1
|
Shi T, Zheng Y, Wang R, Li S, Xu A, Chen L, Liu Y, Luo R, Huang C, Sun Y, Zhao J, Guo X, Wang H, Liu J, Gao Y. SAD2 functions in plant pathogen Pseudomonas syringae pv tomato DC3000 defense by regulating the nuclear accumulation of MYB30 in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112089. [PMID: 38640973 DOI: 10.1016/j.plantsci.2024.112089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/31/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Accurate nucleocytoplasmic transport of signal molecules is essential for plant growth and development. Multiple studies have confirmed that nucleocytoplasmic transport and receptors are involved in regulating plant disease resistance responses, however, little is known about the regulatory mechanism in plants. In this study, we showed that the mutant of the importin beta-like protein SAD2 exhibited a more susceptible phenotype than wild-type Col-0 after treatment with Pseudomonas syringae pv tomato DC3000 (Pst DC3000). Coimmunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC) experiments demonstrated that SAD2 interacts with the hypersensitive response (HR)-positive transcriptional regulator MYB30. Subcellular localization showed that MYB30 was not fully localized in the nucleus in sad2-5 mutants, and western-blot experiments further indicated that SAD2 was required for MYB30 nuclear trafficking during the pathogen infection process. A phenotypic test of pathogen inoculation demonstrated that MYB30 partially rescued the disease symptoms of sad2-5 caused by Pst DC3000, and that MYB30 worked downstream of SAD2 in plant pathogen defense. These results suggested that SAD2 might be involved in plant pathogen defense by mediating MYB30 nuclear trafficking. Taken together, our results revealed the important function of SAD2 in plant pathogen defense and enriched understanding of the mechanism of nucleocytoplasmic transport-mediated plant pathogen defense.
Collapse
Affiliation(s)
- Tiantian Shi
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China
| | - Yuan Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China; Sanya Institute of Henan University, Sanya 572025, China
| | - Rui Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China
| | - Sha Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Andi Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China
| | - Luoying Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China; Tianjin Agricultural University, Tianjin 300392, China
| | - Yuanhang Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China
| | - Rong Luo
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China
| | - Chenchen Huang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China; Tianjin Agricultural University, Tianjin 300392, China
| | - Yinglu Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China
| | - Xiaoying Guo
- Tianjin Agricultural University, Tianjin 300392, China
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; Chengdu National Agricultural Science and Technology Center, Chengdu, Sichuan 610213, China
| | - Jun Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China.
| | - Ying Gao
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China.
| |
Collapse
|
2
|
Chen L, Xu Z, Huang J, Shu H, Hui Y, Zhu D, Wu Y, Dong S, Wu Z. Plant immunity suppressor SKRP encodes a novel RNA-binding protein that targets exon 3' end of unspliced RNA. THE NEW PHYTOLOGIST 2023; 240:1467-1483. [PMID: 37658678 DOI: 10.1111/nph.19236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
The regulatory roles of RNA splicing in plant immunity are emerging but still largely obscure. We reported previously that Phytophthora pathogen effector Avr3c targets a soybean protein SKRP (serine/lysine/arginine-rich protein) to impair soybean basal immunity by regulating host pre-mRNA alternative splicing, while the biochemical nature of SKRP remains unknown. Here, by using Arabidopsis as a model, we studied the mechanism of SKRP in regulating pre-mRNA splicing and plant immunity. AtSKRP confers impaired plant immunity against Phytophthora capsici and associates with spliceosome component PRP8 and splicing factor SR45, which positively and negatively regulate plant immunity, respectively. Enhanced crosslinking and immunoprecipitation followed by high-throughput sequencing (eCLIP-seq) showed AtSKRP is a novel RNA-binding protein that targets exon 3' end of unspliced RNA. Such position-specific binding of SKRP is associated with its activity in suppressing intron retention, including at positive immune regulatory genes UBP25 and RAR1. In addition, we found AtSKRP self-interact and forms oligomer, and these properties are associated with its function in plant immunity. Overall, our findings reveal that the immune repressor SKRP is a spliceosome-associated protein that targets exon 3' end to regulate pre-mRNA splicing in Arabidopsis.
Collapse
Affiliation(s)
- Ling Chen
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhihui Xu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Huang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haidong Shu
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yufan Hui
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Danling Zhu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yufeng Wu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhe Wu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
3
|
Li S, Shi T, Lyu M, Wang R, Xu A, Chen L, Luo R, Sun Y, Guo X, Liu J, Wang H, Gao Y. Transcriptomic Analysis Revealed Key Defense Genes and Signaling Pathways Mediated by the Arabidopsis thaliana Gene SAD2 in Response to Infection with Pseudomonas syringae pv. Tomato DC3000. Int J Mol Sci 2023; 24:ijms24044229. [PMID: 36835638 PMCID: PMC9963955 DOI: 10.3390/ijms24044229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
Nucleocytoplasmic transport receptors play key roles in the nuclear translocation of disease resistance proteins, but the associated mechanisms remain unclear. The Arabidopsis thaliana gene SAD2 encodes an importin β-like protein. A transgenic Arabidopsis line overexpressing SAD2 (OESAD2/Col-0) showed obvious resistance to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) compared to the wild type (Col-0), but the knockout mutant sad2-5 was susceptible. Transcriptomic analysis was then performed on Col-0, OESAD2/Col-0, and sad2-5 leaves at 0, 1, 2, and 3 days post-inoculation with Pst DC3000. A total of 1825 differentially expressed genes (DEGs) were identified as putative biotic stress defense genes regulated by SAD2, 45 of which overlapped between the SAD2 knockout and overexpression datasets. Gene Ontology (GO) analysis indicated that the DEGs were broadly involved in single-organism cellular metabolic processes and in response to stimulatory stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) biochemical pathway analysis revealed that many of the DEGs were associated with the biosynthesis of flavonoids and other specialized metabolites. Transcription factor analysis showed that a large number of ERF/AP2, MYB, and bHLH transcription factors were involved in SAD2-mediated plant disease resistance. These results provide a basis for future exploration of the molecular mechanisms associated with SAD2-mediated disease resistance and establish a set of key candidate disease resistance genes.
Collapse
Affiliation(s)
- Sha Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Tiantian Shi
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China
| | - Mingjie Lyu
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300112, China
| | - Rui Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China
| | - Andi Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China
| | - Luoying Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300392, China
| | - Rong Luo
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China
| | - Yinglu Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China
| | - Xiaoying Guo
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300392, China
| | - Jun Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
- Correspondence: (H.W.); (Y.G.)
| | - Ying Gao
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100081, China
- Correspondence: (H.W.); (Y.G.)
| |
Collapse
|
4
|
Shah A, Tyagi S, Saratale GD, Guzik U, Hu A, Sreevathsa R, Reddy VD, Rai V, Mulla SI. A comprehensive review on the influence of light on signaling cross-talk and molecular communication against phyto-microbiome interactions. Crit Rev Biotechnol 2021; 41:370-393. [PMID: 33550862 DOI: 10.1080/07388551.2020.1869686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Generally, plant growth, development, and their productivity are mainly affected by their growth rate and also depend on environmental factors such as temperature, pH, humidity, and light. The interaction between plants and pathogens are highly specific. Such specificity is well characterized by plants and pathogenic microbes in the form of a molecular signature such as pattern-recognition receptors (PRRs) and microbes-associated molecular patterns (MAMPs), which in turn trigger systemic acquired immunity in plants. A number of Arabidopsis mutant collections are available to investigate molecular and physiological changes in plants under the presence of different light conditions. Over the past decade(s), several studies have been performed by selecting Arabidopsis thaliana under the influence of red, green, blue, far/far-red, and white light. However, only few phenotypic and molecular based studies represent the modulatory effects in plants under the influence of green and blue lights. Apart from this, red light (RL) actively participates in defense mechanisms against several pathogenic infections. This evolutionary pattern of light sensitizes the pathologist to analyze a series of events in plants during various stress conditions of the natural and/or the artificial environment. This review scrutinizes the literature where red, blue, white, and green light (GL) act as sensory systems that affects physiological parameters in plants. Generally, white and RL are responsible for regulating various defense mechanisms, but, GL also participates in this process with a robust impact! In addition to this, we also focus on the activation of signaling pathways (salicylic acid and jasmonic acid) and their influence on plant immune systems against phytopathogen(s).
Collapse
Affiliation(s)
- Anshuman Shah
- CP College of Agriculture, Sardarkrushinagar Dantiwada Agriculture University, Dantiwada, India
| | - Shaily Tyagi
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | | | - Urszula Guzik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science, University of Silesia in Katowice, Katowice, Poland
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment Chinese Academy of Sciences, Xiamen, China
| | | | - Vaddi Damodara Reddy
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore, India
| | - Vandna Rai
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Sikandar I Mulla
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore, India
| |
Collapse
|
5
|
Yang Q, Islam MA, Cai K, Tian S, Liu Y, Kang Z, Guo J. TaClpS1, negatively regulates wheat resistance against Puccinia striiformis f. sp. tritici. BMC PLANT BIOLOGY 2020; 20:555. [PMID: 33302867 PMCID: PMC7730799 DOI: 10.1186/s12870-020-02762-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 12/01/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND The degradation of intracellular proteins plays an essential role in plant responses to stressful environments. ClpS1 and E3 ubiquitin ligase function as adaptors for selecting target substrates in caseinolytic peptidase (Clp) proteases pathways and the 26S proteasome system, respectively. Currently, the role of E3 ubiquitin ligase in the plant immune response to pathogens is well defined. However, the role of ClpS1 in the plant immune response to pathogens remains unknown. RESULTS Here, wheat (Triticum aestivum) ClpS1 (TaClpS1) was studied and resulted to encode 161 amino acids, containing a conserved ClpS domain and a chloroplast transit peptide (1-32 aa). TaClpS1 was found to be specifically localized in the chloroplast when expressed transiently in wheat protoplasts. The transcript level of TaClpS1 in wheat was significantly induced during infection by Puccinia striiformis f. sp. tritici (Pst). Knockdown of TaClpS1 via virus-induced gene silencing (VIGS) resulted in an increase in wheat resistance against Pst, accompanied by an increase in the hypersensitive response (HR), accumulation of reactive oxygen species (ROS) and expression of TaPR1 and TaPR2, and a reduction in the number of haustoria, length of infection hypha and infection area of Pst. Furthermore, heterologous expression of TaClpS1 in Nicotiana benthamiana enhanced the infection by Phytophthora parasitica. CONCLUSIONS These results suggest that TaClpS1 negatively regulates the resistance of wheat to Pst.
Collapse
Affiliation(s)
- Qian Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Md Ashraful Islam
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Kunyan Cai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Shuxin Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Yan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China.
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China.
| |
Collapse
|
6
|
Zheng Y, Zhan Q, Shi T, Liu J, Zhao K, Gao Y. The nuclear transporter SAD2 plays a role in calcium- and H 2 O 2 -mediated cell death in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:324-333. [PMID: 31565820 DOI: 10.1111/tpj.14544] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/31/2019] [Accepted: 09/10/2019] [Indexed: 05/19/2023]
Abstract
In response to pathogens, plant cells exhibit a rapid increase in the intracellular calcium concentration and a burst of reactive oxygen species (ROS). The cytosolic increase in Ca2+ and the accumulation of ROS are critical for inducing programmed cell death (PCD), but the molecular mechanism is not fully understood. We screened an Arabidopsis mutant, sad2-5, which harbours a T-DNA insertion in the 18th exon of the importin beta-like gene, SAD2. The H2 O2 -induced increase in the [Ca2+ ]cyt of the sad2-5 mutant was greater than that of the wild type, and the sad2-5 mutant showed clear cell death phenotypes and abnormal H2 O2 accumulation under fumonisin-B1 (FB1) treatment. CaCl2 could enhance the FB1-induced cell death of the sad2-5 mutant, whereas lanthanum chloride (LaCl3 ), a broad-spectrum calcium channel blocker, could restore the FB1-induced PCD phenotype of sad2-5. The sad2-5 fbr11-1 double mutant exhibited the same FB1-insensitive phenotype as fbr11-1, which plays a critical role in novo sphingolipid synthesis, indicating that SAD2 works downstream of FBR11. These results suggest the important role of nuclear transporters in calcium- and ROS-mediated PCD response as well as provide an important theoretical basis for further analysis of the molecular mechanism of SAD2 function in PCD and for improvement of the resistance of crops to adverse environments.
Collapse
Affiliation(s)
- Yuan Zheng
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Qidi Zhan
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Tiantian Shi
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Jun Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Kaijun Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Ying Gao
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| |
Collapse
|
7
|
Hui S, Shi Y, Tian J, Wang L, Li Y, Wang S, Yuan M. TALE-carrying bacterial pathogens trap host nuclear import receptors for facilitation of infection of rice. MOLECULAR PLANT PATHOLOGY 2019; 20:519-532. [PMID: 30499169 PMCID: PMC6637887 DOI: 10.1111/mpp.12772] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Many plant-pathogenic Xanthomonas rely on the secretion of virulence transcription activator-like effector (TALE) proteins into plant cells to activate plant susceptibility genes to cause disease. The process is dependent on the binding of TALEs to specific elements of host target gene promoters in the plant nucleus. However, it is unclear how TALEs, after injection into host cells, are transferred from the plant cytoplasm into the plant nucleus, which is the key step of successful pathogen infection. Here, we show that the host plant cytoplasm/nuclear shuttle proteins OsImpα1a and OsImpα1b are key components for infection by the TALE-carrying bacterial pathogens Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), the causal agents of bacterial leaf blight and bacterial leaf streak, respectively, in rice. Direct interaction between the second nuclear localization signal of TALEs of Xoo or Xoc and OsImpα1a or OsImpα1b is required for the transportation of TALEs into the nucleus. Conversely, suppression of the expression of OsImpα1a and OsImpα1b genes attenuates the shuttling of TALEs from the cytoplasm into the nucleus and the induction of susceptibility genes, thus improving the broad-spectrum disease resistance of rice to Xoo and Xoc. These results provide an applicable strategy for the improvement of resistance to TALE-carrying pathogens in rice by moderate suppression of the expression of plant nuclear import receptor proteins.
Collapse
Affiliation(s)
- Shugang Hui
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research (Wuhan), Huazhong Agricultural UniversityWuhan430070China
| | - Yarui Shi
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research (Wuhan), Huazhong Agricultural UniversityWuhan430070China
| | - Jingjing Tian
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research (Wuhan), Huazhong Agricultural UniversityWuhan430070China
| | - Li Wang
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research (Wuhan), Huazhong Agricultural UniversityWuhan430070China
| | - Yueyue Li
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research (Wuhan), Huazhong Agricultural UniversityWuhan430070China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research (Wuhan), Huazhong Agricultural UniversityWuhan430070China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic ImprovementNational Center of Plant Gene Research (Wuhan), Huazhong Agricultural UniversityWuhan430070China
| |
Collapse
|
8
|
Calil IP, Quadros IPS, Araújo TC, Duarte CEM, Gouveia-Mageste BC, Silva JCF, Brustolini OJB, Teixeira RM, Oliveira CN, Milagres RWMM, Martins GS, Chory J, Reis PAB, Machado JPB, Fontes EPB. A WW Domain-Containing Protein Forms Immune Nuclear Bodies against Begomoviruses. MOLECULAR PLANT 2018; 11:1449-1465. [PMID: 30296599 DOI: 10.1016/j.molp.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/27/2018] [Accepted: 09/28/2018] [Indexed: 05/23/2023]
Abstract
The bipartite begomoviruses (Geminiviridae family), which are DNA viruses that replicate in the nucleus of infected cells, encode the nuclear shuttle protein (NSP) to facilitate the translocation of viral DNA from the nucleus to the cytoplasm via nuclear pores. This intracellular trafficking of NSP-DNA complexes is accessorized by the NSP-interacting guanosine triphosphatase (NIG) at the cytosolic side. Here, we report the nuclear redistribution of NIG by AtWWP1, a WW domain-containing protein that forms immune nuclear bodies (NBs) against begomoviruses. We demonstrated that AtWWP1 relocates NIG from the cytoplasm to the nucleus where it is confined to AtWWP1-NBs, suggesting that the NIG-AtWWP1 interaction may interfere with the NIG pro-viral function associated with its cytosolic localization. Consistent with this assumption, loss of AtWWP1 function cuased plants more susceptible to begomovirus infection, whereas overexpression of AtWWP1 enhanced plant resistance to begomovirus. Furthermore, we found that a mutant version of AtWWP1 defective for NB formation was no longer capable of interacting with and relocating NIG to the nucleus and lost its immune function against begomovirus. The antiviral function of AtWWP1-NBs, however, could be antagonized by viral infection that induced either the disruption or a decrease in the number of AtWWP1-NBs. Collectively, these results led us to propose that AtWWP1 organizes nuclear structures into nuclear foci, which provide intrinsic immunity against begomovirus infection.
Collapse
Affiliation(s)
- Iara P Calil
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil; National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Iana P S Quadros
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil; National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Thais C Araújo
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Christiane E M Duarte
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil; National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Bianca C Gouveia-Mageste
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil; National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - José Cleydson F Silva
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Otávio J B Brustolini
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil; National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Ruan M Teixeira
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil; National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Cauê N Oliveira
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Rafael W M M Milagres
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Gilberto S Martins
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil; Departament of Genetics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joanne Chory
- Howard Hughes Medical Institute and Plant Biology Laboratory, The Salk Institute of Biological Studies, La Jolla, CA 92037, USA
| | - Pedro A B Reis
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil; National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Joao Paulo B Machado
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil; Agronomy Institute, Universidade Federal de Viçosa, Campus Florestal, Florestal, Minas Gerais 35690-000, Brazil.
| | - Elizabeth P B Fontes
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil; National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil.
| |
Collapse
|
9
|
Lüdke D, Roth C, Hartken D, Wiermer M. MOS6 and TN13 in plant immunity. PLANT SIGNALING & BEHAVIOR 2018; 13:e1454816. [PMID: 29557707 PMCID: PMC5933908 DOI: 10.1080/15592324.2018.1454816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
The Arabidopsis nuclear transport receptor IMPORTIN-α3/MOS6 (MODIFIER OF SNC1, 6) is required for constitutive defense responses of the auto-immune mutant snc1 (suppressor of npr1-1, constitutive 1) and contributes to basal disease resistance, suggesting a role in nuclear import of defense-regulatory cargo proteins. We recently showed that MOS6 selectively interacts with TN13, a TIR-NBS protein involved in basal resistance to Pseudomonas syringae pv. tomato (Pst) DC3000 lacking the effectors AvrPto and AvrPtoB. Consistent with a predicted N-terminal transmembrane domain, TN13 localizes to the endoplasmic reticulum (ER) and the nuclear envelope (NE) where it interacts with MOS6 in a transient expression assay. Here, we propose a model that summarizes the subcellular localization, association and function of TN13 and MOS6 in plant defense signaling.
Collapse
Affiliation(s)
- Daniel Lüdke
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, Goettingen, Germany
| | - Charlotte Roth
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, Goettingen, Germany
| | - Denise Hartken
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, Goettingen, Germany
| | - Marcel Wiermer
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, Goettingen, Germany
| |
Collapse
|
10
|
Expression and regulation of ATL9, an E3 ubiquitin ligase involved in plant defense. PLoS One 2017; 12:e0188458. [PMID: 29161311 PMCID: PMC5697834 DOI: 10.1371/journal.pone.0188458] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 11/07/2017] [Indexed: 11/19/2022] Open
Abstract
Plants are continually exposed to a variety of pathogenic organisms, including bacteria, fungi and viruses. In response to these assaults, plants have developed various defense pathways to protect themselves from pathogen invasion. An understanding of the expression and regulation of genes involved in defense signaling is essential to controlling plant disease. ATL9, an Arabidopsis RING zinc finger protein, is an E3 ubiquitin ligase that is induced by chitin and involved in basal resistance to the biotrophic fungal pathogen, Golovinomyces cichoracearum (G. cichoracearum). To better understand the expression and regulation of ATL9, we studied its expression pattern and the functions of its different protein domains. Using pATL9:GUS transgenic Arabidopsis lines we found that ATL9 is expressed in numerous tissues at various developmental stages and that GUS activity was induced rapidly upon wounding. Using a GFP control protein, we showed that ATL9 is a short-lived protein within plant cells and it is degraded via the ubiquitin-proteasome pathway. ATL9 contains two transmembrane domains (TM), a RING zinc-finger domain, and a PEST domain. Using a series of deletion mutants, we found that the PEST domain and the RING domain have effects on ATL9 degradation. Further infection assays with G. cichoracearum showed that both the RING domain and the TM domains are important for ATL9’s resistance phenotype. Interestingly, the PEST domain was also shown to be significant for resistance to fungal pathogens. This study demonstrates that the PEST domain is directly coupled to plant defense regulation and the importance of protein degradation in plant immunity.
Collapse
|
11
|
Howden AJM, Stam R, Martinez Heredia V, Motion GB, ten Have S, Hodge K, Marques Monteiro Amaro TM, Huitema E. Quantitative analysis of the tomato nuclear proteome during Phytophthora capsici infection unveils regulators of immunity. THE NEW PHYTOLOGIST 2017; 215:309-322. [PMID: 28394025 PMCID: PMC5637918 DOI: 10.1111/nph.14540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/22/2017] [Indexed: 05/20/2023]
Abstract
Plant-pathogen interactions are complex associations driven by the interplay of host and microbe-encoded factors. With secreted pathogen proteins (effectors) and immune signalling components found in the plant nucleus, this compartment is a battleground where susceptibility is specified. We hypothesized that, by defining changes in the nuclear proteome during infection, we can pinpoint vital components required for immunity or susceptibility. We tested this hypothesis by documenting dynamic changes in the tomato (Solanum lycopersicum) nuclear proteome during infection by the oomycete pathogen Phytophthora capsici. We enriched nuclei from infected and noninfected tissues and quantitatively assessed changes in the nuclear proteome. We then tested the role of candidate regulators in immunity through functional assays. We demonstrated that the host nuclear proteome dynamically changes during P. capsici infection. We observed that known nuclear immunity factors were differentially expressed and, based on this observation, selected a set of candidate regulators that we successfully implicated in immunity to P. capsici. Our work exemplifies a powerful strategy to gain rapid insight into important nuclear processes that underpin complex crop traits such as resistance. We have identified a large set of candidate nuclear factors that may underpin immunity to pathogens in crops.
Collapse
Affiliation(s)
- Andrew J. M. Howden
- Division of Plant ScienceSchool of Life SciencesUniversity of Dundee at the James Hutton Institute (JHI)InvergowrieDundeeDD2 5DAUK
- Dundee Effector ConsortiumJHIInvergowrieDundeeDD2 5DAUK
| | - Remco Stam
- Division of Plant ScienceSchool of Life SciencesUniversity of Dundee at the James Hutton Institute (JHI)InvergowrieDundeeDD2 5DAUK
- Dundee Effector ConsortiumJHIInvergowrieDundeeDD2 5DAUK
- Section of Population GeneticsTechnische Universität München85354FreisingGermany
| | - Victor Martinez Heredia
- Division of Plant ScienceSchool of Life SciencesUniversity of Dundee at the James Hutton Institute (JHI)InvergowrieDundeeDD2 5DAUK
- Dundee Effector ConsortiumJHIInvergowrieDundeeDD2 5DAUK
| | - Graham B. Motion
- Division of Plant ScienceSchool of Life SciencesUniversity of Dundee at the James Hutton Institute (JHI)InvergowrieDundeeDD2 5DAUK
- Dundee Effector ConsortiumJHIInvergowrieDundeeDD2 5DAUK
- Cell and Molecular SciencesJHIInvergowrieDundeeDD2 5DAUK
| | - Sara ten Have
- Wellcome Trust Centre for Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EHUK
| | - Kelly Hodge
- Wellcome Trust Centre for Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeDow StreetDundeeDD1 5EHUK
| | - Tiago M. Marques Monteiro Amaro
- Division of Plant ScienceSchool of Life SciencesUniversity of Dundee at the James Hutton Institute (JHI)InvergowrieDundeeDD2 5DAUK
- Dundee Effector ConsortiumJHIInvergowrieDundeeDD2 5DAUK
| | - Edgar Huitema
- Division of Plant ScienceSchool of Life SciencesUniversity of Dundee at the James Hutton Institute (JHI)InvergowrieDundeeDD2 5DAUK
- Dundee Effector ConsortiumJHIInvergowrieDundeeDD2 5DAUK
| |
Collapse
|
12
|
Abstract
The eukaryotic nucleus is enclosed by the nuclear envelope, which is perforated by the nuclear pores, the gateways of macromolecular exchange between the nucleoplasm and cytoplasm. The nucleoplasm is organized in a complex three-dimensional fashion that changes over time and in response to stimuli. Within the cell, the nucleus must be viewed as an organelle (albeit a gigantic one) that is a recipient of cytoplasmic forces and capable of morphological and positional dynamics. The most dramatic reorganization of this organelle occurs during mitosis and meiosis. Although many of these aspects are less well understood for the nuclei of plants than for those of animals or fungi, several recent discoveries have begun to place our understanding of plant nuclei firmly into this broader cell-biological context.
Collapse
Affiliation(s)
- Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210;
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom;
| | | | - David E Evans
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom;
| |
Collapse
|
13
|
Ahmed AA, Pedersen C, Thordal-Christensen H. The Barley Powdery Mildew Effector Candidates CSEP0081 and CSEP0254 Promote Fungal Infection Success. PLoS One 2016; 11:e0157586. [PMID: 27322386 PMCID: PMC4913928 DOI: 10.1371/journal.pone.0157586] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 06/01/2016] [Indexed: 11/19/2022] Open
Abstract
Effectors play significant roles in the success of pathogens. Recent advances in genome sequencing have revealed arrays of effectors and effector candidates from a wide range of plant pathogens. Yet, the vast majority of them remain uncharacterized. Among the ~500 Candidate Secreted Effector Proteins (CSEPs) predicted from the barley powdery mildew fungal genome, only a few have been studied and shown to have a function in virulence. Here, we provide evidence that CSEP0081 and CSEP0254 contribute to infection by the fungus. This was studied using Host-Induced Gene Silencing (HIGS), where independent silencing of the transcripts for these CSEPs significantly reduced the fungal penetration and haustoria formation rate. Both CSEPs are likely required during and after the formation of haustoria, in which their transcripts were found to be differentially expressed, rather than in epiphytic tissue. When expressed in barley leaf epidermal cells, both CSEPs appears to move freely between the cytosol and the nucleus, suggesting that their host targets locate in these cellular compartments. Collectively, our data suggest that, in addition to the previously reported effectors, the barley powdery mildew fungus utilizes these two CSEPs as virulence factors to enhance infection.
Collapse
Affiliation(s)
- Ali Abdurehim Ahmed
- Section for Plant and Soil Science, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Carsten Pedersen
- Section for Plant and Soil Science, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Hans Thordal-Christensen
- Section for Plant and Soil Science, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- * E-mail:
| |
Collapse
|
14
|
Wang WM, Liu PQ, Xu YJ, Xiao S. Protein trafficking during plant innate immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:284-98. [PMID: 26345282 DOI: 10.1111/jipb.12426] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/06/2015] [Indexed: 05/20/2023]
Abstract
Plants have evolved a sophisticated immune system to fight against pathogenic microbes. Upon detection of pathogen invasion by immune receptors, the immune system is turned on, resulting in production of antimicrobial molecules including pathogenesis-related (PR) proteins. Conceivably, an efficient immune response depends on the capacity of the plant cell's protein/membrane trafficking network to deploy the right defense-associated molecules in the right place at the right time. Recent research in this area shows that while the abundance of cell surface immune receptors is regulated by endocytosis, many intracellular immune receptors, when activated, are partitioned between the cytoplasm and the nucleus for induction of defense genes and activation of programmed cell death, respectively. Vesicle transport is an essential process for secretion of PR proteins to the apoplastic space and targeting of defense-related proteins to the plasma membrane or other endomembrane compartments. In this review, we discuss the various aspects of protein trafficking during plant immunity, with a focus on the immunity proteins on the move and the major components of the trafficking machineries engaged.
Collapse
Affiliation(s)
- Wen-Ming Wang
- Rice Research Institute & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peng-Qiang Liu
- Rice Research Institute & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yong-Ju Xu
- Rice Research Institute & Key Laboratory for Major Crop Diseases, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research & Department of Plant Science and Landscape Architecture, University of Maryland, Rockville, MD, 20850, USA
| |
Collapse
|
15
|
Wang W, Tang W, Ma T, Niu D, Jin JB, Wang H, Lin R. A pair of light signaling factors FHY3 and FAR1 regulates plant immunity by modulating chlorophyll biosynthesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:91-103. [PMID: 25989254 PMCID: PMC4736690 DOI: 10.1111/jipb.12369] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/15/2015] [Indexed: 05/18/2023]
Abstract
Light and chloroplast function is known to affect the plant immune response; however, the underlying mechanism remains elusive. We previously demonstrated that two light signaling factors, FAR-RED ELONGATED HYPOCOTYL 3 (FHY3) and FAR-RED IMPAIRED RESPONSE 1 (FAR1), regulate chlorophyll biosynthesis and seedling growth via controlling HEMB1 expression in Arabidopsis thaliana. In this study, we reveal that FHY3 and FAR1 are involved in modulating plant immunity. We showed that the fhy3 far1 double null mutant displayed high levels of reactive oxygen species and salicylic acid (SA) and increased resistance to Pseudomonas syringae pathogen infection. Microarray analysis revealed that a large proportion of pathogen-related genes, particularly genes encoding nucleotide-binding and leucine-rich repeat domain resistant proteins, are highly induced in fhy3 far1. Genetic studies indicated that the defects of fhy3 far1 can be largely rescued by reducing SA signaling or blocking SA accumulation, and by overexpression of HEMB1, which encodes a 5-aminolevulinic acid dehydratase in the chlorophyll biosynthetic pathway. Furthermore, we found that transgenic plants with reduced expression of HEMB1 exhibit a phenotype similar to fhy3 far1. Taken together, this study demonstrates an important role of FHY3 and FAR1 in regulating plant immunity, through integrating chlorophyll biosynthesis and the SA signaling pathway.
Collapse
Affiliation(s)
- Wanqing Wang
- Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Weijiang Tang
- Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Tingting Ma
- Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - De Niu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Jing Bo Jin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Haiyang Wang
- Biotechnology Research Institute, the Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- National Center for Plant Gene Research, Beijing, 100093, China
| |
Collapse
|
16
|
Alternative splicing in plant immunity. Int J Mol Sci 2014; 15:10424-45. [PMID: 24918296 PMCID: PMC4100160 DOI: 10.3390/ijms150610424] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 12/01/2022] Open
Abstract
Alternative splicing (AS) occurs widely in plants and can provide the main source of transcriptome and proteome diversity in an organism. AS functions in a range of physiological processes, including plant disease resistance, but its biological roles and functional mechanisms remain poorly understood. Many plant disease resistance (R) genes undergo AS, and several R genes require alternatively spliced transcripts to produce R proteins that can specifically recognize pathogen invasion. In the finely-tuned process of R protein activation, the truncated isoforms generated by AS may participate in plant disease resistance either by suppressing the negative regulation of initiation of immunity, or by directly engaging in effector-triggered signaling. Although emerging research has shown the functional significance of AS in plant biotic stress responses, many aspects of this topic remain to be understood. Several interesting issues surrounding the AS of R genes, especially regarding its functional roles and regulation, will require innovative techniques and additional research to unravel.
Collapse
|
17
|
Weis C, Pfeilmeier S, Glawischnig E, Isono E, Pachl F, Hahne H, Kuster B, Eichmann R, Hückelhoven R. Co-immunoprecipitation-based identification of putative BAX INHIBITOR-1-interacting proteins involved in cell death regulation and plant-powdery mildew interactions. MOLECULAR PLANT PATHOLOGY 2013; 14:791-802. [PMID: 23782494 PMCID: PMC6638788 DOI: 10.1111/mpp.12050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The endoplasmic reticulum (ER)-resident BAX INHIBITOR-1 (BI-1) protein is one of a few cell death suppressors known to be conserved in animals and plants. The function of BI-1 proteins in response to various biotic and abiotic stress factors is well established. However, little is known about the underlying mechanisms. We conducted co-immunoprecipitation (co-IP) experiments to identify Arabidopsis thaliana BI-1-interacting proteins to obtain a potentially better understanding of how BI-1 functions during plant-pathogen interactions and as a suppressor of cell death. Liquid chromatography and tandem mass spectrometry (LC-MS/MS) identified 95 proteins co-immunoprecipitated with green fluorescing protein (GFP)-tagged BI-1. Five selected candidate proteins, a RIBOPHORIN II (RPN2) family protein, VACUOLAR ATP SYNTHASE SUBUNIT A (VHA-A), cytochrome P450 83A1 (CYP83A1), H(+) -ATPASE 1 (AHA1) and PROHIBITIN 2 (PHB2), were further investigated with regard to their role in BI-1-associated processes. To this end, we analysed a set of Arabidopsis mutants in the interaction with the adapted powdery mildew fungus Erysiphe cruciferarum and on cell death-inducing treatments. Two independent rpn2 knock-down mutants tended to better support powdery mildew, and a phb2 mutant showed altered responses to cell death-inducing Alternaria alternata f.sp. lycopersici (AAL) toxin treatment. Two independent cyp83a1 mutants showed a strong powdery mildew resistance phenotype and enhanced sensitivity to AAL toxin. Moreover, co-localization studies and fluorescence resonance energy transfer (FRET) experiments suggested a direct interaction of BI-1 with CYP83A1 at the ER.
Collapse
Affiliation(s)
- Corina Weis
- Lehrstuhl für Phytopathologie, Technische Universität München, 85354 Freising, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Engelhardt S, Boevink PC, Armstrong MR, Ramos MB, Hein I, Birch PR. Relocalization of late blight resistance protein R3a to endosomal compartments is associated with effector recognition and required for the immune response. THE PLANT CELL 2012; 24:5142-58. [PMID: 23243124 PMCID: PMC3556980 DOI: 10.1105/tpc.112.104992] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/26/2012] [Accepted: 11/10/2012] [Indexed: 05/18/2023]
Abstract
An important objective of plant-pathogen interactions research is to determine where resistance proteins detect pathogen effectors to mount an immune response. Many nucleotide binding-Leucine-rich repeat (NB-LRR) resistance proteins accumulate in the plant nucleus following effector recognition, where they initiate the hypersensitive response (HR). Here, we show that potato (Solanum tuberosum) resistance protein R3a relocates from the cytoplasm to endosomal compartments only when coexpressed with recognized Phytophthora infestans effector form AVR3a(KI) and not unrecognized form AVR3a(EM). Moreover, AVR3a(KI), but not AVR3a(EM), is also relocalized to endosomes in the presence of R3a. Both R3a and AVR3a(KI) colocalized in close physical proximity at endosomes in planta. Treatment with brefeldin A (BFA) or wortmannin, inhibitors of the endocytic cycle, attenuated both the relocalization of R3a to endosomes and the R3a-mediated HR. No such effect of these inhibitors was observed on HRs triggered by the gene-for-gene pairs Rx1/PVX-CP and Sto1/IpiO1. An R3a(D501V) autoactive MHD mutant, which triggered HR in the absence of AVR3a(KI), failed to localize to endosomes. Moreover, BFA and wortmannin did not alter cell death triggered by this mutant. We conclude that effector recognition and consequent HR signaling by NB-LRR resistance protein R3a require its relocalization to vesicles in the endocytic pathway.
Collapse
Affiliation(s)
- Stefan Engelhardt
- Division of Plant Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
- Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Petra C. Boevink
- Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Miles R. Armstrong
- Division of Plant Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
- Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Maria Brisa Ramos
- Division of Plant Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Ingo Hein
- Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Paul R.J. Birch
- Division of Plant Sciences, University of Dundee, Dundee DD2 5DA, United Kingdom
- Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
- Address correspondence to
| |
Collapse
|
19
|
Bai S, Liu J, Chang C, Zhang L, Maekawa T, Wang Q, Xiao W, Liu Y, Chai J, Takken FLW, Schulze-Lefert P, Shen QH. Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance. PLoS Pathog 2012; 8:e1002752. [PMID: 22685408 PMCID: PMC3369952 DOI: 10.1371/journal.ppat.1002752] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 04/30/2012] [Indexed: 11/18/2022] Open
Abstract
Plant intracellular immune receptors comprise a large number of multi-domain proteins resembling animal NOD-like receptors (NLRs). Plant NLRs typically recognize isolate-specific pathogen-derived effectors, encoded by avirulence (AVR) genes, and trigger defense responses often associated with localized host cell death. The barley MLA gene is polymorphic in nature and encodes NLRs of the coiled-coil (CC)-NB-LRR type that each detects a cognate isolate-specific effector of the barley powdery mildew fungus. We report the systematic analyses of MLA10 activity in disease resistance and cell death signaling in barley and Nicotiana benthamiana. MLA10 CC domain-triggered cell death is regulated by highly conserved motifs in the CC and the NB-ARC domains and by the C-terminal LRR of the receptor. Enforced MLA10 subcellular localization, by tagging with a nuclear localization sequence (NLS) or a nuclear export sequence (NES), shows that MLA10 activity in cell death signaling is suppressed in the nucleus but enhanced in the cytoplasm. By contrast, nuclear localized MLA10 is sufficient to mediate disease resistance against powdery mildew fungus. MLA10 retention in the cytoplasm was achieved through attachment of a glucocorticoid receptor hormone-binding domain (GR), by which we reinforced the role of cytoplasmic MLA10 in cell death signaling. Together with our data showing an essential and sufficient nuclear MLA10 activity in disease resistance, this suggests a bifurcation of MLA10-triggered cell death and disease resistance signaling in a compartment-dependent manner.
Collapse
Affiliation(s)
- Shiwei Bai
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Jie Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Chang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Ling Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Takaki Maekawa
- Department of Plant Microbe Interactions, Max-Planck Institut Pflanzenzüchtungsforschung, Cologne, Germany
| | - Qiuyun Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wenkai Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yule Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jijie Chai
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Frank L. W. Takken
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Centre for BioSystem Genomics, Wageningen, The Netherlands
| | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max-Planck Institut Pflanzenzüchtungsforschung, Cologne, Germany
| | - Qian-Hua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
20
|
Boruc J, Zhou X, Meier I. Dynamics of the plant nuclear envelope and nuclear pore. PLANT PHYSIOLOGY 2012; 158:78-86. [PMID: 21949214 PMCID: PMC3252082 DOI: 10.1104/pp.111.185256] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
21
|
Rivas S, Genin S. A plethora of virulence strategies hidden behind nuclear targeting of microbial effectors. FRONTIERS IN PLANT SCIENCE 2011; 2:104. [PMID: 22639625 PMCID: PMC3355726 DOI: 10.3389/fpls.2011.00104] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/09/2011] [Indexed: 05/24/2023]
Abstract
Plant immune responses depend on the ability to couple rapid recognition of the invading microbe to an efficient response. During evolution, plant pathogens have acquired the ability to deliver effector molecules inside host cells in order to manipulate cellular and molecular processes and establish pathogenicity. Following translocation into plant cells, microbial effectors may be addressed to different subcellular compartments. Intriguingly, a significant number of effector proteins from different pathogenic microorganisms, including viruses, oomycetes, fungi, nematodes, and bacteria, is targeted to the nucleus of host cells. In agreement with this observation, increasing evidence highlights the crucial role played by nuclear dynamics, and nucleocytoplasmic protein trafficking during a great variety of analyzed plant-pathogen interactions. Once in the nucleus, effector proteins are able to manipulate host transcription or directly subvert essential host components to promote virulence. Along these lines, it has been suggested that some effectors may affect histone packing and, thereby, chromatin configuration. In addition, microbial effectors may either directly activate transcription or target host transcription factors to alter their regular molecular functions. Alternatively, nuclear translocation of effectors may affect subcellular localization of their cognate resistance proteins in a process that is essential for resistance protein-mediated plant immunity. Here, we review recent progress in our field on the identification of microbial effectors that are targeted to the nucleus of host plant cells. In addition, we discuss different virulence strategies deployed by microbes, which have been uncovered through examination of the mechanisms that guide nuclear localization of effector proteins.
Collapse
Affiliation(s)
- Susana Rivas
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-MicroorganismesUMR 441, Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-MicroorganismesUMR 2594, Castanet-Tolosan, France
| | - Stéphane Genin
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-MicroorganismesUMR 441, Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-MicroorganismesUMR 2594, Castanet-Tolosan, France
| |
Collapse
|
22
|
Bernoux M, Ellis JG, Dodds PN. New insights in plant immunity signaling activation. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:512-8. [PMID: 21723182 PMCID: PMC3191233 DOI: 10.1016/j.pbi.2011.05.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/17/2011] [Accepted: 05/26/2011] [Indexed: 05/19/2023]
Abstract
Plant disease resistance can be triggered by specific recognition of microbial effectors by plant nucleotide binding-leucine rich repeat (NB-LRR) receptors. Over the last few years, many efforts have greatly improved the understanding of effector and NB-LRR function, but have left a lot of questions as to how effector perception activates NB-LRR induction of defense signaling. This review describes exciting new findings showing similarities and differences in function of diverse plant NB-LRR proteins in terms of pathogen recognition and where and how resistance proteins are activated. Localization studies have shown that some NB-LRRs can activate signaling from the cytosol while others act in the nucleus. Also, the structural determination of two NB-LRR signaling domains demonstrated that receptor oligomerization is fundamental for the activation of resistance signaling.
Collapse
Affiliation(s)
- Maud Bernoux
- CSIRO Plant Industry, Canberra, Australian Capital Territory 2601, Australia
| | - Jeffrey G. Ellis
- CSIRO Plant Industry, Canberra, Australian Capital Territory 2601, Australia
| | - Peter N. Dodds
- CSIRO Plant Industry, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
23
|
Elmore JM, Lin ZJD, Coaker G. Plant NB-LRR signaling: upstreams and downstreams. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:365-71. [PMID: 21459033 PMCID: PMC3155621 DOI: 10.1016/j.pbi.2011.03.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/07/2011] [Accepted: 03/09/2011] [Indexed: 05/19/2023]
Abstract
Plant disease resistance proteins commonly belong to the nucleotide binding-leucine rich repeat (NB-LRR) protein family. These specialized immune proteins mediate recognition of diverse pathogen-derived effector proteins and initiate potent defense responses. NB-LRRs exhibit a multidomain architecture and each domain appears to have discrete functions depending on the stage of NB-LRR signaling. Novel proteins that were found to interact with the core HSP90 chaperone complex regulate accumulation and activation of NB-LRR immune receptors. Recent studies have also advanced our understanding of how accessory proteins contribute to NB-LRR activation. The dynamic nature of NB-LRR localization to different subcellular compartments before and after activation suggests that NB-LRRs may activate immune responses in multiple parts of the cell. In this review we highlight recent advances in understanding NB-LRR function.
Collapse
Affiliation(s)
| | | | - Gitta Coaker
- CORRESPONDING AUTHOR: Gitta Coaker, , Phone: 530-752-6541, Fax: 530-752-5674, Department of Plant Pathology, 254 Hutchison Hall, University of California, Davis, CA, 95616
| |
Collapse
|
24
|
Zhao Q, Meier I. Identification and characterization of the Arabidopsis FG-repeat nucleoporin Nup62. PLANT SIGNALING & BEHAVIOR 2011; 6:330-4. [PMID: 21673506 PMCID: PMC3142410 DOI: 10.4161/psb.6.3.13402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 08/24/2010] [Indexed: 05/03/2023]
Abstract
Ran is a multifunctional small GTPase that is involved in nucleocytoplasmic transport, mitotic spindle assembly, and nuclear envelope reformation. Nuclear transport factor 2 (NTF2) facilitates nuclear import of Ran. It binds FxFG repeat-containing domains of the nucleoporins Nup62 (vertebrate) and Nsp1p (yeast). Here, we have identified Arabidopsis Nup62 through its sequence similarity to mammalian Nup62 and yeast Nsp1p. A GFP¬AtNup62 fusion protein is associated with the nuclear envelope in transgenic Arabidopsis plants and interacts in planta with AtNTF2a, one of the two Arabidopsis NTF2 homologs. Overexpression-based co-suppression of AtNup62 leads to severely dwarfed, early-flowering plants, suggesting an important function for Nup62 in plants.
Collapse
Affiliation(s)
- Qiao Zhao
- Department of Plant Cellular and Molecular Biology Plant Bio Technology Center, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
25
|
Deslandes L, Rivas S. The plant cell nucleus: a true arena for the fight between plants and pathogens. PLANT SIGNALING & BEHAVIOR 2011; 6:42-8. [PMID: 21258210 PMCID: PMC3122004 DOI: 10.4161/psb.6.1.13978] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 12/10/2010] [Indexed: 05/20/2023]
Abstract
Communication between the cytoplasm and the nucleus is a fundamental feature shared by both plant and animal cells. Cellular factors involved in the transport of macromolecules through the nuclear envelope, including nucleoporins, importins and Ran-GTP related components, are conserved among a variety of eukaryotic systems. Interestingly, mutations in these nuclear components compromise resistance signalling, illustrating the importance of nucleocytoplasmic trafficking in plant innate immunity. Indeed, spatial restriction of defence regulators by the nuclear envelope and stimulus-induced nuclear translocation constitute an important level of defence-associated gene regulation in plants. A significant number of effectors from different microbial pathogens are targeted to the plant cell nucleus. In addition, key host factors, including resistance proteins, immunity components, transcription factors and transcriptional regulators shuttle between the cytoplasm and the nucleus, and their level of nuclear accumulation determines the output of the defence response, further confirming the crucial role played by the nucleus during the interaction between plants and pathogens. Here, we discuss recent findings that situate the nucleus at the frontline of the mutual recognition between plants and invading microbes.
Collapse
Affiliation(s)
- Laurent Deslandes
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR CNRS-INRA, Castanet Tolosan, France
| | | |
Collapse
|
26
|
Liu Y, Kong X, Pan J, Li D. VIP1: linking Agrobacterium-mediated transformation to plant immunity? PLANT CELL REPORTS 2010; 29:805-812. [PMID: 20473505 DOI: 10.1007/s00299-010-0870-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/04/2010] [Accepted: 05/05/2010] [Indexed: 05/29/2023]
Abstract
Agrobacterium tumefaciens is the most efficient vehicle used today for the production of transgenic plants and plays an essential role in basic scientific research and in agricultural biotechnology. Previously, plant VirE2-interacting protein 1 (VIP1) was shown to play a role in Agrobacterium-mediated transformation. Recent reports demonstrate that VIP1, as one of the bZIP transcription factors, is also involved in plant immunity responses. Agrobacterium is able to activate and abuse VIP1 for transformation. These findings highlight Agrobacterium-host interaction and unveil how Agrobacterium hijacks host cellular mechanism for its own benefit. This review focuses on the roles played by VIP1 in Agrobacterium-mediated transformation and plant immunity.
Collapse
Affiliation(s)
- Yukun Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 DaiZong Street, Tai'an, 271018, Shandong, China
| | | | | | | |
Collapse
|
27
|
Mazars C, Thuleau P, Lamotte O, Bourque S. Cross-talk between ROS and calcium in regulation of nuclear activities. MOLECULAR PLANT 2010; 3:706-18. [PMID: 20522524 DOI: 10.1093/mp/ssq024] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Calcium and Reactive Oxygen Species (ROS) are acknowledged as crucial second messengers involved in the response to various biotic and abiotic stresses. However, it is still not clear how these two compounds can play a role in different signaling pathways leading the plant to a variety of processes such as root development or defense against pathogens. Recently, it has been shown that the concept of calcium and ROS signatures, initially discovered in the cytoplasm, can also be extended to the nucleus of plant cells. In addition, it has been clearly proved that both ROS and calcium signals are intimately interconnected. How this cross-talk can finally modulate the translocation and/or the activity of nuclear proteins leading to the control of specific genes expression is the main focus of this review. We will especially focus on how calcium and ROS interact at the molecular level to modify their targets.
Collapse
Affiliation(s)
- Christian Mazars
- Université de Toulouse, UPS, UMR 5546, Surfaces Cellulaires et Signalisation chez les Végétaux, BP 42617, F-31326 Castanet-Tolosan, France
| | | | | | | |
Collapse
|
28
|
Wiermer M, Germain H, Cheng YT, García AV, Parker JE, Li X. Nucleoporin MOS7/Nup88 contributes to plant immunity and nuclear accumulation of defense regulators. Nucleus 2010; 1:332-6. [PMID: 21327081 DOI: 10.4161/nucl.1.4.12109] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 03/30/2010] [Indexed: 11/19/2022] Open
Abstract
Controlled nucleocytoplasmic trafficking is an important feature for fine-tuning signaling pathways in eukaryotic organisms. Nuclear pore complexes (NPCs) composed of nucleoporin proteins (Nups) are essential for the exchange of macromolecules across the nuclear envelope. A recent genetic screen in our laboratory identified a partial loss-of-function mutation in Arabidopsis MOS7/Nup88 that causes defects in basal immunity, Resistance (R) protein-mediated defense and systemic acquired resistance. In Drosophila and mammalian cells, exportin-mediated nuclear export of activated Rel/NFκB transcription factors is enhanced in nup88 mutants resulting in immune response failure. Consistent with Nup88 promoting nuclear retention of NFκB, our functional analyses revealed that MOS7/Nup88 is required for appropriate nuclear accumulation of the autoactivated R protein snc1, as well as the key immune regulators EDS1 and NPR1. These results suggest that controlling the nuclear concentrations of specific immune regulators is fundamental for defining defense outputs.
Collapse
Affiliation(s)
- Marcel Wiermer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Meier I, Brkljacic J. The Arabidopsis nuclear pore and nuclear envelope. THE ARABIDOPSIS BOOK 2010; 8:e0139. [PMID: 22303264 PMCID: PMC3244964 DOI: 10.1199/tab.0139] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The nuclear envelope is a double membrane structure that separates the eukaryotic cytoplasm from the nucleoplasm. The nuclear pores embedded in the nuclear envelope are the sole gateways for macromolecular trafficking in and out of the nucleus. The nuclear pore complexes assembled at the nuclear pores are large protein conglomerates composed of multiple units of about 30 different nucleoporins. Proteins and RNAs traffic through the nuclear pore complexes, enabled by the interacting activities of nuclear transport receptors, nucleoporins, and elements of the Ran GTPase cycle. In addition to directional and possibly selective protein and RNA nuclear import and export, the nuclear pore gains increasing prominence as a spatial organizer of cellular processes, such as sumoylation and desumoylation. Individual nucleoporins and whole nuclear pore subcomplexes traffic to specific mitotic locations and have mitotic functions, for example at the kinetochores, in spindle assembly, and in conjunction with the checkpoints. Mutants of nucleoporin genes and genes of nuclear transport components lead to a wide array of defects from human diseases to compromised plant defense responses. The nuclear envelope acts as a repository of calcium, and its inner membrane is populated by functionally unique proteins connected to both chromatin and-through the nuclear envelope lumen-the cytoplasmic cytoskeleton. Plant nuclear pore and nuclear envelope research-predominantly focusing on Arabidopsis as a model-is discovering both similarities and surprisingly unique aspects compared to the more mature model systems. This chapter gives an overview of our current knowledge in the field and of exciting areas awaiting further exploration.
Collapse
Affiliation(s)
- Iris Meier
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Ohio State University, 520 Aronoff Laboratory, 318 W 12th Avenue, Columbus, OH 43210
- Address correspondence to
| | - Jelena Brkljacic
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Ohio State University, 520 Aronoff Laboratory, 318 W 12th Avenue, Columbus, OH 43210
| |
Collapse
|
30
|
Meier I, Brkljacic J. Adding pieces to the puzzling plant nuclear envelope. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:752-759. [PMID: 19875325 DOI: 10.1016/j.pbi.2008.09.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/19/2009] [Accepted: 09/22/2009] [Indexed: 05/26/2023]
Abstract
The nuclear envelope (NE) and the nuclear pores are important structures that both separate and selectively connect the nucleoplasm and the cytoplasm. NE and nuclear pore research in plants have recently seen an elevated level of interest. This is based both on new findings demonstrating the importance of nucleocytoplasmic trafficking for several signal transduction events, and on increasing evidence that NE and nuclear pore components play important roles during plant cell division. Here, we review the most recent reports in the field and compare them to the more advanced knowledge about yeast and animal model systems. They deal with the refined ultrastructure of the NE and NPC, with the discovery of novel NE components, and, importantly, with novel roles and fates of NE-associated and NPC-associated proteins during plant mitosis and cytokinesis.
Collapse
Affiliation(s)
- Iris Meier
- Department of Molecular Genetics and Plant Biotechnology Center, The Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
31
|
Schornack S, Fuchs R, Huitema E, Rothbauer U, Lipka V, Kamoun S. Protein mislocalization in plant cells using a GFP-binding chromobody. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:744-54. [PMID: 19686537 DOI: 10.1111/j.1365-313x.2009.03982.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A key challenge in cell biology is to directly link protein localization to function. The green fluorescent protein (GFP)-binding protein, GBP, is a 13-kDa soluble protein derived from a llama heavy chain antibody that binds with high affinity to GFP as well as to some GFP variants such as yellow fluorescent protein (YFP). A GBP fusion to the red fluorescent protein (RFP), a molecule termed a chromobody, was previously used to trace in vivo the localization of various animal antigens. In this study, we extend the use of chromobody technology to plant cells and develop several applications for the in vivo study of GFP-tagged plant proteins. We took advantage of Agrobacterium tumefaciens-mediated transient expression assays (agroinfiltration) and virus expression vectors (agroinfection) to express functional GBP:RFP fusion (chromobody) in the model plant Nicotiana benthamiana. We showed that the chromobody is effective in binding GFP- and YFP-tagged proteins in planta. Most interestingly, GBP:RFP can be applied to interfere with the function of GFP fusion protein and to mislocalize (trap) GFP fusions to the plant cytoplasm in order to alter the phenotype mediated by the targeted proteins. Chromobody technology, therefore, represents a new alternative technique for protein interference that can directly link localization of plant proteins to in vivo function.
Collapse
|
32
|
Vlot AC, Dempsey DA, Klessig DF. Salicylic Acid, a multifaceted hormone to combat disease. ANNUAL REVIEW OF PHYTOPATHOLOGY 2009; 47:177-206. [PMID: 19400653 DOI: 10.1146/annurev.phyto.050908.135202] [Citation(s) in RCA: 1303] [Impact Index Per Article: 86.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
For more than 200 years, the plant hormone salicylic acid (SA) has been studied for its medicinal use in humans. However, its extensive signaling role in plants, particularly in defense against pathogens, has only become evident during the past 20 years. This review surveys how SA in plants regulates both local disease resistance mechanisms, including host cell death and defense gene expression, and systemic acquired resistance (SAR). Genetic studies reveal an increasingly complex network of proteins required for SA-mediated defense signaling, and this process is amplified by several regulatory feedback loops. The interaction between the SA signaling pathway and those regulated by other plant hormones and/or defense signals is also discussed.
Collapse
Affiliation(s)
- A Corina Vlot
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
| | | | | |
Collapse
|
33
|
Carvalho CM, Fontenelle MR, Florentino LH, Santos AA, Zerbini FM, Fontes EPB. A novel nucleocytoplasmic traffic GTPase identified as a functional target of the bipartite geminivirus nuclear shuttle protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:869-80. [PMID: 18489709 DOI: 10.1111/j.1365-313x.2008.03556.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
SUMMARY In contrast to the accumulated data on nuclear transport mechanisms of macromolecules, little is known concerning the regulated release of nuclear-exported complexes and their subsequent trans-cytoplasmic movement. The bipartite begomovirus nuclear shuttle protein (NSP) facilitates the nuclear export of viral DNA and cooperates with the movement protein (MP) to transport viral DNA across the plant cell wall. Here, we identified a cellular NSP-interacting GTPase (NIG) with biochemical properties consistent with a nucleocytoplasmic transport role. We show that NIG is a cytosolic GTP-binding protein that accumulates around the nuclear envelope and possesses intrinsic GTPase activity. NIG interacts with NSP in vitro and in vivo (under transient expression), and redirects the viral protein from the nucleus to the cytoplasm. We propose that NIG acts as a positive contributor to geminivirus infection by modulating NSP nucleocytoplasmic shuttling and hence facilitating MP-NSP interaction in the cortical cytoplasm. In support of this, overexpression of NIG in Arabidopsis enhances susceptibility to geminivirus infection. In addition to highlighting the relevance of NIG as a cellular co-factor for NSP function, our findings also have implications for general nucleocytoplasmic trafficking of cellular macromolecules.
Collapse
Affiliation(s)
- Claudine M Carvalho
- Departamento de Bioquímica e Biologia Molecular, Vicosa, Minas Gerais, Brazil
| | | | | | | | | | | |
Collapse
|
34
|
Bernoux M, Timmers T, Jauneau A, Brière C, de Wit PJGM, Marco Y, Deslandes L. RD19, an Arabidopsis cysteine protease required for RRS1-R-mediated resistance, is relocalized to the nucleus by the Ralstonia solanacearum PopP2 effector. THE PLANT CELL 2008; 20:2252-64. [PMID: 18708476 PMCID: PMC2553607 DOI: 10.1105/tpc.108.058685] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 07/18/2008] [Accepted: 07/31/2008] [Indexed: 05/18/2023]
Abstract
Bacterial wilt, a disease impacting cultivated crops worldwide, is caused by the pathogenic bacterium Ralstonia solanacearum. PopP2 (for Pseudomonas outer protein P2) is an R. solanacearum type III effector that belongs to the YopJ/AvrRxv protein family and interacts with the Arabidopsis thaliana RESISTANT TO RALSTONIA SOLANACEARUM 1-R (RRS1-R) resistance protein. RRS1-R contains the Toll/Interleukin1 receptor-nucleotide binding site-Leu-rich repeat domains found in several cytoplasmic R proteins and a C-terminal WRKY DNA binding domain. In this study, we identified the Arabidopsis Cys protease RESPONSIVE TO DEHYDRATION19 (RD19) as being a PopP2-interacting protein whose expression is induced during infection by R. solanacearum. An Arabidopsis rd19 mutant in an RRS1-R genetic background is compromised in resistance to the bacterium, indicating that RD19 is required for RRS1-R-mediated resistance. RD19 normally localizes in mobile vacuole-associated compartments and, upon coexpression with PopP2, is specifically relocalized to the plant nucleus, where the two proteins physically interact. No direct physical interaction between RRS1-R and RD19 in the presence of PopP2 was detected in the nucleus as determined by Förster resonance energy transfer. We propose that RD19 associates with PopP2 to form a nuclear complex that is required for activation of the RRS1-R-mediated resistance response.
Collapse
Affiliation(s)
- Maud Bernoux
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche, Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique 2594/441, F-31320 Castanet-Tolosan, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Land plants possess innate immune systems that can control resistance against pathogen infection. Conceptually, there are two branches of the plant innate immune system. One branch recognizes conserved features of microbial pathogens, while a second branch specifically detects the presence of pathogen effector proteins by plant resistance (R) genes. Innate immunity controlled by plant R genes is called effector-triggered immunity. Although R genes can recognize all classes of plant pathogens, the majority can be grouped into one large family, encoding proteins with a nucleotide binding site and C-terminal leucine rich repeat domains. Despite the importance and number of R genes present in plants, we are just beginning to decipher the signaling events required to initiate defense responses. Recent exciting discoveries have implicated dynamic nuclear trafficking of plant R proteins to achieve effector-triggered immunity. Furthermore, there are several additional lines of evidence implicating nucleo-cyctoplasmic trafficking in plant disease resistance, as mutations in nucleoporins and importins can compromise resistance signaling. Taken together, these data illustrate the importance of nuclear trafficking in the manifestation of disease resistance mediated by R genes.
Collapse
Affiliation(s)
- Jun Liu
- Department of Plant Pathology, The University of California, Davis, CA, USA
| | | |
Collapse
|
36
|
Caplan J, Padmanabhan M, Dinesh-Kumar SP. Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming. Cell Host Microbe 2008; 3:126-35. [PMID: 18329612 DOI: 10.1016/j.chom.2008.02.010] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Both plants and animals contain nucleotide-binding domain and leucine-rich repeat (NB-LRR)-type immune receptors that function during defense against pathogens. Unlike animal NB-LRRs that recognize general pathogen or microbe-associated molecular patterns (PAMPs or MAMPs), plant NB-LRR immune receptors have evolved the ability to specifically recognize a wide range of effector proteins from different pathogens. Recent research has revealed that plant NB-LRRs are incredibly adaptive in their ways of pathogen recognition and defense initiation. This review focuses on the remarkable variety of functions, recognition mechanisms, subcellular localizations, and host factors associated with plant NB-LRR immune receptors.
Collapse
Affiliation(s)
- Jeffrey Caplan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT 06520-8103, USA
| | | | | |
Collapse
|
37
|
Nuclear Pores in Plant Cells: Structure, Composition, and Functions. PLANT CELL MONOGRAPHS 2008. [DOI: 10.1007/7089_2008_27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Xu XM, Meier I. The nuclear pore comes to the fore. TRENDS IN PLANT SCIENCE 2008; 13:20-7. [PMID: 18155634 DOI: 10.1016/j.tplants.2007.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 11/09/2007] [Accepted: 12/10/2007] [Indexed: 05/08/2023]
Abstract
The nuclear pore complex is the gateway of macromolecular trafficking between the nucleus and the cytoplasm. Although its composition is well characterized in yeast and mammalian systems, little is known about the plant nuclear pore. Several recent reports describe complex whole-organism phenotypes based on mutations in plant nucleoporins. The pathways affected include plant-microbe interactions, auxin response, cold-stress tolerance and flowering-time regulation. The effects are probably based, at least in part, on changes in protein import and/or RNA export (including regulatory small RNAs). Here, we review these new findings while comparing and contrasting them with what is known about nucleoporin functions from non-plant organisms, including nucleoporin activities not linked to nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Xianfeng M Xu
- Department of Plant Cellular and Molecular Biology, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|