1
|
Luo Y, Huang CC, Howard NC, Wang X, Liu Q, Li X, Zhu J, Amariuta T, Asgari S, Ishigaki K, Calderon R, Raman S, Ramnarine AK, Mayfield JA, Moody DB, Lecca L, Fortune SM, Murray MB, Raychaudhuri S. Paired analysis of host and pathogen genomes identifies determinants of human tuberculosis. Nat Commun 2024; 15:10393. [PMID: 39613754 DOI: 10.1038/s41467-024-54741-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
Infectious disease is the result of interactions between host and pathogen and can depend on genetic variations in both. We conduct a genome-to-genome study of paired human and Mycobacterium tuberculosis genomes from a cohort of 1556 tuberculosis patients in Lima, Peru. We identify an association between a human intronic variant (rs3130660, OR = 10.06, 95%CI: 4.87 - 20.77, P = 7.92 × 10-8) in the FLOT1 gene and a subclavaluee of Mtb Lineage 2. In a human macrophage infection model, we observe hosts with the rs3130660-A allele exhibited stronger interferon gene signatures. The interacting strains have altered redox states due to a thioredoxin reductase mutation. We investigate this association in a 2020 cohort of 699 patients recruited during the COVID-19 pandemic. While the prevalence of the interacting strain almost doubled between 2010 and 2020, its infection is not associated with rs3130660 in this recent cohort. These findings suggest a complex interplay among host, pathogen, and environmental factors in tuberculosis dynamics.
Collapse
Affiliation(s)
- Yang Luo
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Chuan-Chin Huang
- Division of Global Health Equity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Nicole C Howard
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Xin Wang
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Qingyun Liu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xinyi Li
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Junhao Zhu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Tiffany Amariuta
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Samira Asgari
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Kazuyoshi Ishigaki
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Kobe, Japan
| | | | - Sahadevan Raman
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandrea K Ramnarine
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jacob A Mayfield
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - D Branch Moody
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Leonid Lecca
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
- Socios En Salud Sucursal Peru, Lima, Peru
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| | - Megan B Murray
- Division of Global Health Equity, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H Chan School of Public Health, Boston, MA, USA.
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Nitschke J, Huber R, Vossio S, Moreau D, Marcourt L, Gindro K, Queiroz EF, Soldati T, Hanna N. Discovery of anti-infective compounds against Mycobacterium marinum after biotransformation of simple natural stilbenes by a fungal secretome. Front Microbiol 2024; 15:1439814. [PMID: 39355425 PMCID: PMC11443511 DOI: 10.3389/fmicb.2024.1439814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/29/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, remains a serious threat to human health worldwide and the quest for new anti-tubercular drugs is an enduring and demanding journey. Natural products (NPs) have played a significant role in advancing drug therapy of infectious diseases. Methods This study evaluated the suitability of a high-throughput infection system composed of the host amoeba Dictyostelium discoideum (Dd) and Mycobacterium marinum (Mm), a close relative of Mtb, to identify anti-infective compounds. Growth of Dd and intracellular Mm were quantified by using luminescence and fluorescence readouts in phenotypic assays. The system was first benchmarked with a set of therapeutic anti-Mtb antibiotics and then used to screen a library of biotransformed stilbenes. Results The study confirmed both efficacy of established antibiotics such as rifampicin and bedaquiline, with activities below defined anti-mycobacterium susceptibility breakpoints, and the lack of activity of pyrazinamide against Mm. The screening revealed the promising anti-infective activities of trans-δ-viniferins and in particular of two compounds 17 and 19 with an IC50 of 18.1 μM, 9 μM, respectively. Both compounds had no activity on Mm in broth. Subsequent exploration via halogenation and structure-activity relationship studies led to the identification of derivatives with improved selectivity and potency. The modes of action of the anti-infective compounds may involve inhibition of mycobacterial virulence factors or boosting of host defense. Discussion The study highlights the potential of biotransformation and NP-inspired derivatization approaches for drug discovery and underscores the utility of the Dd-Mm infection system in identifying novel anti-infective compounds.
Collapse
Affiliation(s)
- Jahn Nitschke
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Robin Huber
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Stefania Vossio
- ACCESS Screening Platform, NCCR Chemical Biology, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Dimitri Moreau
- ACCESS Screening Platform, NCCR Chemical Biology, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Katia Gindro
- Mycology Group, Research Department Plant Protection, Agroscope, Nyon, Switzerland
| | - Emerson F. Queiroz
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Nabil Hanna
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Gerstenmaier L, Colasanti O, Behrens H, Kolonko M, Hammann C, Hagedorn M. Recruitment of both the ESCRT and autophagic machineries to ejecting Mycobacterium marinum. Mol Microbiol 2024; 121:385-393. [PMID: 37230756 DOI: 10.1111/mmi.15075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023]
Abstract
Cytosolic Mycobacterium marinum are ejected from host cells such as macrophages or the amoeba Dictyostelium discoideum in a non-lytic fashion. As described previously, the autophagic machinery is recruited to ejecting bacteria and supports host cell integrity during egress. Here, we show that the ESCRT machinery is also recruited to ejecting bacteria, partially dependent on an intact autophagic pathway. As such, the AAA-ATPase Vps4 shows a distinct localization at the ejectosome structure in comparison to fluorescently tagged Vps32, Tsg101 and Alix. Along the bacterium engaged in ejection, ESCRT and the autophagic component Atg8 show partial colocalization. We hypothesize that both, the ESCRT and autophagic machinery localize to the bacterium as part of a membrane damage response, as well as part of a "frustrated autophagosome" that is unable to engulf the ejecting bacterium.
Collapse
Affiliation(s)
| | | | - Hannah Behrens
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Margot Kolonko
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christian Hammann
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Bremen, Germany
- Health and Medical University, Potsdam, Germany
| | - Monica Hagedorn
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Bremen, Germany
- Health and Medical University, Potsdam, Germany
| |
Collapse
|
4
|
Franzkoch R, Anand A, Breitsprecher L, Psathaki OE, Barisch C. Resolving exit strategies of mycobacteria in Dictyostelium discoideum by combining high-pressure freezing with 3D-correlative light and electron microscopy. Mol Microbiol 2024; 121:593-604. [PMID: 38063129 DOI: 10.1111/mmi.15205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 03/12/2024]
Abstract
The infection course of Mycobacterium tuberculosis is highly dynamic and comprises sequential stages that require damaging and crossing of several membranes to enable the translocation of the bacteria into the cytosol or their escape from the host. Many important breakthroughs such as the restriction of mycobacteria by the autophagy pathway and the recruitment of sophisticated host repair machineries to the Mycobacterium-containing vacuole have been gained in the Dictyostelium discoideum/M. marinum system. Despite the availability of well-established light and advanced electron microscopy techniques in this system, a correlative approach integrating both methods with near-native ultrastructural preservation is currently lacking. This is most likely due to the low ability of D. discoideum to adhere to surfaces, which results in cell loss even after fixation. To address this problem, we improved the adhesion of cells and developed a straightforward and convenient workflow for 3D-correlative light and electron microscopy. This approach includes high-pressure freezing, which is an excellent technique for preserving membranes. Thus, our method allows to monitor the ultrastructural aspects of vacuole escape which is of central importance for the survival and dissemination of bacterial pathogens.
Collapse
Affiliation(s)
- Rico Franzkoch
- iBiOs-integrated Bioimaging Facility, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics, Osnabrück, Germany
- Division of Microbiology, Department of Biology, University of Osnabrück, Osnabrück, Germany
| | - Aby Anand
- Center of Cellular Nanoanalytics, Osnabrück, Germany
- Division of Molecular Infection Biology, Department of Biology, University of Osnabrück, Osnabrück, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Division of Host-Microbe Interactome, Research Center Borstel - Leibniz Lung Center (FZB), Borstel, Germany
- Department of Biology, University of Hamburg, Hamburg, Germany
| | - Leonhard Breitsprecher
- iBiOs-integrated Bioimaging Facility, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics, Osnabrück, Germany
- Division of Microbiology, Department of Biology, University of Osnabrück, Osnabrück, Germany
| | - Olympia E Psathaki
- iBiOs-integrated Bioimaging Facility, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics, Osnabrück, Germany
| | - Caroline Barisch
- Center of Cellular Nanoanalytics, Osnabrück, Germany
- Division of Molecular Infection Biology, Department of Biology, University of Osnabrück, Osnabrück, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Division of Host-Microbe Interactome, Research Center Borstel - Leibniz Lung Center (FZB), Borstel, Germany
- Department of Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
5
|
Lefrançois LH, Nitschke J, Wu H, Panis G, Prados J, Butler RE, Mendum TA, Hanna N, Stewart GR, Soldati T. Temporal genome-wide fitness analysis of Mycobacterium marinum during infection reveals the genetic requirement for virulence and survival in amoebae and microglial cells. mSystems 2024; 9:e0132623. [PMID: 38270456 PMCID: PMC10878075 DOI: 10.1128/msystems.01326-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Tuberculosis remains the most pervasive infectious disease and the recent emergence of drug-resistant strains emphasizes the need for more efficient drug treatments. A key feature of pathogenesis, conserved between the human pathogen Mycobacterium tuberculosis and the model pathogen Mycobacterium marinum, is the metabolic switch to lipid catabolism and altered expression of virulence genes at different stages of infection. This study aims to identify genes involved in sustaining viable intracellular infection. We applied transposon sequencing (Tn-Seq) to M. marinum, an unbiased genome-wide strategy combining saturation insertional mutagenesis and high-throughput sequencing. This approach allowed us to identify the localization and relative abundance of insertions in pools of transposon mutants. Gene essentiality and fitness cost of mutations were quantitatively compared between in vitro growth and different stages of infection in two evolutionary distinct phagocytes, the amoeba Dictyostelium discoideum and the murine BV2 microglial cells. In the M. marinum genome, 57% of TA sites were disrupted and 568 genes (10.2%) were essential, which is comparable to previous Tn-Seq studies on M. tuberculosis and M. bovis. Major pathways involved in the survival of M. marinum during infection of D. discoideum are related to DNA damage repair, lipid and vitamin metabolism, the type VII secretion system (T7SS) ESX-1, and the Mce1 lipid transport system. These pathways, except Mce1 and some glycolytic enzymes, were similarly affected in BV2 cells. These differences suggest subtly distinct nutrient availability or requirement in different host cells despite the known predominant use of lipids in both amoeba and microglial cells.IMPORTANCEThe emergence of biochemically and genetically tractable host model organisms for infection studies holds the promise to accelerate the pace of discoveries related to the evolution of innate immunity and the dissection of conserved mechanisms of cell-autonomous defenses. Here, we have used the genetically and biochemically tractable infection model system Dictyostelium discoideum/Mycobacterium marinum to apply a genome-wide transposon-sequencing experimental strategy to reveal comprehensively which mutations confer a fitness advantage or disadvantage during infection and compare these to a similar experiment performed using the murine microglial BV2 cells as host for M. marinum to identify conservation of virulence pathways between hosts.
Collapse
Affiliation(s)
- Louise H. Lefrançois
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| | - Jahn Nitschke
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| | - Huihai Wu
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/CMU, University of Geneva, Institute of Genetics and Genomics in Geneva (iGE3), Genève, Switzerland
| | - Julien Prados
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/CMU, University of Geneva, Institute of Genetics and Genomics in Geneva (iGE3), Genève, Switzerland
- Bioinformatics Support Platform for data analysis, Geneva University, Medicine Faculty, Geneva, Switzerland
| | - Rachel E. Butler
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Tom A. Mendum
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Nabil Hanna
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| | - Graham R. Stewart
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| |
Collapse
|
6
|
Anand A, Mazur AC, Rosell-Arevalo P, Franzkoch R, Breitsprecher L, Listian SA, Hüttel SV, Müller D, Schäfer DG, Vormittag S, Hilbi H, Maniak M, Gutierrez MG, Barisch C. ER-dependent membrane repair of mycobacteria-induced vacuole damage. mBio 2023; 14:e0094323. [PMID: 37676004 PMCID: PMC10653851 DOI: 10.1128/mbio.00943-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/13/2023] [Indexed: 09/08/2023] Open
Abstract
IMPORTANCE Tuberculosis still remains a global burden and is one of the top infectious diseases from a single pathogen. Mycobacterium tuberculosis, the causative agent, has perfected many ways to replicate and persist within its host. While mycobacteria induce vacuole damage to evade the toxic environment and eventually escape into the cytosol, the host recruits repair machineries to restore the MCV membrane. However, how lipids are delivered for membrane repair is poorly understood. Using advanced fluorescence imaging and volumetric correlative approaches, we demonstrate that this involves the recruitment of the endoplasmic reticulum (ER)-Golgi lipid transfer protein OSBP8 in the Dictyostelium discoideum/Mycobacterium marinum system. Strikingly, depletion of OSBP8 affects lysosomal function accelerating mycobacterial growth. This indicates that an ER-dependent repair pathway constitutes a host defense mechanism against intracellular pathogens such as M. tuberculosis.
Collapse
Affiliation(s)
- Aby Anand
- Division of Molecular Infection Biology, Department of Biology & Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Anna-Carina Mazur
- Division of Molecular Infection Biology, Department of Biology & Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Patricia Rosell-Arevalo
- Host–Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Rico Franzkoch
- Integrated Bioimaging Facility, Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Leonhard Breitsprecher
- Integrated Bioimaging Facility, Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Stevanus A. Listian
- Division of Molecular Infection Biology, Department of Biology & Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Sylvana V. Hüttel
- Division of Molecular Infection Biology, Department of Biology & Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Danica Müller
- Division of Molecular Infection Biology, Department of Biology & Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Deise G. Schäfer
- Division of Molecular Infection Biology, Department of Biology & Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
| | - Simone Vormittag
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Markus Maniak
- Department of Cell Biology, University of Kassel, Kassel, Germany
| | - Maximiliano G. Gutierrez
- Host–Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Caroline Barisch
- Division of Molecular Infection Biology, Department of Biology & Center of Cellular Nanoanalytics, University of Osnabrück, Osnabrück, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Division of Host-Microbe Interactome, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| |
Collapse
|
7
|
Krishnan V, Nath S, Nair P, Das B. Mycobacterium tuberculosis and its clever approaches to escape the deadly macrophage. World J Microbiol Biotechnol 2023; 39:300. [PMID: 37667129 DOI: 10.1007/s11274-023-03735-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/19/2023] [Indexed: 09/06/2023]
Abstract
Mycobacterium tuberculosis (Mt.b), a deadly disease causer, is a facultative parasite. This microorganism has developed several methods to defend itself, once internalized within specialised vacuoles in the macrophages. A wide array of receptors like the complement receptor mannose receptors, scavenger receptor assists the entry of the microbe within the phagocytic macrophages. However, Mt.b is clever enough to protect itself from the hostile environment of the macrophage thereby prevailing within it. The microbe can efficiently inhibit processes like phagosome-lysosome fusion, acidification of phagosomes, release of proinflammatory cytokines and stop crucial events like apoptosis. Additionally, it also adopts resistance to killing by reactive oxygen intermediates and reactive nitrogen intermediates. There are multiple genes both in host and the pathogen which are involved in this successful survival of Mt.b. The regulation of phagolysosome fusion is mediated by proteins such as Coronin, TlyA, SapM, PnkG, EsxH. The microbe has certain mechanisms to even acquire iron from the host cell, to withstand iron deprivation as a mode of host's defence mechanism. This review focuses on the various defensive adaptations acquired by Mt.b for fighting against the deprived conditions existing within the macrophages and their capability of proliferating successfully within it, thereby resulting in a diseased condition.
Collapse
Affiliation(s)
- Vinaya Krishnan
- Department of Biotechnology, Mount Carmel College Autonomous, Bengaluru, 560052, India
| | | | - Preetha Nair
- Department of Biotechnology, Mount Carmel College Autonomous, Bengaluru, 560052, India
| | - Bannhi Das
- Department of Biotechnology, Mount Carmel College Autonomous, Bengaluru, 560052, India.
| |
Collapse
|
8
|
Remtulla AAN, Huber RJ. The conserved cellular roles of CLN proteins: Novel insights from Dictyostelium discoideum. Eur J Cell Biol 2023; 102:151305. [PMID: 36917916 DOI: 10.1016/j.ejcb.2023.151305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), collectively referred to as Batten disease, are a group of fatal neurodegenerative disorders that primarily affect children. The etiology of Batten disease is linked to mutations in 13 genes that encode distinct CLN proteins, whose functions have yet to be fully elucidated. The social amoeba Dictyostelium discoideum has been adopted as an efficient and powerful model system for studying the diverse cellular roles of CLN proteins. The genome of D. discoideum encodes several homologs of human CLN proteins, and a growing body of literature supports the conserved roles and networking of CLN proteins in D. discoideum and humans. In humans, CLN proteins have diverse cellular roles related to autophagy, signal transduction, lipid homeostasis, lysosomal ion homeostasis, and intracellular trafficking. Recent work also indicates that CLN proteins play an important role in protein secretion. Remarkably, many of these findings have found parallels in studies with D. discoideum. Accordingly, this review will highlight the translatable value of novel work with D. discoideum in the field of NCL research and propose further avenues of research using this biomedical model organism for studying the NCLs.
Collapse
Affiliation(s)
- Adam A N Remtulla
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Robert J Huber
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada; Department of Biology, Trent University, Peterborough, Ontario, Canada.
| |
Collapse
|
9
|
Barisch C, Holthuis JCM, Cosentino K. Membrane damage and repair: a thin line between life and death. Biol Chem 2023; 404:467-490. [PMID: 36810295 DOI: 10.1515/hsz-2022-0321] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
Bilayered membranes separate cells from their surroundings and form boundaries between intracellular organelles and the cytosol. Gated transport of solutes across membranes enables cells to establish vital ion gradients and a sophisticated metabolic network. However, an advanced compartmentalization of biochemical reactions makes cells also particularly vulnerable to membrane damage inflicted by pathogens, chemicals, inflammatory responses or mechanical stress. To avoid potentially lethal consequences of membrane injuries, cells continuously monitor the structural integrity of their membranes and readily activate appropriate pathways to plug, patch, engulf or shed the damaged membrane area. Here, we review recent insights into the cellular mechanisms that underly an effective maintenance of membrane integrity. We discuss how cells respond to membrane lesions caused by bacterial toxins and endogenous pore-forming proteins, with a primary focus on the intimate crosstalk between membrane proteins and lipids during wound formation, detection and elimination. We also discuss how a delicate balance between membrane damage and repair determines cell fate upon bacterial infection or activation of pro-inflammatory cell death pathways.
Collapse
Affiliation(s)
- Caroline Barisch
- Molecular Infection Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Joost C M Holthuis
- Molecular Cell Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Katia Cosentino
- Molecular Cell Biophysics Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| |
Collapse
|
10
|
Storey CL, Williams RSB, Fisher PR, Annesley SJ. Dictyostelium discoideum: A Model System for Neurological Disorders. Cells 2022; 11:cells11030463. [PMID: 35159273 PMCID: PMC8833889 DOI: 10.3390/cells11030463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Background: The incidence of neurological disorders is increasing due to population growth and extended life expectancy. Despite advances in the understanding of these disorders, curative strategies for treatment have not yet eventuated. In part, this is due to the complexities of the disorders and a lack of identification of their specific underlying pathologies. Dictyostelium discoideum has provided a useful, simple model to aid in unraveling the complex pathological characteristics of neurological disorders including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, neuronal ceroid lipofuscinoses and lissencephaly. In addition, D. discoideum has proven to be an innovative model for pharmaceutical research in the neurological field. Scope of review: This review describes the contributions of D. discoideum in the field of neurological research. The continued exploration of proteins implicated in neurological disorders in D. discoideum may elucidate their pathological roles and fast-track curative therapeutics.
Collapse
Affiliation(s)
- Claire Louise Storey
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
| | - Robin Simon Brooke Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK;
| | - Paul Robert Fisher
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
| | - Sarah Jane Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
- Correspondence: ; Tel.: +61-394-791-412
| |
Collapse
|
11
|
Filić V, Mijanović L, Putar D, Talajić A, Ćetković H, Weber I. Regulation of the Actin Cytoskeleton via Rho GTPase Signalling in Dictyostelium and Mammalian Cells: A Parallel Slalom. Cells 2021; 10:1592. [PMID: 34202767 PMCID: PMC8305917 DOI: 10.3390/cells10071592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 01/15/2023] Open
Abstract
Both Dictyostelium amoebae and mammalian cells are endowed with an elaborate actin cytoskeleton that enables them to perform a multitude of tasks essential for survival. Although these organisms diverged more than a billion years ago, their cells share the capability of chemotactic migration, large-scale endocytosis, binary division effected by actomyosin contraction, and various types of adhesions to other cells and to the extracellular environment. The composition and dynamics of the transient actin-based structures that are engaged in these processes are also astonishingly similar in these evolutionary distant organisms. The question arises whether this remarkable resemblance in the cellular motility hardware is accompanied by a similar correspondence in matching software, the signalling networks that govern the assembly of the actin cytoskeleton. Small GTPases from the Rho family play pivotal roles in the control of the actin cytoskeleton dynamics. Indicatively, Dictyostelium matches mammals in the number of these proteins. We give an overview of the Rho signalling pathways that regulate the actin dynamics in Dictyostelium and compare them with similar signalling networks in mammals. We also provide a phylogeny of Rho GTPases in Amoebozoa, which shows a variability of the Rho inventories across different clades found also in Metazoa.
Collapse
Affiliation(s)
- Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| | | | | | | | | | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| |
Collapse
|
12
|
Subhash N, Sundaramurthy V. Advances in host-based screening for compounds with intracellular anti-mycobacterial activity. Cell Microbiol 2021; 23:e13337. [PMID: 33813790 DOI: 10.1111/cmi.13337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022]
Abstract
Intracellular pathogens interact with host systems in intimate ways to sustain a pathogenic lifestyle. Consequently, these interactions can potentially be targets of host-directed interventions against infectious diseases. In case of tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis (Mtb), while effective anti-tubercular compounds are available, the long treatment duration and emerging drug resistance necessitate identification of new class of molecules with anti-TB activity, as well as new treatment strategies. A significant part of the effort in finding new anti-TB drugs is focused on bacterial targets in bacterial systems. However, the host environment plays a major role in pathogenesis mechanisms and must be considered actively in these efforts. On the one hand, the bacterial origin targets must be relevant and accessible in the host, while on the other hand, new host origin targets required for the bacterial survival can be targeted. Such targets are good candidates for host-directed therapeutics, a strategy gaining traction as an adjunct in TB treatment. In this review, we will summarise the screening platforms used to identify compounds with anti-tubercular activities inside different host environments and outline recent technical advances in these platforms. Finally, while the examples given are specific to mycobacteria, the methods and principles outlined are broadly applicable to most intracellular infections.
Collapse
Affiliation(s)
- Neeraja Subhash
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India.,SASTRA University, Thanjavur, India
| | | |
Collapse
|
13
|
Zn 2+ Intoxication of Mycobacterium marinum during Dictyostelium discoideum Infection Is Counteracted by Induction of the Pathogen Zn 2+ Exporter CtpC. mBio 2021; 12:mBio.01313-20. [PMID: 33531393 PMCID: PMC7858047 DOI: 10.1128/mbio.01313-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Microelements are essential for the function of the innate immune system. A deficiency in zinc or copper results in an increased susceptibility to bacterial infections. Macrophages use diverse strategies to restrict intracellular pathogens, including either depriving the bacteria of (micro)nutrients such as transition metals or intoxicating them via metal accumulation. Little is known about the chemical warfare between Mycobacterium marinum, a close relative of Mycobacterium tuberculosis (Mtb), and its hosts. We use the professional phagocyte Dictyostelium discoideum to investigate the role of Zn2+ during M. marinum infection. We show that M. marinum senses toxic levels of Zn2+ and responds by upregulating one of its isoforms of the Zn2+ efflux transporter CtpC. Deletion of ctpC (MMAR_1271) leads to growth inhibition in broth supplemented with Zn2+ as well as reduced intracellular growth. Both phenotypes were fully rescued by constitutive ectopic expression of the Mtb CtpC orthologue demonstrating that MMAR_1271 is the functional CtpC Zn2+ efflux transporter in M. marinum. Infection leads to the accumulation of Zn2+ inside the Mycobacterium-containing vacuole (MCV), achieved by the induction and recruitment of the D. discoideum Zn2+ efflux pumps ZntA and ZntB. In cells lacking ZntA, there is further attenuation of M. marinum growth, presumably due to a compensatory efflux of Zn2+ into the MCV, carried out by ZntB, the main Zn2+ transporter in endosomes and phagosomes. Counterintuitively, bacterial growth is also impaired in zntB KO cells, in which MCVs appear to accumulate less Zn2+ than in wild-type cells, suggesting restriction by other Zn2+-mediated mechanisms. Absence of CtpC further epistatically attenuates the intracellular proliferation of M. marinum in zntA and zntB KO cells, confirming that mycobacteria face noxious levels of Zn2+.
Collapse
|
14
|
Augenstreich J, Briken V. Host Cell Targets of Released Lipid and Secreted Protein Effectors of Mycobacterium tuberculosis. Front Cell Infect Microbiol 2020; 10:595029. [PMID: 33194845 PMCID: PMC7644814 DOI: 10.3389/fcimb.2020.595029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a very successful pathogen, strictly adapted to humans and the cause of tuberculosis. Its success is associated with its ability to inhibit host cell intrinsic immune responses by using an arsenal of virulence factors of different nature. It has evolved to synthesize a series of complex lipids which form an outer membrane and may also be released to enter host cell membranes. In addition, secreted protein effectors of Mtb are entering the host cell cytosol to interact with host cell proteins. We briefly discuss the current model, involving the ESX-1 type seven secretion system and the Mtb lipid phthiocerol dimycoserosate (PDIM), of how Mtb creates pores in the phagosomal membrane to allow Mtb proteins to access to the host cell cytosol. We provide an exhaustive list of Mtb secreted proteins that have effector functions. They modify (mostly inhibit but sometimes activate) host cell pathways such as: phagosome maturation, cell death, cytokine response, xenophagy, reactive oxygen species (ROS) response via NADPH oxidase 2 (NOX2), nitric oxide (NO) response via NO Synthase 2 (NOS2) and antigen presentation via MHC class I and class II molecules. We discuss the host cell targets for each lipid and protein effector and the importance of the Mtb effector for virulence of the bacterium.
Collapse
Affiliation(s)
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| |
Collapse
|
15
|
Buckley CM, Pots H, Gueho A, Vines JH, Munn CJ, Phillips BA, Gilsbach B, Traynor D, Nikolaev A, Soldati T, Parnell AJ, Kortholt A, King JS. Coordinated Ras and Rac Activity Shapes Macropinocytic Cups and Enables Phagocytosis of Geometrically Diverse Bacteria. Curr Biol 2020; 30:2912-2926.e5. [PMID: 32531280 PMCID: PMC7416115 DOI: 10.1016/j.cub.2020.05.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/20/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022]
Abstract
Engulfment of extracellular material by phagocytosis or macropinocytosis depends on the ability of cells to generate specialized cup-shaped protrusions. To effectively capture and internalize their targets, these cups are organized into a ring or ruffle of actin-driven protrusion encircling a non-protrusive interior domain. These functional domains depend on the combined activities of multiple Ras and Rho family small GTPases, but how their activities are integrated and differentially regulated over space and time is unknown. Here, we show that the amoeba Dictyostelium discoideum coordinates Ras and Rac activity using the multidomain protein RGBARG (RCC1, RhoGEF, BAR, and RasGAP-containing protein). We find RGBARG uses a tripartite mechanism of Ras, Rac, and phospholipid interactions to localize at the protruding edge and interface with the interior of both macropinocytic and phagocytic cups. There, we propose RGBARG shapes the protrusion by expanding Rac activation at the rim while suppressing expansion of the active Ras interior domain. Consequently, cells lacking RGBARG form enlarged, flat interior domains unable to generate large macropinosomes. During phagocytosis, we find that disruption of RGBARG causes a geometry-specific defect in engulfing rod-shaped bacteria and ellipsoidal beads. This demonstrates the importance of coordinating small GTPase activities during engulfment of more complex shapes and thus the full physiological range of microbes, and how this is achieved in a model professional phagocyte. We identify a new regulator that shapes macropinocytic and phagocytic cups Shaping protrusions into cups requires differential regulation of Ras and Rac Cups are organized by integrating interactions with phospholipids and multiple GTPases Defective cup formation causes a target shape-specific defect in phagocytosis
Collapse
Affiliation(s)
- Catherine M Buckley
- Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TT, UK
| | - Henderikus Pots
- Department of Cell Biochemistry, University of Groningen, Groningen 9747 AG, Netherlands
| | - Aurelie Gueho
- Department of Biochemistry, Faculty of Sciences, Sciences II, University of Geneva, CH-1211-Geneva-4, Switzerland
| | - James H Vines
- Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TT, UK
| | - Christopher J Munn
- Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TT, UK
| | - Ben A Phillips
- Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TT, UK
| | - Bernd Gilsbach
- German Centre for Neurodegenerative Diseases, Tübingen 72076, Germany
| | - David Traynor
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Anton Nikolaev
- Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TT, UK
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Sciences, Sciences II, University of Geneva, CH-1211-Geneva-4, Switzerland
| | - Andrew J Parnell
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Groningen 9747 AG, Netherlands
| | - Jason S King
- Department of Biomedical Sciences, University of Sheffield, Sheffield S10 2TT, UK.
| |
Collapse
|
16
|
Hanna N, Kicka S, Chiriano G, Harrison C, Sakouhi HO, Trofimov V, Kranjc A, Nitschke J, Pagni M, Cosson P, Hilbi H, Scapozza L, Soldati T. Identification of Anti- Mycobacterium and Anti- Legionella Compounds With Potential Distinctive Structural Scaffolds From an HD-PBL Using Phenotypic Screens in Amoebae Host Models. Front Microbiol 2020; 11:266. [PMID: 32153546 PMCID: PMC7047896 DOI: 10.3389/fmicb.2020.00266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
Tubercular Mycobacteria and Legionella pneumophila are the causative agents of potentially fatal respiratory diseases due to their intrinsic pathogenesis but also due to the emergence of antibiotic resistance that limits treatment options. The aim of our study was to explore the antimicrobial activity of a small ligand-based chemical library of 1255 structurally diverse compounds. These compounds were screened in a combination of three assays, two monitoring the intracellular growth of the pathogenic bacteria, Mycobacterium marinum and L. pneumophila, and one assessing virulence of M. marinum. We set up these assays using two amoeba strains, the genetically tractable social amoeba Dictyostelium discoideum and the free-living amoeba Acanthamoeba castellanii. In summary, 64 (5.1%) compounds showed anti-infective/anti-virulence activity in at least one of the three assays. The intracellular assays hit rate varied between 1.7% (n = 22) for M. marinum and 2.8% (n = 35) for L. pneumophila with seven compounds in common for both pathogens. In parallel, 1.2% (n = 15) of the tested compounds were able to restore D. discoideum growth in the presence of M. marinum spiked in a lawn of food bacteria. We also validated the generality of the hits identified in the A. castellanii–M. marinum anti-infective screen using the D. discoideum–M. marinum host–pathogen model. The characterization of anti-infective and antibacterial hits in the latter infection model revealed compounds able to reduce intracellular growth more than 50% at 30 μM. Moreover, the chemical space and physico-chemical properties of the anti-M. marinum hits were compared to standard and candidate Mycobacterium tuberculosis (Mtb) drugs using ChemGPS-NP. A principle component analysis identified separate clusters for anti-M. marinum and anti-L. pneumophila hits unveiling the potentially new physico-chemical properties of these hits compared to standard and candidate M. tuberculosis drugs. Our studies underscore the relevance of using a combination of low-cost and low-complexity assays with full 3R compliance in concert with a rationalized focused library of compounds to identify new chemical scaffolds and to dissect some of their properties prior to taking further steps toward compound development.
Collapse
Affiliation(s)
- Nabil Hanna
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Sébastien Kicka
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Gianpaolo Chiriano
- Pharmaceutical Biochemistry/Chemistry, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Christopher Harrison
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, Munich, Germany
| | - Hajer Ouertatani Sakouhi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Valentin Trofimov
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Agata Kranjc
- Pharmaceutical Biochemistry/Chemistry, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Jahn Nitschke
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Marco Pagni
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry/Chemistry, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
17
|
Knobloch P, Koliwer-Brandl H, Arnold FM, Hanna N, Gonda I, Adenau S, Personnic N, Barisch C, Seeger MA, Soldati T, Hilbi H. Mycobacterium marinum produces distinct mycobactin and carboxymycobactin siderophores to promote growth in broth and phagocytes. Cell Microbiol 2020; 22:e13163. [PMID: 31945239 DOI: 10.1111/cmi.13163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023]
Abstract
Mycobacterium marinum is a model organism for pathogenic Mycobacterium species, including Mycobacterium tuberculosis, the causative agent of tuberculosis. These pathogens enter phagocytes and replicate within the Mycobacterium-containing vacuole, possibly followed by vacuole exit and growth in the host cell cytosol. Mycobacteria release siderophores called mycobactins to scavenge iron, an essential yet poorly soluble and available micronutrient. To investigate the role of M. marinum mycobactins, we purified by organic solvent extraction and identified by mass spectrometry the lipid-bound mycobactin (MBT) and the water-soluble variant carboxymycobactin (cMBT). Moreover, we generated by specialised phage transduction a defined M. marinum ΔmbtB deletion mutant predicted to be defective for mycobactin production. The M. marinum ΔmbtB mutant strain showed a severe growth defect in broth and phagocytes, which was partially complemented by supplying the mbtB gene on a plasmid. Furthermore, purified Fe-MBT or Fe-cMBT improved the growth of wild type as well as ΔmbtB mutant bacteria on minimal plates, but only Fe-cMBT promoted the growth of wild-type M. marinum during phagocyte infection. Finally, the intracellular growth of M. marinum ΔmbtB in Acanthamoeba castellanii amoebae was restored by coinfection with wild-type bacteria. Our study identifies and characterises the M. marinum MBT and cMBT siderophores and reveals the requirement of mycobactins for extra- and intracellular growth of the pathogen.
Collapse
Affiliation(s)
- Paulina Knobloch
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | | | - Fabian M Arnold
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Nabil Hanna
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Imre Gonda
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Sophia Adenau
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Nicolas Personnic
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Caroline Barisch
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
18
|
Kelava I, Marecic V, Fucak P, Ivek E, Kolaric D, Ozanic M, Mihelcic M, Santic M. Optimisation of External Factors for the Growth of Francisella novicida within Dictyostelium discoideum. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6826983. [PMID: 32090107 PMCID: PMC6996686 DOI: 10.1155/2020/6826983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/04/2020] [Indexed: 02/06/2023]
Abstract
The amoeba Dictyostelium discoideum has been used as a model organism to study host-pathogen interaction in many intracellular bacteria. Francisella tularensis is a Gram-negative, highly infectious bacterium that causes the zoonotic disease tularemia. The bacterium is able to replicate in different phagocytic and nonphagocytic cells including mammalian, amoebae, and arthropod cells. The aim of this study was to determine the optimal temperature and infection dose in the interaction of Francisella novicida with D. discoideum in order to establish a model of Francisella infection in the social amoeba. The amoeba cells were infected with a different multiplicity of infection (5, 10, and 100) and incubated at different temperatures (22, 25, 27, 30, and 37°C). The number of intracellular bacteria within D. discoideum, as well as cytotoxicity, was determined at 2, 4, 24, 48, and 72 hours after infection. Our results showed that the optimal temperature for Francisella intracellular replication within amoeba is 30°C with the MOI of 10. We can conclude that this MOI and temperature induced the optimal growth of bacteria in Dictyostelium with low cytotoxicity.
Collapse
Affiliation(s)
- Ina Kelava
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Valentina Marecic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Petra Fucak
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Elena Ivek
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Dominik Kolaric
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Mateja Ozanic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Mirna Mihelcic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marina Santic
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
19
|
Butler RE, Smith AA, Mendum TA, Chandran A, Wu H, Lefrançois L, Chambers M, Soldati T, Stewart GR. Mycobacterium bovis uses the ESX-1 Type VII secretion system to escape predation by the soil-dwelling amoeba Dictyostelium discoideum. ISME JOURNAL 2020; 14:919-930. [PMID: 31896783 PMCID: PMC7082363 DOI: 10.1038/s41396-019-0572-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/26/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
Mycobacterium bovis is the causative agent of bovine tuberculosis and the predominant cause of zoonotic tuberculosis in people. Bovine tuberculosis occurs in farmed cattle but also in a variety of wild animals, which form a reservoir of infection. Although direct transmission of tuberculosis occurs between mammals, the low frequency of contact between different host species and abundant shedding of bacilli by infected animals suggests an infectious route via environmental contamination. Other intracellular pathogens that transmit via the environment deploy strategies to survive or exploit predation by environmental amoebae. To explore if M. bovis has this capability, we investigated its interactions with the soil and dung-dwelling amoeba, Dictyostelium discoideum. We demonstrated that M. bovis evades phagocytosis and destruction by D. discoideum and actively transits through the amoeba using the ESX-1 Type VII Secretion System as part of a programme of mechanisms, many of which have been co-opted as virulence factors in the mammalian host. This capacity of M. bovis to utilise an environmental stage between mammalian hosts may enhance its transmissibility. In addition, our data provide molecular evidence to support an evolutionary role for amoebae as training grounds for the pathogenic M. tuberculosis complex.
Collapse
Affiliation(s)
- Rachel E Butler
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Alex A Smith
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Tom A Mendum
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Aneesh Chandran
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Huihai Wu
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Louise Lefrançois
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, Geneva, Switzerland
| | - Mark Chambers
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, UK
| | - Thierry Soldati
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, Geneva, Switzerland
| | - Graham R Stewart
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK.
| |
Collapse
|
20
|
THP-1 and Dictyostelium Infection Models for Screening and Characterization of Anti-Mycobacterium abscessus Hit Compounds. Antimicrob Agents Chemother 2019; 64:AAC.01601-19. [PMID: 31636068 DOI: 10.1128/aac.01601-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/10/2019] [Indexed: 12/23/2022] Open
Abstract
!!NCR1!! presents a great challenge to antimycobacterial therapy due to its innate resistance against most antibiotics. M. abscessus is able to grow intracellularly in human macrophages, suggesting that intracellular models can facilitate drug discovery. Thus, we have developed two host cell models: human macrophages for use in a new high-content screening method for M. abscessus growth and a Dictyostelium discoideum infection model with the potential to simplify downstream genetic analysis of host cell factors. A screen of 568 antibiotics for activity against intracellular M. abscessus led to the identification of two hit compounds with distinct growth inhibition. A collection of 317 human kinase inhibitors was analyzed, with the results yielding three compounds with an inhibitory effect on mycobacterial growth, strengthening the notion that host-directed therapy can be applied for M. abscessus.
Collapse
|
21
|
Kjellin J, Pränting M, Bach F, Vaid R, Edelbroek B, Li Z, Hoeppner MP, Grabherr M, Isberg RR, Hagedorn M, Söderbom F. Investigation of the host transcriptional response to intracellular bacterial infection using Dictyostelium discoideum as a host model. BMC Genomics 2019; 20:961. [PMID: 31823727 PMCID: PMC6902447 DOI: 10.1186/s12864-019-6269-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND During infection by intracellular pathogens, a highly complex interplay occurs between the infected cell trying to degrade the invader and the pathogen which actively manipulates the host cell to enable survival and proliferation. Many intracellular pathogens pose important threats to human health and major efforts have been undertaken to better understand the host-pathogen interactions that eventually determine the outcome of the infection. Over the last decades, the unicellular eukaryote Dictyostelium discoideum has become an established infection model, serving as a surrogate macrophage that can be infected with a wide range of intracellular pathogens. In this study, we use high-throughput RNA-sequencing to analyze the transcriptional response of D. discoideum when infected with Mycobacterium marinum and Legionella pneumophila. The results were compared to available data from human macrophages. RESULTS The majority of the transcriptional regulation triggered by the two pathogens was found to be unique for each bacterial challenge. Hallmark transcriptional signatures were identified for each infection, e.g. induction of endosomal sorting complexes required for transport (ESCRT) and autophagy genes in response to M. marinum and inhibition of genes associated with the translation machinery and energy metabolism in response to L. pneumophila. However, a common response to the pathogenic bacteria was also identified, which was not induced by non-pathogenic food bacteria. Finally, comparison with available data sets of regulation in human monocyte derived macrophages shows that the elicited response in D. discoideum is in many aspects similar to what has been observed in human immune cells in response to Mycobacterium tuberculosis and L. pneumophila. CONCLUSIONS Our study presents high-throughput characterization of D. discoideum transcriptional response to intracellular pathogens using RNA-seq. We demonstrate that the transcriptional response is in essence distinct to each pathogen and that in many cases, the corresponding regulation is recapitulated in human macrophages after infection by mycobacteria and L. pneumophila. This indicates that host-pathogen interactions are evolutionary conserved, derived from the early interactions between free-living phagocytic cells and bacteria. Taken together, our results strengthen the use of D. discoideum as a general infection model.
Collapse
Affiliation(s)
- Jonas Kjellin
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| | - Maria Pränting
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.,Present Address: ReAct - Action on Antibiotic Resistance, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Frauke Bach
- Section Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,Present Address: Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roshan Vaid
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Bart Edelbroek
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Zhiru Li
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA.,Present Address: New England Biolabs, Ipswich, MA, USA
| | - Marc P Hoeppner
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Manfred Grabherr
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ralph R Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Monica Hagedorn
- Section Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.,Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Group Ribogenetics, Bremen, Germany
| | - Fredrik Söderbom
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
22
|
Huber RJ, Hughes SM, Liu W, Morgan A, Tuxworth RI, Russell C. The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165614. [PMID: 31783156 DOI: 10.1016/j.bbadis.2019.165614] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
The NCLs (neuronal ceroid lipofuscinosis) are forms of neurodegenerative disease that affect people of all ages and ethnicities but are most prevalent in children. Commonly known as Batten disease, this debilitating neurological disorder is comprised of 13 different subtypes that are categorized based on the particular gene that is mutated (CLN1-8, CLN10-14). The pathological mechanisms underlying the NCLs are not well understood due to our poor understanding of the functions of NCL proteins. Only one specific treatment (enzyme replacement therapy) is approved, which is for the treating the brain in CLN2 disease. Hence there remains a desperate need for further research into disease-modifying treatments. In this review, we present and evaluate the genes, proteins and studies performed in the social amoeba, nematode, fruit fly, zebrafish, mouse and large animals pertinent to NCL. In particular, we highlight the use of multicellular model organisms to study NCL protein function, pathology and pathomechanisms. Their use in testing novel therapeutic approaches is also presented. With this information, we highlight how future research in these systems may be able to provide new insight into NCL protein functions in human cells and aid in the development of new therapies.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Wenfei Liu
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Russell
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
23
|
Infection by Anaplasma phagocytophilum Requires Recruitment of Low-Density Lipoprotein Cholesterol by Flotillins. mBio 2019; 10:mBio.02783-18. [PMID: 30914515 PMCID: PMC6437059 DOI: 10.1128/mbio.02783-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Anaplasma phagocytophilum is an obligatory intracellular bacterium that proliferates in membrane-bound inclusions. A. phagocytophilum is dependent on cholesterol and acquire cholesterol from low-density lipoprotein (LDL) endocytosed by mammalian host cells. The mechanism of cholesterol transport to Anaplasma inclusions, however, is not fully understood. Flotillin-1 (FLOT1) and FLOT2 are cholesterol-associated membrane proteins that form a heterodimer and/or oligomer complex. Here, we found that Anaplasma infection was significantly reduced by small interfering RNA (siRNA) knockdown of FLOT1 or FLOT2. Anaplasma inclusions were encircled with small vesicles containing endogenous FLOT1 or FLOT2 or with ectopically expressed FLOT1-mCherry and FLOT2-green fluorescent protein (FLOT2-GFP). FLOT1- and FLOT2-containing vesicles were enriched with unesterified cholesterol, as indicated by labeling with filipin and aminomethyl coumarin acetic acid-conjugated theonellamide. Localization of FLOT2 to Anaplasma inclusions was dependent on cholesterol, as FLOT2-GFP bearing two mutations in the cholesterol recognition/interaction motif could not target the inclusions. The cholesterol-sequestering agent methyl-β-cyclodextrin abrogated FLOT1 localization to Anaplasma inclusions and cleared infection. FLOT2-GFP also localized to fluorescent 3,3'-dioctadecylindocarbocyanine (DiI)-LDL-containing vesicles, including those surrounding Anaplasma inclusions. FLOT2 siRNA knockdown blocked DiI-LDL trafficking to Anaplasma inclusions and reduced bacteria-associated cholesterol amount, and therefore inhibiting Anaplasma infection. Vesicles containing acid lipase, which hydrolyzes LDL cholesterol esters to free cholesterol, colocalized with FLOT2 and encircled Anaplasma inclusions, while the acid lipase inhibitor orlistat significantly inhibited Anaplasma replication. Together, the data revealed that FLOTs are crucial for Anaplasma replication in host cells, likely by aiding vesicular traffic of LDL-derived free cholesterol to Anaplasma inclusions, and suggest a new way of inhibiting Anaplasma infection.IMPORTANCE Cholesterol is essential for animal cells, but most bacteria do not depend on cholesterol and instead lack cholesterol. However, the intracellular Gram-negative bacterium Anaplasma phagocytophilum that causes human granulocytic anaplasmosis (HGA) is unusual, as it contains significant amount of cholesterol and depends on cholesterol for survival and infection. A. phagocytophilum lacks genes for cholesterol biosynthesis or modification but acquire cholesterol from host cells exclusively from the LDL uptake pathway by a yet-to-be defined mechanism. Here, we uncovered a role of cholesterol-binding proteins FLOT1 and FLOT2 in LDL-derived cholesterol trafficking to Anaplasma inclusions and cholesterol acquisition by Anaplasma species. Importantly, we found that FLOTs localize to A. phagocytophilum-containing inclusions and the compartments containing LDL, and the acid lipase inhibitor orlistat significantly inhibits Anaplasma replication. Our data suggest a fundamental role of FLOTs in intracellular vesicular transport of LDL-derived free cholesterol and may provide insight regarding a new therapeutic target for HGA treatment.
Collapse
|
24
|
López-Jiménez AT, Cardenal-Muñoz E, Leuba F, Gerstenmaier L, Barisch C, Hagedorn M, King JS, Soldati T. The ESCRT and autophagy machineries cooperate to repair ESX-1-dependent damage at the Mycobacterium-containing vacuole but have opposite impact on containing the infection. PLoS Pathog 2018; 14:e1007501. [PMID: 30596802 PMCID: PMC6329560 DOI: 10.1371/journal.ppat.1007501] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 01/11/2019] [Accepted: 12/03/2018] [Indexed: 12/21/2022] Open
Abstract
Phagocytic cells capture and kill most invader microbes within the bactericidal phagosome, but some pathogens subvert killing by damaging the compartment and escaping to the cytosol. To prevent the leakage of pathogen virulence and host defence factors, as well as bacteria escape, host cells have to contain and repair the membrane damage, or finally eliminate the cytosolic bacteria. All eukaryotic cells engage various repair mechanisms to ensure plasma membrane integrity and proper compartmentalization of organelles, including the Endosomal Sorting Complex Required for Transport (ESCRT) and autophagy machineries. We show that during infection of Dictyostelium discoideum with Mycobacterium marinum, the ESCRT-I component Tsg101, the ESCRT-III protein Snf7/Chmp4/Vps32 and the AAA-ATPase Vps4 are recruited to sites of damage at the Mycobacterium-containing vacuole. Interestingly, damage separately recruits the ESCRT and the autophagy machineries. In addition, the recruitment of Vps32 and Vps4 to repair sterile membrane damage depends on Tsg101 but appears independent of Ca2+. Finally, in absence of Tsg101, M. marinum accesses prematurely the cytosol, where the autophagy machinery restricts its growth. We propose that ESCRT has an evolutionary conserved function to repair small membrane damage and to contain intracellular pathogens in intact compartments. Upon uptake by a host cell, intracellular pathogens reside in a membranous compartment called phagosome. Within the phagosome, microbes are protected from the extracellular and cytosolic immune defences, whilst access to nutrients is limited. Some microbes gain access to the host cytosol by damaging the membrane of the phagosome, a step preceding egress and dissemination. Autophagy, a major catabolic pathway in eukaryotes, has been previously proposed to contribute to autonomous cell defence and to repair the membrane damage induced by intracellular pathogens. Here, we provide evidence that, in Dictyostelium discoideum, autophagy does not work alone in the containment of vacuolar mycobacteria, but it operates together with the Endosomal Sorting Complex Required for Transport (ESCRT), a protein machinery recently shown to repair endolysosomal damage. We demonstrate that the membrane perforations induced by the ESX-1 secretion system of Mycobacterium marinum are targeted by both ESCRT and autophagy, which seal the damaged vacuole. We propose that ESCRT might mend small membrane pores, whilst autophagy patches larger cumulative wounds. Interestingly, and contrary to what has been described in mammalian cells for ESCRT-dependent endolysosomal repair, in D. discoideum, repair of sterile membrane damage appears not to require Ca2+. The evolutionary conservation of the function of ESCRT in membrane repair suggests that this machinery plays an ancestral and widespread role to contain a broad range of intracellular pathogens.
Collapse
Affiliation(s)
- Ana T. López-Jiménez
- Department of Biochemistry, Faculty of Science, University of Geneva, Sciences II, Geneva, Switzerland
| | - Elena Cardenal-Muñoz
- Department of Biochemistry, Faculty of Science, University of Geneva, Sciences II, Geneva, Switzerland
| | - Florence Leuba
- Department of Biochemistry, Faculty of Science, University of Geneva, Sciences II, Geneva, Switzerland
| | - Lilli Gerstenmaier
- Section Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Caroline Barisch
- Department of Biochemistry, Faculty of Science, University of Geneva, Sciences II, Geneva, Switzerland
| | - Monica Hagedorn
- Life Sciences and Chemistry, Jacobs University Bremen gGmbH, group Ribogenetics, Bremen, Germany
| | - Jason S. King
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, Sciences II, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
25
|
Sattler N, Bosmani C, Barisch C, Guého A, Gopaldass N, Dias M, Leuba F, Bruckert F, Cosson P, Soldati T. Functions of the Dictyostelium LIMP-2 and CD36 homologues in bacteria uptake, phagolysosome biogenesis and host cell defence. J Cell Sci 2018; 131:jcs218040. [PMID: 30054386 DOI: 10.1242/jcs.218040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/17/2018] [Indexed: 12/17/2023] Open
Abstract
Phagocytic cells take up, kill and digest microbes by a process called phagocytosis. To this end, these cells bind the particle, rearrange their actin cytoskeleton, and orchestrate transport of digestive factors to the particle-containing phagosome. The mammalian lysosomal membrane protein LIMP-2 (also known as SCARB2) and CD36, members of the class B of scavenger receptors, play a crucial role in lysosomal enzyme trafficking and uptake of mycobacteria, respectively, and generally in host cell defences against intracellular pathogens. Here, we show that the Dictyostelium discoideum LIMP-2 homologue LmpA regulates phagocytosis and phagolysosome biogenesis. The lmpA knockdown mutant is highly affected in actin-dependent processes, such as particle uptake, cellular spreading and motility. Additionally, the cells are severely impaired in phagosomal acidification and proteolysis, likely explaining the higher susceptibility to infection with the pathogenic bacterium Mycobacterium marinum, a close cousin of the human pathogen Mycobacterium tuberculosis Furthermore, we bring evidence that LmpB is a functional homologue of CD36 and specifically mediates uptake of mycobacteria. Altogether, these data indicate a role for LmpA and LmpB, ancestors of the family of which LIMP-2 and CD36 are members, in lysosome biogenesis and host cell defence.
Collapse
Affiliation(s)
- Natascha Sattler
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Cristina Bosmani
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Caroline Barisch
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Aurélie Guého
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Navin Gopaldass
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Marco Dias
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, 1 rue Michel Servet, CH-1211 Geneva 4, Switzerland
| | - Florence Leuba
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| | - Franz Bruckert
- Laboratoire des Matériaux et du Génie Physique (LMGP), Grenoble Institute of Technology, 3 parvis Louis Néel, BP 257, 38016 Grenoble cedex 1, France
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, 1 rue Michel Servet, CH-1211 Geneva 4, Switzerland
| | - Thierry Soldati
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211 Genève-4, Switzerland
| |
Collapse
|
26
|
Lai LY, Lin TL, Chen YY, Hsieh PF, Wang JT. Role of the Mycobacterium marinum ESX-1 Secretion System in Sliding Motility and Biofilm Formation. Front Microbiol 2018; 9:1160. [PMID: 29899738 PMCID: PMC5988883 DOI: 10.3389/fmicb.2018.01160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/14/2018] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium marinum is a close relative of Mycobacterium tuberculosis that can cause systemic tuberculosis-like infections in ectotherms and skin infections in humans. Sliding motility correlates with biofilm formation and virulence in most bacteria. In this study, we used a sliding motility assay to screen 2,304 transposon mutants of M. marinum NTUH-M6885 and identified five transposon mutants with decreased sliding motility. Transposons that interrupted the type VII secretion system (T7SS) ESX-1-related genes, espE (mmar_5439), espF (mmar_5440), and eccA1 (mmar_5443), were present in 3 mutants. We performed reverse-transcription polymerase chain reaction to verify genes from mmar_5438 to mmar_5450, which were found to belong to a single transcriptional unit. Deletion mutants of espE, espF, espG (mmar_5441), and espH (mmar_5442) displayed significant attenuation regarding sliding motility and biofilm formation. M. marinum NTUH-M6885 possesses a functional ESX-1 secretion system. However, deletion of espG or espH resulted in slightly decreased secretion of EsxB (which is also known as CFP-10). Thus, the M. marinum ESX-1 secretion system mediates sliding motility and is crucial for biofilm formation. These data provide new insight into M. marinum biofilm formation.
Collapse
Affiliation(s)
- Li-Yin Lai
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Lung Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Yin Chen
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Fang Hsieh
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
27
|
Quantitative Imaging Flow Cytometry of Legionella-Infected Dictyostelium Amoebae Reveals the Impact of Retrograde Trafficking on Pathogen Vacuole Composition. Appl Environ Microbiol 2018; 84:AEM.00158-18. [PMID: 29602783 DOI: 10.1128/aem.00158-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/27/2018] [Indexed: 01/15/2023] Open
Abstract
The ubiquitous environmental bacterium Legionella pneumophila survives and replicates within amoebae and human macrophages by forming a Legionella-containing vacuole (LCV). In an intricate process governed by the bacterial Icm/Dot type IV secretion system and a plethora of effector proteins, the nascent LCV interferes with a number of intracellular trafficking pathways, including retrograde transport from endosomes to the Golgi apparatus. Conserved retrograde trafficking components, such as the retromer coat complex or the phosphoinositide (PI) 5-phosphatase D. discoideum 5-phosphatase 4 (Dd5P4)/oculocerebrorenal syndrome of Lowe (OCRL), restrict intracellular replication of L. pneumophila by an unknown mechanism. Here, we established an imaging flow cytometry (IFC) approach to assess in a rapid, unbiased, and large-scale quantitative manner the role of retrograde-linked PI metabolism and actin dynamics in the LCV composition. Exploiting Dictyostelium discoideum genetics, we found that Dd5P4 modulates the acquisition of fluorescently labeled LCV markers, such as calnexin, the small GTPase Rab1 (but not Rab7 and Rab8), and retrograde trafficking components (Vps5, Vps26, Vps35). The actin-nucleating protein and retromer interactor WASH (Wiskott-Aldrich syndrome protein [WASP] and suppressor of cAMP receptor [SCAR] homologue) promotes the accumulation of Rab1 and Rab8 on LCVs. Collectively, our findings validate IFC for the quantitative and unbiased analysis of the pathogen vacuole composition and reveal the impact of retrograde-linked PI metabolism and actin dynamics on the LCV composition. The IFC approach employed here can be adapted for a molecular analysis of the pathogen vacuole composition of other amoeba-resistant pathogens.IMPORTANCELegionella pneumophila is an amoeba-resistant environmental bacterium which can cause a life-threatening pneumonia termed Legionnaires' disease. In order to replicate intracellularly, the opportunistic pathogen forms a protective compartment, the Legionella-containing vacuole (LCV). An in-depth analysis of the LCV composition and the complex process of pathogen vacuole formation is crucial for understanding the virulence of L. pneumophila Here, we established an imaging flow cytometry (IFC) approach to assess in a rapid, unbiased, and quantitative manner the accumulation of fluorescently labeled markers and probes on LCVs. Using IFC and L. pneumophila-infected Dictyostelium discoideum or defined mutant amoebae, a role for phosphoinositide (PI) metabolism, retrograde trafficking, and the actin cytoskeleton in the LCV composition was revealed. In principle, the powerful IFC approach can be used to analyze the molecular composition of any cellular compartment harboring bacterial pathogens.
Collapse
|
28
|
Mori M, Mode R, Pieters J. From Phagocytes to Immune Defense: Roles for Coronin Proteins in Dictyostelium and Mammalian Immunity. Front Cell Infect Microbiol 2018; 8:77. [PMID: 29623258 PMCID: PMC5874285 DOI: 10.3389/fcimb.2018.00077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/27/2018] [Indexed: 12/17/2022] Open
Abstract
Microbes have interacted with eukaryotic cells for as long as they have been co-existing. While many of these interactions are beneficial for both the microbe as well as the eukaryotic cell, several microbes have evolved into pathogenic species. For some of these pathogens, host cell invasion results in irreparable damage and thus host cell destruction, whereas others use the host to avoid immune detection and elimination. One of the latter pathogens is Mycobacterium tuberculosis, arguably one of the most notorious pathogens on earth. In mammalian macrophages, M. tuberculosis manages to survive within infected macrophages by avoiding intracellular degradation in lysosomes using a number of different strategies. One of these is based on the recruitment and phagosomal retention of the host protein coronin 1, that is a member of the coronin protein family and a mammalian homolog of coronin A, a protein identified in Dictyostelium. Besides mediating mycobacterial survival in macrophages, coronin 1 is also an important regulator of naïve T cell homeostasis. How, exactly, coronin 1 mediates its activity in immune cells remains unclear. While in lower eukaryotes coronins are involved in cytoskeletal regulation, the functions of the seven coronin members in mammals are less clear. Dictyostelium coronins may have maintained multiple functions, whereas the mammalian coronins may have evolved from regulators of the cytoskeleton to modulators of signal transduction. In this minireview, we will discuss the different studies that have contributed to understand the molecular and cellular functions of coronin proteins in mammals and Dictyostelium.
Collapse
Affiliation(s)
- Mayumi Mori
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Jean Pieters
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
29
|
Dhakshinamoorthy R, Bitzhenner M, Cosson P, Soldati T, Leippe M. The Saposin-Like Protein AplD Displays Pore-Forming Activity and Participates in Defense Against Bacterial Infection During a Multicellular Stage of Dictyostelium discoideum. Front Cell Infect Microbiol 2018; 8:73. [PMID: 29662839 PMCID: PMC5890168 DOI: 10.3389/fcimb.2018.00073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/27/2018] [Indexed: 11/15/2022] Open
Abstract
Due to their archaic life style and microbivor behavior, amoebae may represent a source of antimicrobial peptides and proteins. The amoebic protozoon Dictyostelium discoideum has been a model organism in cell biology for decades and has recently also been used for research on host-pathogen interactions and the evolution of innate immunity. In the genome of D. discoideum, genes can be identified that potentially allow the synthesis of a variety of antimicrobial proteins. However, at the protein level only very few antimicrobial proteins have been characterized that may interact directly with bacteria and help in fighting infection of D. discoideum with potential pathogens. Here, we focus on a large group of gene products that structurally belong to the saposin-like protein (SAPLIP) family and which members we named provisionally Apls (amoebapore-like peptides) according to their similarity to a comprehensively studied antimicrobial and cytotoxic pore-forming protein of the protozoan parasite Entamoeba histolytica. We focused on AplD because it is the only Apl gene that is reported to be primarily transcribed further during the multicellular stages such as the mobile slug stage. Upon knock-out (KO) of the gene, aplD− slugs became highly vulnerable to virulent Klebsiella pneumoniae. AplD− slugs harbored bacterial clumps in their interior and were unable to slough off the pathogen in their slime sheath. Re-expression of AplD in aplD− slugs rescued the susceptibility toward K. pneumoniae. The purified recombinant protein rAplD formed pores in liposomes and was also capable of permeabilizing the membrane of live Bacillus megaterium. We propose that the multifarious Apl family of D. discoideum comprises antimicrobial effector polypeptides that are instrumental to interact with bacteria and their phospholipid membranes. The variety of its members would allow a complementary and synergistic action against a variety of microbes, which the amoeba encounters in its environment.
Collapse
Affiliation(s)
| | - Moritz Bitzhenner
- Zoological Institute, Comparative Immunobiology, University of Kiel, Kiel, Germany
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Matthias Leippe
- Zoological Institute, Comparative Immunobiology, University of Kiel, Kiel, Germany
| |
Collapse
|
30
|
Trofimov V, Kicka S, Mucaria S, Hanna N, Ramon-Olayo F, Del Peral LVG, Lelièvre J, Ballell L, Scapozza L, Besra GS, Cox JAG, Soldati T. Antimycobacterial drug discovery using Mycobacteria-infected amoebae identifies anti-infectives and new molecular targets. Sci Rep 2018; 8:3939. [PMID: 29500372 PMCID: PMC5834492 DOI: 10.1038/s41598-018-22228-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/06/2018] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis remains a serious threat to human health world-wide, and improved efficiency of medical treatment requires a better understanding of the pathogenesis and the discovery of new drugs. In the present study, we performed a whole-cell based screen in order to complete the characterization of 168 compounds from the GlaxoSmithKline TB-set. We have established and utilized novel previously unexplored host-model systems to characterize the GSK compounds, i.e. the amoeboid organisms D. discoideum and A. castellanii, as well as a microglial phagocytic cell line, BV2. We infected these host cells with Mycobacterium marinum to monitor and characterize the anti-infective activity of the compounds with quantitative fluorescence measurements and high-content microscopy. In summary, 88.1% of the compounds were confirmed as antibiotics against M. marinum, 11.3% and 4.8% displayed strong anti-infective activity in, respectively, the mammalian and protozoan infection models. Additionally, in the two systems, 13–14% of the compounds displayed pro-infective activity. Our studies underline the relevance of using evolutionarily distant pathogen and host models in order to reveal conserved mechanisms of virulence and defence, respectively, which are potential “universal” targets for intervention. Subsequent mechanism of action studies based on generation of over-expresser M. bovis BCG strains, generation of spontaneous resistant mutants and whole genome sequencing revealed four new molecular targets, including FbpA, MurC, MmpL3 and GlpK.
Collapse
Affiliation(s)
- Valentin Trofimov
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland.,Institut Pasteur de Lille, Lille, France
| | - Sébastien Kicka
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Sabrina Mucaria
- Pharmaceutical Biochemistry/Chemistry, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Nabil Hanna
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | | | | | - Joël Lelièvre
- GSK, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Lluís Ballell
- GSK, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry/Chemistry, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Jonathan A G Cox
- School of Life & Health Sciences, Aston University, Birmingham, UK.
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
31
|
Varas MA, Riquelme-Barrios S, Valenzuela C, Marcoleta AE, Berríos-Pastén C, Santiviago CA, Chávez FP. Inorganic Polyphosphate Is Essential for Salmonella Typhimurium Virulence and Survival in Dictyostelium discoideum. Front Cell Infect Microbiol 2018; 8:8. [PMID: 29441327 PMCID: PMC5797601 DOI: 10.3389/fcimb.2018.00008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/09/2018] [Indexed: 01/26/2023] Open
Abstract
Inorganic polyphosphate (polyP) deficiency in enteric bacterial pathogens reduces their ability to invade and establish systemic infections in different hosts. For instance, inactivation of the polyP kinase gene (ppk) encoding the enzyme responsible for polyP biosynthesis reduces invasiveness and intracellular survival of Salmonella enterica serovar Typhimurium (S. Typhimurium) in epithelial cells and macrophages in vitro. In addition, the virulence in vivo of a S. Typhimurium Δppk mutant is significantly reduced in a murine infection model. In spite of these observations, the role played by polyP during the Salmonella-host interaction is not well understood. The social amoeba Dictyostelium discoideum has proven to be a useful model for studying relevant aspects of the host-pathogen interaction. In fact, many intracellular pathogens can survive within D. discoideum cells using molecular mechanisms also required to survive within macrophages. Recently, we established that S. Typhimurium is able to survive intracellularly in D. discoideum and identified relevant genes linked to virulence that are crucial for this process. The aim of this study was to determine the effect of a polyP deficiency in S. Typhimurium during its interaction with D. discoideum. To do this, we evaluated the intracellular survival of wild-type and Δppk strains of S. Typhimurium in D. discoideum and the ability of these strains to delay the social development of the amoeba. In contrast to the wild-type strain, the Δppk mutant was unable to survive intracellularly in D. discoideum and enabled the social development of the amoeba. Both phenotypes were complemented using a plasmid carrying a copy of the ppk gene. Next, we simultaneously evaluated the proteomic response of both S. Typhimurium and D. discoideum during host-pathogen interaction via global proteomic profiling. The analysis of our results allowed the identification of novel molecular signatures that give insight into Salmonella-Dictyostelium interaction. Altogether, our results indicate that inorganic polyP is essential for S. Typhimurium virulence and survival in D. discoideum. In addition, we have validated the use of global proteomic analyses to simultaneously evaluate the host-pathogen interaction of S. Typhimurium and D. discoideum. Furthermore, our infection assays using these organisms can be exploited to screen for novel anti-virulence molecules targeting inorganic polyP biosynthesis.
Collapse
Affiliation(s)
- Macarena A Varas
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Sebastián Riquelme-Barrios
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Camila Valenzuela
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Andrés E Marcoleta
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Camilo Berríos-Pastén
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Carlos A Santiviago
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Francisco P Chávez
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
32
|
Buracco S, Peracino B, Andreini C, Bracco E, Bozzaro S. Differential Effects of Iron, Zinc, and Copper on Dictyostelium discoideum Cell Growth and Resistance to Legionella pneumophila. Front Cell Infect Microbiol 2018; 7:536. [PMID: 29379774 PMCID: PMC5770829 DOI: 10.3389/fcimb.2017.00536] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/26/2017] [Indexed: 12/29/2022] Open
Abstract
Iron, zinc, and copper play fundamental roles in eucaryotes and procaryotes, and their bioavailability regulates host-pathogen interactions. For intracellular pathogens, the source of metals is the cytoplasm of the host, which in turn manipulates intracellular metal traffic following pathogen recognition. It is established that iron is withheld from the pathogen-containing vacuole, whereas for copper and zinc the evidence is unclear. Most infection studies in mammals have concentrated on effects of metal deficiency/overloading at organismal level. Thus, zinc deficiency or supplementation correlate with high risk of respiratory tract infection or recovery from severe infection, respectively. Iron, zinc, and copper deficiency or overload affects lymphocyte proliferation/maturation, and thus the adaptive immune response. Whether they regulate innate immunity at macrophage level is open, except for iron. The early identification in a mouse mutant susceptible to mycobacterial infection of the iron transporter Nramp1 allowed dissecting Nramp1 role in phagocytes, from the social amoeba Dictyostelium to macrophages. Nramp1 regulates iron efflux from the phagosomes, thus starving pathogenic bacteria for iron. Similar studies for zinc or copper are scant, due to the large number of copper and zinc transporters. In Dictyostelium, zinc and copper transporters include 11 and 6 members, respectively. To assess the role of zinc or copper in Dictyostelium, cells were grown under conditions of metal depletion or excess and tested for resistance to Legionella pneumophila infection. Iron shortage or overload inhibited Dictyostelium cell growth within few generations. Surprisingly, zinc or copper depletion failed to affect growth. Zinc or copper overloading inhibited cell growth at, respectively, 50- or 500-fold the physiological concentration, suggesting very efficient control of their homeostasis, as confirmed by Inductively Coupled Plasma Mass Spectrometry quantification of cellular metals. Legionella infection was inhibited or enhanced in cells grown under iron shortage or overload, respectively, confirming a major role for iron in controlling resistance to pathogens. In contrast, zinc and copper depletion or excess during growth did not affect Legionella infection. Using Zinpyr-1 as fluorescent sensor, we show that zinc accumulates in endo-lysosomal vesicles, including phagosomes, and the contractile vacuole. Furthermore, we provide evidence for permeabilization of the Legionella-containing vacuole during bacterial proliferation.
Collapse
Affiliation(s)
- Simona Buracco
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Barbara Peracino
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Claudia Andreini
- Magnetic Resonance Center (CERM), University of Florence, Florence, Italy
| | - Enrico Bracco
- Department of Oncology, University of Torino, Turin, Italy
| | - Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| |
Collapse
|
33
|
Cardenal-Muñoz E, Barisch C, Lefrançois LH, López-Jiménez AT, Soldati T. When Dicty Met Myco, a (Not So) Romantic Story about One Amoeba and Its Intracellular Pathogen. Front Cell Infect Microbiol 2018; 7:529. [PMID: 29376033 PMCID: PMC5767268 DOI: 10.3389/fcimb.2017.00529] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/18/2017] [Indexed: 01/06/2023] Open
Abstract
In recent years, Dictyostelium discoideum has become an important model organism to study the cell biology of professional phagocytes. This amoeba not only shares many molecular features with mammalian macrophages, but most of its fundamental signal transduction pathways are conserved in humans. The broad range of existing genetic and biochemical tools, together with its suitability for cell culture and live microscopy, make D. discoideum an ideal and versatile laboratory organism. In this review, we focus on the use of D. discoideum as a phagocyte model for the study of mycobacterial infections, in particular Mycobacterium marinum. We look in detail at the intracellular cycle of M. marinum, from its uptake by D. discoideum to its active or passive egress into the extracellular medium. In addition, we describe the molecular mechanisms that both the mycobacterial invader and the amoeboid host have developed to fight against each other, and compare and contrast with those developed by mammalian phagocytes. Finally, we introduce the methods and specific tools that have been used so far to monitor the D. discoideum-M. marinum interaction.
Collapse
Affiliation(s)
- Elena Cardenal-Muñoz
- Department of Biochemistry, Sciences II, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
34
|
Dunn JD, Bosmani C, Barisch C, Raykov L, Lefrançois LH, Cardenal-Muñoz E, López-Jiménez AT, Soldati T. Eat Prey, Live: Dictyostelium discoideum As a Model for Cell-Autonomous Defenses. Front Immunol 2018; 8:1906. [PMID: 29354124 PMCID: PMC5758549 DOI: 10.3389/fimmu.2017.01906] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
The soil-dwelling social amoeba Dictyostelium discoideum feeds on bacteria. Each meal is a potential infection because some bacteria have evolved mechanisms to resist predation. To survive such a hostile environment, D. discoideum has in turn evolved efficient antimicrobial responses that are intertwined with phagocytosis and autophagy, its nutrient acquisition pathways. The core machinery and antimicrobial functions of these pathways are conserved in the mononuclear phagocytes of mammals, which mediate the initial, innate-immune response to infection. In this review, we discuss the advantages and relevance of D. discoideum as a model phagocyte to study cell-autonomous defenses. We cover the antimicrobial functions of phagocytosis and autophagy and describe the processes that create a microbicidal phagosome: acidification and delivery of lytic enzymes, generation of reactive oxygen species, and the regulation of Zn2+, Cu2+, and Fe2+ availability. High concentrations of metals poison microbes while metal sequestration inhibits their metabolic activity. We also describe microbial interference with these defenses and highlight observations made first in D. discoideum. Finally, we discuss galectins, TNF receptor-associated factors, tripartite motif-containing proteins, and signal transducers and activators of transcription, microbial restriction factors initially characterized in mammalian phagocytes that have either homologs or functional analogs in D. discoideum.
Collapse
Affiliation(s)
- Joe Dan Dunn
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Cristina Bosmani
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Caroline Barisch
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Lyudmil Raykov
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Louise H Lefrançois
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Elena Cardenal-Muñoz
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | | - Thierry Soldati
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
35
|
Barisch C, Kalinina V, Lefrançois LH, Appiah J, López-Jiménez AT, Soldati T. Localization of all four ZnT zinc transporters in Dictyostelium and impact of ZntA and B knockout on bacteria killing. J Cell Sci 2018; 131:jcs.222000. [DOI: 10.1242/jcs.222000] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/17/2018] [Indexed: 01/26/2023] Open
Abstract
Professional phagocytes have developed an extensive repertoire of autonomous immunity strategies to ensure killing of bacteria. Besides phagosome acidification and the generation of reactive oxygen species, deprivation of nutrients and the lumenal accumulation of toxic metals are essential to kill ingested bacteria or inhibit growth of intracellular pathogens. We use the soil amoeba Dictyostelium discoideum, a professional phagocyte that digests bacteria for nutritional purposes, to decipher the role of zinc poisoning during phagocytosis of non-pathogenic bacteria and visualize the temporal and spatial dynamics of compartmentalized, free zinc using fluorescent probes. Immediately after particle uptake, zinc is delivered to phagosomes by fusion with “zincosomes” of endosomal origin, but also by the action of one or more zinc transporters. We localize the four Dictyostelium ZnT transporters to endosomes, the contractile vacuole and the Golgi apparatus, and study the impact of znt knockouts on zinc homeostasis. Finally, we show that zinc is delivered into the lumen of Mycobacterium smegmatis-containing vacuoles, and that Escherichia coli deficient in the zinc efflux P1B-type ATPase ZntA is killed faster than wild type bacteria.
Collapse
Affiliation(s)
- Caroline Barisch
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| | - Vera Kalinina
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
- Present address: Institute of Cytology, Russian Academy of Sciences, Tikhoretsky ave. 4, 194064 St. Petersburg, Russia
| | - Louise H. Lefrançois
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| | - Joddy Appiah
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| | - Ana T. López-Jiménez
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| |
Collapse
|
36
|
Brenz Y, Winther-Larsen HC, Hagedorn M. Expanding Francisella models: Pairing up the soil amoeba Dictyostelium with aquatic Francisella. Int J Med Microbiol 2017; 308:32-40. [PMID: 28843671 DOI: 10.1016/j.ijmm.2017.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022] Open
Abstract
The bacterial genus Francisella comprises highly pathogenic species that infect mammals, arthropods, fish and protists. Understanding virulence and host defense mechanisms of Francisella infection relies on multiple animal and cellular model systems. In this review, we want to summarize the most commonly used Francisella host model platforms and highlight novel, alternative model systems using aquatic Francisella species. Established mouse and macrophage models contributed extensively to our understanding of Francisella infection. However, murine and human cells display significant differences in their response to Francisella infection. The zebrafish and the amoeba Dictyostelium are well-established model systems for host-pathogen interactions and open up opportunities to investigate bacterial virulence and host defense. Comparisons between model systems using human and fish pathogenic Francisella species revealed shared virulence strategies and pathology between them. Hence, zebrafish and Dictyostelium might complement current model systems to find new vaccine candidates and contribute to our understanding of Francisella infection.
Collapse
Affiliation(s)
- Yannick Brenz
- Department of Parasitology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany.
| | - Hanne C Winther-Larsen
- Centre for Integrative Microbial Evolution (CIME) and Department of Pharmaceutical Biosciences, University of Oslo, Sem Sælands vei 3, 0371 Oslo, Norway.
| | - Monica Hagedorn
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759 Bremen, Germany.
| |
Collapse
|
37
|
Yu M, Liu H, Dong Z, Xiao J, Su B, Fan L, Komis G, Šamaj J, Lin J, Li R. The dynamics and endocytosis of Flot1 protein in response to flg22 in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2017; 215:73-84. [PMID: 28582732 DOI: 10.1016/j.jplph.2017.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 05/14/2023]
Abstract
Membrane microdomains play vital roles in the process of bacterial infection. The membrane microdomain-associated protein Flot1 acts in an endocytic pathway and is required for seedling development, however, whether Flot1 is a part of host defense mechanisms remains unknown. During an analysis of callose deposition, we found that Flot1 amiRNAi mutants exhibited defects in response to flg22. Using variable-angle total internal reflection fluorescence microscopy (VA-TIRFM), structured illumination microscopy (SIM) and fluorescence cross spectroscopy (FCS), we determined that the dynamic behavior of GFP-Flot1 in Arabidopsis thaliana cotyledon epidermal cells changed significantly in plants treated with the elicitor flg22. Moreover, we found that Flot1 was constitutively recycled via an endocytic pathway and that flg22 could promote endocytosis. Importantly, targeting of Flot1 to the late endosome/vacuole for degradation increased in response to flg22 treatment; immunoblot analysis showed that when triggered by flg22, GFP-Flot1 was gradually degraded in a time-dependent manner. Taken together, these findings support the hypothesis that the changing of dynamics and oligomeric states can promote the endocytosis and degradation of Flot1 under flg22 treatment in plant cells.
Collapse
Affiliation(s)
- Meng Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haijiao Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ziyi Dong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jianwei Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Bodan Su
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Lusheng Fan
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - George Komis
- Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacky University, 78301, Olomouc, Czech Republic
| | - Jozef Šamaj
- Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacky University, 78301, Olomouc, Czech Republic
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ruili Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
38
|
Inhibitors of Mycobacterium marinum virulence identified in a Dictyostelium discoideum host model. PLoS One 2017; 12:e0181121. [PMID: 28727774 PMCID: PMC5519057 DOI: 10.1371/journal.pone.0181121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/26/2017] [Indexed: 12/21/2022] Open
Abstract
Tuberculosis remains one of the major threats to public health worldwide. Given the prevalence of multi drug resistance (MDR) in Mycobacterium tuberculosis strains, there is a strong need to develop new anti-mycobacterial drugs with modes of action distinct from classical antibiotics. Inhibitors of mycobacterial virulence might target new molecular processes and may represent a potential new therapeutic alternative. In this study, we used a Dictyostelium discoideum host model to assess virulence of Mycobacterium marinum and to identify compounds inhibiting mycobacterial virulence. Among 9995 chemical compounds, we selected 12 inhibitors of mycobacterial virulence that do not inhibit mycobacterial growth in synthetic medium. Further analyses revealed that 8 of them perturbed functions requiring an intact mycobacterial cell wall such as sliding motility, bacterial aggregation or cell wall permeability. Chemical analogs of two compounds were analyzed. Chemical modifications altered concomitantly their effect on sliding motility and on mycobacterial virulence, suggesting that the alteration of the mycobacterial cell wall caused the loss of virulence. We characterized further one of the selected compounds and found that it inhibited the ability of mycobacteria to replicate in infected cells. Together these results identify new antimycobacterial compounds that represent new tools to unravel the molecular mechanisms controlling mycobacterial pathogenicity. The isolation of compounds with anti-virulence activity is the first step towards developing new antibacterial treatments.
Collapse
|
39
|
Brenz Y, Ohnezeit D, Winther-Larsen HC, Hagedorn M. Nramp1 and NrampB Contribute to Resistance against Francisella in Dictyostelium. Front Cell Infect Microbiol 2017; 7:282. [PMID: 28680861 PMCID: PMC5478718 DOI: 10.3389/fcimb.2017.00282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/09/2017] [Indexed: 12/16/2022] Open
Abstract
The Francisella genus comprises highly pathogenic bacteria that can cause fatal disease in their vertebrate and invertebrate hosts including humans. In general, Francisella growth depends on iron availability, hence, iron homeostasis must be tightly regulated during Francisella infection. We used the system of the professional phagocyte Dictyostelium and the fish pathogen F. noatunensis subsp. noatunensis (F.n.n.) to investigate the role of the host cell iron transporters Nramp (natural resistance associated macrophage proteins) during Francisella infection. Like its mammalian ortholog, Dictyostelium Nramp1 transports iron from the phagosome into the cytosol, whereas the paralog NrampB is located on the contractile vacuole and controls, together with Nramp1, the cellular iron homeostasis. In Dictyostelium, Nramp1 localized to the F.n.n.-phagosome but disappeared from the compartment dependent on the presence of IglC, an established Francisella virulence factor. In the absence of Nramp transporters the bacteria translocated more efficiently from the phagosome into the host cell cytosol, its replicative niche. Increased escape rates coincided with increased proteolytic activity in bead-containing phagosomes indicating a role of the Nramp transporters for phagosomal maturation. In the nramp mutants, a higher bacterial load was observed in the replicative phase compared to wild-type host cells. Upon bacterial access to the cytosol of wt cells, mRNA levels of bacterial iron uptake factors were transiently upregulated. Decreased iron levels in the nramp mutants were compensated by a prolonged upregulation of the iron scavenging system. These results show that Nramps contribute to host cell immunity against Francisella infection by influencing the translocation efficiency from the phagosome to the cytosol but not by restricting access to nutritional iron in the cytosol.
Collapse
Affiliation(s)
- Yannick Brenz
- Department of Parasitology, Bernhard Nocht Institute for Tropical MedicineHamburg, Germany
| | - Denise Ohnezeit
- Institute for Medical Microbiology, Hygiene and Virology, University Medical Center Hamburg-EppendorfHamburg, Germany
| | - Hanne C Winther-Larsen
- Centre for Integrative Microbial Evolution and Department of Pharmaceutical Biosciences, University of OsloOslo, Norway
| | - Monica Hagedorn
- Department of Life Sciences and Chemistry, Jacobs UniversityBremen, Germany
| |
Collapse
|
40
|
Barisch C, Soldati T. Breaking fat! How mycobacteria and other intracellular pathogens manipulate host lipid droplets. Biochimie 2017; 141:54-61. [PMID: 28587792 DOI: 10.1016/j.biochi.2017.06.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/01/2017] [Indexed: 01/15/2023]
Abstract
Tuberculosis (Tb) is a lung infection caused by Mycobacterium tuberculosis (Mtb). With one third of the world population latently infected, it represents the most prevalent bacterial infectious diseases worldwide. Typically, persistence is linked to so-called "dormant" slow-growing bacteria, which have a low metabolic rate and a reduced response to antibiotic treatments. However, dormant bacteria regain growth and virulence when the immune system is weakened, leading again to the active form of the disease. Fatty acids (FAs) released from host triacylglycerols (TAGs) and sterols are proposed to serve as sole carbon sources during infection. The metabolism of FAs requires beta-oxidation as well as gluconeogenesis and the glyoxylate shunt. Interestingly, the Mtb genome encodes more than hundred proteins involved in the five reactions of beta-oxidation, clearly demonstrating the importance of lipids as energy source. FAs have also been proposed to play a role during resuscitation, the resumption of replicative activities from dormancy. Lipid droplets (LDs) are energy and carbon reservoirs and have been described in all domains. TAGs and sterol esters (SEs) are stored in their hydrophobic core, surrounded by a phospholipid monolayer. Importantly, host LDs have been described as crucial for several intracellular bacterial pathogens and viruses and specifically translocate to the pathogen-containing vacuole (PVC) during mycobacteria infection. FAs released from host LDs are used by the pathogen as energy source and as building blocks for membrane synthesis. Despite their essential role, the mechanisms by which pathogenic mycobacteria induce the cellular redistribution of LDs and gain access to the stored lipids are still poorly understood. This review describes recent evidence about the dual interaction of mycobacteria with host LDs and membrane phospholipids and integrates them in a broader view of the underlying cellular processes manipulated by various intracellular pathogens to gain access to host lipids.
Collapse
Affiliation(s)
- Caroline Barisch
- Department of Biochemistry, Faculty of Sciences, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211, Geneva-4, Switzerland.
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Sciences, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211, Geneva-4, Switzerland
| |
Collapse
|
41
|
Mycobacterium marinum antagonistically induces an autophagic response while repressing the autophagic flux in a TORC1- and ESX-1-dependent manner. PLoS Pathog 2017; 13:e1006344. [PMID: 28414774 PMCID: PMC5407849 DOI: 10.1371/journal.ppat.1006344] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 04/27/2017] [Accepted: 04/11/2017] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a eukaryotic catabolic process also participating in cell-autonomous defence. Infected host cells generate double-membrane autophagosomes that mature in autolysosomes to engulf, kill and digest cytoplasmic pathogens. However, several bacteria subvert autophagy and benefit from its machinery and functions. Monitoring infection stages by genetics, pharmacology and microscopy, we demonstrate that the ESX-1 secretion system of Mycobacterium marinum, a close relative to M. tuberculosis, upregulates the transcription of autophagy genes, and stimulates autophagosome formation and recruitment to the mycobacteria-containing vacuole (MCV) in the host model organism Dictyostelium. Antagonistically, ESX-1 is also essential to block the autophagic flux and deplete the MCV of proteolytic activity. Activators of the TORC1 complex localize to the MCV in an ESX-1-dependent manner, suggesting an important role in the manipulation of autophagy by mycobacteria. Our findings suggest that the infection by M. marinum activates an autophagic response that is simultaneously repressed and exploited by the bacterium to support its survival inside the MCV. One of the cell-autonomous defence pathways against intracellular pathogens is autophagy, an ancestral eukaryotic process surprisingly conserved throughout evolution. Recent studies have highlighted contradictory roles for autophagy during mycobacterial infection. Whereas some studies revealed a role for autophagy to control intracellular bacterial growth, others brought evidence that mycobacteria somehow inhibit autophagic killing. Here, we demonstrate for the first time that Mycobacterium marinum induces both an early autophagic response and its simultaneous repression by blocking the autophagic digestion. This antagonistic manipulation of autophagy is dependent on a functional ESX-1-secretion system, which secretes the membrane-damaging factor ESAT-6, proposed to participate in the perforation of the M. marinum-containing vacuole (MCV). We show here that these membrane damages activate the formation of autophagosomes and their recruitment to the MCV. However, M. marinum also utilizes its ESX-1 secretion system to avoid killing inside autolysosomes by blocking the autophagic flux. In addition, we bring evidence that this manipulation of autophagy is orchestrated via the regulation of TORC1, the major eukaryotic kinase complex controlling nutrient-sensing and cell metabolism.
Collapse
|
42
|
Barisch C, Soldati T. Mycobacterium marinum Degrades Both Triacylglycerols and Phospholipids from Its Dictyostelium Host to Synthesise Its Own Triacylglycerols and Generate Lipid Inclusions. PLoS Pathog 2017; 13:e1006095. [PMID: 28103313 PMCID: PMC5245797 DOI: 10.1371/journal.ppat.1006095] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/28/2016] [Indexed: 12/21/2022] Open
Abstract
During a tuberculosis infection and inside lipid-laden foamy macrophages, fatty acids (FAs) and sterols are the major energy and carbon source for Mycobacterium tuberculosis. Mycobacteria can be found both inside a vacuole and the cytosol, but how this impacts their access to lipids is not well appreciated. Lipid droplets (LDs) store FAs in form of triacylglycerols (TAGs) and are energy reservoirs of prokaryotes and eukaryotes. Using the Dictyostelium discoideum/Mycobacterium marinum infection model we showed that M. marinum accesses host LDs to build up its own intracytosolic lipid inclusions (ILIs). Here, we show that host LDs aggregate at regions of the bacteria that become exposed to the cytosol, and appear to coalesce on their hydrophobic surface leading to a transfer of diacylglycerol O-acyltransferase 2 (Dgat2)-GFP onto the bacteria. Dictyostelium knockout mutants for both Dgat enzymes are unable to generate LDs. Instead, the excess of exogenous FAs is esterified predominantly into phospholipids, inducing uncontrolled proliferation of the endoplasmic reticulum (ER). Strikingly, in absence of host LDs, M. marinum alternatively exploits these phospholipids, resulting in rapid reversal of ER-proliferation. In addition, the bacteria are unable to restrict their acquisition of lipids from the dgat1&2 double knockout leading to vast accumulation of ILIs. Recent data indicate that the presence of ILIs is one of the characteristics of dormant mycobacteria. During Dictyostelium infection, ILI formation in M. marinum is not accompanied by a significant change in intracellular growth and a reduction in metabolic activity, thus providing evidence that storage of neutral lipids does not necessarily induce dormancy.
Collapse
Affiliation(s)
- Caroline Barisch
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, Geneva, Switzerland
- * E-mail:
| | - Thierry Soldati
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, Geneva, Switzerland
| |
Collapse
|
43
|
Huber RJ. Using the social amoeba Dictyostelium to study the functions of proteins linked to neuronal ceroid lipofuscinosis. J Biomed Sci 2016; 23:83. [PMID: 27881166 PMCID: PMC5122030 DOI: 10.1186/s12929-016-0301-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/15/2016] [Indexed: 12/12/2022] Open
Abstract
Neuronal ceroid lipofuscinosis (NCL), also known as Batten disease, is a debilitating neurological disorder that affects both children and adults. Thirteen genetically distinct genes have been identified that when mutated, result in abnormal lysosomal function and an excessive accumulation of ceroid lipofuscin in neurons, as well as other cell types outside of the central nervous system. The NCL family of proteins is comprised of lysosomal enzymes (PPT1/CLN1, TPP1/CLN2, CTSD/CLN10, CTSF/CLN13), proteins that peripherally associate with membranes (DNAJC5/CLN4, KCTD7/CLN14), a soluble lysosomal protein (CLN5), a protein present in the secretory pathway (PGRN/CLN11), and several proteins that display different subcellular localizations (CLN3, CLN6, MFSD8/CLN7, CLN8, ATP13A2/CLN12). Unfortunately, the precise functions of many of the NCL proteins are still unclear, which has made targeted therapy development challenging. The social amoeba Dictyostelium discoideum has emerged as an excellent model system for studying the normal functions of proteins linked to human neurological disorders. Intriguingly, the genome of this eukaryotic soil microbe encodes homologs of 11 of the 13 known genes linked to NCL. The genetic tractability of the organism, combined with its unique life cycle, makes Dictyostelium an attractive model system for studying the functions of NCL proteins. Moreover, the ability of human NCL proteins to rescue gene-deficiency phenotypes in Dictyostelium suggests that the biological pathways regulating NCL protein function are likely conserved from Dictyostelium to human. In this review, I will discuss each of the NCL homologs in Dictyostelium in turn and describe how future studies can exploit the advantages of the system by testing new hypotheses that may ultimately lead to effective therapy options for this devastating and currently untreatable neurological disorder.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, 2140 East Bank Drive, Peterborough, ON, K9J 7B8, Canada.
| |
Collapse
|
44
|
Mesquita A, Cardenal-Muñoz E, Dominguez E, Muñoz-Braceras S, Nuñez-Corcuera B, Phillips BA, Tábara LC, Xiong Q, Coria R, Eichinger L, Golstein P, King JS, Soldati T, Vincent O, Escalante R. Autophagy in Dictyostelium: Mechanisms, regulation and disease in a simple biomedical model. Autophagy 2016; 13:24-40. [PMID: 27715405 DOI: 10.1080/15548627.2016.1226737] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Autophagy is a fast-moving field with an enormous impact on human health and disease. Understanding the complexity of the mechanism and regulation of this process often benefits from the use of simple experimental models such as the social amoeba Dictyostelium discoideum. Since the publication of the first review describing the potential of D. discoideum in autophagy, significant advances have been made that demonstrate both the experimental advantages and interest in using this model. Since our previous review, research in D. discoideum has shed light on the mechanisms that regulate autophagosome formation and contributed significantly to the study of autophagy-related pathologies. Here, we review these advances, as well as the current techniques to monitor autophagy in D. discoideum. The comprehensive bioinformatics search of autophagic proteins that was a substantial part of the previous review has not been revisited here except for those aspects that challenged previous predictions such as the composition of the Atg1 complex. In recent years our understanding of, and ability to investigate, autophagy in D. discoideum has evolved significantly and will surely enable and accelerate future research using this model.
Collapse
Affiliation(s)
- Ana Mesquita
- a Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM) , Madrid , Spain.,b University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Elena Cardenal-Muñoz
- c Départment de Biochimie , Faculté des Sciences, Université de Genève , Switzerland
| | - Eunice Dominguez
- a Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM) , Madrid , Spain.,d Departamento de Genética Molecular , Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico City , México
| | - Sandra Muñoz-Braceras
- a Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM) , Madrid , Spain
| | | | - Ben A Phillips
- e Department of Biomedical Sciences , University of Sheffield , UK
| | - Luis C Tábara
- a Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM) , Madrid , Spain
| | - Qiuhong Xiong
- f Center for Biochemistry, Medical Faculty, University of Cologne , Cologne , Germany
| | - Roberto Coria
- d Departamento de Genética Molecular , Instituto de Fisiología Celular, Universidad Nacional Autónoma de México , Mexico City , México
| | - Ludwig Eichinger
- f Center for Biochemistry, Medical Faculty, University of Cologne , Cologne , Germany
| | - Pierre Golstein
- g Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2 , Inserm, U1104, CNRS UMR7280, Marseille , France
| | - Jason S King
- e Department of Biomedical Sciences , University of Sheffield , UK
| | - Thierry Soldati
- c Départment de Biochimie , Faculté des Sciences, Université de Genève , Switzerland
| | - Olivier Vincent
- a Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM) , Madrid , Spain
| | - Ricardo Escalante
- a Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM) , Madrid , Spain
| |
Collapse
|
45
|
Delincé MJ, Bureau JB, López-Jiménez AT, Cosson P, Soldati T, McKinney JD. A microfluidic cell-trapping device for single-cell tracking of host-microbe interactions. LAB ON A CHIP 2016; 16:3276-85. [PMID: 27425421 DOI: 10.1039/c6lc00649c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The impact of cellular individuality on host-microbe interactions is increasingly appreciated but studying the temporal dynamics of single-cell behavior in this context remains technically challenging. Here we present a microfluidic platform, InfectChip, to trap motile infected cells for high-resolution time-lapse microscopy. This approach allows the direct visualization of all stages of infection, from bacterial uptake to death of the bacterium or host cell, over extended periods of time. We demonstrate the utility of this approach by co-culturing an established host-cell model, Dictyostelium discoideum, with the extracellular pathogen Klebsiella pneumoniae or the intracellular pathogen Mycobacterium marinum. We show that the outcome of such infections is surprisingly heterogeneous, ranging from abortive infection to death of the bacterium or host cell. InfectChip thus provides a simple method to dissect the time-course of host-microbe interactions at the single-cell level, yielding new insights that could not be gleaned from conventional population-based measurements.
Collapse
Affiliation(s)
- Matthieu J Delincé
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Jean-Baptiste Bureau
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | | | - Pierre Cosson
- Department for Cell Physiology and Metabolism, Centre Medical Universitaire, University of Geneva, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.
| | - John D McKinney
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
46
|
Singh VK, Berry L, Bernut A, Singh S, Carrère-Kremer S, Viljoen A, Alibaud L, Majlessi L, Brosch R, Chaturvedi V, Geurtsen J, Drancourt M, Kremer L. A unique PE_PGRS protein inhibiting host cell cytosolic defenses and sustaining full virulence of Mycobacterium marinum in multiple hosts. Cell Microbiol 2016; 18:1489-1507. [PMID: 27120981 DOI: 10.1111/cmi.12606] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/22/2016] [Accepted: 04/09/2016] [Indexed: 12/11/2022]
Abstract
Despite intense research, PE_PGRS proteins still represent an intriguing aspect of mycobacterial pathogenesis. These cell surface proteins influence virulence in several pathogenic species, but their diverse and exact functions remain unclear. Herein, we focussed on a PE_PGRS member from Mycobacterium marinum, MMAR_0242, characterized by an extended and unique C-terminal domain. We demonstrate that an M. marinum mutant carrying a transposon insertion in MMAR_0242 is highly impaired in its ability to replicate in macrophages and amoebae, because of its inability to inhibit lysosomal fusion. As a consequence, this mutant failed to survive intracellularly as evidenced by a reduced number of cytosolic actin tail-forming bacteria and by quantitative electron microscopy, which mainly localized MMAR_0242::Tn within membrane-defined vacuoles. Functional complementation studies indicated that the C-terminus, but not the N-terminal PE_PGRS domain, is required for intracellular growth/survival. In line with these findings, disruption of MMAR_0242 resulted in a highly attenuated virulence phenotype in zebrafish embryos, characterized by restricted bacterial loads and a failure to produce granulomas. Furthermore, expression of MMAR_0242 in Mycobacterium smegmatis, a non-pathogenic species naturally deficient in PE_PGRS production, resulted in increased survival in amoebae with enhanced cytotoxic cell death and increased survival in infected mice with splenomegaly. Overall, these results indicate that MMAR_0242 is required for full virulence of M. marinum and sufficient to confer pathogenic properties to M. smegmatis.
Collapse
Affiliation(s)
- Vipul K Singh
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS UMR 5235, case 107, Place Eugène Bataillon, 34095, Montpellier Cedex 05, France
| | - Laurence Berry
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS UMR 5235, case 107, Place Eugène Bataillon, 34095, Montpellier Cedex 05, France
| | - Audrey Bernut
- Centre d'étude des Pathogènes et Biotechnologies pour la Santé (CPBS), CNRS FRE 3689, 1919 route de Mende, 34293, Montpellier, France
| | - Shubhra Singh
- Biochemistry Division, CSIR-Central Drug Research Institute, 226031, Lucknow, Uttar Pradesh, India.,IFTM University, Lodhipur Rajput, Delhi Road (NH-24) Moradabad, Uttar Pradesh, 244102, India
| | - Séverine Carrère-Kremer
- INSERM U1058, Université de Montpellier and Department of Bacteriology-Virology, CHU de Montpellier, 34095, Montpellier, France
| | - Albertus Viljoen
- Centre d'étude des Pathogènes et Biotechnologies pour la Santé (CPBS), CNRS FRE 3689, 1919 route de Mende, 34293, Montpellier, France
| | - Laeticia Alibaud
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS UMR 5235, case 107, Place Eugène Bataillon, 34095, Montpellier Cedex 05, France
| | - Laleh Majlessi
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée, 25 rue du Dr. Roux, 75724, Paris, France
| | - Roland Brosch
- Institut Pasteur, Unité de Pathogénomique Mycobactérienne Intégrée, 25 rue du Dr. Roux, 75724, Paris, France
| | - Vinita Chaturvedi
- Biochemistry Division, CSIR-Central Drug Research Institute, 226031, Lucknow, Uttar Pradesh, India
| | - Jeroen Geurtsen
- Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 BT, Amsterdam, The Netherlands
| | - Michel Drancourt
- Université Aix-Marseille, URMITE, UMR63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Laurent Kremer
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS UMR 5235, case 107, Place Eugène Bataillon, 34095, Montpellier Cedex 05, France. .,Centre d'étude des Pathogènes et Biotechnologies pour la Santé (CPBS), CNRS FRE 3689, 1919 route de Mende, 34293, Montpellier, France. .,INSERM, CPBS, 1919 route de Mende, Montpellier, France.
| |
Collapse
|
47
|
Mohandas P, Budell WC, Mueller E, Au A, Bythrow GV, Quadri LEN. Pleiotropic consequences of gene knockouts in the phthiocerol dimycocerosate and phenolic glycolipid biosynthetic gene cluster of the opportunistic human pathogen Mycobacterium marinum. FEMS Microbiol Lett 2016; 363:fnw016. [PMID: 26818253 DOI: 10.1093/femsle/fnw016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2016] [Indexed: 11/14/2022] Open
Abstract
Phthiocerol dimycocerosates (PDIMs) and phenolic glycolipids (PGLs) contribute to the pathogenicity of several mycobacteria. Biosynthesis of these virulence factors requires polyketide synthases and other enzymes that represent potential targets for the development of adjuvant antivirulence drugs. We used six isogenic Mycobacterium marinum mutants, each with a different gene knockout in the PDIM/PGL biosynthetic pathway, to probe the pleiotropy of mutations leading to PDIM(-) PGL(-), PDIM(+) PGL(-) or PDIM(-) PGL(+) phenotypes. We evaluated the M. marinum mutants for changes in antibiotic susceptibility, cell envelope permeability, biofilm formation, surface properties, sliding motility and virulence in an amoeba model. The analysis also permitted us to begin exploring the hypothesis that different gene knockouts rendering the same PDIM and/or PGL deficiency phenotypes lead to M. marinum mutants with equivalent pleiotropic profiles. Overall, the results of our study revealed a complex picture of pleiotropic patterns emerging from different gene knockouts, uncovered unexpected phenotypic inequalities between mutants, and provided new insight into the phenotypic consequences of gene knockouts in the PDIM/PGL biosynthetic pathway.
Collapse
Affiliation(s)
- Poornima Mohandas
- Biology Department, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA Biology Program, Graduate Center, City University of New York, NY 10016, USA
| | - William C Budell
- Biology Department, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA Biology Program, Graduate Center, City University of New York, NY 10016, USA
| | - Emily Mueller
- Biology Department, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA
| | - Andrew Au
- Biology Department, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA
| | - Glennon V Bythrow
- Biology Department, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA Biology Program, Graduate Center, City University of New York, NY 10016, USA
| | - Luis E N Quadri
- Biology Department, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA Biology Program, Graduate Center, City University of New York, NY 10016, USA
| |
Collapse
|
48
|
Chen YY, Yang FL, Wu SH, Lin TL, Wang JT. Mycobacterium marinum mmar_2318 and mmar_2319 are Responsible for Lipooligosaccharide Biosynthesis and Virulence Toward Dictyostelium. Front Microbiol 2016; 6:1458. [PMID: 26779131 PMCID: PMC4703794 DOI: 10.3389/fmicb.2015.01458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 12/04/2015] [Indexed: 12/15/2022] Open
Abstract
Resistance to phagocyte killing is an important virulence factor in mycobacteria. Dictyostelium has been used to study the interaction between phagocytes and bacteria, given its similarity to the mammalian macrophage. Here, we investigated the genes responsible for virulence to Dictyostelium by screening 1728 transposon mutants of the Mycobacterium marinum NTUH-M6094 strain. A total of 30 mutants that permissive for Dictyostelium growth were identified. These mutants revealed interruptions in 20 distinct loci. Of the 20 loci, six genes (losA, mmar_2318, mmar_2319, wecE, mmar_2323 and mmar_2353) were located in the lipooligosaccharide (LOS) synthesis cluster. LOS are antigenic glycolipids and the core LOS structure from LOS-I to LOS-IV have been reported to exist in M. marinum. Two-dimensional thin-layer chromatography (2D-TLC) glycolipid profiles revealed that deletion of mmar_2318 or mmar_2319 resulted in the accumulation of LOS-III and deficiency of LOS-IV. Deletion and complementation of mmar_2318 or mmar_2319 confirmed that these genes both contributed to virulence toward Dictyostelium but not entry and replication inside Dictyostelium. Co-incubation with a murine macrophage cell line J774a.1 or PMA-induced human monocytic cell line THP-1 demonstrated that mmar_2318 or mmar_2319 deletion mutant could grow in macrophages, and their initial entry rate was not affected in J774a.1 but significantly increased in THP-1. In conclusion, although mmar_2319 has been reported to involve LOS biosynthesis in a previous study, we identified a new gene, mmar_2318 that is also involved in the biosynthesis of LOS. Deletion of mmar_2318 or mmar_2319 both exhibits reduction of virulence toward Dictyostelium and increased entry into THP-1 cells.
Collapse
Affiliation(s)
- Yi-Yin Chen
- Department of Microbiology, National Taiwan University College of Medicine Taipei, Taiwan
| | - Feng-Ling Yang
- Institute of Biological Chemistry, Academia Sinica Taipei, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica Taipei, Taiwan
| | - Tzu-Lung Lin
- Department of Microbiology, National Taiwan University College of Medicine Taipei, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of MedicineTaipei, Taiwan; Department of Internal Medicine, National Taiwan University HospitalTaipei, Taiwan
| |
Collapse
|
49
|
Rho Signaling in Dictyostelium discoideum. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:61-181. [DOI: 10.1016/bs.ircmb.2015.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Dissection of Francisella-Host Cell Interactions in Dictyostelium discoideum. Appl Environ Microbiol 2015; 82:1586-1598. [PMID: 26712555 DOI: 10.1128/aem.02950-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/22/2015] [Indexed: 12/31/2022] Open
Abstract
Francisella bacteria cause severe disease in both vertebrates and invertebrates and include one of the most infectious human pathogens. Mammalian cell lines have mainly been used to study the mechanisms by which Francisella manipulates its host to replicate within a large variety of hosts and cell types, including macrophages. Here, we describe the establishment of a genetically and biochemically tractable infection model: the amoeba Dictyostelium discoideum combined with the fish pathogen Francisella noatunensis subsp. noatunensis. Phagocytosed F. noatunensis subsp. noatunensis interacts with the endosomal pathway and escapes further phagosomal maturation by translocating into the host cell cytosol. F. noatunensis subsp. noatunensis lacking IglC, a known virulence determinant required for Francisella intracellular replication, follows the normal phagosomal maturation and does not grow in Dictyostelium. The attenuation of the F. noatunensis subsp. noatunensis ΔiglC mutant was confirmed in a zebrafish embryo model, where growth of F. noatunensis subsp. noatunensis ΔiglC was restricted. In Dictyostelium, F. noatunensis subsp. noatunensis interacts with the autophagic machinery. The intracellular bacteria colocalize with autophagic markers, and when autophagy is impaired (Dictyostelium Δatg1), F. noatunensis subsp. noatunensis accumulates within Dictyostelium cells. Altogether, the Dictyostelium-F. noatunensis subsp. noatunensis infection model recapitulates the course of infection described in other host systems. The genetic and biochemical tractability of the system allows new approaches to elucidate the dynamic interactions between pathogenic Francisella and its host organism.
Collapse
|