tests found no correlation between the parasite and either the host or vector populations. We therefore found no support for our hypothesis; the parasite population structure matched neither vector nor host. Instead, we propose a model where the parasite's gene flow is represented by the added effects of host and vector dispersal patterns.
Collapse
Affiliation(s)
- F Witsenburg
- Department of Ecology and Evolution, University of Lausanne, Biophore, Lausanne, CH-1015, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Heylen D, De Coninck E, Jansen F, Madder M. Differential diagnosis of three common Ixodes spp. ticks infesting songbirds of Western Europe: Ixodes arboricola, I. frontalis and I. ricinus. Ticks Tick Borne Dis 2014; 5:693-700. [DOI: 10.1016/j.ttbdis.2014.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/09/2014] [Accepted: 05/11/2014] [Indexed: 10/24/2022]
|
27
|
Schramm F, Gauthier-Clerc M, Fournier JC, McCoy KD, Barthel C, Postic D, Handrich Y, Le Maho Y, Jaulhac B. First detection of Borrelia burgdorferi sensu lato DNA in king penguins (Aptenodytes patagonicus halli). Ticks Tick Borne Dis 2014; 5:939-42. [PMID: 25150726 DOI: 10.1016/j.ttbdis.2014.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 11/17/2022]
Abstract
The hard tick Ixodes uriae parasitises a wide range of seabird species in the circumpolar areas of both Northern and Southern hemispheres and has been shown to be infected with Borrelia burgdorferi sensu lato, the bacterial agents of Lyme borreliosis. Although it is assumed that seabirds represent viable reservoir hosts, direct demonstrations of infection are limited to a single study from the Northern hemisphere. Here, the blood of 50 tick-infested adult king penguins (Aptenodytes patagonicus halli) breeding in the Crozet Archipelago (Southern Indian Ocean) was examined for B. burgdorferi sl exposure by serology and for spirochetemia by in vitro DNA amplification. Four birds were found positive by serology, whereas B. burgdorferi sl DNA was detected in two other birds. Our data therefore provide the first direct proof of Borrelia burgdorferi sl spirochetes in seabirds of the Southern hemisphere and indicate a possible reservoir role for king penguins in the natural maintenance of this bacterium. Although the bacterial genetic diversity present in these hosts and the infectious period for tick vectors remain to be elucidated, our results add to a growing body of knowledge on the contribution of seabirds to the complex epizootiology of Lyme disease and the global dissemination of B. burgdorferi sl spirochetes.
Collapse
Affiliation(s)
- Frédéric Schramm
- Université de Strasbourg, EA 7290, Faculté de Médecine, Strasbourg, France.
| | - Michel Gauthier-Clerc
- Centre de Recherche de la Tour du Valat, Le Sambuc, Arles, France; Université de Franche-Comté, Département Chrono-Environnement, UMR UFC/CNRS 6249 USC INRA, Besançon, France
| | - Jean-Charles Fournier
- Université de Strasbourg, Institut Pluridisciplinaire Hubert Curien, Strasbourg, France
| | - Karen D McCoy
- MIVEGEC (Maladies infectieuses et vecteurs: écologie, génétique, évolution et contrôle), UMR 5290 CNRS/IRD, UR 244 IRD UM1 UM2, Montpellier, France
| | - Cathy Barthel
- Université de Strasbourg, EA 7290, Faculté de Médecine, Strasbourg, France
| | - Danièle Postic
- Institut Pasteur, Laboratoire des Spirochètes, Paris, France
| | - Yves Handrich
- Université de Strasbourg, Institut Pluridisciplinaire Hubert Curien, Strasbourg, France; CNRS, Institut Pluridisciplinaire Hubert Curien, Strasbourg, France
| | - Yvon Le Maho
- Université de Strasbourg, Institut Pluridisciplinaire Hubert Curien, Strasbourg, France; CNRS, Institut Pluridisciplinaire Hubert Curien, Strasbourg, France
| | - Benoît Jaulhac
- Université de Strasbourg, EA 7290, Faculté de Médecine, Strasbourg, France
| |
Collapse
|
28
|
Wilkinson DA, Dietrich M, Lebarbenchon C, Jaeger A, Le Rouzic C, Bastien M, Lagadec E, McCoy KD, Pascalis H, Le Corre M, Dellagi K, Tortosa P. Massive infection of seabird ticks with bacterial species related to Coxiella burnetii. Appl Environ Microbiol 2014; 80:3327-33. [PMID: 24657860 PMCID: PMC4018846 DOI: 10.1128/aem.00477-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/12/2014] [Indexed: 11/20/2022] Open
Abstract
Seabird ticks are known reservoirs of bacterial pathogens of medical importance; however, ticks parasitizing tropical seabirds have received less attention than their counterparts from temperate and subpolar regions. Recently, Rickettsia africae was described to infect seabird ticks of the western Indian Ocean and New Caledonia, constituting the only available data on bacterial pathogens associated with tropical seabird tick species. Here, we combined a pyrosequencing-based approach with a classical molecular analysis targeting bacteria of potential medical importance in order to describe the bacterial community in two tropical seabird ticks, Amblyomma loculosum and Carios (Ornithodoros) capensis. We also investigated the patterns of prevalence and host specificity within the biogeographical context of the western Indian Ocean islands. The bacterial community of the two tick species was characterized by a strong dominance of Coxiella and Rickettsia. Our data support a strict Coxiella-host tick specificity, a pattern resembling the one found for Rickettsia spp. in the same two seabird tick species. Both the high prevalence and stringent host tick specificity suggest that these bacteria may be tick symbionts with probable vertical transmission. Detailed studies of the pathogenicity of these bacteria will now be required to determine whether horizontal transmission can occur and to clarify their status as potential human pathogens. More generally, our results show that the combination of next generation sequencing with targeted detection/genotyping approaches proves to be efficient in poorly investigated fields where research can be considered to be starting from scratch.
Collapse
Affiliation(s)
- David A. Wilkinson
- Centre de Recherche et de Veille sur les Maladies Émergentes dans l'Océan Indien (CRVOI), GIP CYROI, Ste Clotilde, La Réunion, France
- Université de La Réunion, Ste Clotilde, La Réunion, France
| | - Muriel Dietrich
- Centre de Recherche et de Veille sur les Maladies Émergentes dans l'Océan Indien (CRVOI), GIP CYROI, Ste Clotilde, La Réunion, France
- Université de La Réunion, Ste Clotilde, La Réunion, France
| | - Camille Lebarbenchon
- Centre de Recherche et de Veille sur les Maladies Émergentes dans l'Océan Indien (CRVOI), GIP CYROI, Ste Clotilde, La Réunion, France
- Université de La Réunion, Ste Clotilde, La Réunion, France
| | - Audrey Jaeger
- Laboratoire ECOMAR, FRE3560 INEE-CNRS, Université de La Réunion, Ste Clotilde, La Réunion, France
| | - Céline Le Rouzic
- Centre de Recherche et de Veille sur les Maladies Émergentes dans l'Océan Indien (CRVOI), GIP CYROI, Ste Clotilde, La Réunion, France
- Laboratoire ECOMAR, FRE3560 INEE-CNRS, Université de La Réunion, Ste Clotilde, La Réunion, France
| | - Matthieu Bastien
- Centre de Recherche et de Veille sur les Maladies Émergentes dans l'Océan Indien (CRVOI), GIP CYROI, Ste Clotilde, La Réunion, France
- Laboratoire ECOMAR, FRE3560 INEE-CNRS, Université de La Réunion, Ste Clotilde, La Réunion, France
| | - Erwan Lagadec
- Centre de Recherche et de Veille sur les Maladies Émergentes dans l'Océan Indien (CRVOI), GIP CYROI, Ste Clotilde, La Réunion, France
- Institut de Recherche pour le Développement, Ste Clotilde, La Réunion, France
| | - Karen D. McCoy
- Unité Mixte de Recherche 5290 CNRS IRD UM1 UM2, Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, Montpellier, France
| | - Hervé Pascalis
- Centre de Recherche et de Veille sur les Maladies Émergentes dans l'Océan Indien (CRVOI), GIP CYROI, Ste Clotilde, La Réunion, France
- Institut de Recherche pour le Développement, Ste Clotilde, La Réunion, France
| | - Matthieu Le Corre
- Laboratoire ECOMAR, FRE3560 INEE-CNRS, Université de La Réunion, Ste Clotilde, La Réunion, France
| | - Koussay Dellagi
- Centre de Recherche et de Veille sur les Maladies Émergentes dans l'Océan Indien (CRVOI), GIP CYROI, Ste Clotilde, La Réunion, France
- Institut de Recherche pour le Développement, Ste Clotilde, La Réunion, France
| | - Pablo Tortosa
- Centre de Recherche et de Veille sur les Maladies Émergentes dans l'Océan Indien (CRVOI), GIP CYROI, Ste Clotilde, La Réunion, France
- Université de La Réunion, Ste Clotilde, La Réunion, France
- Institut Écologie et Environnement, CNRS, Paris, France
| |
Collapse
|
29
|
Abstract
Parasite virulence, or the damage a parasite does to its host, is measured in terms of both host costs (reductions in host growth, reproduction and survival) and parasite benefits (increased transmission and parasite numbers) in the literature. Much work has shown that ecological and genetic factors can be strong selective forces in virulence evolution. This review uses kin selection theory to explore how variations in host ecological parameters impact the genetic relatedness of parasite populations and thus virulence. We provide a broad overview of virulence and population genetics studies and then draw connections to existing knowledge about natural parasite populations. The impact of host movement (transporting parasites) and host resistance (filtering parasites) on the genetic structure and virulence of parasite populations is explored, and empirical studies of these factors using Plasmodium and trematode systems are proposed.
Collapse
|
30
|
Circulation of a Meaban-like virus in yellow-legged gulls and seabird ticks in the western Mediterranean basin. PLoS One 2014; 9:e89601. [PMID: 24625959 PMCID: PMC3953012 DOI: 10.1371/journal.pone.0089601] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/21/2014] [Indexed: 12/23/2022] Open
Abstract
In recent years, a number of zoonotic flaviviruses have emerged worldwide, and wild birds serve as their major reservoirs. Epidemiological surveys of bird populations at various geographical scales can clarify key aspects of the eco-epidemiology of these viruses. In this study, we aimed at exploring the presence of flaviviruses in the western Mediterranean by sampling breeding populations of the yellow-legged gull (Larus michahellis), a widely distributed, anthropophilic, and abundant seabird species. For 3 years, we sampled eggs from 19 breeding colonies in Spain, France, Algeria, and Tunisia. First, ELISAs were used to determine if the eggs contained antibodies against flaviviruses. Second, neutralization assays were used to identify the specific flaviviruses present. Finally, for colonies in which ELISA-positive eggs had been found, chick serum samples and potential vectors, culicid mosquitoes and soft ticks (Ornithodoros maritimus), were collected and analyzed using serology and PCR, respectively. The prevalence of flavivirus-specific antibodies in eggs was highly spatially heterogeneous. In northeastern Spain, on the Medes Islands and in the nearby village of L'Escala, 56% of eggs had antibodies against the flavivirus envelope protein, but were negative for neutralizing antibodies against three common flaviviruses: West Nile, Usutu, and tick-borne encephalitis viruses. Furthermore, little evidence of past flavivirus exposure was obtained for the other colonies. A subset of the Ornithodoros ticks from Medes screened for flaviviral RNA tested positive for a virus whose NS5 gene was 95% similar to that of Meaban virus, a flavivirus previously isolated from ticks of Larus argentatus in western France. All ELISA-positive samples subsequently tested positive for Meaban virus neutralizing antibodies. This study shows that gulls in the western Mediterranean Basin are exposed to a tick-borne Meaban-like virus, which underscores the need of exploring the spatial and temporal distribution of this flavivirus as well as its potential pathogenicity for animals and humans.
Collapse
|
31
|
Heylen D, Sprong H, van Oers K, Fonville M, Leirs H, Matthysen E. Are the specialized bird ticks, Ixodes arboricola and I. frontalis, competent vectors for Borrelia burgdorferi sensu lato? Environ Microbiol 2013; 16:1081-9. [PMID: 24237635 DOI: 10.1111/1462-2920.12332] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/05/2013] [Indexed: 11/30/2022]
Abstract
Our study tested whether two European bird-specialized ticks, Ixodes arboricola and I. frontalis, can act as vectors in the transmission cycles of Borrelia burgdorferi s.l. The ticks have contrasting ecologies but share songbird hosts (such as the great tit, Parus major) with the generalist I. ricinus which may therefore act as a bridging vector. In the first phase of the experiment, we obtained Borrelia-infected ornithophilic nymphs by exposing larvae to great tits that had previously been exposed to I. ricinus nymphs carrying a community of genospecies (Borrelia garinii, valaisiana, afzelii, burgdorferi s.s., spielmanii). Skin samples showed that birds selectively amplified B. garinii and B. valaisiana. The spirochetes were transmitted to the ornithophilic ticks and survived moulting, leading to infection rates of 16% and 27% in nymphs of I. arboricola and I. frontalis respectively. In the second phase, pathogen-free great tits were exposed to the Borrelia-infected ornithophilic nymphs. None of these ticks were able to infect the birds, as indicated by the tissue samples. Analysis of xenodiagnostic I. ricinus larvae found no evidence for co-feeding or systemic transmission of B. burgdorferi s.l. These outcomes do not support the occurrence of enzootic cycles of Borrelia burgdorferi s.l. involving songbirds and their specialized ornithophilic ticks.
Collapse
Affiliation(s)
- Dieter Heylen
- Department of Biology, University of Antwerp, Evolutionary Ecology Group, Belgium
| | | | | | | | | | | |
Collapse
|
32
|
Heylen D, Matthysen E, Fonville M, Sprong H. Songbirds as general transmitters but selective amplifiers of Borrelia burgdorferi sensu lato genotypes in Ixodes rinicus ticks. Environ Microbiol 2013; 16:2859-68. [PMID: 24118930 DOI: 10.1111/1462-2920.12304] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 10/02/2013] [Indexed: 11/27/2022]
Abstract
We investigated to what extent a European songbird (Parus major) selectively transmits and amplifies Borrelia burgdorferi s.l. bacteria. Borrelia-naïve birds were recurrently exposed to Ixodes ricinus nymphs carrying a community of more than 34 5S-23S genotypes belonging to five genospecies (Borrelia garinii, Borrelia valaisiana, Borrelia afzelii, B. burgdorferi s.s. and Borrelia spielmanii). Fed ticks were screened for Borrelia after moulting. We found evidence for co-feeding transmission of avian and possibly also mammalian genotypes. Throughout the course of infestations, the infection rate of B. garinii and B. valaisiana increased, indicating successful amplification and transmission, while the infection rate for B. afzelii, B. burgdorferi s.s and B. spielmanii tended to decrease. Within the B. garinii and B. valaisiana genotype communities, certain genotypes were transmitted more than others. Moreover, birds were able to host mixed infections of B. garinii and B. valaisiana, as well as mixed infections of genotypes of the same genospecies. We experimentally show that resident songbirds transmit a broad range of Borrelia genotypes, but selectively amplify certain genotypes, and that one bird can transmit simultaneously several genotypes. Our results highlight the need to explicitly consider the association between genotypes and hosts, which may offer opportunities to point out which hosts are most responsible for the Borrelia presence in questing ticks.
Collapse
Affiliation(s)
- Dieter Heylen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerpen, Belgium
| | | | | | | |
Collapse
|
33
|
McCoy KD, Léger E, Dietrich M. Host specialization in ticks and transmission of tick-borne diseases: a review. Front Cell Infect Microbiol 2013; 3:57. [PMID: 24109592 PMCID: PMC3790072 DOI: 10.3389/fcimb.2013.00057] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/13/2013] [Indexed: 11/24/2022] Open
Abstract
Determining patterns of host use, and the frequency at which these patterns change, are of key importance if we are to understand tick population dynamics, the evolution of tick biodiversity, and the circulation and evolution of associated pathogens. The question of whether ticks are typically host specialists or host generalists has been subject to much debate over the last half-century. Indeed, early research proposed that morphological diversity in ticks was linked to host specific adaptations and that most ticks were specialists. Later work disputed this idea and suggested that ticks are largely limited by biogeographic conditions and tend to use all locally available host species. The work presented in this review suggests that the actual answer likely lies somewhere between these two extremes. Although recent observational studies support the view that phylogenetically diverse host species share ticks when found on similar ecological ranges, theory on host range evolution predicts that host specialization should evolve in ticks given their life history characteristics. Contemporary work employing population genetic tools to examine host-associated population structure in several tick systems support this prediction and show that simple species records are not enough to determine whether a parasite is a true host generalist; host specialization does evolve in ticks at local scales, but may not always lead to speciation. Ticks therefore seem to follow a pattern of being global generalists, local specialists. Given this, the notion of host range needs to be modified from an evolutionary perspective, where one simply counts the number of hosts used across the geographic distribution, to a more ecological view, where one considers host use at a local scale, if we are to better understand the circulation of tick-borne pathogens and exposure risks for humans and livestock.
Collapse
Affiliation(s)
- Karen D. McCoy
- MiVEGEC, Mixed Research Unit 5290 CNRS-IRD-UM1-UM2, Centre IRDMontpellier, France
- Department of Biology, Carleton UniversityOttawa, ON, Canada
| | - Elsa Léger
- MiVEGEC, Mixed Research Unit 5290 CNRS-IRD-UM1-UM2, Centre IRDMontpellier, France
| | - Muriel Dietrich
- Centre de Recherche et de Veille sur les Maladies Emergentes dans l'Océan Indien, GIP CYROISt. Clotilde, France
- Department of Biology, Université de La RéunionSt. Denis, France
| |
Collapse
|
34
|
Ogden NH, Mechai S, Margos G. Changing geographic ranges of ticks and tick-borne pathogens: drivers, mechanisms and consequences for pathogen diversity. Front Cell Infect Microbiol 2013; 3:46. [PMID: 24010124 PMCID: PMC3756306 DOI: 10.3389/fcimb.2013.00046] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/04/2013] [Indexed: 12/30/2022] Open
Abstract
The geographic ranges of ticks and tick-borne pathogens are changing due to global and local environmental (including climatic) changes. In this review we explore current knowledge of the drivers for changes in the ranges of ticks and tick-borne pathogen species and strains via effects on their basic reproduction number (R0), and the mechanisms of dispersal that allow ticks and tick-borne pathogens to invade suitable environments. Using the expanding geographic distribution of the vectors and agent of Lyme disease as an example we then investigate what could be expected of the diversity of tick-borne pathogens during the process of range expansion, and compare this with what is currently being observed. Lastly we explore how historic population and range expansions and contractions could be reflected in the phylogeography of ticks and tick-borne pathogens seen in recent years, and conclude that combined study of currently changing tick and tick-borne pathogen ranges and diversity, with phylogeographic analysis, may help us better predict future patterns of invasion and diversity.
Collapse
Affiliation(s)
- Nick H Ogden
- Zoonoses Division, Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Saint-Hyacinthe, QC, Canada. nicholas.ogden@ phac-aspc.gc.ca
| | | | | |
Collapse
|
35
|
Léger E, Vourc'h G, Vial L, Chevillon C, McCoy KD. Changing distributions of ticks: causes and consequences. EXPERIMENTAL & APPLIED ACAROLOGY 2013; 59:219-244. [PMID: 23015121 DOI: 10.1007/s10493-012-9615-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 09/15/2012] [Indexed: 05/28/2023]
Abstract
Today, we are witnessing changes in the spatial distribution and abundance of many species, including ticks and their associated pathogens. Evidence that these changes are primarily due to climate change, habitat modifications, and the globalisation of human activities are accumulating. Changes in the distribution of ticks and their invasion into new regions can have numerous consequences including modifications in their ecological characteristics and those of endemic species, impacts on the dynamics of local host populations and the emergence of human and livestock disease. Here, we review the principal causes for distributional shifts in tick populations and their consequences in terms of the ecological attributes of the species in question (i.e. phenotypic and genetic responses), pathogen transmission and disease epidemiology. We also describe different methodological approaches currently used to assess and predict such changes and their consequences. We finish with a discussion of new research avenues to develop in order to improve our understanding of these host-vector-pathogen interactions in the context of a changing world.
Collapse
Affiliation(s)
- Elsa Léger
- MIVEGEC (UMR UM2-UM1-CNRS 5290, UR IRD 224), Centre IRD, BP 64501, 911 avenue Agropolis, 34394 Montpellier Cedex 5, France.
| | | | | | | | | |
Collapse
|
36
|
Tomassone L, Grego E, Auricchio D, Iori A, Giannini F, Rambozzi L. Lyme borreliosis spirochetes and spotted fever group rickettsiae in ixodid ticks from Pianosa island, Tuscany Archipelago, Italy. Vector Borne Zoonotic Dis 2013; 13:84-91. [PMID: 23289398 DOI: 10.1089/vbz.2012.1046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A study on tick fauna and tick-borne pathogens was undertaken in Pianosa, an island in the Tuscany Archipelago that constitutes an important stopping and nesting point for migratory birds. Ticks were removed from feral cats and a few terrestrial birds, and host-seeking ticks were collected by dragging. A total of 89 ticks were found on animals: 57 Ixodes ventalloi Gil Collado, 1936 and 32 Ixodes acuminatus Neumann, 1901. Host-seeking ticks were 354 Hyalomma spp. larvae and 18 Hyalomma spp. adults, identified as Hyalomma marginatum C.L. Koch, 1844 (n=11) and 7 Hyalomma detritum Schulze, 1919 (n=7). A sample of adult ticks was subjected to molecular analyses to look for Rickettsia spp. and Borrelia burgdorferi sensu lato (s.l.). Sequence analysis of the 5S-23S intergenic spacer region and OspA gene of B. burgdorferi s.l.-positive samples showed the presence of Borrelia spielmanii (n=3; 3.7%, 95% confidence interval [CI] 0.08-10.4) and Borrelia valaisiana (n=13; 13.6%, 95% CI 7.0-23.0) in Ixodes ticks from cats and terrestrial birds. Ixodes spp. were also infected by Rickettsia helvetica (n=19; 23.4%, 95% CI 14.7-34.2). Finally, we detected Rickettsia aeschlimannii in 3 out of 12 host-seeking Hyalomma spp. adults tested (25%, 95% CI 5.5-57.2). Our study shows the presence of several tick-borne pathogens in Pianosa. Hyalomma spp. and Ixodes ticks other than I. ricinus seem to be involved in their epidemiological cycle, and birds could contribute to the pathogen dispersal along their migration routes. This is the first finding of B. spielmanii in Italy. We hypothesize the involvement of peridomestic rodents or hedgehogs in its maintenance in Pianosa.
Collapse
Affiliation(s)
- L Tomassone
- Dipartimento di Produzioni Animali Epidemiologia ed Ecologia, Facoltà di Medicina Veterinaria, Università degli Studi di Torino, Grugliasco, Torino, Italy.
| | | | | | | | | | | |
Collapse
|
37
|
Spatial spread and demographic expansion of Lyme borreliosis spirochaetes in Eurasia. INFECTION GENETICS AND EVOLUTION 2012; 14:147-55. [PMID: 23219915 DOI: 10.1016/j.meegid.2012.11.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 11/08/2012] [Accepted: 11/09/2012] [Indexed: 11/24/2022]
Abstract
The Lyme borreliosis (LB) group of spirochaetes currently comprises 18 named species that vary in their geographic distribution, host specificity and ability to cause disease in humans. In Europe three species are most abundant, Borrelia afzelii, Borrelia garinii and Borrelia valaisiana but only two of these (B. garinii and B. afzelii) are regularly found in Asia as well. A recently published study has shown that Borrelia species associated with birds, such as B. garinii, showed limited geographic structuring between European countries while, the rodent associated species, B. afzelii, showed extensive spatial structuring in Europe. Here, we use multilocus sequence analysis to show that when the wider, inter-continental, distribution is considered, there is evidence of spatial structuring even in the bird-associated species B. garinii. Furthermore, our investigations into historical LB populations provided evidence for range expansions of B. garinii and B. afzelii populations in Europe in the distant past. We propose that the expansion of B. afzelii in Europe may be linked to rodent population expansions after the last glacial maximum.
Collapse
|
38
|
Sperling J, Middelveen M, Klein D, Sperling F. Evolving perspectives on lyme borreliosis in Canada. Open Neurol J 2012; 6:94-103. [PMID: 23091570 PMCID: PMC3474999 DOI: 10.2174/1874205x01206010094] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 06/22/2012] [Accepted: 07/02/2012] [Indexed: 12/20/2022] Open
Abstract
With cases now documented in every province, Lyme borreliosis (LB) is emerging as a serious public health risk in Canada. Controversy over the contribution of LB to the burden of chronic disease is maintained by difficulty in capturing accurate Canadian statistics, especially early clinical cases of LB. The use of dogs as sentinel species demon-strates that potential contact with Borrelia burgdorferi spirochetes, as detected by C6 peptide, extends across the country. Dissemination of infected ticks by migratory birds and rapid establishment of significant levels of infection have been well described. Canadian public health response has focused on identification of established populations of the tick vectors, Ixodes scapularis and I. pacificus, on the assumption that these are the only important vectors of the disease across Canada. Strains of B. burgdorferi circulating in Canada and the full range of their reservoir species and coinfections remain to be explored. Ongoing surveys and historical records demonstrate that Borrelia-positive Ixodes species are regu-larly present in regions of Canada that have previously been considered to be outside of the ranges of these species in re-cent modeling efforts. We present data demonstrating that human cases of LB are found across the nation. Consequently, physician education and better early diagnoses are needed to prevent long term sequelae. An international perspective will be paramount for developing improved Canadian guidelines that recognize the complexity and diversity of Lyme borreliosis.
Collapse
Affiliation(s)
- Jlh Sperling
- Department of Biological Sciences, University of Alberta, Edmonton, Canada ; Canadian Lyme Disease Foundation, West Kelowna, British Columbia, Canada
| | | | | | | |
Collapse
|
39
|
Revisiting the clinal concept of evolution and dispersal for the tick-borne flaviviruses by using phylogenetic and biogeographic analyses. J Virol 2012; 86:8663-71. [PMID: 22674986 DOI: 10.1128/jvi.01013-12] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tick-borne flaviviruses (TBF) are widely dispersed across Africa, Europe, Asia, Oceania, and North America, and some present a significant threat to human health. Seminal studies on tick-borne encephalitis viruses (TBEV), based on partial envelope gene sequences, predicted a westward clinal pattern of evolution and dispersal across northern Eurasia, terminating in the British Isles. We tested this hypothesis using all available full-length open reading frame (ORF) TBF sequences. Phylogenetic analysis was consistent with current reports. However, linear and nonlinear regression analysis of genetic versus geographic distance combined with BEAST analysis identified two separate clines, suggesting that TBEV spread both east and west from a central point. In addition, BEAST analysis suggested that TBF emerged and dispersed more than 16,000 years ago, significantly earlier than previously predicted. Thus, climatic and ecological changes may have played a greater role in TBF dispersal than humans.
Collapse
|
40
|
Phylogeography of Lyme borreliosis-group spirochetes and methicillin-resistant Staphylococcus aureus. Parasitology 2012; 139:1952-65. [PMID: 22617338 DOI: 10.1017/s0031182012000741] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have revolutionized understanding the global epidemiology of many medically relevant bacteria utilizing a number, mostly seven, of housekeeping genes. A more recent introduction, single nucleotide polymorphisms (SNPs), constitutes an even more powerful tool for bacterial typing, population genetic studies and phylogeography. The introduction of massive parallel sequencing has made genome re-sequencing and SNP discovery more economical for investigations of microbial organisms. In this paper we review phylogeographic studies on Lyme borreliosis (LB)-group spirochetes and methicillin-resistant Staphylococcus aureus (MRSA). Members of the LB-group spirochetes are tick-transmitted zoonotic bacteria that have many hosts and differ in their degree of host specialism, constituting a highly complex system. MRSA is a directly transmitted pathogen that may be acquired by contact with infected people, animals or MRSA-contaminated objects. For the LB-group spirochetes, MLSA has proved a powerful tool for species assignment and phylogeographic investigations while for S. aureus, genome-wide SNP data have been used to study the very short-term evolution of two important MRSA lineages, ST239 and ST225. These data are detailed in this review.
Collapse
|
41
|
Chambert T, Staszewski V, Lobato E, Choquet R, Carrie C, McCoy KD, Tveraa T, Boulinier T. Exposure of black-legged kittiwakes to Lyme disease spirochetes: dynamics of the immune status of adult hosts and effects on their survival. J Anim Ecol 2012; 81:986-95. [PMID: 22428953 DOI: 10.1111/j.1365-2656.2012.01979.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Despite a growing interest in wildlife disease ecology, there is a surprising lack of knowledge about the exposure dynamics of individual animals to naturally circulating infectious agents and the impact of such agents on host life-history traits. 2. The exploration of these questions requires detailed longitudinal data on individual animals that can be captured multiple times during their life but also requires being able to account for several sources of uncertainty, notably the partial observation or recapture of individuals at each sampling occasion. 3. We use a multi-year dataset to (i) assess the potential effect of exposure to the tick-borne agent of Lyme disease, Borrelia burgdorferi sensu lato (Bbsl), on adult apparent survival for one of its natural long-lived hosts, the Black-legged kittiwake (Rissa tridactyla), and (ii) investigate the temporal dynamics of individual immunological status in kittiwakes to infer the rate of new exposure and the persistence of the immune response. Using a multi-event modelling approach, potential uncertainties arising from partial observations were explicitly taken into account. 4. The potential impact of Bbsl on kittiwake survival was also evaluated via an experimental approach: the apparent survival of a group of breeding birds treated with an antibiotic was compared with that of a control group. 5. No impact of exposure to Bbsl was detected on adult survival in kittiwakes, in either observational or experimental data. 6. An annual seroconversion rate (from negative to positive) of 1·5% was estimated, but once an individual became seropositive, it remained so with a probability of 1, suggesting that detectable levels of anti-Bbsl antibodies persist for multiple years. 7. These results, in combination with knowledge on patterns of exposure to the tick vector of Bbsl, provide important information for understanding the spatio-temporal nature of the interaction between this host and several of its parasites. Furthermore, our analyses highlight the utility of capture-mark-recapture approaches handling state uncertainty for disease ecology studies.
Collapse
Affiliation(s)
- Thierry Chambert
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS UMR 5175, 1919 route de Mende, 34293 Montpellier, France.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Lobato E, Pearce-Duvet J, Staszewski V, Gómez-Díaz E, González-Solís J, Kitaysky A, McCoy KD, Boulinier T. Seabirds and the circulation of Lyme borreliosis bacteria in the North Pacific. Vector Borne Zoonotic Dis 2011; 11:1521-7. [PMID: 21919724 DOI: 10.1089/vbz.2010.0267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Seabirds act as natural reservoirs to Lyme borreliosis spirochetes and may play a significant role in the global circulation of these pathogens. While Borrelia burgdorferi sensu lato (Bbsl) has been shown to occur in ticks collected from certain locations in the North Pacific, little is known about interspecific differences in exposure within the seabird communities of this region. We examined the prevalence of anti-Bbsl antibodies in 805 individuals of nine seabird species breeding across the North Pacific. Seroprevalence varied strongly among species and locations. Murres (Uria spp.) showed the highest antibody prevalence and may play a major role in facilitating Bbsl circulation at a worldwide scale. Other species showed little or no signs of exposure, despite being present in multispecific colonies with seropositive birds. Complex dynamics may be operating in this wide scale, natural host-parasite system, possibly mediated by the host immune system and host specialization of the tick vector.
Collapse
Affiliation(s)
- Elisa Lobato
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS UMR 5175, Montpellier, France.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Margos G, Vollmer SA, Ogden NH, Fish D. Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu lato. INFECTION GENETICS AND EVOLUTION 2011; 11:1545-63. [PMID: 21843658 DOI: 10.1016/j.meegid.2011.07.022] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/29/2011] [Accepted: 07/31/2011] [Indexed: 11/25/2022]
Abstract
In order to understand the population structure and dynamics of bacterial microorganisms, typing systems that accurately reflect the phylogenetic and evolutionary relationship of the agents are required. Over the past 15 years multilocus sequence typing schemes have replaced single locus approaches, giving novel insights into phylogenetic and evolutionary relationships of many bacterial species and facilitating taxonomy. Since 2004, several schemes using multiple loci have been developed to better understand the taxonomy, phylogeny and evolution of Lyme borreliosis spirochetes and in this paper we have reviewed and summarized the progress that has been made for this important group of vector-borne zoonotic bacteria.
Collapse
Affiliation(s)
- Gabriele Margos
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | | | | | | |
Collapse
|