1
|
Abstract
Species of Chlamydia are the etiologic agent of endemic blinding trachoma, the leading cause of bacterial sexually transmitted diseases, significant respiratory pathogens, and a zoonotic threat. Their dependence on an intracellular growth niche and their peculiar developmental cycle are major challenges to elucidating their biology and virulence traits. The last decade has seen tremendous advances in our ability to perform a molecular genetic analysis of Chlamydia species. Major achievements include the generation of large collections of mutant strains, now available for forward- and reverse-genetic applications, and the introduction of a system for plasmid-based transformation enabling complementation of mutations; expression of foreign, modified, or reporter genes; and even targeted gene disruptions. This review summarizes the current status of the molecular genetic toolbox for Chlamydia species and highlights new insights into their biology and new challenges in the nascent field of Chlamydia genetics.
Collapse
Affiliation(s)
- Barbara S Sixt
- Department for Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710; .,Centre de Recherche des Cordeliers, INSERM U1138, Paris 75006, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France.,Université Pierre et Marie Curie, Paris 75005, France
| | - Raphael H Valdivia
- Department for Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710;
| |
Collapse
|
2
|
Damiani MT, Gambarte Tudela J, Capmany A. Targeting eukaryotic Rab proteins: a smart strategy for chlamydial survival and replication. Cell Microbiol 2014; 16:1329-38. [PMID: 24948448 DOI: 10.1111/cmi.12325] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 02/04/2023]
Abstract
Chlamydia, an obligate intracellular bacterium which passes its entire lifecycle within a membrane-bound vacuole called the inclusion, has evolved a variety of unique strategies to establish an advantageous intracellular niche for survival. This review highlights the mechanisms by which Chlamydia subverts vesicular transport in host cells, particularly by hijacking the master controllers of eukaryotic trafficking, the Rab proteins. A subset of Rabs and Rab interacting proteins that control the recycling pathway or the biosynthetic route are selectively recruited to the chlamydial inclusion membrane. By interfering with Rab-controlled transport steps, this intracellular pathogen not only prevents its own degradation in the phagocytic pathway, but also creates a favourable intracellular environment for growth and replication. Chlamydia, a highly adapted and successful intracellular pathogen, has several redundant strategies to re-direct vesicles emerging from biosynthetic compartments that carry host molecules essential for bacterial development. Although current knowledge is limited, the latest findings have shed light on the role of Rab proteins in the course of chlamydial infections and could open novel opportunities for anti-chlamydial therapy.
Collapse
Affiliation(s)
- María Teresa Damiani
- Laboratory of Phagocytosis and Intracellular Trafficking, IHEM-CONICET, School of Medicine, University of Cuyo, Mendoza, Argentina
| | | | | |
Collapse
|
3
|
Hanski L, Vuorela PM. Recent advances in technologies for developing drugs againstChlamydia pneumoniae. Expert Opin Drug Discov 2014; 9:791-802. [DOI: 10.1517/17460441.2014.915309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Lei L, Qi M, Budrys N, Schenken R, Zhong G. Localization of Chlamydia trachomatis hypothetical protein CT311 in host cell cytoplasm. Microb Pathog 2011; 51:101-9. [PMID: 21605656 DOI: 10.1016/j.micpath.2011.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 05/02/2011] [Accepted: 05/04/2011] [Indexed: 11/28/2022]
Abstract
The chlamydia-specific hypothetical protein CT311 was detected both inside and outside of the chlamydial inclusions in Chlamydia trachomatis-infected cells. The extra-inclusion CT311 molecules were distributed in the host cell cytoplasm with a pattern similar to that of CPAF, a known Chlamydia-secreted protease. The detection of CT311 was specific since the anti-CT311 antibody labeling was only removed by absorption with CT311 but not CPAF fusion proteins. In addition, both anti-CT311 and anti-CPAF antibodies only detected their corresponding endogenous proteins without cross-reacting with each other or any other antigens in the whole cell lysates of C. trachomatis-infected cells. Although both CT311 and CPAF proteins were first detected 12 h after infection, localization of CT311 into host cell cytosol was delayed until 24 h while CPAF secretion into host cell cytosol was already obvious by 18 h after infection. The host cell cytosolic localization of CT311 was further confirmed in human primary cells. CT311 was predicted to contain an N-terminal secretion signal sequence and the CT311 signal sequence directed secretion of PhoA into bacterial periplasmic region in a heterologous assay system, suggesting that a sec-dependent pathway may play a role in the secretion of CT311 into host cell cytosol. This hypothesis is further supported by the observation that secretion of CT311 in Chlamydia-infected cells was blocked by a C16 compound known to inhibit signal peptidase I. These findings have provided important molecular information for further understanding the C. trachomatis pathogenic mechanisms.
Collapse
Affiliation(s)
- Lei Lei
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
5
|
The chlamydial periplasmic stress response serine protease cHtrA is secreted into host cell cytosol. BMC Microbiol 2011; 11:87. [PMID: 21527029 PMCID: PMC3107777 DOI: 10.1186/1471-2180-11-87] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 04/28/2011] [Indexed: 01/05/2023] Open
Abstract
Background The periplasmic High Temperature Requirement protein A (HtrA) plays important roles in bacterial protein folding and stress responses. However, the role of chlamydial HtrA (cHtrA) in chlamydial pathogenesis is not clear. Results The cHtrA was detected both inside and outside the chlamydial inclusions. The detection was specific since both polyclonal and monoclonal anti-cHtrA antibodies revealed similar intracellular labeling patterns that were only removed by absorption with cHtrA but not control fusion proteins. In a Western blot assay, the anti-cHtrA antibodies detected the endogenous cHtrA in Chlamydia-infected cells without cross-reacting with any other chlamydial or host cell antigens. Fractionation of the infected cells revealed cHtrA in the host cell cytosol fraction. The periplasmic cHtrA protein appeared to be actively secreted into host cell cytosol since no other chlamydial periplasmic proteins were detected in the host cell cytoplasm. Most chlamydial species secreted cHtrA into host cell cytosol and the secretion was not inhibitable by a type III secretion inhibitor. Conclusion Since it is hypothesized that chlamydial organisms possess a proteolysis strategy to manipulate host cell signaling pathways, secretion of the serine protease cHtrA into host cell cytosol suggests that the periplasmic cHtrA may also play an important role in chlamydial interactions with host cells.
Collapse
|
6
|
Chlamydia trachomatis secretion of an immunodominant hypothetical protein (CT795) into host cell cytoplasm. J Bacteriol 2011; 193:2498-509. [PMID: 21441519 DOI: 10.1128/jb.01301-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Chlamydia-specific hypothetical protein CT795 was dominantly recognized by human antisera produced during C. trachomatis infection but not by animal antisera raised against dead chlamydia organisms. The immundominant region recognized by the human antibodies was mapped to the N-terminal fragment T22-S69. The endogenous CT795 was detected in the cytoplasm of host cells during C. trachomatis infection and was highly enriched in the host cytosolic fraction but absent in the purified chlamydia organisms, suggesting that CT795 is synthesized and secreted into host cell cytoplasm without incorporation into the organisms. All C. trachomatis serovars tested secreted CT795. A predicted signal peptide of CT795 directed the mature PhoA to cross Escherichia coli inner membranes. The secretion of CT795 in Chlamydia-infected cells was inhibited by a C(16) compound targeting signal peptidase I, but not by a C(1) compound known to block the type III secretion pathway. These results suggest that CT795, like CPAF (a Chlamydia-secreted virulence factor), is secreted into the host cell cytoplasm via a sec-dependent mechanism and not by a type III secretion pathway. The above characterizations of CT795 have provided important information for further understanding the potential roles of CT795 in C. trachomatis pathogenesis.
Collapse
|
7
|
Hoestgaard-Jensen K, Christiansen G, Honoré B, Birkelund S. Influence of the Chlamydia pneumoniae AR39 bacteriophage ϕCPAR39 on chlamydial inclusion morphology. ACTA ACUST UNITED AC 2011; 62:148-56. [PMID: 21348900 DOI: 10.1111/j.1574-695x.2011.00795.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human respiratory tract pathogen Chlamydia pneumoniae AR39 is naturally infected by the bacteriophage ϕCPAR39. The phage genome encodes six ORFs, [ORF8, ORF4, ORF5, and viral protein (VP) 1, VP2 and VP3]. To study the growth of the phage, antibodies were generated to VP1 and used to investigate the ϕCPAR39 infection. Using immunofluorescence laser confocal microscopy and two-dimensional gel electrophoresis, we investigated the ϕCPAR39 infection of C. pneumoniae AR39. It was observed that ϕCPAR39 infection differentially suppressed the C. pneumoniae protein synthesis as the polymorphic membrane protein 10 and the secreted chlamydial protein Cpn0796 was hardly expressed while the secreted chlamydial protein Cpaf was expressed, but not secreted. The inclusion membrane protein, IncA, was demonstrated to surround the phage-infected abnormal reticulate bodies (RB) as well as being located in the inclusion membrane. As IncA is secreted by the type 3 secretion (T3S) system, it is likely that the T3S is disrupted in the phage-infected chlamydiae such that it accumulates around the infected RB.
Collapse
|
8
|
Zhong G. Chlamydia trachomatis secretion of proteases for manipulating host signaling pathways. Front Microbiol 2011; 2:14. [PMID: 21687409 PMCID: PMC3109274 DOI: 10.3389/fmicb.2011.00014] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 01/19/2011] [Indexed: 12/23/2022] Open
Abstract
The human pathogen Chlamydia trachomatis secretes numerous effectors into host cells in order to successfully establish and complete the intracellular growth cycle. Three C. trachomatis proteases [chlamydial proteasome/protease-like activity factor (CPAF), tail-specific protease (Tsp), and chlamydial high temperature requirement protein A (cHtrA)] have been localized in the cytosol of the infected cells either by direct immunofluorescence visualization or functional implication. Both CPAF and Tsp have been found to play important roles in C. trachomatis interactions with host cells although the cellular targets of cHtrA have not been identified. All three proteases contain a putative N-terminal signal sequence, suggesting that they may be secreted via a sec-dependent pathway. However, these proteases are also found in chlamydial organism-free vesicles in the lumen of the chlamydial inclusions before they are secreted into host cell cytosol, suggesting that these proteases may first be translocated into the periplasmic region via a sec-dependent pathway and then exported outside of the organisms via an outer membrane vesicles (OMVs) budding mechanism. The vesiculized proteases in the inclusion lumen can finally enter host cell cytosol via vesicle fusing with or passing through the inclusion membrane. Continuing identification and characterization of the C. trachomatis-secreted proteins (CtSPs) will not only promote our understanding of C. trachomatis pathogenic mechanisms but also allow us to gain novel insights into the OMV pathway, a well-known mechanism used by bacteria to export virulence factors although its mechanism remains elusive.
Collapse
Affiliation(s)
- Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| |
Collapse
|
9
|
Gong S, Lei L, Chang X, Belland R, Zhong G. Chlamydia trachomatis secretion of hypothetical protein CT622 into host cell cytoplasm via a secretion pathway that can be inhibited by the type III secretion system inhibitor compound 1. MICROBIOLOGY-SGM 2011; 157:1134-1144. [PMID: 21233161 DOI: 10.1099/mic.0.047746-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Using antibodies raised with C. trachomatis fusion proteins, we localized a hypothetical protein encoded by the ORF ct622 in the cytoplasm of C. trachomatis-infected mammalian cells. The detection was specific since the antibody labelling of CT622 protein was removed by preabsorption with CT622 but not other fusion proteins. We similarly confirmed that CT621, a known secretion protein encoded by a hypothetical ORF downstream of ct622, was secreted into host cell cytosol. Proteins CT622 and CT621 displayed a similar secretion pattern, with both intra-inclusion and host cell cytosol localization, that was distinct from that of CPAF (chlamydial protease/proteasome-like activity factor). However, the expression and secretion kinetics differed significantly between CT622 and CT621: CT622 mRNA was detected at 2 h, protein at 6 h and secretion of protein into host cell cytoplasm at 36 h post-infection, while CT621 mRNA was detected at 8 h, protein at 16 h and secretion at 24 h. The secretion of both CT622 and CT621 was blocked by N'-(3,5-dibromo-2-hydroxybenzylidene)-4-nitrobenzohydrazide (compound 1), an inhibitor known to target the type III secretion system of bacteria. These results suggest that CT621 and CT622 may fulfil different functions during chlamydial intracellular growth. Further characterization of these proteins may generate important information for understanding chlamydial pathogenesis.
Collapse
Affiliation(s)
- Siqi Gong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Lei Lei
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Xiaotong Chang
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Robert Belland
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
10
|
Chen D, Lei L, Lu C, Flores R, DeLisa MP, Roberts TC, Romesberg FE, Zhong G. Secretion of the chlamydial virulence factor CPAF requires the Sec-dependent pathway. MICROBIOLOGY-SGM 2010; 156:3031-3040. [PMID: 20522495 PMCID: PMC3068695 DOI: 10.1099/mic.0.040527-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The chlamydial protease/proteasome-like activity factor (CPAF) is secreted into the host cytosol to degrade various host factors that benefit chlamydial intracellular survival. Although the full-length CPAF is predicted to contain a putative signal peptide at its N terminus, the secretion pathway of CPAF is still unknown. Here, we have provided experimental evidence that the N-terminal sequence covering the M1–G31 region was cleaved from CPAF during chlamydial infection. The CPAF N-terminal sequence, when expressed in a phoA gene fusion construct, was able to direct the export of the mature PhoA protein across the inner membrane of wild-type Escherichia coli. However, E. coli mutants deficient in SecB failed to support the CPAF signal-peptide-directed secretion of PhoA. Since native PhoA secretion was known to be independent of SecB, this SecB dependence must be rendered by the CPAF leader peptide. Furthermore, lack of SecY function also blocked the CPAF signal-peptide-directed secretion of PhoA. Most importantly, CPAF secretion into the host cell cytosol during chlamydial infection was selectively inhibited by an inhibitor specifically targeting type I signal peptidase but not by a type III secretion-system-specific inhibitor. Together, these observations have demonstrated that the chlamydial virulence factor CPAF relies on Sec-dependent transport for crossing the chlamydial inner membrane, which has provided essential information for further delineating the pathways of CPAF action and understanding chlamydial pathogenic mechanisms.
Collapse
Affiliation(s)
- Ding Chen
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Lei Lei
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Chunxue Lu
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Rhonda Flores
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Matthew P DeLisa
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Tucker C Roberts
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
11
|
Hritonenko V, Kostakioti M, Stathopoulos C. Quaternary structure of a SPATE autotransporter protein. Mol Membr Biol 2009; 23:466-74. [PMID: 17127619 DOI: 10.1080/09687860600821316] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The temperature-sensitive hemagglutinin (Tsh) is a representative of the growing subfamily of secreted bacterial virulence factors, known as serine protease autotransporters of the Enterobacteriaceae (SPATEs). Expressed by avian and human pathogenic strains of Escherichia coli Tsh acts as a serine protease and an adhesin to erythrocytes, hemoglobin, and extracellular matrix proteins. Mature Tsh is comprised of a 106-kDa secreted domain (Tshs) and a 33-kDa outer membrane beta-domain (Tshbeta). Based on the size of beta-domains and functional properties of their passenger domains, all SPATEs are considered to be conventional autotransporters. However, it is unsettled if the conventional autotransporters exist as monomers, oligomers, or multimers (e.g., hexamers). To determine the quaternary structure of Tsh in vitro, we purified Tshbeta from the outer membranes and showed that it is natively folded because it is heat modifiable and resistant to protease digestion. Blue-native polyacrylamide gel electrophoresis of Tshbeta indicated that Tshbeta exists as a monomer or a dimer. The cross-linking analysis demonstrated that purified Tshbeta exists as a monomer. The size-exclusion chromatography and cross-linking analyses of purified Tshs also showed that the passenger domain of Tsh is a monomer. Overall, our data indicated that Tsh is a monomeric protein in vitro and support the concept that the SPATE autotransporters exist as monomers rather than as multimers. Implications of our findings on the mechanism of autotransporter secretion across the outer membrane are discussed.
Collapse
Affiliation(s)
- Victoria Hritonenko
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | | | | |
Collapse
|
12
|
Hobolt-Pedersen AS, Christiansen G, Timmerman E, Gevaert K, Birkelund S. Identification of Chlamydia trachomatis CT621, a protein delivered through the type III secretion system to the host cell cytoplasm and nucleus. ACTA ACUST UNITED AC 2009; 57:46-58. [PMID: 19682078 PMCID: PMC2784215 DOI: 10.1111/j.1574-695x.2009.00581.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chlamydiae are obligate intracellular bacteria, developing inside host cells within chlamydial inclusions. From these inclusions, the chlamydiae secrete proteins into the host cell cytoplasm. A pathway through which secreted proteins can be delivered is the type III secretion system (T3SS). The T3SS is common to several gram-negative bacteria and the secreted proteins serve a variety of functions often related to the modulation of host signalling. To identify new potentially secreted proteins, the cytoplasm was extracted from Chlamydia trachomatis L2-infected HeLa cells, and two-dimensional polyacrylamide gel electrophoresis profiles of [35S]-labelled chlamydial proteins from this extract were compared with profiles of chlamydial proteins from the lysate of infected cells. In this way, CT621 was identified. CT621 is a member of a family of proteins containing a domain of unknown function DUF582 that is only found within the genus Chlamydia. Immunofluorescence microscopy and immunoblotting demonstrated that CT621 is secreted late in the chlamydial developmental cycle and that it is the first chlamydial protein found to be localized within both the host cell cytoplasm and the nucleus. To determine whether CT621 is secreted through the T3SS, an inhibitor of this apparatus was added to the infection medium, resulting in retention of the protein inside the chlamydiae. Hence, the so far uncharacterized CT621 is a new type III secretion effector protein.
Collapse
|
13
|
Kiselev AO, Skinner MC, Lampe MF. Analysis of pmpD expression and PmpD post-translational processing during the life cycle of Chlamydia trachomatis serovars A, D, and L2. PLoS One 2009; 4:e5191. [PMID: 19367336 PMCID: PMC2666266 DOI: 10.1371/journal.pone.0005191] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 03/03/2009] [Indexed: 11/26/2022] Open
Abstract
Background The polymorphic membrane protein D (PmpD) in Chlamydia is structurally similar to autotransporter proteins described in other bacteria and may be involved in cellular and humoral protective immunity against Chlamydia. The mechanism of PmpD post-translational processing and the role of its protein products in the pathogenesis of chlamydial infection have not been very well elucidated to date. Methodology/Principal Findings Here we examined the expression and post-translational processing of the protein product of the pmpD gene during the life cycle of C. trachomatis serovars A, D, and L2. Each of these three serovars targets different human organs and tissues and encodes a different pmpD gene nucleotide sequence. Our quantitative real-time reverse transcription polymerase chain reaction results demonstrate that the pmpD gene is up-regulated at 12–24 hours after infection regardless of the Chlamydia serovar. This up-regulation is coincidental with the period of exponential growth and replication of reticulate bodies (RB) of Chlamydia and indicates a probable similarity in function of pmpD in serovars A, D, and L2 of Chlamydia. Using mass spectrometry analysis, we identified the protein products of post-translational processing of PmpD of C. trachomatis serovar L2 and propose a double pathway model for PmpD processing, with one cleavage site between the passenger and autotransporter domains and the other site in the middle of the passenger domain. Notably, when Chlamydia infected culture cells were subjected to low (28°C) temperature, PmpD post-translational processing and secretion was found to be uninhibited in the resulting persistent infection. In addition, confocal microscopy of cells infected with Chlamydia confirms our earlier hypothesis that PmpD is secreted outside Chlamydia and its secretion increases with growth of the chlamydial inclusion. Conclusion/Significance The results of this current study involving multiple Chlamydia serovars support the general consensus that the pmpD gene is maximally expressed at mid infection and provide new information about PmpD as an autotransporter protein which is post-translationally processed and secreted outside Chlamydia during normal and low temperature induced persistent chlamydial infection.
Collapse
Affiliation(s)
- Andrey O. Kiselev
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Megan C. Skinner
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Mary F. Lampe
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
14
|
Chlamydial effector proteins localized to the host cell cytoplasmic compartment. Infect Immun 2008; 76:4842-50. [PMID: 18710866 DOI: 10.1128/iai.00715-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Disease-causing microbes utilize various strategies to modify their environment in order to create a favorable location for growth and survival. Gram-negative bacterial pathogens often use specialized secretion systems to translocate effector proteins directly into the cytosol of the eukaryotic cells they infect. These bacterial proteins are responsible for modulating eukaryotic cell functions. Identification of the bacterial effectors has been a critical step toward understanding the molecular basis for the pathogenesis of the bacteria that use them. Chlamydiae are obligate intracellular bacterial pathogens that have a type III secretion system believed to translocate virulence effector proteins into the cytosol of their host cells. Selective permeabilization of the eukaryotic cell membrane was used in conjunction with metabolic labeling of bacterial proteins to identify chlamydial proteins that localize within the cytosol of infected cells. More than 20 Chlamydia trachomatis and C. pneumoniae proteins were detected within the cytoplasmic compartment of infected cells. While a number of cytosolic proteins were shared, others were unique to each species, suggesting that variation among cytosolic chlamydial proteins contributes to the differences in the pathogenesis of the chlamydial species. The spectrum of chlamydial proteins exported differed concomitant with the progress of the developmental cycle. These data confirm that a dynamic relationship exists between Chlamydia and its host and that translocation of bacterial proteins into the cytosol is developmentally dependent.
Collapse
|
15
|
Pmp-like proteins Pls1 and Pls2 are secreted into the lumen of the Chlamydia trachomatis inclusion. Infect Immun 2008; 76:3940-50. [PMID: 18591235 DOI: 10.1128/iai.00632-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis secretes effector proteins across the membrane of the pathogen-containing vacuole (inclusion) to modulate host cellular functions. In an immunological screen for secreted chlamydial proteins, we identified CT049 and CT050 as potential inclusion membrane-associated proteins. These acidic, nonglobular proteins are paralogously related to the passenger domain of the polymorphic membrane protein PmpC and, like other Pmp proteins, are highly polymorphic among C. trachomatis ocular and urogenital strains. We generated antibodies to these Pmp-like secreted (Pls) proteins and determined by immunofluorescence microscopy that Pls1 (CT049) and Pls2 (CT050) localized to globular structures within the inclusion lumen and at the inclusion membrane. Fractionation of membranes and cytoplasmic components from infected cells by differential and density gradient centrifugation further indicated that Pls1 and Pls2 associated with membranes distinct from the bulk of bacterial and inclusion membranes. The accumulation of Pls1 and, to a lesser extent, Pls2 in the inclusion lumen was insensitive to the type III secretion inhibitor C1, suggesting that this translocation system is not essential for Pls protein secretion. In contrast, Pls secretion and stability were sensitive to low levels of beta-lactam antibiotics, suggesting that a functional cell wall is required for Pls secretion from the bacterial cell. Finally, we tested the requirement for these proteins in Chlamydia infection by microinjecting anti-Pls1 and anti-Pls2 antibodies into infected cells. Coinjection of anti-Pls1 and -Pls2 antibodies partially inhibited expansion of the inclusion. Because Pls proteins lack classical sec-dependent secretion signals, we propose that Pls proteins are secreted into the inclusion lumen by a novel mechanism to regulate events important for chlamydial replication and inclusion expansion.
Collapse
|
16
|
The chlamydial plasmid-encoded protein pgp3 is secreted into the cytosol of Chlamydia-infected cells. Infect Immun 2008; 76:3415-28. [PMID: 18474640 DOI: 10.1128/iai.01377-07] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The chlamydial cryptic plasmid encodes eight putative open reading frames (ORFs), designated pORF1 to -8. Antibodies raised against these ORF proteins were used to localize the endogenous proteins during chlamydial infection. We found that the pORF5 protein (also known as pgp3) was detected mainly in the cytosol of Chlamydia-infected cells, while the remaining seven proteins were found inside the chlamydial inclusions only. The pgp3 distribution pattern in the host cell cytosol is similar to but not overlapping with that of chlamydial protease/proteasome-like activity factor (CPAF), a chlamydial genome-encoded protein known to be secreted from chlamydial inclusions into the host cell cytosol. The anti-pgp3 labeling was removed by preabsorption with pgp3 but not CPAF fusion proteins and vice versa, demonstrating that pgp3 is a unique secretion protein. This conclusion is further supported by the observation that pgp3 was highly enriched in cytosolic fractions and had a minimal presence in the inclusion-containing nuclear fractions prepared from Chlamydia-infected cells. The pgp3 protein was detected as early as 12 h after infection and was secreted by all chlamydial species that carry the cryptic plasmid, suggesting that there is a selection pressure for maintaining pgp3 secretion during chlamydial infection. Although expression of pgp3 in the host cell cytosol via a transgene did not alter the susceptibility of the transfected cells to the subsequent chlamydial infection, purified pgp3 protein stimulated macrophages to release inflammatory cytokines, suggesting that pgp3 may contribute to chlamydial pathogenesis.
Collapse
|
17
|
Müller N, Sattelmacher F, Lugert R, Gross U. Characterization and intracellular localization of putative Chlamydia pneumoniae effector proteins. Med Microbiol Immunol 2008; 197:387-96. [PMID: 18449565 PMCID: PMC2525848 DOI: 10.1007/s00430-008-0097-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Indexed: 11/27/2022]
Abstract
We here describe four proteins of Chlamydia pneumoniae, which might play a role in host-pathogen interaction. The hypothetical bacterial proteins CPn0708 and CPn0712 were detected in Chlamydia pneumoniae-infected host cells by indirect immunofluorescence tests with polyclonal antisera raised against the respective proteins. While CPn0708 was localized within the inclusion body, CPn0712 was identified in the inclusion membrane and in the surrounding host cell cytosol. CPn0712 colocalizes with actin, indicating its possible interaction with components of the cytoskeleton. Investigations on CPn0809 and CPn1020, two Chlamydia pneumoniae proteins previously described to be secreted into the host cell cytosol, revealed colocalization with calnexin, a marker for the ER. Neither CPn0712, CPn0809 nor CPn1020 were able to inhibit host cell apoptosis. Furthermore, transient expression of CPn0712, CPn0809 and CPn1020 by the host cell itself had no effect on subsequent infection with Chlamydia pneumoniae. However, microarray analysis of CPn0712-expressing host cells revealed six host cell genes which were regulated as in host cells infected with Chlamydia pneumoniae, indicating the principal usefulness of heterologous expression to study the effect of Chlamydia pneumoniae proteins on host cell modulation.
Collapse
Affiliation(s)
- Nicole Müller
- Institute for Medical Microbiology, University of Göttingen, Kreuzbergring 57, 37075, Göttingen, Germany
| | | | | | | |
Collapse
|
18
|
Juul N, Timmerman E, Gevaert K, Christiansen G, Birkelund S. Proteolytic cleavage of the Chlamydia pneumoniae major outer membrane protein in the absence of Pmp10. Proteomics 2008; 7:4477-87. [PMID: 18022938 DOI: 10.1002/pmic.200700447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The genome of the obligate intracellular bacteria Chlamydia pneumoniae contains 21 genes encoding polymorphic membrane proteins (Pmp). While no function has yet been attributed to the Pmps, they may be involved in an antigenic variation of the Chlamydia surface. It has previously been demonstrated that Pmp10 is differentially expressed in the C. pneumoniae CWL029 isolate. To evaluate whether the absence of Pmp10 in the outer membrane causes further changes to the C. pneumoniae protein profile, we subcloned the CWL029 isolate and selected a clone with minimal Pmp10 expression. Subsequently, we compared the proteome of the CWL029 isolate with the proteome of the subcloned strain and identified a specific cleavage of the C-terminal part of the major outer membrane protein (MOMP), which occurred only in the absence of Pmp10. In contrast, when Pmp10 was expressed we predominantly observed full-length MOMP. No other proteins appeared to be regulated according to the presence or absence of Pmp10. These results suggest a close association between MOMP and Pmp10, where Pmp10 may protect the C-terminal part of MOMP from proteolytic cleavage.
Collapse
Affiliation(s)
- Nicolai Juul
- Institute of Medical Microbiology and Immunology, University of Aarhus, Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
19
|
Alvesalo J, Greco D, Leinonen M, Raitila T, Vuorela P, Auvinen P. Microarray Analysis of aChlamydia pneumoniae–Infected Human Epithelial Cell Line by Use of Gene Ontology Hierarchy. J Infect Dis 2008; 197:156-62. [DOI: 10.1086/524142] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
20
|
Juul N, Jensen H, Hvid M, Christiansen G, Birkelund S. Characterization of in vitro chlamydial cultures in low-oxygen atmospheres. J Bacteriol 2007; 189:6723-6. [PMID: 17631631 PMCID: PMC2045176 DOI: 10.1128/jb.00279-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To mimic in vivo conditions during chlamydial infections, Chlamydia trachomatis serovar D and Chlamydia pneumoniae CWL029 were cultured in low-oxygen atmospheres containing 4% O(2), with parallel controls cultured in atmospheric air. Both were enriched with 5% CO(2). The results showed a dramatic increase in the growth of C. pneumoniae but not of C. trachomatis.
Collapse
Affiliation(s)
- Nicolai Juul
- Institute of Medical Microbiology and Immunology, Bartholin Building, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
21
|
Kiselev AO, Stamm WE, Yates JR, Lampe MF. Expression, processing, and localization of PmpD of Chlamydia trachomatis Serovar L2 during the chlamydial developmental cycle. PLoS One 2007; 2:e568. [PMID: 17593967 PMCID: PMC1892801 DOI: 10.1371/journal.pone.0000568] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 06/04/2007] [Indexed: 11/23/2022] Open
Abstract
Background While families of polymorphic membrane protein (pmp) genes have been identified in several Chlamydia species, their function remains mostly unknown. These proteins are of great interest, however, because of their location in the outer membrane and possible role in chlamydial virulence. Methodology/Principal Finding We analyzed the relative transcription of the pmpD gene, a member of the pmp gene family in C. trachomatis serovar L2, and its protein product translation and processing during the chlamydial developmental cycle. By real-time reverse transcription polymerase chain reaction, the pmpD gene was found to be upregulated at 16 to 24 four hours after infection. Using polyclonal antibodies generated against the predicted passenger domain of PmpD, we demonstrated that it is initially localized on the surface of reticulate bodies, followed by its secretion outside Chlamydia starting at 24 hours after infection. In elementary bodies, we found a ≈157 kDa PmpD only inside the cell. Both events, the upregulation of pmpD gene transcription and PmpD protein processing and secretion, are coincidental with the period of replication and differentiation of RBs into EBs. We also demonstrated that, in the presence of penicillin, the cleavage and secretion of the putative passenger domain was suppressed. Conclusion/Significance Our results are in agreement with the general concept that PmpD is an autotransporter protein which is post-translationally processed and secreted in the form of the putative passenger domain outside Chlamydia at mid- to- late point after infection, coinciding with the development of RBs into EBs.
Collapse
Affiliation(s)
- Andrey O. Kiselev
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Walter E. Stamm
- Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - John R. Yates
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Mary F. Lampe
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Division of Allergy & Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
22
|
Luo J, Jia T, Zhong Y, Chen D, Flores R, Zhong G. Localization of the hypothetical protein Cpn0585 in the inclusion membrane of Chlamydia pneumoniae-infected cells. Microb Pathog 2007; 42:111-6. [PMID: 17236746 PMCID: PMC1850435 DOI: 10.1016/j.micpath.2006.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 11/08/2006] [Accepted: 11/30/2006] [Indexed: 10/23/2022]
Abstract
Cpn0585, encoded by a hypothetical open reading frame in Chlamydia pneumoniae genome, was detected in the inclusion membrane during C. pneumoniae infection using both polyclonal and monoclonal antibodies raised with Cpn0585 fusion protein. The anti-Cpn0585 antibodies specifically recognized the endogenous Cpn0585 without cross-reacting with IncA (a known inclusion membrane protein of C. pneumoniae) or other control antigens. A homologue of Cpn0585 in the C. caviae species (encoded by the ORF CCA00156) was also localized in the inclusion membrane of the C. caviae-infected cells. The Cpn0585 protein became detectable 24h while CCA00156 as early as 8h after infection. Once expressed, both proteins remained in the inclusion membrane throughout the rest of infection course.
Collapse
Affiliation(s)
- Jianhua Luo
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Tianjun Jia
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Immunology, Hebei Medical University, Shijiazhuang, Hebei 050017, The People’s Republic of China
| | - Youmin Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Ding Chen
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Rhonda Flores
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
- *Corresponding author: Guangming Zhong, Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, Phone: 210-567-1169, Fax: 210-567-0293,
| |
Collapse
|
23
|
Dong F, Flores R, Chen D, Luo J, Zhong Y, Wu Z, Zhong G. Localization of the hypothetical protein Cpn0797 in the cytoplasm of Chlamydia pneumoniae-infected host cells. Infect Immun 2006; 74:6479-86. [PMID: 17057097 PMCID: PMC1695530 DOI: 10.1128/iai.00855-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using antibodies raised with chlamydial fusion proteins, we have localized a protein encoded by the hypothetical open reading frame Cpn0797 in the cytoplasm of Chlamydia pneumoniae-infected host cells. The anti-Cpn0797 antibodies specifically recognized Cpn0797 protein without cross-reacting with either CPAFcp or Cpn0796, the only two proteins known to be secreted into the host cell cytosol by C. pneumoniae organisms. Thus, Cpn0797 represents the third C. pneumoniae protein secreted into the host cell cytosol experimentally identified so far.
Collapse
Affiliation(s)
- Feng Dong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Luo J, Jia T, Flores R, Chen D, Zhong G. Hypothetical protein Cpn0308 is localized in the Chlamydia pneumoniae inclusion membrane. Infect Immun 2006; 75:497-503. [PMID: 17101661 PMCID: PMC1828390 DOI: 10.1128/iai.00935-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hypothetical protein encoded by Chlamydia pneumoniae open reading frame cpn0308 was detected in inclusion membranes of C. pneumoniae-infected cells using antibodies raised with Cpn0308 fusion proteins. The anti-Cpn0308 antibodies did not cross-react with IncA, a known C. pneumoniae inclusion membrane protein, although the anti-Cpn0308 antibody staining overlapped with the anti-IncA antibody labeling. The labeling of the inclusion membrane by the anti-Cpn0308 antibody was specifically blocked by the Cpn0308 but not IncA fusion proteins. The Cpn0308 antigen was detectable 24 h after infection and remained in the inclusion membrane throughout the infection course.
Collapse
Affiliation(s)
- Jianhua Luo
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
25
|
Herrmann M, Schuhmacher A, Mühldorfer I, Melchers K, Prothmann C, Dammeier S. Identification and characterization of secreted effector proteins of Chlamydophila pneumoniae TW183. Res Microbiol 2006; 157:513-24. [PMID: 16797933 DOI: 10.1016/j.resmic.2005.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 12/20/2005] [Indexed: 11/18/2022]
Abstract
We report the expression of several chlamydial effector proteins in Chlamydophila pneumoniae, as well as their time-dependent secretion into the inclusion membrane. Localization of the respective genes within type III secretion gene clusters as well as bioinformatic analysis suggest that the identified proteins are type III-secreted effector proteins. Immunocytochemistry with antisera raised against CpMip (C. pneumoniae macrophage infectivity potentiator, Cpn0661), Pkn5 (Cpn0703), Cpn0709, Cpn0712 and Cpn0827 showed secretion of the respective proteins into the inclusion membrane at 20 h postinfection (hpi). CpMip was detected within the inclusion membrane from 20 to 72 hpi, whereas Cpn0324 (CopN) was located in this compartment at 72 hpi only. This was confirmed by co-localization of the respective proteins with IncA, an inclusion membrane marker protein. These data illustrate the fact that different effectors are being expressed and secreted during different time intervals of the infection cycle. Proteins Cpn0706 and Cpn0808 were not secreted by C. pneumoniae. The immunophilin FK506, known to inhibit the activity of Legionella, C. trachomatis and C. psittaci Mip proteins, was shown to interfere with chlamydial infection. Here we report the putatively type III-dependent secretion of CpMip into the inclusion membrane as well as the effect of its inhibition on C. pneumoniae infection of HEp-2 cells.
Collapse
Affiliation(s)
- Michael Herrmann
- Department of Gastroenterology (RDR/B3), ALTANA Pharma AG, Byk-Gulden Strasse 2, 78467 Konstanz, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Carlson JH, Porcella SF, McClarty G, Caldwell HD. Comparative genomic analysis of Chlamydia trachomatis oculotropic and genitotropic strains. Infect Immun 2005; 73:6407-18. [PMID: 16177312 PMCID: PMC1230933 DOI: 10.1128/iai.73.10.6407-6418.2005] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydia trachomatis infection is an important cause of preventable blindness and sexually transmitted disease (STD) in humans. C. trachomatis exists as multiple serovariants that exhibit distinct organotropism for the eye or urogenital tract. We previously reported tissue-tropic correlations with the presence or absence of a functional tryptophan synthase and a putative GTPase-inactivating domain of the chlamydial toxin gene. This suggested that these genes may be the primary factors responsible for chlamydial disease organotropism. To test this hypothesis, the genome of an oculotropic trachoma isolate (A/HAR-13) was sequenced and compared to the genome of a genitotropic (D/UW-3) isolate. Remarkably, the genomes share 99.6% identity, supporting the conclusion that a functional tryptophan synthase enzyme and toxin might be the principal virulence factors underlying disease organotropism. Tarp (translocated actin-recruiting phosphoprotein) was identified to have variable numbers of repeat units within the N and C portions of the protein. A correlation exists between lymphogranuloma venereum serovars and the number of N-terminal repeats. Single-nucleotide polymorphism (SNP) analysis between the two genomes highlighted the minimal genetic variation. A disproportionate number of SNPs were observed within some members of the polymorphic membrane protein (pmp) autotransporter gene family that corresponded to predicted T-cell epitopes that bind HLA class I and II alleles. These results implicate Pmps as novel immune targets, which could advance future chlamydial vaccine strategies. Lastly, a novel target for PCR diagnostics was discovered that can discriminate between ocular and genital strains. This discovery will enhance epidemiological investigations in nations where both trachoma and chlamydial STD are endemic.
Collapse
Affiliation(s)
- John H Carlson
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, 59840, USA
| | | | | | | |
Collapse
|