1
|
Tiwari ON, Bobby MN, Kondi V, Halder G, Kargarzadeh H, Ikbal AMA, Bhunia B, Thomas S, Efferth T, Chattopadhyay D, Palit P. Comprehensive review on recent trends and perspectives of natural exo-polysaccharides: Pioneering nano-biotechnological tools. Int J Biol Macromol 2024; 265:130747. [PMID: 38479657 DOI: 10.1016/j.ijbiomac.2024.130747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 04/18/2024]
Abstract
Exopolysaccharides (EPSs), originating from various microbes, and mushrooms, excel in their conventional role in bioremediation to showcase diverse applications emphasizing nanobiotechnology including nano-drug carriers, nano-excipients, medication and/or cell encapsulation, gene delivery, tissue engineering, diagnostics, and associated treatments. Acknowledged for contributions to adsorption, nutrition, and biomedicine, EPSs are emerging as appealing alternatives to traditional polymers, for biodegradability and biocompatibility. This article shifts away from the conventional utility to delve deeply into the expansive landscape of EPS applications, particularly highlighting their integration into cutting-edge nanobiotechnological methods. Exploring EPS synthesis, extraction, composition, and properties, the discussion emphasizes their structural diversity with molecular weight and heteropolymer compositions. Their role as raw materials for value-added products takes center stage, with critical insights into recent applications in nanobiotechnology. The multifaceted potential, biological relevance, and commercial applicability of EPSs in contemporary research and industry align with the nanotechnological advancements coupled with biotechnological nano-cleansing agents are highlighted. EPS-based nanostructures for biological applications have a bright future ahead of them. Providing crucial information for present and future practices, this review sheds light on how eco-friendly EPSs derived from microbial biomass of terrestrial and aquatic environments can be used to better understand contemporary nanobiotechnology for the benefit of society.
Collapse
Affiliation(s)
- Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Md Nazneen Bobby
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh 522213, India
| | - Vanitha Kondi
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Medak 502313, Telangana, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, West Bengal 713209, India
| | - Hanieh Kargarzadeh
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Seinkiewicza 112, 90-363 Lodz, Poland
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India
| | - Biswanath Bhunia
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Sabu Thomas
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Priyadarshini Hills, Athirampuzha, Kerala, 686560, India; Department of Chemical Sciences, University of Johannesburg, P.O. Box, 17011, Doornfontein, 2028, Johannesburg, South Africa
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Debprasad Chattopadhyay
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; School of Life Sciences, Swami Vivekananda University, Barrackpore, Kolkata 700102, India
| | - Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India.
| |
Collapse
|
2
|
Odermatt PD, Nussbaum P, Monnappa S, Talà L, Li Z, Sivabalasarma S, Albers SV, Persat A. Archaeal type IV pili stabilize Haloferax volcanii biofilms in flow. Curr Biol 2023; 33:3265-3271.e4. [PMID: 37473762 DOI: 10.1016/j.cub.2023.06.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/01/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
Multicellular communities of contiguous cells attached to solid surfaces called biofilms represent a common microbial strategy to improve resilience in adverse environments.1,2,3 While bacterial biofilms have been under intense investigation, whether archaeal biofilms follow similar assembly rules remains unknown.4,5Haloferax volcanii is an extremely halophilic euryarchaeon that commonly colonizes salt crust surfaces. H. volcanii produces long and thin appendages called type IV pili (T4Ps). These play a role in surface attachment and biofilm formation in both archaea and bacteria. In this study, we employed biophysical experiments to identify the function of T4Ps in H. volcanii biofilm morphogenesis. H. volcanii expresses not one but six types of major pilin subunits that are predicted to compose T4Ps. Non-invasive imaging of T4Ps in live cells using interferometric scattering (iSCAT) microscopy reveals that piliation varies across mutants expressing single major pilin isoforms. T4Ps are necessary to secure attachment of single cells to surfaces, and the adhesive strength of pilin mutants correlates with their level of piliation. In flow, H. volcanii forms clonal biofilms that extend in three dimensions. Notably, the expression of PilA2, a single pilin isoform, is sufficient to maintain levels of piliation, surface attachment, and biofilm formation that are indistinguishable from the wild type. Furthermore, we discovered that fluid flow stabilizes biofilm integrity; as in the absence of flow, biofilms tend to lose cohesion and disperse in a density-dependent manner. Overall, our results demonstrate that T4P-surface and possibly T4P-T4P interactions promote biofilm formation and integrity and that flow is a key factor regulating archaeal biofilm formation.
Collapse
Affiliation(s)
- Pascal D Odermatt
- Global Health Institute and Institute for Bioengineering, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Phillip Nussbaum
- Molecular Biology of Archaea, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Sourabh Monnappa
- Global Health Institute and Institute for Bioengineering, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Lorenzo Talà
- Global Health Institute and Institute for Bioengineering, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland
| | - Zhengqun Li
- Molecular Biology of Archaea, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Shamphavi Sivabalasarma
- Molecular Biology of Archaea, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.
| | - Alexandre Persat
- Global Health Institute and Institute for Bioengineering, School of Life Sciences, EPFL, 1015 Lausanne, Switzerland.
| |
Collapse
|
3
|
Pei C, Lu H, Ma J, Eichler J, Guan Z, Gao L, Liu L, Zhou H, Yang J, Jin C. AepG is a glucuronosyltransferase involved in acidic exopolysaccharide synthesis and contributes to environmental adaptation of Haloarcula hispanica. J Biol Chem 2023; 299:102911. [PMID: 36642187 PMCID: PMC9943897 DOI: 10.1016/j.jbc.2023.102911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/14/2023] Open
Abstract
The attachment of a sugar to a hydrophobic lipid carrier is the first step in the biosynthesis of many glycoconjugates. In the halophilic archaeon Haloarcula hispanica, HAH_1206, renamed AepG, is a predicted glycosyltransferase belonging to the CAZy Group 2 family that shares a conserved amino acid sequence with dolichol phosphate mannose synthases. In this study, the function of AepG was investigated by genetic and biochemical approaches. We found that aepG deletion led to the disappearance of dolichol phosphate-glucuronic acid. Our biochemical assays revealed that recombinant cellulose-binding, domain-tagged AepG could catalyze the formation of dolichol phosphate-glucuronic acid in time- and dose-dependent manners. Based on the in vivo and in vitro analyses, AepG was confirmed to be a dolichol phosphate glucuronosyltransferase involved in the synthesis of the acidic exopolysaccharide produced by H. hispanica. Furthermore, lack of aepG resulted in hindered growth and cell aggregation in high salt medium, indicating that AepG is vital for the adaptation of H. hispanica to a high salt environment. In conclusion, AepG is the first dolichol phosphate glucuronosyltransferase identified in any of the three domains of life and, moreover, offers a starting point for further investigation into the diverse pathways used for extracellular polysaccharide biosynthesis in archaea.
Collapse
Affiliation(s)
- Caixia Pei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hua Lu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jiayin Ma
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jerry Eichler
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Linlu Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hui Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jinghua Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Kuschmierz L, Meyer M, Bräsen C, Wingender J, Schmitz OJ, Siebers B. Exopolysaccharide composition and size in Sulfolobus acidocaldarius biofilms. Front Microbiol 2022; 13:982745. [PMID: 36225367 PMCID: PMC9549778 DOI: 10.3389/fmicb.2022.982745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular polymeric substances (EPS) comprise mainly carbohydrates, proteins and extracellular DNA (eDNA) in biofilms formed by the thermoacidophilic Crenarchaeon Sulfolobus acidocaldarius. However, detailed information on the carbohydrates in the S. acidocaldarius biofilm EPS, i.e., the exopolysaccharides (PS), in terms of identity, composition and size were missing. In this study, a set of methods was developed and applied to study the PS in S. acidocaldarius biofilms. It was initially shown that addition of sugars, most significantly of glucose, to the basal N-Z-amine-based growth medium enhanced biofilm formation. For the generation of sufficient amounts of biomass suitable for chemical analyses, biofilm growth was established and optimized on the surface of membrane filters. EPS were isolated and the contents of carbohydrates, proteins and eDNA were determined. PS purification was achieved by enzymatic digestion of other EPS components (nucleic acids and proteins). After trifluoroacetic acid-mediated hydrolysis of the PS fraction, the monosaccharide composition was analyzed by reversed-phase liquid chromatography (RP-LC) coupled to mass spectrometry (MS). Main sugar constituents detected were mannose, glucose and ribose, as well as minor proportions of rhamnose, N-acetylglucosamine, glucosamine and galactosamine. Size exclusion chromatography (SEC) revealed the presence of one single PS fraction with a molecular mass of 4-9 × 104 Da. This study provides detailed information on the PS composition and size of S. acidocaldarius MW001 biofilms and methodological tools for future studies on PS biosynthesis and secretion.
Collapse
Affiliation(s)
- Laura Kuschmierz
- Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Martin Meyer
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
- Teaching and Research Center for Separation, University of Duisburg-Essen, Essen, Germany
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Jost Wingender
- Aquatic Microbiology, Environmental Microbiology and Biotechnology, Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Oliver J. Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
- Teaching and Research Center for Separation, University of Duisburg-Essen, Essen, Germany
- Oliver J. Schmitz,
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Bettina Siebers,
| |
Collapse
|
5
|
Robinson A, Ulrich SM. Haloferax volcanii Remains Viable and Shows Morphological Changes under Anoxic (CO 2-Enriched) and Hypobaric (2.4 kPa) Atmospheric Conditions. ASTROBIOLOGY 2022; 22:829-837. [PMID: 35325555 DOI: 10.1089/ast.2021.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Potentially habitable zones have been discovered on Mars today in underground areas containing perchlorate brines. Understanding the low-pressure adaptations of microorganisms is essential in learning more about what life could potentially be found on Mars today or could have existed in the distant past. Many studies have looked at low-pressure adaptations in bacteria; however, studies aimed at understanding these adaptations in archaea are scarcer. Haloferax volcanii is a species of halophilic archaea documented to tolerate high concentrations of oxidizing agents present on Mars (i.e., perchlorates and nitrates). In this study, we expose H. volcanii to a hypobaric (2.4 kPa) and an anoxic CO2-enriched atmosphere in the presence of perchlorate, chlorate, and nitrate. While no growth was observed during incubation in these conditions, survivability was increased in cultures incubated in low-pressure atmospheric conditions compared to ambient Earth atmospheric pressures. Scanning electron microscopy observations showed morphological changes in low-pressure conditions not observed at ambient Earth atmospheric pressures. Results suggest that previously undocumented low-pressure adaptations in H. volcanii increase survivability in simulated subsurface martian conditions. Future experiments to understand the changes in gene expression under these conditions may be valuable to understand more about low-pressure adaptations in archaea.
Collapse
Affiliation(s)
- Adam Robinson
- Department of Natural Science, St. Petersburg College, Clearwater, Florida, USA
| | | |
Collapse
|
6
|
Wang F, Cvirkaite-Krupovic V, Krupovic M, Egelman EH. Archaeal bundling pili of Pyrobaculum calidifontis reveal similarities between archaeal and bacterial biofilms. Proc Natl Acad Sci U S A 2022; 119:e2207037119. [PMID: 35727984 PMCID: PMC9245690 DOI: 10.1073/pnas.2207037119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
While biofilms formed by bacteria have received great attention due to their importance in pathogenesis, much less research has been focused on the biofilms formed by archaea. It has been known that extracellular filaments in archaea, such as type IV pili, hami, and cannulae, play a part in the formation of archaeal biofilms. We have used cryo-electron microscopy to determine the atomic structure of a previously uncharacterized class of archaeal surface filaments from hyperthermophilic Pyrobaculum calidifontis. These filaments, which we call archaeal bundling pili (ABP), assemble into highly ordered bipolar bundles. The bipolar nature of these bundles most likely arises from the association of filaments from at least two different cells. The component protein, AbpA, shows homology, both at the sequence and structural level, to the bacterial protein TasA, a major component of the extracellular matrix in bacterial biofilms, contributing to biofilm stability. We show that AbpA forms very stable filaments in a manner similar to the donor-strand exchange of bacterial TasA fibers and chaperone-usher pathway pili where a β-strand from one subunit is incorporated into a β-sheet of the next subunit. Our results reveal likely mechanistic similarities and evolutionary connection between bacterial and archaeal biofilms, and suggest that there could be many other archaeal surface filaments that are as yet uncharacterized.
Collapse
Affiliation(s)
- Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903
| | | | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, 75015 Paris, France
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903
| |
Collapse
|
7
|
Gophna U, Altman-Price N. Horizontal Gene Transfer in Archaea-From Mechanisms to Genome Evolution. Annu Rev Microbiol 2022; 76:481-502. [PMID: 35667126 DOI: 10.1146/annurev-micro-040820-124627] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Archaea remains the least-studied and least-characterized domain of life despite its significance not just to the ecology of our planet but also to the evolution of eukaryotes. It is therefore unsurprising that research into horizontal gene transfer (HGT) in archaea has lagged behind that of bacteria. Indeed, several archaeal lineages may owe their very existence to large-scale HGT events, and thus understanding both the molecular mechanisms and the evolutionary impact of HGT in archaea is highly important. Furthermore, some mechanisms of gene exchange, such as plasmids that transmit themselves via membrane vesicles and the formation of cytoplasmic bridges that allows transfer of both chromosomal and plasmid DNA, may be archaea specific. This review summarizes what we know about HGT in archaea, and the barriers that restrict it, highlighting exciting recent discoveries and pointing out opportunities for future research. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; ,
| | - Neta Altman-Price
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; , .,Department of Natural and Life Sciences, The Open University of Israel, Raanana, Israel
| |
Collapse
|
8
|
Ithurbide S, Gribaldo S, Albers SV, Pende N. Spotlight on FtsZ-based cell division in Archaea. Trends Microbiol 2022; 30:665-678. [PMID: 35246355 DOI: 10.1016/j.tim.2022.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022]
Abstract
Compared with the extensive knowledge on cell division in model eukaryotes and bacteria, little is known about how archaea divide. Interestingly, both endosomal sorting complex required for transport (ESCRT)-based and FtsZ-based cell division systems are found in members of the Archaea. In the past couple of years, several studies have started to shed light on FtsZ-based cell division processes in members of the Euryarchaeota. In this review we highlight recent findings in this emerging field of research. We present current knowledge of the cell division machinery of halophiles which relies on two FtsZ proteins, and we compare it with that of methanobacteria, which relies on only one FtsZ. Finally, we discuss how these differences relate to the distinct cell envelopes of these two archaeal model systems.
Collapse
Affiliation(s)
- Solenne Ithurbide
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Simonetta Gribaldo
- Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institut Pasteur, Paris, France.
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| | - Nika Pende
- Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institut Pasteur, Paris, France
| |
Collapse
|
9
|
Hilpmann S, Bader M, Steudtner R, Müller K, Stumpf T, Cherkouk A. Microscopic and spectroscopic bioassociation study of uranium(VI) with an archaeal Halobacterium isolate. PLoS One 2022; 17:e0262275. [PMID: 35025937 PMCID: PMC8757991 DOI: 10.1371/journal.pone.0262275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/21/2021] [Indexed: 11/22/2022] Open
Abstract
The safe disposal of high-level radioactive waste in a deep geological repository is a huge social and technical challenge. So far, one of the less considered factors needed for a long-term risk assessment, is the impact of microorganisms occurring in the different host rocks. Even under the harsh conditions of salt formations different bacterial and archaeal species were found, e. g. Halobacterium sp. GP5 1-1, which has been isolated from a German rock salt sample. The interactions of this archaeon with uranium(VI), one of the radionuclides of major concern for the long-term storage of high-level radioactive waste, were investigated. Different spectroscopic techniques, as well as microscopy, were used to examine the occurring mechanisms on a molecular level leading to a more profound process understanding. Batch experiments with different uranium(VI) concentrations showed that the interaction is not only a simple, but a more complex combination of different processes. With the help of in situ attenuated total reflection Fourier-transform infrared spectroscopy the association of uranium(VI) onto carboxylate groups was verified. In addition, time-resolved laser-induced luminescence spectroscopy revealed the formation of phosphate and carboxylate species within the cell pellets as a function of the uranium(VI) concentration and incubation time. The association behavior differs from another very closely related halophilic archaeon, especially with regard to uranium(VI) concentrations. This clearly demonstrates the importance of studying the interactions of different, at first sight very similar, microorganisms with uranium(VI). This work provides new insights into the microbe-uranium(VI) interactions at highly saline conditions relevant to the long-term storage of radioactive waste in rock salt.
Collapse
Affiliation(s)
- Stephan Hilpmann
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Miriam Bader
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Robin Steudtner
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Katharina Müller
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Thorsten Stumpf
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Andrea Cherkouk
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| |
Collapse
|
10
|
Meta-analyses on the Periodontal Archaeome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:69-93. [DOI: 10.1007/978-3-030-96881-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Boya BR, Kumar P, Lee JH, Lee J. Diversity of the Tryptophanase Gene and Its Evolutionary Implications in Living Organisms. Microorganisms 2021; 9:microorganisms9102156. [PMID: 34683477 PMCID: PMC8537960 DOI: 10.3390/microorganisms9102156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
Tryptophanase encoded by the gene tnaA is a pyridoxal phosphate-dependent enzyme that catalyses the conversion of tryptophan to indole, which is commonly used as an intra- and interspecies signalling molecule, particularly by microbes. However, the production of indole is rare in eukaryotic organisms. A nucleotide and protein database search revealed tnaA is commonly reported in various Gram-negative bacteria, but that only a few Gram-positive bacteria and archaea possess the gene. The presence of tnaA in eukaryotes, particularly protozoans and marine organisms, demonstrates the importance of this gene in the animal kingdom. Here, we document the distribution of tnaA and its acquisition and expansion among different taxonomic groups, many of which are usually categorized as non-indole producers. This study provides an opportunity to understand the intriguing role played by tnaA, and its distribution among various types of organisms.
Collapse
|
12
|
Characterization of Blf4, an Archaeal Lytic Virus Targeting a Member of the Methanomicrobiales. Viruses 2021; 13:v13101934. [PMID: 34696364 PMCID: PMC8540584 DOI: 10.3390/v13101934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 01/05/2023] Open
Abstract
Today, the number of known viruses infecting methanogenic archaea is limited. Here, we report on a novel lytic virus, designated Blf4, and its host strain Methanoculleus bourgensis E02.3, a methanogenic archaeon belonging to the Methanomicrobiales, both isolated from a commercial biogas plant in Germany. The virus consists of an icosahedral head 60 nm in diameter and a long non-contractile tail of 125 nm in length, which is consistent with the new isolate belonging to the Siphoviridae family. Electron microscopy revealed that Blf4 attaches to the vegetative cells of M. bourgensis E02.3 as well as to cellular appendages. Apart from M. bourgensis E02.3, none of the tested Methanoculleus strains were lysed by Blf4, indicating a narrow host range. The complete 37 kb dsDNA genome of Blf4 contains 63 open reading frames (ORFs), all organized in the same transcriptional direction. For most of the ORFs, potential functions were predicted. In addition, the genome of the host M. bourgensis E02.3 was sequenced and assembled, resulting in a 2.6 Mbp draft genome consisting of nine contigs. All genes required for a hydrogenotrophic lifestyle were predicted. A CRISPR/Cas system (type I-U) was identified with six spacers directed against Blf4, indicating that this defense system might not be very efficient in fending off invading Blf4 virus.
Collapse
|
13
|
Makarova KS, Wolf YI, Karamycheva S, Koonin EV. A Unique Gene Module in Thermococcales Archaea Centered on a Hypervariable Protein Containing Immunoglobulin Domains. Front Microbiol 2021; 12:721392. [PMID: 34489912 PMCID: PMC8416519 DOI: 10.3389/fmicb.2021.721392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Molecular mechanisms involved in biological conflicts and self vs nonself recognition in archaea remain poorly characterized. We apply phylogenomic analysis to identify a hypervariable gene module that is widespread among Thermococcales. These loci consist of an upstream gene coding for a large protein containing several immunoglobulin (Ig) domains and unique combinations of downstream genes, some of which also contain Ig domains. In the large Ig domain containing protein, the C-terminal Ig domain sequence is hypervariable, apparently, as a result of recombination between genes from different Thermococcales. To reflect the hypervariability, we denote this gene module VARTIG (VARiable Thermococcales IG). The overall organization of the VARTIG modules is similar to the organization of Polymorphic Toxin Systems (PTS). Archaeal genomes outside Thermococcales encode a variety of Ig domain proteins, but no counterparts to VARTIG and no Ig domains with comparable levels of variability. The specific functions of VARTIG remain unknown but the identified features of this system imply three testable hypotheses: (i) involvement in inter-microbial conflicts analogous to PTS, (ii) role in innate immunity analogous to the vertebrate complement system, and (iii) function in self vs nonself discrimination analogous to the vertebrate Major Histocompatibility Complex. The latter two hypotheses seem to be of particular interest given the apparent analogy to the vertebrate immunity.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, United States
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, United States
| | - Svetlana Karamycheva
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, United States
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, United States
| |
Collapse
|
14
|
Howell L, LaRue M, Flanagan SP. Environmental DNA as a tool for monitoring Antarctic vertebrates. NEW ZEALAND JOURNAL OF ZOOLOGY 2021. [DOI: 10.1080/03014223.2021.1900299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lucy Howell
- Gateway Antarctica, School of Earth and Environment, University of Canterbury, Christchurch, New Zealand
| | - Michelle LaRue
- Gateway Antarctica, School of Earth and Environment, University of Canterbury, Christchurch, New Zealand
- School of Earth and Environment, University of Canterbury, Christchurch, New Zealand
| | - Sarah P. Flanagan
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
15
|
Makkay AM, Louyakis AS, Ram-Mohan N, Gophna U, Gogarten JP, Papke RT. Insights into gene expression changes under conditions that facilitate horizontal gene transfer (mating) of a model archaeon. Sci Rep 2020; 10:22297. [PMID: 33339886 PMCID: PMC7749143 DOI: 10.1038/s41598-020-79296-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
Horizontal gene transfer is a means by which bacteria, archaea, and eukaryotes are able to trade DNA within and between species. While there are a variety of mechanisms through which this genetic exchange can take place, one means prevalent in the archaeon Haloferax volcanii involves the transient formation of cytoplasmic bridges between cells and is referred to as mating. This process can result in the exchange of very large fragments of DNA between the participating cells. Genes governing the process of mating, including triggers to initiate mating, mechanisms of cell fusion, and DNA exchange, have yet to be characterized. We used a transcriptomic approach to gain a more detailed knowledge of how mating might transpire. By examining the differential expression of genes expressed in cells harvested from mating conditions on a filter over time and comparing them to those expressed in a shaking culture, we were able to identify genes and pathways potentially associated with mating. These analyses provide new insights into both the mechanisms and barriers of mating in Hfx. volcanii.
Collapse
Affiliation(s)
- Andrea M Makkay
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Artemis S Louyakis
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Nikhil Ram-Mohan
- Department of Emergency Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, P.O. Box 39040, 6997801, Tel Aviv, Israel
| | - J Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
16
|
Moopantakath J, Imchen M, Siddhardha B, Kumavath R. 16s rRNA metagenomic analysis reveals predominance of Crtl and CruF genes in Arabian Sea coast of India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140699. [PMID: 32679495 DOI: 10.1016/j.scitotenv.2020.140699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Microbial communities perform crucial biogeochemical cycles in distinct ecosystems. Halophilic microbial communities are enriched in the saline areas. Hence, haloarchaea have been primarily studied in salterns and marine biosystems with the aim to harness haloarcheal carotenoids biosynthesis. In this study, sediment from several distinct biosystems (mangrove, seashore, estuary, river, lake, salt pan and island) across the Arabian coastal region of India were collected and analyzed though 16s rRNA metagenomic and whole genome approach to elucidated the dominant representative genre, haloarcheal diversity, and the prevalence of Crtl and CruF genes. We found that the microbial diversity in mangrove sediment (794 OTUs) was highest and lowest in lake and river (558-560 OTUs). Moreover, the bacterial domain dominated in all biosystems (96.00-99.45%). Top 10 abundant genera were involved in biochemical cycles such as sulfur, methane, ammonia, hydrocarbon degradation, and antibiotics production. The Archaea was mainly composed of Haloarchaea, Methanobacteria, Methanococci, Methanomicrobia and Crenarchaeota. Carotenoid gene, Crtl, was observed in a major portion (abundance 60%; diversity 45%) of microbial community. Interestingly, we found that all species under haloarcheal class that were represented in fresh as well as marine biosystems encodes CruF gene (bacterioruberin carotenoid). Our study demonstrates the high microbial diversity in various ecosystems, enrichment of Crtl gene, and also shows that Crtl and CruF genes are highly abundant in haloarcheal genera. The finding of ecosystems specific Crtl and CruF encoding genera opens up a promising area in bioprospecting the carotenoid derivatives from the wide range of natural biosystems.
Collapse
Affiliation(s)
- Jamseel Moopantakath
- Department of Genomic Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod 671320, Kerala, India
| | - Madangchanok Imchen
- Department of Genomic Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod 671320, Kerala, India
| | - Busi Siddhardha
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Ranjith Kumavath
- Department of Genomic Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod 671320, Kerala, India.
| |
Collapse
|
17
|
Matarredona L, Camacho M, Zafrilla B, Bonete MJ, Esclapez J. The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts. Biomolecules 2020; 10:biom10101390. [PMID: 33003558 PMCID: PMC7601130 DOI: 10.3390/biom10101390] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022] Open
Abstract
Over the years, in order to survive in their natural environment, microbial communities have acquired adaptations to nonoptimal growth conditions. These shifts are usually related to stress conditions such as low/high solar radiation, extreme temperatures, oxidative stress, pH variations, changes in salinity, or a high concentration of heavy metals. In addition, climate change is resulting in these stress conditions becoming more significant due to the frequency and intensity of extreme weather events. The most relevant damaging effect of these stressors is protein denaturation. To cope with this effect, organisms have developed different mechanisms, wherein the stress genes play an important role in deciding which of them survive. Each organism has different responses that involve the activation of many genes and molecules as well as downregulation of other genes and pathways. Focused on salinity stress, the archaeal domain encompasses the most significant extremophiles living in high-salinity environments. To have the capacity to withstand this high salinity without losing protein structure and function, the microorganisms have distinct adaptations. The haloarchaeal stress response protects cells against abiotic stressors through the synthesis of stress proteins. This includes other heat shock stress proteins (Hsp), thermoprotectants, survival proteins, universal stress proteins, and multicellular structures. Gene and family stress proteins are highly conserved among members of the halophilic archaea and their study should continue in order to develop means to improve for biotechnological purposes. In this review, all the mechanisms to cope with stress response by haloarchaea are discussed from a global perspective, specifically focusing on the role played by universal stress proteins.
Collapse
|
18
|
Charlesworth J, Kimyon O, Manefield M, Beloe CJ, Burns BP. Archaea join the conversation: detection of AHL-like activity across a range of archaeal isolates. FEMS Microbiol Lett 2020; 367:5874252. [PMID: 32691824 DOI: 10.1093/femsle/fnaa123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
Quorum sensing is a mechanism of genetic control allowing single cell organisms to coordinate phenotypic response(s) across a local population and is often critical for ecosystem function. Although quorum sensing has been extensively studied in bacteria comparatively less is known about this mechanism in Archaea. Given the growing significance of Archaea in both natural and anthropogenic settings, it is important to delineate how widespread this phenomenon of signaling is in this domain. Employing a plasmid-based AHL biosensor in conjunction with thin-layer chromatography (TLC), the present study screened a broad range of euryarchaeota isolates for potential signaling activity. Data indicated the presence of 11 new Archaeal isolates with AHL-like activity against the LuxR-based AHL biosensor, including for the first time putative AHL activity in a thermophile. The presence of multiple signals and distinct changes between growth phases were also shown via TLC. Multiple signal molecules were detected using TLC in Haloferax mucosum, Halorubrum kocurii, Natronococcus occultus and Halobacterium salinarium. The finding of multiple novel signal producers suggests the potential for quorum sensing to play an important role not only in the regulation of complex phenotypes within Archaea but the potential for cross-talk with bacterial systems.
Collapse
Affiliation(s)
- James Charlesworth
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia.,Australian Centre for Astrobiology, University of New South Wales Sydney, 2052, Australia
| | - Onder Kimyon
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia.,School of Civil and Environmental Engineering, The University of New South Wales, Sydney, 2052 Australia
| | - Michael Manefield
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia.,School of Civil and Environmental Engineering, The University of New South Wales, Sydney, 2052 Australia.,School of Chemical Engineering, The University of New South Wales, Sydney, 2052, Australia
| | - Charlotte J Beloe
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia.,Australian Centre for Astrobiology, University of New South Wales Sydney, 2052, Australia
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, Australia.,Australian Centre for Astrobiology, University of New South Wales Sydney, 2052, Australia
| |
Collapse
|
19
|
Pfeiffer F, Losensky G, Marchfelder A, Habermann B, Dyall‐Smith M. Whole-genome comparison between the type strain of Halobacterium salinarum (DSM 3754 T ) and the laboratory strains R1 and NRC-1. Microbiologyopen 2020; 9:e974. [PMID: 31797576 PMCID: PMC7002104 DOI: 10.1002/mbo3.974] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 01/04/2023] Open
Abstract
Halobacterium salinarum is an extremely halophilic archaeon that is widely distributed in hypersaline environments and was originally isolated as a spoilage organism of salted fish and hides. The type strain 91-R6 (DSM 3754T ) has seldom been studied and its genome sequence has only recently been determined by our group. The exact relationship between the type strain and two widely used model strains, NRC-1 and R1, has not been described before. The genome of Hbt. salinarum strain 91-R6 consists of a chromosome (2.17 Mb) and two large plasmids (148 and 102 kb, with 39,230 bp being duplicated). Cytosine residues are methylated (m4 C) within CTAG motifs. The genomes of type and laboratory strains are closely related, their chromosomes sharing average nucleotide identity (ANIb) values of 98% and in silico DNA-DNA hybridization (DDH) values of 95%. The chromosomes are completely colinear, do not show genome rearrangement, and matching segments show <1% sequence difference. Among the strain-specific sequences are three large chromosomal replacement regions (>10 kb). The well-studied AT-rich island (61 kb) of the laboratory strains is replaced by a distinct AT-rich sequence (47 kb) in 91-R6. Another large replacement (91-R6: 78 kb, R1: 44 kb) codes for distinct homologs of proteins involved in motility and N-glycosylation. Most (107 kb) of plasmid pHSAL1 (91-R6) is very closely related to part of plasmid pHS3 (R1) and codes for essential genes (e.g. arginine-tRNA ligase and the pyrimidine biosynthesis enzyme aspartate carbamoyltransferase). Part of pHS3 (42.5 kb total) is closely related to the largest strain-specific sequence (164 kb) in the type strain chromosome. Genome sequencing unraveled the close relationship between the Hbt. salinarum type strain and two well-studied laboratory strains at the DNA and protein levels. Although an independent isolate, the type strain shows a remarkably low evolutionary difference to the laboratory strains.
Collapse
Affiliation(s)
- Friedhelm Pfeiffer
- Computational Biology GroupMax‐Planck‐Institute of BiochemistryMartinsriedGermany
| | - Gerald Losensky
- Microbiology and ArchaeaDepartment of BiologyTechnische Universität DarmstadtDarmstadtGermany
| | | | - Bianca Habermann
- Computational Biology GroupMax‐Planck‐Institute of BiochemistryMartinsriedGermany
- CNRSIBDM UMR 7288Aix Marseille UniversitéMarseilleFrance
| | - Mike Dyall‐Smith
- Computational Biology GroupMax‐Planck‐Institute of BiochemistryMartinsriedGermany
- Veterinary BiosciencesFaculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleVic.Australia
| |
Collapse
|
20
|
Völkel S, Hein S, Benker N, Pfeifer F, Lenz C, Losensky G. How to Cope With Heavy Metal Ions: Cellular and Proteome-Level Stress Response to Divalent Copper and Nickel in Halobacterium salinarum R1 Planktonic and Biofilm Cells. Front Microbiol 2020; 10:3056. [PMID: 32010107 PMCID: PMC6978704 DOI: 10.3389/fmicb.2019.03056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/18/2019] [Indexed: 11/13/2022] Open
Abstract
Halobacterium salinarum R1 is an extremely halophilic archaeon capable of adhesion and forming biofilms, allowing it to adjust to a range of growth conditions. We have recently shown that living in biofilms facilitates its survival under Cu2+ and Ni2+ stress, with specific rearrangements of the biofilm architecture observed following exposition. In this study, quantitative analyses were performed by SWATH mass spectrometry to determine the respective proteomes of planktonic and biofilm cells after exposition to Cu2+ and Ni2+.Quantitative data for 1180 proteins were obtained, corresponding to 46% of the predicted proteome. In planktonic cells, 234 of 1180 proteins showed significant abundance changes after metal ion treatment, of which 47% occurred in Cu2+ and Ni2+ treated samples. In biofilms, significant changes were detected for 52 proteins. Only three proteins changed under both conditions, suggesting metal-specific stress responses in biofilms. Deletion strains were generated to assess the potential role of selected target genes. Strongest effects were observed for ΔOE5245F and ΔOE2816F strains which exhibited increased and decreased biofilm mass after Ni2+ exposure, respectively. Moreover, EPS obviously plays a crucial role in H. salinarum metal ion resistance. Further efforts are required to elucidate the molecular basis and interplay of additional resistance mechanisms.
Collapse
Affiliation(s)
- Sabrina Völkel
- Microbiology and Archaea, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Sascha Hein
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Nathalie Benker
- Atmospheric Aerosol, Institute of Applied Geosciences, Technische Universität Darmstadt, Darmstadt, Germany
| | - Felicitas Pfeifer
- Microbiology and Archaea, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Gerald Losensky
- Microbiology and Archaea, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
21
|
Haque RU, Paradisi F, Allers T. Haloferax volcanii for biotechnology applications: challenges, current state and perspectives. Appl Microbiol Biotechnol 2019; 104:1371-1382. [PMID: 31863144 PMCID: PMC6985049 DOI: 10.1007/s00253-019-10314-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 01/08/2023]
Abstract
Haloferax volcanii is an obligate halophilic archaeon with its origin in the Dead Sea. Simple laboratory culture conditions and a wide range of genetic tools have made it a model organism for studying haloarchaeal cell biology. Halophilic enzymes of potential interest to biotechnology have opened up the application of this organism in biocatalysis, bioremediation, nanobiotechnology, bioplastics and the biofuel industry. Functionally active halophilic proteins can be easily expressed in a halophilic environment, and an extensive genetic toolkit with options for regulated protein overexpression has allowed the purification of biotechnologically important enzymes from different halophiles in H. volcanii. However, corrosion mediated damage caused to stainless-steel bioreactors by high salt concentrations and a tendency to form biofilms when cultured in high volume are some of the challenges of applying H. volcanii in biotechnology. The ability to employ expressed active proteins in immobilized cells within a porous biocompatible matrix offers new avenues for exploiting H. volcanii in biotechnology. This review critically evaluates the various application potentials, challenges and toolkits available for using this extreme halophilic organism in biotechnology.
Collapse
Affiliation(s)
- R U Haque
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK.,School of Chemistry, University Park, University of Nottingham, Nottingham, NG7 2RD, UK.,Warwick Integrative Synthetic Biology Centre, School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - F Paradisi
- School of Chemistry, University Park, University of Nottingham, Nottingham, NG7 2RD, UK.,Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - T Allers
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
22
|
Abstract
Biofilms are structured and organized communities of microorganisms that represent one of the most successful forms of life on Earth. Bacterial biofilms have been studied in great detail, and many molecular details are known about the processes that govern bacterial biofilm formation, however, archaea are ubiquitous in almost all habitats on Earth and can also form biofilms. In recent years, insights have been gained into the development of archaeal biofilms, how archaea communicate to form biofilms and how the switch from a free-living lifestyle to a sessile lifestyle is regulated. In this Review, we explore the different stages of archaeal biofilm development and highlight similarities and differences between archaea and bacteria on a molecular level. We also consider the role of archaeal biofilms in industry and their use in different industrial processes.
Collapse
Affiliation(s)
- Marleen van Wolferen
- Molecular Biology of Archaea, Institute of Biology II, Microbiology, University of Freiburg, Freiburg, Germany
| | - Alvaro Orell
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, Microbiology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
23
|
Zhang R, Neu TR, Blanchard V, Vera M, Sand W. Biofilm dynamics and EPS production of a thermoacidophilic bioleaching archaeon. N Biotechnol 2019; 51:21-30. [DOI: 10.1016/j.nbt.2019.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 11/17/2022]
|
24
|
Nagel C, Machulla A, Zahn S, Soppa J. Several One-Domain Zinc Finger µ-Proteins of Haloferax Volcanii Are Important for Stress Adaptation, Biofilm Formation, and Swarming. Genes (Basel) 2019; 10:genes10050361. [PMID: 31083437 PMCID: PMC6562870 DOI: 10.3390/genes10050361] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 11/16/2022] Open
Abstract
Zinc finger domains are highly structured and can mediate interactions to DNA, RNA, proteins, lipids, and small molecules. Accordingly, zinc finger proteins are very versatile and involved in many biological functions. Eukaryotes contain a wealth of zinc finger proteins, but zinc finger proteins have also been found in archaea and bacteria. Large zinc finger proteins have been well studied, however, in stark contrast, single domain zinc finger µ-proteins of less than 70 amino acids have not been studied at all, with one single exception. Therefore, 16 zinc finger µ-proteins of the haloarchaeon Haloferax volcanii were chosen and in frame deletion mutants of the cognate genes were generated. The phenotypes of mutants and wild-type were compared under eight different conditions, which were chosen to represent various pathways and involve many genes. None of the mutants differed from the wild-type under optimal or near-optimal conditions. However, 12 of the 16 mutants exhibited a phenotypic difference under at least one of the four following conditions: Growth in synthetic medium with glycerol, growth in the presence of bile acids, biofilm formation, and swarming. In total, 16 loss of function and 11 gain of function phenotypes were observed. Five mutants indicated counter-regulation of a sessile versus a motile life style in H. volcanii. In conclusion, the generation and analysis of a set of deletion mutants demonstrated the high importance of zinc finger µ-proteins for various biological functions, and it will be the basis for future mechanistic insight.
Collapse
Affiliation(s)
- Chantal Nagel
- Department of Biosciences, Institute for Molecular Biosciences, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.
| | - Anja Machulla
- Department of Biosciences, Institute for Molecular Biosciences, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.
| | - Sebastian Zahn
- Department of Biosciences, Institute for Molecular Biosciences, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.
| | - Jörg Soppa
- Department of Biosciences, Institute for Molecular Biosciences, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.
| |
Collapse
|
25
|
Zhang R, Neu TR, Li Q, Blanchard V, Zhang Y, Schippers A, Sand W. Insight Into Interactions of Thermoacidophilic Archaea With Elemental Sulfur: Biofilm Dynamics and EPS Analysis. Front Microbiol 2019; 10:896. [PMID: 31133998 PMCID: PMC6524610 DOI: 10.3389/fmicb.2019.00896] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 04/08/2019] [Indexed: 11/18/2022] Open
Abstract
Biooxidation of reduced inorganic sulfur compounds (RISCs) by thermoacidophiles is of particular interest for the biomining industry and for environmental issues, e.g., formation of acid mine drainage (AMD). Up to now, interfacial interactions of acidophiles with elemental sulfur as well as the mechanisms of sulfur oxidation by acidophiles, especially thermoacidophiles, are not yet fully clear. This work focused on how a crenarchaeal isolate Acidianus sp. DSM 29099 interacts with elemental sulfur. Analysis by Confocal laser scanning microscopy (CLSM) and Atomic force microscopy (AFM) in combination with Epifluorescence microscopy (EFM) shows that biofilms on elemental sulfur are characterized by single colonies and a monolayer in first stage and later on 3-D structures with a diameter of up to 100 μm. The analysis of extracellular polymeric substances (EPS) by a non-destructive lectin approach (fluorescence lectin-barcoding analysis) using several fluorochromes shows that intial attachment was featured by footprints rich in biofilm cells that were embedded in an EPS matrix consisting of various glycoconjugates. Wet chemistry data indicate that carbohydrates, proteins, lipids and uronic acids are the main components. Attenuated reflectance (ATR)-Fourier transformation infrared spectroscopy (FTIR) and high-performance anion exchange chromatography with pulsed amperometric detection (HPAE-PAD) indicate glucose and mannose as the main monosaccharides in EPS polysaccharides. EPS composition as well as sugar types in EPS vary according to substrate (sulfur or tetrathionate) and lifestyle (biofilms and planktonic cells). This study provides information on the building blocks/make up as well as dynamics of biofilms of thermoacidophilic archaea in extremely acidic environments.
Collapse
Affiliation(s)
- Ruiyong Zhang
- Federal Institute for Geosciences and Natural Resources (BGR), Hanover, Germany
- Biofilm Centre, Universität Duisburg-Essen, Essen, Germany
| | - Thomas R. Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research-UFZ, Magdeburg, Germany
| | - Qian Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Véronique Blanchard
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Yutong Zhang
- Biofilm Centre, Universität Duisburg-Essen, Essen, Germany
| | - Axel Schippers
- Federal Institute for Geosciences and Natural Resources (BGR), Hanover, Germany
| | - Wolfgang Sand
- Biofilm Centre, Universität Duisburg-Essen, Essen, Germany
- College of Environmental Science and Engineering, Donghua University, Shanghai, China
- TU Bergakademie Freiberg, Freiberg, Germany
| |
Collapse
|
26
|
Increased production of polyhydroxyalkanoates with controllable composition and consistent material properties by fed-batch fermentation. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
27
|
Bader M, Rossberg A, Steudtner R, Drobot B, Großmann K, Schmidt M, Musat N, Stumpf T, Ikeda-Ohno A, Cherkouk A. Impact of Haloarchaea on Speciation of Uranium-A Multispectroscopic Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12895-12904. [PMID: 30125086 DOI: 10.1021/acs.est.8b02667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Haloarchaea represent a predominant part of the microbial community in rock salt, which can serve as host rock for the disposal of high level radioactive waste. However, knowledge is missing about how Haloarchaea interact with radionuclides. Here, we used a combination of spectroscopic and microscopic methods to study the interactions of an extremely halophilic archaeon with uranium, one of the major radionuclides in high level radioactive waste, on a molecular level. The obtained results show that Halobacterium noricense DSM 15987T influences uranium speciation as a function of uranium concentration and incubation time. X-ray absorption spectroscopy reveals the formation of U(VI) phosphate minerals, such as meta-autunite, as the major species at a lower uranium concentration of 30 μM, while U(VI) is mostly associated with carboxylate groups of the cell wall and extracellular polymeric substances at a higher uranium concentration of 85 μM. For the first time, we identified uranium biomineralization in the presence of Halobacterium noricense DSM 15987T cells. These findings highlight the potential importance of Archaea in geochemical cycling of uranium and their role in biomineralization in hypersaline environments, offering new insights into the microbe-actinide interactions in highly saline conditions relevant to the disposal of high-level radioactive waste as well as bioremediation.
Collapse
Affiliation(s)
- Miriam Bader
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - André Rossberg
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Robin Steudtner
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Björn Drobot
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
- Technische Universität Dresden , Central Radionuclide Laboratory , Zellescher Weg 19 , 01062 Dresden , Germany
| | - Kay Großmann
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Matthias Schmidt
- Helmholtz Centre for Environmental Research , Department of Isotope Biogeochemistry , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Niculina Musat
- Helmholtz Centre for Environmental Research , Department of Isotope Biogeochemistry , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Atsushi Ikeda-Ohno
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
| | - Andrea Cherkouk
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Resource Ecology , Bautzner Landstraße 400 , 01328 Dresden , Germany
| |
Collapse
|
28
|
Investigation of Polyaniline and a Functionalised Derivative as Antimicrobial Additives to Create Contamination Resistant Surfaces. MATERIALS 2018; 11:ma11030436. [PMID: 29547572 PMCID: PMC5873015 DOI: 10.3390/ma11030436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 02/06/2023]
Abstract
Antimicrobial surfaces can be applied to break transmission pathways in hospitals. Polyaniline (PANI) and poly(3-aminobenzoic acid) (P3ABA) are novel antimicrobial agents with potential as non-leaching additives to provide contamination resistant surfaces. The activity of PANI and P3ABA were investigated in suspension and as part of absorbent and non-absorbent surfaces. The effect of inoculum size and the presence of organic matter on surface activity was determined. PANI and P3ABA both demonstrated bactericidal activity against Escherichia coli and Staphylococcus aureus in suspension and as part of an absorbent surface. Only P3ABA showed antimicrobial activity in non-absorbent films. The results that are presented in this work support the use of P3ABA to create contamination resistant surfaces.
Collapse
|
29
|
Maslov I, Bogorodskiy A, Mishin A, Okhrimenko I, Gushchin I, Kalenov S, Dencher NA, Fahlke C, Büldt G, Gordeliy V, Gensch T, Borshchevskiy V. Efficient non-cytotoxic fluorescent staining of halophiles. Sci Rep 2018; 8:2549. [PMID: 29416075 PMCID: PMC5803262 DOI: 10.1038/s41598-018-20839-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 01/19/2018] [Indexed: 11/09/2022] Open
Abstract
Research on halophilic microorganisms is important due to their relation to fundamental questions of survival of living organisms in a hostile environment. Here we introduce a novel method to stain halophiles with MitoTracker fluorescent dyes in their growth medium. The method is based on membrane-potential sensitive dyes, which were originally used to label mitochondria in eukaryotic cells. We demonstrate that these fluorescent dyes provide high staining efficiency and are beneficial for multi-staining purposes due to the spectral range covered (from orange to deep red). In contrast with other fluorescent dyes used so far, MitoTracker does not affect growth rate, and remains in cells after several washing steps and several generations in cell culture. The suggested dyes were tested on three archaeal (Hbt. salinarum, Haloferax sp., Halorubrum sp.) and two bacterial (Salicola sp., Halomonas sp.) strains of halophilic microorganisms. The new staining approach provides new insights into biology of Hbt. salinarum. We demonstrated the interconversion of rod-shaped cells of Hbt. salinarium to spheroplasts and submicron-sized spheres, as well as the cytoplasmic integrity of giant rod Hbt. salinarum species. By expanding the variety of tools available for halophile detection, MitoTracker dyes overcome long-standing limitations in fluorescence microscopy studies of halophiles.
Collapse
Affiliation(s)
- Ivan Maslov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudniy, Russia
| | - Andrey Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudniy, Russia
| | - Alexey Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudniy, Russia
| | - Ivan Okhrimenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudniy, Russia
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudniy, Russia
| | - Sergei Kalenov
- Mendeleyev University of Chemical Technology of Russia, 125047, Moscow, Russia
| | - Norbert A Dencher
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudniy, Russia
- CSI Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Christoph Fahlke
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudniy, Russia
- Institute of Complex Systems (ICS), ICS-4: Cellular Biophysics, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| | - Georg Büldt
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudniy, Russia
| | - Valentin Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudniy, Russia
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000, Grenoble, France
- Institute of Complex Systems (ICS), ICS-6: Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Thomas Gensch
- Institute of Complex Systems (ICS), ICS-4: Cellular Biophysics, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| | - Valentin Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudniy, Russia.
| |
Collapse
|
30
|
Engelhardt H, Bollschweiler D. Cryo-Electron Microscopy of Extremely Halophilic Microbes. J Microbiol Methods 2018. [DOI: 10.1016/bs.mim.2018.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Chaudhury P, Quax TEF, Albers SV. Versatile cell surface structures of archaea. Mol Microbiol 2017; 107:298-311. [PMID: 29194812 DOI: 10.1111/mmi.13889] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2017] [Indexed: 11/27/2022]
Abstract
Archaea are ubiquitously present in nature and colonize environments with broadly varying growth conditions. Several surface appendages support their colonization of new habitats. A hallmark of archaea seems to be the high abundance of type IV pili (T4P). However, some unique non T4 filaments are present in a number of archaeal species. Archaeal surface structures can mediate different processes such as cellular surface adhesion, DNA exchange, motility and biofilm formation and represent an initial attachment site for infecting viruses. In addition to the functionally characterized archaeal T4P, archaeal genomes encode a large number of T4P components that might form yet undiscovered surface structures with novel functions. In this review, we summarize recent advancement in structural and functional characterizations of known archaeal surface structures and highlight the diverse processes in which they play a role.
Collapse
Affiliation(s)
- Paushali Chaudhury
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Tessa E F Quax
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Sonja-Verena Albers
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| |
Collapse
|
32
|
Methanosarcina Spherical Virus, a Novel Archaeal Lytic Virus Targeting Methanosarcina Strains. J Virol 2017; 91:JVI.00955-17. [PMID: 28878086 DOI: 10.1128/jvi.00955-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/21/2017] [Indexed: 12/21/2022] Open
Abstract
A novel archaeal lytic virus targeting species of the genus Methanosarcina was isolated using Methanosarcina mazei strain Gö1 as the host. Due to its spherical morphology, the virus was designated Methanosarcina spherical virus (MetSV). Molecular analysis demonstrated that MetSV contains double-stranded linear DNA with a genome size of 10,567 bp containing 22 open reading frames (ORFs), all oriented in the same direction. Functions were predicted for some of these ORFs, i.e., such as DNA polymerase, ATPase, and DNA-binding protein as well as envelope (structural) protein. MetSV-derived spacers in CRISPR loci were detected in several published Methanosarcina draft genomes using bioinformatic tools, revealing a potential protospacer-adjacent motif (PAM) motif (TTA/T). Transcription and expression of several predicted viral ORFs were validated by reverse transcription-PCR (RT-PCR), PAGE analysis, and liquid chromatography-mass spectrometry (LC-MS)-based proteomics. Analysis of core lipids by atmospheric pressure chemical ionization (APCI) mass spectrometry showed that MetSV and Methanosarcina mazei both contain archaeol and glycerol dialkyl glycerol tetraether without a cyclopentane moiety (GDGT-0). The MetSV host range is limited to Methanosarcina strains growing as single cells (M. mazei, Methanosarcina barkeri and Methanosarcina soligelidi). In contrast, strains growing as sarcina-like aggregates were apparently protected from infection. Heterogeneity related to morphology phases in M. mazei cultures allowed acquisition of resistance to MetSV after challenge by growing cultures as sarcina-like aggregates. CRISPR/Cas-mediated resistance was excluded since neither of the two CRISPR arrays showed MetSV-derived spacer acquisition. Based on these findings, we propose that changing the morphology from single cells to sarcina-like aggregates upon rearrangement of the envelope structure prevents infection and subsequent lysis by MetSV.IMPORTANCE Methanoarchaea are among the most abundant organisms on the planet since they are present in high numbers in major anaerobic environments. They convert various carbon sources, e.g., acetate, methylamines, or methanol, to methane and carbon dioxide; thus, they have a significant impact on the emission of major greenhouse gases. Today, very little is known about viruses specifically infecting methanoarchaea that most probably impact the abundance of methanoarchaea in microbial consortia. Here, we characterize the first identified Methanosarcina-infecting virus (MetSV) and show a mechanism for acquiring resistance against MetSV. Based on our results, we propose that growth as sarcina-like aggregates prevents infection and subsequent lysis. These findings allow new insights into the virus-host relationship in methanogenic community structures, their dynamics, and their phase heterogeneity. Moreover, the availability of a specific virus provides new possibilities to deepen our knowledge of the defense mechanisms of potential hosts and offers tools for genetic manipulation.
Collapse
|
33
|
Megaw J, Gilmore BF. Archaeal Persisters: Persister Cell Formation as a Stress Response in Haloferax volcanii. Front Microbiol 2017; 8:1589. [PMID: 28871247 PMCID: PMC5566976 DOI: 10.3389/fmicb.2017.01589] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/04/2017] [Indexed: 12/12/2022] Open
Abstract
Persister cells are phenotypic variants within a microbial population, which are dormant and transiently tolerant to stress. Persistence has been studied extensively in bacteria, and in eukaryotes to a limited extent, however, it has never been observed in archaea. Using the model haloarchaeon, Haloferax volcanii DS2, we demonstrated persister cell formation in this domain, with time-kill curves exhibiting a characteristic biphasic pattern following starvation or exposure to lethal concentrations of various biocidal compounds. Repeated challenges of surviving cells showed that, as with bacteria, persister formation in H. volcanii was not heritable. Additionally, as previously shown with bacteria, persister formation in H. volcanii was suppressed by exogenous indole. The addition of spent culture media to assays conducted on planktonic cells showed that H. volcanii-conditioned media stimulated persistence, whereas conditioned media of other haloarchaea or halophilic bacteria did not, suggesting the involvement of a species-specific signal. Using a TLC overlay assay, the quorum sensing bioreporter Agrobacterium tumefaciens ATCC BAA-2240 detected the presence of C4 and C6 acyl homoserine lactone-like signal molecules in a H. volcanii culture extract. While synthetic bacterial AHLs did not induce persistence, this is potentially due to structural differences between bacterial and archaeal signals, and does not discount a quorum sensing component in haloarchaeal persister formation. The observation of persister cell formation by this haloarchaeon may provide some insights into the survival of these organisms in stressful or dynamic environments.
Collapse
Affiliation(s)
- Julianne Megaw
- Biofilm Research Group, School of Pharmacy, Queen's University BelfastBelfast, United Kingdom
| | - Brendan F Gilmore
- Biofilm Research Group, School of Pharmacy, Queen's University BelfastBelfast, United Kingdom
| |
Collapse
|
34
|
Ibáñez de Aldecoa AL, Zafra O, González-Pastor JE. Mechanisms and Regulation of Extracellular DNA Release and Its Biological Roles in Microbial Communities. Front Microbiol 2017; 8:1390. [PMID: 28798731 PMCID: PMC5527159 DOI: 10.3389/fmicb.2017.01390] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022] Open
Abstract
The capacity to release genetic material into the extracellular medium has been reported in cultures of numerous species of bacteria, archaea, and fungi, and also in the context of multicellular microbial communities such as biofilms. Moreover, extracellular DNA (eDNA) of microbial origin is widespread in natural aquatic and terrestrial environments. Different specific mechanisms are involved in eDNA release, such as autolysis and active secretion, as well as through its association with membrane vesicles. It is noteworthy that in microorganisms, in which DNA release has been studied in detail, the production of eDNA is coordinated by the population when it reaches a certain cell density, and is induced in a subpopulation in response to the accumulation of quorum sensing signals. Interestingly, in several bacteria there is also a relationship between eDNA release and the development of natural competence (the ability to take up DNA from the environment), which is also controlled by quorum sensing. Then, what is the biological function of eDNA? A common biological role has not been proposed, since different functions have been reported depending on the microorganism. However, it seems to be important in biofilm formation, can be used as a nutrient source, and could be involved in DNA damage repair and gene transfer. This review covers several aspects of eDNA research: (i) its occurrence and distribution in natural environments, (ii) the mechanisms and regulation of its release in cultured microorganisms, and (iii) its biological roles. In addition, we propose that eDNA release could be considered a social behavior, based on its quorum sensing-dependent regulation and on the described functions of eDNA in the context of microbial communities.
Collapse
Affiliation(s)
- Alejandra L Ibáñez de Aldecoa
- Laboratory of Molecular Adaptation, Department of Molecular Evolution, Centro de Astrobiología (Consejo Superior de Investigaciones Científicas/Instituto Nacional de Técnica Aeroespacial)Madrid, Spain
| | - Olga Zafra
- Experimental Sciences Faculty, Francisco de Vitoria UniversityMadrid, Spain
| | - José E González-Pastor
- Laboratory of Molecular Adaptation, Department of Molecular Evolution, Centro de Astrobiología (Consejo Superior de Investigaciones Científicas/Instituto Nacional de Técnica Aeroespacial)Madrid, Spain
| |
Collapse
|
35
|
An Acidic Exopolysaccharide from Haloarcula hispanica ATCC33960 and Two Genes Responsible for Its Synthesis. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2017. [PMID: 28634434 PMCID: PMC5467301 DOI: 10.1155/2017/5842958] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A 1.1 × 106 Da acidic exopolysaccharide (EPS) was purified from an extremely halophilic archaeon Haloarcula hispanica ATCC33960 with a production of 30 mg L-1 when grown in AS-168 medium, which mainly composed of mannose and galactose with a small amount of glucose in a molar ratio of 55.9 : 43.2 : 0.9. Two glycosyltransferase genes (HAH_1662 and HAH_1667) were identified to be responsible for synthesis of the acidic EPS. Deletion of either HAH_1662 or HAH_1667 led to loss of the acidic EPS. The mutants displayed a different cell surface morphology, retarded growth in low salty environment, an increased adhesion, and swimming ability. Our results suggest that biosynthesis of the acidic EPS might act as an adaptable mechanism to protect the cells against harsh environments.
Collapse
|
36
|
Wagner A, Whitaker RJ, Krause DJ, Heilers JH, van Wolferen M, van der Does C, Albers SV. Mechanisms of gene flow in archaea. Nat Rev Microbiol 2017; 15:492-501. [DOI: 10.1038/nrmicro.2017.41] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
37
|
Rajput A, Kumar M. Computational Exploration of Putative LuxR Solos in Archaea and Their Functional Implications in Quorum Sensing. Front Microbiol 2017; 8:798. [PMID: 28515720 PMCID: PMC5413776 DOI: 10.3389/fmicb.2017.00798] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/19/2017] [Indexed: 11/13/2022] Open
Abstract
LuxR solos are unexplored in Archaea, despite their vital role in the bacterial regulatory network. They assist bacteria in perceiving acyl homoserine lactones (AHLs) and/or non-AHLs signaling molecules for establishing intraspecies, interspecies, and interkingdom communication. In this study, we explored the potential LuxR solos of Archaea from InterPro v62.0 meta-database employing taxonomic, probable function, distribution, and evolutionary aspects to decipher their role in quorum sensing (QS). Our bioinformatics analyses showed that putative LuxR solos of Archaea shared few conserved domains with bacterial LuxR despite having less similarity within proteins. Functional characterization revealed their ability to bind various AHLs and/or non-AHLs signaling molecules that involve in QS cascades alike bacteria. Further, the phylogenetic study indicates that Archaeal LuxR solos (with less substitution per site) evolved divergently from bacteria and share distant homology along with instances of horizontal gene transfer. Moreover, Archaea possessing putative LuxR solos, exhibit the correlation between taxonomy and ecological niche despite being the inhabitant of diverse habitats like halophilic, thermophilic, barophilic, methanogenic, and chemolithotrophic. Therefore, this study would shed light in deciphering the role of the putative LuxR solos of Archaea to adapt varied habitats via multilevel communication with other organisms using QS.
Collapse
Affiliation(s)
- Akanksha Rajput
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial ResearchChandigarh, India
| | - Manoj Kumar
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial ResearchChandigarh, India
| |
Collapse
|
38
|
Bollschweiler D, Schaffer M, Lawrence CM, Engelhardt H. Cryo-electron microscopy of an extremely halophilic microbe: technical aspects. Extremophiles 2017; 21:393-398. [PMID: 28050645 PMCID: PMC5329092 DOI: 10.1007/s00792-016-0912-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/19/2016] [Indexed: 11/30/2022]
Abstract
Most halophilic Archaea of the class Halobacteriaceae depend on the presence of several molar sodium chloride for growth and cell integrity. This poses problems for structural studies, particularly for electron microscopy, where the high salt concentration results in diminished contrast. Since cryo-electron microscopy of intact cells provides new insights into the cellular and molecular organization under close-to-live conditions, we evaluated strategies and conditions to make halophilic microbes available for investigations in situ. Halobacterium salinarum, the test organism for this study, usually grows at 4.3 M NaCl. Adaptation to lower concentrations and subsequent NaCl reduction via dialysis led to still vital cells at 3 M salt. A comprehensive evaluation of vitrification parameters, thinning of frozen cells by focused-ion-beam micromachining, and cryo-electron microscopy revealed that structural studies under high salt conditions are possible in situ.
Collapse
Affiliation(s)
- Daniel Bollschweiler
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18, 82152, Martinsried, Germany
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Miroslava Schaffer
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - C Martin Lawrence
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18, 82152, Martinsried, Germany
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Harald Engelhardt
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18, 82152, Martinsried, Germany.
| |
Collapse
|
39
|
Liao Y, Williams TJ, Ye J, Charlesworth J, Burns BP, Poljak A, Raftery MJ, Cavicchioli R. Morphological and proteomic analysis of biofilms from the Antarctic archaeon, Halorubrum lacusprofundi. Sci Rep 2016; 6:37454. [PMID: 27874045 PMCID: PMC5118699 DOI: 10.1038/srep37454] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/26/2016] [Indexed: 12/21/2022] Open
Abstract
Biofilms enhance rates of gene exchange, access to specific nutrients, and cell survivability. Haloarchaea in Deep Lake, Antarctica, are characterized by high rates of intergenera gene exchange, metabolic specialization that promotes niche adaptation, and are exposed to high levels of UV-irradiation in summer. Halorubrum lacusprofundi from Deep Lake has previously been reported to form biofilms. Here we defined growth conditions that promoted the formation of biofilms and used microscopy and enzymatic digestion of extracellular material to characterize biofilm structures. Extracellular DNA was found to be critical to biofilms, with cell surface proteins and quorum sensing also implicated in biofilm formation. Quantitative proteomics was used to define pathways and cellular processes involved in forming biofilms; these included enhanced purine synthesis and specific cell surface proteins involved in DNA metabolism; post-translational modification of cell surface proteins; specific pathways of carbon metabolism involving acetyl-CoA; and specific responses to oxidative stress. The study provides a new level of understanding about the molecular mechanisms involved in biofilm formation of this important member of the Deep Lake community.
Collapse
Affiliation(s)
- Y Liao
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - T J Williams
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - J Ye
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, 2052, Australia.,Centre for Marine Bio-Innovation, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - J Charlesworth
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - B P Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - A Poljak
- Bioanalytical Mass Spectrometry Facility, The University of New South Wales, Sydney, New South Wales, Australia
| | - M J Raftery
- Bioanalytical Mass Spectrometry Facility, The University of New South Wales, Sydney, New South Wales, Australia
| | - R Cavicchioli
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
40
|
Losensky G, Jung K, Urlaub H, Pfeifer F, Fröls S, Lenz C. Shedding light on biofilm formation ofHalobacterium salinarumR1 by SWATH-LC/MS/MS analysis of planktonic and sessile cells. Proteomics 2016; 17. [DOI: 10.1002/pmic.201600111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/30/2016] [Accepted: 09/05/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Gerald Losensky
- Microbiology and Archaea; Department of Biology; Technische Universität Darmstadt; Darmstadt Germany
| | - Klaus Jung
- Institute for Animal Breeding and Genetics; University of Veterinary Medicine Foundation; Hannover Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group; Max Planck Institute for Biophysical Chemistry; Göttingen Germany
- Institute of Clinical Chemistry; Bioanalytics; University Medical Center Göttingen; Göttingen Germany
| | - Felicitas Pfeifer
- Microbiology and Archaea; Department of Biology; Technische Universität Darmstadt; Darmstadt Germany
| | - Sabrina Fröls
- Microbiology and Archaea; Department of Biology; Technische Universität Darmstadt; Darmstadt Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group; Max Planck Institute for Biophysical Chemistry; Göttingen Germany
- Institute of Clinical Chemistry; Bioanalytics; University Medical Center Göttingen; Göttingen Germany
| |
Collapse
|
41
|
Liao Y, Williams TJ, Walsh JC, Ji M, Poljak A, Curmi PMG, Duggin IG, Cavicchioli R. Developing a genetic manipulation system for the Antarctic archaeon, Halorubrum lacusprofundi: investigating acetamidase gene function. Sci Rep 2016; 6:34639. [PMID: 27708407 PMCID: PMC5052560 DOI: 10.1038/srep34639] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/16/2016] [Indexed: 01/04/2023] Open
Abstract
No systems have been reported for genetic manipulation of cold-adapted Archaea. Halorubrum lacusprofundi is an important member of Deep Lake, Antarctica (~10% of the population), and is amendable to laboratory cultivation. Here we report the development of a shuttle-vector and targeted gene-knockout system for this species. To investigate the function of acetamidase/formamidase genes, a class of genes not experimentally studied in Archaea, the acetamidase gene, amd3, was disrupted. The wild-type grew on acetamide as a sole source of carbon and nitrogen, but the mutant did not. Acetamidase/formamidase genes were found to form three distinct clades within a broad distribution of Archaea and Bacteria. Genes were present within lineages characterized by aerobic growth in low nutrient environments (e.g. haloarchaea, Starkeya) but absent from lineages containing anaerobes or facultative anaerobes (e.g. methanogens, Epsilonproteobacteria) or parasites of animals and plants (e.g. Chlamydiae). While acetamide is not a well characterized natural substrate, the build-up of plastic pollutants in the environment provides a potential source of introduced acetamide. In view of the extent and pattern of distribution of acetamidase/formamidase sequences within Archaea and Bacteria, we speculate that acetamide from plastics may promote the selection of amd/fmd genes in an increasing number of environmental microorganisms.
Collapse
Affiliation(s)
- Y Liao
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - T J Williams
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - J C Walsh
- School of Physics, The University of New South Wales, Sydney, New South Wales, 2052, Australia.,The ithree institute, University of Technology Sydney, Broadway, New South Wales, 2007, Australia
| | - M Ji
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - A Poljak
- Bioanalytical Mass Spectrometry Facility, The University of New South Wales, Sydney, New South Wales, Australia
| | - P M G Curmi
- School of Physics, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - I G Duggin
- The ithree institute, University of Technology Sydney, Broadway, New South Wales, 2007, Australia
| | - R Cavicchioli
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
42
|
Roger Anderson O. Marine and estuarine natural microbial biofilms: ecological and biogeochemical dimensions. AIMS Microbiol 2016. [DOI: 10.3934/microbiol.2016.3.304] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
43
|
Casaburi G, Duscher AA, Reid RP, Foster JS. Characterization of the stromatolite microbiome from Little Darby Island, The Bahamas using predictive and whole shotgun metagenomic analysis. Environ Microbiol 2015; 18:1452-69. [PMID: 26471001 DOI: 10.1111/1462-2920.13094] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/13/2015] [Accepted: 10/13/2015] [Indexed: 02/01/2023]
Abstract
Modern stromatolites represent ideal ecosystems to understand the biological processes required for the precipitation of carbonate due to their long evolutionary history and occurrence in a wide range of habitats. However, most of the prior molecular work on stromatolites has focused on understanding the taxonomic complexity and not fully elucidating the functional capabilities of these systems. Here, we begin to characterize the microbiome associated with stromatolites of Little Darby Island, The Bahamas using predictive metagenomics of the 16S rRNA gene coupled with direct whole shotgun sequencing. The metagenomic analysis of the Little Darby stromatolites revealed many shared taxa and core pathways associated with biologically induced carbonate precipitation, suggesting functional convergence within Bahamian stromatolites. A comparison of the Little Darby stromatolites with other lithifying microbial ecosystems also revealed that although factors, such as geographic location and salinity, do drive some differences within the population, there are extensive similarities within the microbial populations. These results suggest that for stromatolite formation, 'who' is in the community is not as critical as metabolic activities and environmental interactions. Together, these analyses help improve our understanding of the similarities among lithifying ecosystems and provide an important first step in characterizing the shared microbiome of modern stromatolites.
Collapse
Affiliation(s)
- Giorgio Casaburi
- Department of Microbiology and Cell Science, University of Florida, Space Life Science Lab, Merritt Island, FL, USA
| | - Alexandrea A Duscher
- Department of Microbiology and Cell Science, University of Florida, Space Life Science Lab, Merritt Island, FL, USA
| | - R Pamela Reid
- Rosenstiel School of Marine Sciences, University of Miami, Miami, FL, USA
| | - Jamie S Foster
- Department of Microbiology and Cell Science, University of Florida, Space Life Science Lab, Merritt Island, FL, USA
| |
Collapse
|
44
|
Torti A, Lever MA, Jørgensen BB. Origin, dynamics, and implications of extracellular DNA pools in marine sediments. Mar Genomics 2015; 24 Pt 3:185-96. [DOI: 10.1016/j.margen.2015.08.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 08/29/2015] [Indexed: 12/17/2022]
|
45
|
Production of halophilic proteins using Haloferax volcanii H1895 in a stirred-tank bioreactor. Appl Microbiol Biotechnol 2015; 100:1183-1195. [PMID: 26428236 DOI: 10.1007/s00253-015-7007-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/02/2015] [Accepted: 09/12/2015] [Indexed: 10/23/2022]
Abstract
The success of biotechnological processes is based on the availability of efficient and highly specific biocatalysts, which can satisfy industrial demands. Extreme and remote environments like the deep brine pools of the Red Sea represent highly interesting habitats for the discovery of novel halophilic and thermophilic enzymes. Haloferax volcanii constitutes a suitable expression system for halophilic enzymes obtained from such brine pools. We developed a batch process for the cultivation of H. volcanii H1895 in controlled stirred-tank bioreactors utilising knockouts of components of the flagella assembly system. The standard medium Hv-YPC was supplemented to reach a higher cell density. Without protein expression, cell dry weight reaches 10 g L(-1). Two halophilic alcohol dehydrogenases were expressed under the control of the tryptophanase promoter p.tna with 16.8 and 3.2 mg gCDW (-1), respectively, at a maximum cell dry weight of 6.5 g L(-1). Protein expression was induced by the addition of L-tryptophan. Investigation of various expression strategies leads to an optimised two-step induction protocol introducing 6 mM L-tryptophan at an OD650 of 0.4 followed by incubation for 16 h and a second induction step with 3 mM L-tryptophan followed by a final incubation time of 4 h. Compared with the uncontrolled shaker-flask cultivations used until date, dry cell mass concentrations were improved by a factor of more than 5 and cell-specific enzyme activities showed an up to 28-fold increased yield of the heterologous proteins.
Collapse
|
46
|
Solid-state fermentation as a potential technique for esterase/lipase production by halophilic archaea. Extremophiles 2015; 19:1121-32. [PMID: 26369647 DOI: 10.1007/s00792-015-0784-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 08/30/2015] [Indexed: 10/23/2022]
Abstract
Halophilic archaea are extremophiles, adapted to high-salt environments, showing a big biotechnological potential as enzyme, lipids and pigments producers. Four inert supports (perlite, vermiculite, polyurethane foam and glass fiber) were employed for solid-state fermentation (SSF) of the halophilic archaeon Natronococcus sp. TC6 to investigate biomass and esterase production. A very low esterase activity and high water activity were observed when perlite, vermiculite and polyurethane were used as supports. When glass fiber was employed, an important moisture loss was observed (8.6%). Moreover, moisture retention was improved by mixing polyurethane and glass fiber, resulting in maximal biomass and esterase production. Three halophilic archaea: Natronococcus sp. TC6, Halobacterium sp. NRC-1 and Haloarcula marismortui were cultured by submerged fermentation (SmF) and by SSF; an improvement of 1.3- to 6.2-fold was observed in the biomass and esterase production when SSF was used. Growth was not homogeneous in the mixture, but was predominant in the glass fiber thus was probably because the glass fiber provides a holder to the cells, while the polyurethane acts as an impregnation medium reservoir. To the best of our knowledge, this work is the first report on haloarchaea cultivation by SSF aiming biomass and esterase/lipase activity production.
Collapse
|
47
|
Jachlewski S, Jachlewski WD, Linne U, Bräsen C, Wingender J, Siebers B. Isolation of Extracellular Polymeric Substances from Biofilms of the Thermoacidophilic Archaeon Sulfolobus acidocaldarius. Front Bioeng Biotechnol 2015; 3:123. [PMID: 26380258 PMCID: PMC4550784 DOI: 10.3389/fbioe.2015.00123] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 08/10/2015] [Indexed: 11/13/2022] Open
Abstract
Extracellular polymeric substances (EPS) are the major structural and functional components of microbial biofilms. The aim of this study was to establish a method for EPS isolation from biofilms of the thermoacidophilic archaeon, Sulfolobus acidocaldarius, as a basis for EPS analysis. Biofilms of S. acidocaldarius were cultivated on the surface of gellan gum-solidified Brock medium at 78°C for 4 days. Five EPS extraction methods were compared, including shaking of biofilm suspensions in phosphate buffer, cation-exchange resin (CER) extraction, and stirring with addition of EDTA, crown ether, or NaOH. With respect to EPS yield, impact on cell viability, and compatibility with subsequent biochemical analysis, the CER extraction method was found to be the best suited isolation procedure resulting in the detection of carbohydrates and proteins as the major constituents and DNA as a minor component of the EPS. Culturability of CER-treated cells was not impaired. Analysis of the extracellular proteome using two-dimensional gel electrophoresis resulted in the detection of several hundreds of protein spots, mainly with molecular masses of 25–116 kDa and pI values of 5–8. Identification of proteins suggested a cytoplasmic origin for many of these proteins, possibly released via membrane vesicles or biofilm-inherent cell lysis during biofilm maturation. Functional analysis of EPS proteins, using fluorogenic substrates as well as zymography, demonstrated the activity of diverse enzyme classes, such as proteases, lipases, esterases, phosphatases, and glucosidases. In conclusion, the CER extraction method, as previously applied to bacterial biofilms, also represents a suitable method for isolation of water soluble EPS from the archaeal biofilms of S. acidocaldarius, allowing the investigation of composition and function of EPS components in these types of biofilms.
Collapse
Affiliation(s)
- Silke Jachlewski
- Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Centre for Water and Environmental Research (CWE), University Duisburg-Essen , Essen , Germany
| | - Witold D Jachlewski
- Aquatic Microbiology, Biofilm Centre, Centre for Water and Environmental Research (CWE), University Duisburg-Essen , Essen , Germany
| | - Uwe Linne
- Core Facility for Mass Spectrometry and Elemental Analysis, Department of Chemistry and SYNMIKRO, Philipps-University of Marburg , Marburg , Germany
| | - Christopher Bräsen
- Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Centre for Water and Environmental Research (CWE), University Duisburg-Essen , Essen , Germany
| | - Jost Wingender
- Aquatic Microbiology, Biofilm Centre, Centre for Water and Environmental Research (CWE), University Duisburg-Essen , Essen , Germany
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Centre for Water and Environmental Research (CWE), University Duisburg-Essen , Essen , Germany
| |
Collapse
|
48
|
Metagenomic study of red biofilms from Diamante Lake reveals ancient arsenic bioenergetics in haloarchaea. ISME JOURNAL 2015; 10:299-309. [PMID: 26140530 DOI: 10.1038/ismej.2015.109] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/14/2015] [Accepted: 05/20/2015] [Indexed: 11/08/2022]
Abstract
Arsenic metabolism is proposed to be an ancient mechanism in microbial life. Different bacteria and archaea use detoxification processes to grow under high arsenic concentration. Some of them are also able to use arsenic as a bioenergetic substrate in either anaerobic arsenate respiration or chemolithotrophic growth on arsenite. However, among the archaea, bioenergetic arsenic metabolism has only been found in the Crenarchaeota phylum. Here we report the discovery of haloarchaea (Euryarchaeota phylum) biofilms forming under the extreme environmental conditions such as high salinity, pH and arsenic concentration at 4589 m above sea level inside a volcano crater in Diamante Lake, Argentina. Metagenomic analyses revealed a surprisingly high abundance of genes used for arsenite oxidation (aioBA) and respiratory arsenate reduction (arrCBA) suggesting that these haloarchaea use arsenic compounds as bioenergetics substrates. We showed that several haloarchaea species, not only from this study, have all genes required for these bioenergetic processes. The phylogenetic analysis of aioA showed that haloarchaea sequences cluster in a novel and monophyletic group, suggesting that the origin of arsenic metabolism in haloarchaea is ancient. Our results also suggest that arsenite chemolithotrophy likely emerged within the archaeal lineage. Our results give a broad new perspective on the haloarchaea metabolism and shed light on the evolutionary history of arsenic bioenergetics.
Collapse
|
49
|
Tschitschko B, Williams TJ, Allen MA, Páez-Espino D, Kyrpides N, Zhong L, Raftery MJ, Cavicchioli R. Antarctic archaea-virus interactions: metaproteome-led analysis of invasion, evasion and adaptation. ISME JOURNAL 2015; 9:2094-107. [PMID: 26125682 DOI: 10.1038/ismej.2015.110] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/15/2015] [Accepted: 05/19/2015] [Indexed: 01/21/2023]
Abstract
Despite knowledge that viruses are abundant in natural ecosystems, there is limited understanding of which viruses infect which hosts, and how both hosts and viruses respond to those interactions-interactions that ultimately shape community structure and dynamics. In Deep Lake, Antarctica, intergenera gene exchange occurs rampantly within the low complexity, haloarchaea-dominated community, strongly balanced by distinctions in niche adaptation which maintain sympatric speciation. By performing metaproteomics for the first time on haloarchaea, genomic variation of S-layer, archaella and other cell surface proteins was linked to mechanisms of infection evasion. CRISPR defense systems were found to be active, with haloarchaea responding to at least eight distinct types of viruses, including those infecting between genera. The role of BREX systems in defending against viruses was also examined. Although evasion and defense were evident, both hosts and viruses also may benefit from viruses carrying and expressing host genes, thereby potentially enhancing genetic variation and phenotypic differences within populations. The data point to a complex inter-play leading to a dynamic optimization of host-virus interactions. This comprehensive overview was achieved only through the integration of results from metaproteomics, genomics and metagenomics.
Collapse
Affiliation(s)
- Bernhard Tschitschko
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Michelle A Allen
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | | | - Nikos Kyrpides
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, The University of New South Wales, Sydney, New South Wales, Australia
| | - Mark J Raftery
- Bioanalytical Mass Spectrometry Facility, The University of New South Wales, Sydney, New South Wales, Australia
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
50
|
Chimileski S, Papke RT. Getting a hold on archaeal type IV pili: an expanding repertoire of cellular appendages implicates complex regulation and diverse functions. Front Microbiol 2015; 6:362. [PMID: 25999922 PMCID: PMC4419858 DOI: 10.3389/fmicb.2015.00362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/10/2015] [Indexed: 12/11/2022] Open
Affiliation(s)
- Scott Chimileski
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut Storrs, CT, USA
| |
Collapse
|