1
|
Sornjai W, Promma P, Priewkhiew S, Ramphan S, Jaratsittisin J, Jinagool P, Wikan N, Greenwood M, Murphy D, Smith DR. The interaction of GRP78 and Zika virus E and NS1 proteins occurs in a chaperone-client manner. Sci Rep 2024; 14:10407. [PMID: 38710792 PMCID: PMC11074156 DOI: 10.1038/s41598-024-61195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
Glucose regulated protein 78 (GRP78) is a chaperone protein that is a central mediator of the unfolded protein response, a key cellular stress response pathway. GRP78 has been shown to be critically required for infection and replication of a number of flaviviruses, and to interact with both non-structural (NS) and structural flavivirus proteins. However, the nature of the specific interaction between GRP78 and viral proteins remains largely unknown. This study aimed to characterize the binding domain and critical amino acid residues that mediate the interaction of GRP78 to ZIKV E and NS1 proteins. Recombinant EGFP fused GRP78 and individual subdomains (the nucleotide binding domain (NBD) and the substrate binding domain (SBD)) were used as a bait protein and co-expressed with full length or truncated ZIKV E and NS1 proteins in HEK293T/17 cells. Protein-protein interactions were determined by a co-immunoprecipitation assay. From the results, both the NBD and the SBD of GRP78 were crucial for an effective interaction. Single amino acid substitutions in the SBD showed that R492E and T518A mutants significantly reduced the binding affinity of GRP78 to ZIKV E and NS1 proteins. Notably, the interaction of GRP78 with ZIKV E was stably maintained against various single amino acid substitutions on ZIKV E domain III and with all truncated ZIKV E and NS1 proteins. Collectively, the results suggest that the principal binding between GRP78 and viral proteins is mainly a classic canonical chaperone protein-client interaction. The blocking of GRP78 chaperone function effectively inhibited ZIKV infection and replication in neuronal progenitor cells. Our findings reveal that GRP78 is a potential host target for anti-ZIKV therapeutics.
Collapse
Affiliation(s)
- Wannapa Sornjai
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Ploenphit Promma
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Suphansa Priewkhiew
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Suwipa Ramphan
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Janejira Jaratsittisin
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Pailin Jinagool
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Nitwara Wikan
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Michael Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, UK
| | - Duncan R Smith
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phutthamonthon Sai 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
2
|
Pal A, Tripathi SK, Rani P, Rastogi M, Das S. p53 and RNA viruses: The tug of war. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1826. [PMID: 37985142 DOI: 10.1002/wrna.1826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023]
Abstract
Host factors play essential roles in viral infection, and their interactions with viral proteins are necessary for establishing effective pathogenesis. p53 is a host factor that maintains genomic integrity by controlling cell-cycle progression and cell survival. It is a well-known tumor suppressor protein that gets activated by various stress signals, thereby regulating cellular pathways. The cellular outcomes from different stresses are tightly related to p53 dynamics, including its alterations at gene, mRNA, or protein levels. p53 also contributes to immune responses leading to the abolition of viral pathogens. In turn, the viruses have evolved strategies to subvert p53-mediated host responses to improve their life cycle and pathogenesis. Some viruses attenuate wild-type p53 (WT-p53) function for successful pathogenesis, including degradation and sequestration of p53. In contrast, some others exploit the WT-p53 function through regulation at the transcriptional/translational level to spread infection. One area in which the importance of such host factors is increasingly emerging is the positive-strand RNA viruses that cause fatal viral infections. In this review, we provide insight into all the possible mechanisms of p53 modulation exploited by the positive-strand RNA viruses to establish infection. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Regulation RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Apala Pal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sachin Kumar Tripathi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Priya Rani
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Meghana Rastogi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India, Kalyani, West Bengal, India
| |
Collapse
|
3
|
Tang WD, Tang HL, Peng HR, Ren RW, Zhao P, Zhao LJ. Inhibition of tick-borne encephalitis virus in cell cultures by ribavirin. Front Microbiol 2023; 14:1182798. [PMID: 37378295 PMCID: PMC10291047 DOI: 10.3389/fmicb.2023.1182798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) belonging to arboviruses is a major member of zoonotic pathogens. TBEV infection causes severe human encephalitis without specific antiviral drugs. Due to its use of antiviral drug against a wide range of viruses, we investigated antiviral effect of ribavirin against TBEV in susceptible human cell lines A549 and SH-SY5Y. Ribavirin displayed minor cytotoxicity on multiple cell lines. Ribavirin obviously impaired TBEV replication and protected the infected cells from cytopathic effect. Importantly, ribavirin markedly inhibited TBEV propagation, as evidenced by impairment of TBEV production and viral RNA replication. Treatment with ribavirin (co-treatment and post-treatment) led to a dose-dependent reduction in TBEV titers as well as the viral RNA levels. Antiviral protein myxovirus resistance A mRNA expression was significantly up-regulated and signal transducer and activator of transcription 3 was activated in TBEV-infected A549 cells upon the ribavirin treatment. Induction of inflammatory cytokine tumor necrosis factor alpha by TBEV was decreased in A549 cells with the treatment of ribavirin, whereas interleukin 1 beta release appeared to be unaffected. These results suggest that ribavirin might represent a promising safe and effective antiviral drug against TBEV.
Collapse
Affiliation(s)
- Wan-Da Tang
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Hai-Lin Tang
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Hao-Ran Peng
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Rui-Wen Ren
- Center for Disease Control and Prevention of Southern Theater Command, Guangzhou, China
| | - Ping Zhao
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Lan-Juan Zhao
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Porcine Circovirus 2 Activates the PERK-Reactive Oxygen Species Axis To Induce p53 Phosphorylation with Subsequent Cell Cycle Arrest at S Phase in Favor of Its Replication. J Virol 2022; 96:e0127422. [PMID: 36300938 PMCID: PMC9683002 DOI: 10.1128/jvi.01274-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coinfections or noninfectious triggers have long been considered to potentiate PCV2 infection, leading to manifestation of PCVAD. The triggering mechanisms remain largely unknown.
Collapse
|
5
|
Tracking the Replication-Competent Zika Virus with Tetracysteine-Tagged Capsid Protein in Living Cells. J Virol 2022; 96:e0184621. [PMID: 35285687 PMCID: PMC9006885 DOI: 10.1128/jvi.01846-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Zika virus (ZIKV) is the mosquito-borne enveloped flavivirus that causes microcephaly in neonates. While real-time imaging plays a critical role in dissecting viral biology, no fluorescent, genetically engineered ZIKV for single-particle tracking is currently available.
Collapse
|
6
|
Mehta S, Campbell H, Drummond CJ, Li K, Murray K, Slatter T, Bourdon JC, Braithwaite AW. Adaptive homeostasis and the p53 isoform network. EMBO Rep 2021; 22:e53085. [PMID: 34779563 PMCID: PMC8647153 DOI: 10.15252/embr.202153085] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/12/2021] [Accepted: 10/28/2021] [Indexed: 12/25/2022] Open
Abstract
All living organisms have developed processes to sense and address environmental changes to maintain a stable internal state (homeostasis). When activated, the p53 tumour suppressor maintains cell and organ integrity and functions in response to homeostasis disruptors (stresses) such as infection, metabolic alterations and cellular damage. Thus, p53 plays a fundamental physiological role in maintaining organismal homeostasis. The TP53 gene encodes a network of proteins (p53 isoforms) with similar and distinct biochemical functions. The p53 network carries out multiple biological activities enabling cooperation between individual cells required for long‐term survival of multicellular organisms (animals) in response to an ever‐changing environment caused by mutation, infection, metabolic alteration or damage. In this review, we suggest that the p53 network has evolved as an adaptive response to pathogen infections and other environmental selection pressures.
Collapse
Affiliation(s)
- Sunali Mehta
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Hamish Campbell
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Catherine J Drummond
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Kunyu Li
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand
| | - Kaisha Murray
- Dundee Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Tania Slatter
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Jean-Christophe Bourdon
- Dundee Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Antony W Braithwaite
- Department of Pathology, School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Biodiscovery, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Zhang X, Zhang Y, Jia R, Wang M, Yin Z, Cheng A. Structure and function of capsid protein in flavivirus infection and its applications in the development of vaccines and therapeutics. Vet Res 2021; 52:98. [PMID: 34193256 PMCID: PMC8247181 DOI: 10.1186/s13567-021-00966-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/27/2021] [Indexed: 01/03/2023] Open
Abstract
Flaviviruses are enveloped single positive-stranded RNA viruses. The capsid (C), a structural protein of flavivirus, is dimeric and alpha-helical, with several special structural and functional features. The functions of the C protein go far beyond a structural role in virions. It is not only responsible for encapsidation to protect the viral RNA but also able to interact with various host proteins to promote virus proliferation. Therefore, the C protein plays an important role in infected host cells and the viral life cycle. Flaviviruses have been shown to affect the health of humans and animals. Thus, there is an urgent need to effectively control flavivirus infections. The structure of the flavivirus virion has been determined, but there is relatively little information about the function of the C protein. Hence, a greater understanding of the role of the C protein in viral infections will help to discover novel antiviral strategies and provide a promising starting point for the further development of flavivirus vaccines or therapeutics.
Collapse
Affiliation(s)
- Xingcui Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Yanting Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China.
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
8
|
Iarovaia OV, Ioudinkova ES, Velichko AK, Razin SV. Manipulation of Cellular Processes via Nucleolus Hijaking in the Course of Viral Infection in Mammals. Cells 2021; 10:cells10071597. [PMID: 34202380 PMCID: PMC8303250 DOI: 10.3390/cells10071597] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
Due to their exceptional simplicity of organization, viruses rely on the resources, molecular mechanisms, macromolecular complexes, regulatory pathways, and functional compartments of the host cell for an effective infection process. The nucleolus plays an important role in the process of interaction between the virus and the infected cell. The interactions of viral proteins and nucleic acids with the nucleolus during the infection process are universal phenomena and have been described for almost all taxonomic groups. During infection, proteins of the nucleolus in association with viral components can be directly used for the processes of replication and transcription of viral nucleic acids and the assembly and transport of viral particles. In the course of a viral infection, the usurpation of the nucleolus functions occurs and the usurpation is accompanied by profound changes in ribosome biogenesis. Recent studies have demonstrated that the nucleolus is a multifunctional and dynamic compartment. In addition to the biogenesis of ribosomes, it is involved in regulating the cell cycle and apoptosis, responding to cellular stress, repairing DNA, and transcribing RNA polymerase II-dependent genes. A viral infection can be accompanied by targeted transport of viral proteins to the nucleolus, massive release of resident proteins of the nucleolus into the nucleoplasm and cytoplasm, the movement of non-nucleolar proteins into the nucleolar compartment, and the temporary localization of viral nucleic acids in the nucleolus. The interaction of viral and nucleolar proteins interferes with canonical and non-canonical functions of the nucleolus and results in a change in the physiology of the host cell: cell cycle arrest, intensification or arrest of ribosome biogenesis, induction or inhibition of apoptosis, and the modification of signaling cascades involved in the stress response. The nucleolus is, therefore, an important target during viral infection. In this review, we discuss the functional impact of viral proteins and nucleic acid interaction with the nucleolus during infection.
Collapse
|
9
|
Saiz JC, Martín-Acebes MA, Blázquez AB, Escribano-Romero E, Poderoso T, Jiménez de Oya N. Pathogenicity and virulence of West Nile virus revisited eight decades after its first isolation. Virulence 2021; 12:1145-1173. [PMID: 33843445 PMCID: PMC8043182 DOI: 10.1080/21505594.2021.1908740] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
West Nile virus (WNV) is a flavivirus which transmission cycle is maintained between mosquitoes and birds, although it occasionally causes sporadic outbreaks in horses and humans that can result in serious diseases and even death. Since its first isolation in Africa in 1937, WNV had been considered a neglected pathogen until its recent spread throughout Europe and the colonization of America, regions where it continues to cause outbreaks with severe neurological consequences in humans and horses. Although our knowledge about the characteristics and consequences of the virus has increased enormously lately, many questions remain to be resolved. Here, we thoroughly update our knowledge of different aspects of the WNV life cycle: virology and molecular classification, host cell interactions, transmission dynamics, host range, epidemiology and surveillance, immune response, clinical presentations, pathogenesis, diagnosis, prophylaxis (antivirals and vaccines), and prevention, and we highlight those aspects that are still unknown and that undoubtedly require further investigation.
Collapse
Affiliation(s)
- Juan-Carlos Saiz
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Miguel A Martín-Acebes
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Ana B Blázquez
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Estela Escribano-Romero
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| | - Teresa Poderoso
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nereida Jiménez de Oya
- Department of Biotechnology, National Institute for Agricultural and Food Research and Technology (INIA), Madrid, Spain
| |
Collapse
|
10
|
Pan Y, Cheng A, Wang M, Yin Z, Jia R. The Dual Regulation of Apoptosis by Flavivirus. Front Microbiol 2021; 12:654494. [PMID: 33841381 PMCID: PMC8024479 DOI: 10.3389/fmicb.2021.654494] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Apoptosis is a form of programmed cell death, which maintains cellular homeostasis by eliminating pathogen-infected cells. It contains three signaling pathways: death receptor pathway, mitochondria-mediated pathway, and endoplasmic reticulum pathway. Its importance in host defenses is highlighted by the observation that many viruses evade, hinder or destroy apoptosis, thereby weakening the host’s immune response. Flaviviruses such as Dengue virus, Japanese encephalitis virus, and West Nile virus utilize various strategies to activate or inhibit cell apoptosis. This article reviews the research progress of apoptosis mechanism during flaviviruses infection, including flaviviruses proteins and subgenomic flaviviral RNA to regulate apoptosis by interacting with host proteins, as well as various signaling pathways involved in flaviviruses-induced apoptosis, which provides a scientific basis for understanding the pathogenesis of flaviviruses and helps in developing an effective antiviral therapy.
Collapse
Affiliation(s)
- Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
11
|
Ujike M, Kawachi Y, Matsunaga Y, Etho Y, Asanuma H, Kamitani W, Taguchi F. Characterization of Localization and Export Signals of Bovine Torovirus Nucleocapsid Protein Responsible for Extensive Nuclear and Nucleolar Accumulation and Their Importance for Virus Growth. J Virol 2021; 95:e02111-20. [PMID: 33177195 PMCID: PMC7925113 DOI: 10.1128/jvi.02111-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 11/20/2022] Open
Abstract
Torovirus (ToV) has recently been classified into the new family Tobaniviridae, although historically, it belonged to the Coronavirus (CoV) family. The nucleocapsid (N) proteins of CoVs are predominantly localized in the cytoplasm, where the viruses replicate, but in some cases the proteins are partially located in the nucleolus. Many studies have investigated the subcellular localization and nucleocytoplasmic trafficking signals of the CoV N proteins, but little is known about ToV N proteins. Here, we studied the subcellular localization of the bovine ToV (BToV) N protein (BToN) and characterized its nucleocytoplasmic trafficking signals. Unlike other CoVs, BToN in infected cells was transported mainly to the nucleolus during early infection but was distributed predominantly in the nucleoplasm rather than in the nucleolus during late infection. Interestingly, a small quantity of BToN was detected in the cytoplasm during infection. Examination of a comprehensive set of substitution or deletion mutants of BToN fused with enhanced green fluorescent protein (EGFP) revealed that clusters of arginine (R) residues comprise nuclear/nucleolar localization signals (NLS/NoLS), and the C-terminal region served as a chromosomal maintenance 1 (CRM1)-independent nuclear export signal (NES). Moreover, recombinant viruses with mutations in the NLS/NoLS, but retaining nuclear accumulation, were successfully rescued and showed slightly reduced growth ability, while the virus that lost the NLS/NoLS-mediated nuclear accumulation of BToN was not rescued. These results indicate that BToN uniquely accumulates mainly in nuclear compartments during infection, regulated by an R-rich NLS/NoLS and a CRM1-independent NES, and that the BToN accumulation in the nuclear compartment driven by NLS/NoLS is important for virus growth.IMPORTANCE ToVs are diarrhea-causing pathogens detected in many species, including humans. BToV has spread worldwide, leading to economic loss, and there is currently no treatment or vaccine available. Positive-stranded RNA viruses, including ToVs, replicate in the cytoplasm, and their structural proteins generally accumulate in the cytoplasm. Interestingly, BToN accumulated predominantly in the nucleus/nucleolus during all infectious processes, with only a small fraction accumulating in the cytoplasm despite being a major structural protein. Furthermore, we identified unique nucleocytoplasmic trafficking signals and demonstrated the importance of NLS/NoLS for virus growth. This study is the first to undertake an in-depth investigation of the subcellular localization and intracellular trafficking signals of BToN. Our findings additionally suggest that the NLS/NoLS-mediated nuclear accumulation of BToN is important for virus replication. An understanding of the unique features of BToV may provide novel insights into the assembly mechanisms of not only ToVs but also other positive-stranded RNA viruses.
Collapse
Affiliation(s)
- Makoto Ujike
- Laboratory of Veterinary Infectious Diseases, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
- Research Center for Animal Life Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yukako Kawachi
- Laboratory of Veterinary Infectious Diseases, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yui Matsunaga
- Laboratory of Veterinary Infectious Diseases, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yuka Etho
- Laboratory of Veterinary Infectious Diseases, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Hideki Asanuma
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Wataru Kamitani
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Fumihiro Taguchi
- Laboratory of Veterinary Infectious Diseases, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| |
Collapse
|
12
|
A functional interaction between GRP78 and Zika virus E protein. Sci Rep 2021; 11:393. [PMID: 33432092 PMCID: PMC7801745 DOI: 10.1038/s41598-020-79803-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/13/2020] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-transmitted virus that has caused significant public health concerns around the world, partly because of an association with microcephaly in babies born to mothers who were infected with ZIKV during pregnancy. As a recently emerging virus, little is known as to how the virus interacts with the host cell machinery. A yeast-2-hybrid screen for proteins capable of interacting with the ZIKV E protein domain III, the domain responsible for receptor binding, identified 21 proteins, one of which was the predominantly ER resident chaperone protein GRP78. The interaction of GRP78 and ZIKV E was confirmed by co-immunoprecipitation and reciprocal co-immunoprecipitation, and indirect immunofluorescence staining showed intracellular and extracellular co-localization between GRP78 and ZIKV E. Antibodies directed against the N-terminus of GRP78 were able to inhibit ZIKV entry to host cells, resulting in significant reductions in the levels of ZIKV infection and viral production. Consistently, these reductions were also observed after down-regulation of GRP78 by siRNA. These results indicate that GRP78 can play a role mediating ZIKV binding, internalization and replication in cells. GRP78 is a main regulator of the unfolded protein response (UPR), and the study showed that expression of GRP78 was up-regulated, and the UPR was activated. Increases in CHOP expression, and activation of caspases 7 and 9 were also shown in response to ZIKV infection. Overall these results indicate that the interaction between GRP78 and ZIKV E protein plays an important role in ZIKV infection and replication, and may be a potential therapeutic target.
Collapse
|
13
|
Alzhanova D, Corcoran K, Bailey AG, Long K, Taft-Benz S, Graham RL, Broussard GS, Heise M, Neumann G, Halfmann P, Kawaoka Y, Baric RS, Damania B, Dittmer DP. Novel modulators of p53-signaling encoded by unknown genes of emerging viruses. PLoS Pathog 2021; 17:e1009033. [PMID: 33411764 PMCID: PMC7790267 DOI: 10.1371/journal.ppat.1009033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
The p53 transcription factor plays a key role both in cancer and in the cell-intrinsic response to infections. The ORFEOME project hypothesized that novel p53-virus interactions reside in hitherto uncharacterized, unknown, or hypothetical open reading frames (orfs) of human viruses. Hence, 172 orfs of unknown function from the emerging viruses SARS-Coronavirus, MERS-Coronavirus, influenza, Ebola, Zika (ZIKV), Chikungunya and Kaposi Sarcoma-associated herpesvirus (KSHV) were de novo synthesized, validated and tested in a functional screen of p53 signaling. This screen revealed novel mechanisms of p53 virus interactions and two viral proteins KSHV orf10 and ZIKV NS2A binding to p53. Originally identified as the target of small DNA tumor viruses, these experiments reinforce the notion that all viruses, including RNA viruses, interfere with p53 functions. These results validate this resource for analogous systems biology approaches to identify functional properties of uncharacterized viral proteins, long non-coding RNAs and micro RNAs. New viruses are constantly emerging. The ORFEOME project was based on the hypothesis that every virus, regardless of its molecular makeup and biology should encode functions that intersect the p53 signaling network, since p53 guards the cell from genomic insults, of which depositing a foreign, viral nucleic acid is one. The result of the ORFEOME screen of proteins without any known function, of predicted open reading frames and of suspected non-coding RNAs is the identification of two viral proteins that interact with p53. The first one, orf10, is encoded by Kaposi Sarcoma-associated herpesvirus and the second one, NS2A, is encoded by the Zika virus.
Collapse
Affiliation(s)
- Dina Alzhanova
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kathleen Corcoran
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Aubrey G. Bailey
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kristin Long
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Sharon Taft-Benz
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Rachel L. Graham
- Department of Epidemiology, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Grant S. Broussard
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Mark Heise
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Peter Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ralph S. Baric
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Epidemiology, University of North Carolina at Chapel Hill, North Carolina, United States of America
| | - Blossom Damania
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dirk P. Dittmer
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
14
|
Hu Y, Yang Z, Wang S, Sun D, Zhong M, Wen M, Song J, Zhang Y. Comprehensive analysis of differential expression profiles via transcriptome sequencing in SH-SY5Y cells infected with CV-A16. PLoS One 2020; 15:e0241174. [PMID: 33156879 PMCID: PMC7647100 DOI: 10.1371/journal.pone.0241174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/02/2020] [Indexed: 11/17/2022] Open
Abstract
Coxsackievirus A16 (CV-A16) is one of the viruses that is most frequently associated with hand-foot-and-mouth disease (HFMD). Previous studies have shown that CV-A16 infections are mostly self-limiting, but in recent years, it has been gradually found that CV-A16 infections can also induce neurological complications and eventually cause death in children with HFMD. Moreover, no curative drugs or preventative vaccines have been developed for CV-A16 infection. Therefore, it is particularly important to investigate the mechanism of CV-A16 infection-induced neuropathy. In the current study, transcriptome sequencing technology was used to identify changes in the transcriptome of SH-SY5Y cells infected with CV-A16, which might hide the mechanism of CV-A16-induced neuropathology. The transcriptome profiling showed that 82,406,974, 108,652,260 and 97,753,565 clean reads were obtained in the Control, CV-A16-12 h and CV-A16-24 h groups, respectively. And it was further detected that a total of 136 and 161 differentially expressed genes in CV-A16-12 h and CV-A16-24 h groups, respectively, when compared with Control group. Then, to explore the mechanism of CV-A16 infection, we focused on the common differentially expressed genes at different time points of CV-A16 infection and found that there were 34 differentially expressed genes based on which clustering analysis and functional category enrichment analysis were performed. The results indicated that changes in oxidation levels were particularly evident in the GO term analysis, while only the “Gonadotropin-releasing hormone receptor pathway” was enriched in the KEGG pathway analysis, which might be closely related to the neurotoxicity caused by CV-A16 infection. Meanwhile, the ID2 closely related to nervous system has been demonstrated to be increased during CV-A16 infection. Additionally, the data on differentially expressed non-protein-coding genes of different types within the transcriptome sequencing results were analyzed, and it was speculated that these dysregulated non-protein-coding genes played a pivotal role in CV-A16 infection. Ultimately, qRT-PCR was utilized to validate the transcriptome sequencing findings, and the results of qRT-PCR were in agreement with the transcriptome sequencing data. In conclusion, transcriptome profiling was carried out to analyze response of SH-SY5Y cells to CV-A16 infection. And our findings provide important information to elucidate the possible molecular mechanisms which were linked to the neuropathogenesis of CV-A16 infection.
Collapse
Affiliation(s)
- Yajie Hu
- Department of Respiratory Medicine, The First People's Hospital of Yunnan province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhen Yang
- Department of Respiratory Medicine, The First People's Hospital of Yunnan province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Shenglan Wang
- Department of Respiratory Medicine, The First People's Hospital of Yunnan province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Danxiong Sun
- Department of Respiratory Medicine, The First People's Hospital of Yunnan province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Mingmei Zhong
- Department of Respiratory Medicine, The First People's Hospital of Yunnan province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Mudong Wen
- Department of Respiratory Medicine, The First People's Hospital of Yunnan province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Song
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yunhui Zhang
- Department of Respiratory Medicine, The First People's Hospital of Yunnan province, Kunming, China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
15
|
Abstract
The flavivirus genus encompasses more than 75 unique viruses, including dengue virus which accounts for almost 390 million global infections annually. Flavivirus infection can result in a myriad of symptoms ranging from mild rash and flu-like symptoms, to severe encephalitis and even hemorrhagic fever. Efforts to combat the impact of these viruses have been hindered due to limited antiviral drug and vaccine development. However, the advancement of knowledge in the structural biology of flaviviruses over the last 25 years has produced unique perspectives for the identification of potential therapeutic targets. With particular emphasis on the assembly and maturation stages of the flavivirus life cycle, it is the goal of this review to comparatively analyze the structural similarities between flaviviruses to provide avenues for new research and innovation.
Collapse
Affiliation(s)
- Conrrad M R Nicholls
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Madhumati Sevvana
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States; Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
16
|
Trujillo-Uscanga A, Gutiérrez-Escolano AL. Host cell p53 associates with the feline calicivirus major viral capsid protein VP1, the protease-polymerase NS6/7, and the double-stranded RNA playing a role in virus replication. Virology 2020; 550:78-88. [PMID: 32890980 PMCID: PMC7451061 DOI: 10.1016/j.virol.2020.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 11/03/2022]
Abstract
p53 is implicated in several cellular pathways such as induction of cell-cycle arrest, differentiation, senescence, and apoptosis. p53 is activated by a broad range of stress signals, including viral infections. While some viruses activate p53, others induce its inactivation, and occasionally p53 is differentially modulated during the replicative cycle. During calicivirus infections, apoptosis is required for virus exit and spread into the host; yet, the role of p53 during infection is unknown. By confocal microscopy, we found that p53 associates with FCV VP1, the protease-polymerase NS6/7, and the dsRNA. This interaction was further confirmed by proximity ligation assays, suggesting that p53 participates in the FCV replication. Knocked-down of p53 expression in CrFK cells before infection, resulted in a strong reduction of the non-structural protein levels and a decrease of the viral progeny production. These results indicate that p53 is associated with the viral replication complex and is required for an efficient FCV replication. Host cell p53 protein levels and subcellular localization do not change during FCV infection. Host cell p53 associates with FCV major viral capsid protein VP1, protease-polymerase NS6/7, and the dsRNA in FCV infected cells. Host cell p53 is required for a FCV replication.
Collapse
Affiliation(s)
- Adrian Trujillo-Uscanga
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico
| | - Ana Lorena Gutiérrez-Escolano
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México City, Mexico.
| |
Collapse
|
17
|
Kobayashi S, Yoshii K, Phongphaew W, Muto M, Hirano M, Orba Y, Sawa H, Kariwa H. West Nile virus capsid protein inhibits autophagy by AMP-activated protein kinase degradation in neurological disease development. PLoS Pathog 2020; 16:e1008238. [PMID: 31971978 PMCID: PMC6977728 DOI: 10.1371/journal.ppat.1008238] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022] Open
Abstract
West Nile virus (WNV) belongs to the Flaviviridae family and has emerged as a significant cause of viral encephalitis in birds and animals including humans. WNV replication directly induces neuronal injury, followed by neuronal cell death. We previously showed that accumulation of ubiquitinated protein aggregates was involved in neuronal cell death in the WNV-infected mouse brain. In this study, we attempted to elucidate the mechanisms of the accumulation of protein aggregates in the WNV-infected cells. To identify the viral factor inducing the accumulation of ubiquitinated proteins, intracellular accumulation of ubiquitinated proteins was examined in the cells expressing the viral protein. Expression of capsid (C) protein induced the accumulation, while mutations at residues L51 and A52 in C protein abrogated the accumulation. Wild-type (WT) or mutant WNV in which mutations were introduced into the residues was inoculated into human neuroblastoma cells. The expression levels of LC3-II, an autophagy-related protein, and AMP-activated protein kinase (AMPK), an autophagy inducer, were reduced in the cells infected with WT WNV, while the reduction was not observed in the cells infected with WNV with the mutations in C protein. Similarly, ubiquitination and degradation of AMPK were only observed in the cells infected with WT WNV. In the cells expressing C protein, AMPK was co-precipitated with C protein and mutations in L51 and A52 reduced the interaction. Although the viral replication was not affected, the accumulation of ubiquitinated proteins in brain and neurological symptoms were attenuated in the mouse inoculated with WNV with the mutations in C protein as compared with that with WT WNV. Taken together, ubiquitination and degradation of AMPK by C protein resulted in the inhibition of autophagy and the accumulation of protein aggregates, which contributes to the development of neurological disease.
Collapse
Affiliation(s)
- Shintaro Kobayashi
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
- * E-mail:
| | - Kentaro Yoshii
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Wallaya Phongphaew
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Memi Muto
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Minato Hirano
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, Maryland, United States of America
| | - Hiroaki Kariwa
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| |
Collapse
|
18
|
Understanding Flavivirus Capsid Protein Functions: The Tip of the Iceberg. Pathogens 2020; 9:pathogens9010042. [PMID: 31948047 PMCID: PMC7168633 DOI: 10.3390/pathogens9010042] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/18/2022] Open
Abstract
Flaviviruses are enveloped positive-sense single-stranded RNA arboviruses, infectious to humans and many other animals and are transmitted primarily via tick or mosquito vectors. Capsid is the primary structural protein to interact with viral genome within virus particles and is therefore necessary for efficient packaging. However, in cells, capsid interacts with many proteins and nucleic acids and we are only beginning to understand the broad range of functions of flaviviral capsids. It is known that capsid dimers interact with the membrane of lipid droplets, aiding in both viral packaging and storage of capsid prior to packaging. However, capsid dimers can bind a range of nucleic acid templates in vitro, and likely interact with a range of targets during the flavivirus lifecycle. Capsid may interact with host RNAs, resulting in altered RNA splicing and RNA transcription. Capsid may also bind short interfering-RNAs and has been proposed to sequester these species to protect flaviviruses from the invertebrate siRNA pathways. Capsid can also be found in the nucleolus, where it wreaks havoc on ribosome biogenesis. Here we review flavivirus capsid structure, nucleic acid interactions and how these give rise to multiple functions. We also discuss how these features might be exploited either in the design of effective antivirals or novel vaccine strategies.
Collapse
|
19
|
Mehrbod P, Ande SR, Alizadeh J, Rahimizadeh S, Shariati A, Malek H, Hashemi M, Glover KKM, Sher AA, Coombs KM, Ghavami S. The roles of apoptosis, autophagy and unfolded protein response in arbovirus, influenza virus, and HIV infections. Virulence 2019; 10:376-413. [PMID: 30966844 PMCID: PMC6527025 DOI: 10.1080/21505594.2019.1605803] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/16/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
Virus infection induces different cellular responses in infected cells. These include cellular stress responses like autophagy and unfolded protein response (UPR). Both autophagy and UPR are connected to programed cell death I (apoptosis) in chronic stress conditions to regulate cellular homeostasis via Bcl2 family proteins, CHOP and Beclin-1. In this review article we first briefly discuss arboviruses, influenza virus, and HIV and then describe the concepts of apoptosis, autophagy, and UPR. Finally, we focus upon how apoptosis, autophagy, and UPR are involved in the regulation of cellular responses to arboviruses, influenza virus and HIV infections. Abbreviation: AIDS: Acquired Immunodeficiency Syndrome; ATF6: Activating Transcription Factor 6; ATG6: Autophagy-specific Gene 6; BAG3: BCL Associated Athanogene 3; Bak: BCL-2-Anatagonist/Killer1; Bax; BCL-2: Associated X protein; Bcl-2: B cell Lymphoma 2x; BiP: Chaperon immunoglobulin heavy chain binding Protein; CARD: Caspase Recruitment Domain; cART: combination Antiretroviral Therapy; CCR5: C-C Chemokine Receptor type 5; CD4: Cluster of Differentiation 4; CHOP: C/EBP homologous protein; CXCR4: C-X-C Chemokine Receptor Type 4; Cyto c: Cytochrome C; DCs: Dendritic Cells; EDEM1: ER-degradation enhancing-a-mannosidase-like protein 1; ENV: Envelope; ER: Endoplasmic Reticulum; FasR: Fas Receptor;G2: Gap 2; G2/M: Gap2/Mitosis; GFAP: Glial Fibrillary Acidic Protein; GP120: Glycoprotein120; GP41: Glycoprotein41; HAND: HIV Associated Neurodegenerative Disease; HEK: Human Embryonic Kidney; HeLa: Human Cervical Epithelial Carcinoma; HIV: Human Immunodeficiency Virus; IPS-1: IFN-β promoter stimulator 1; IRE-1: Inositol Requiring Enzyme 1; IRGM: Immunity Related GTPase Family M protein; LAMP2A: Lysosome Associated Membrane Protein 2A; LC3: Microtubule Associated Light Chain 3; MDA5: Melanoma Differentiation Associated gene 5; MEF: Mouse Embryonic Fibroblast; MMP: Mitochondrial Membrane Permeabilization; Nef: Negative Regulatory Factor; OASIS: Old Astrocyte Specifically Induced Substrate; PAMP: Pathogen-Associated Molecular Pattern; PERK: Pancreatic Endoplasmic Reticulum Kinase; PRR: Pattern Recognition Receptor; Puma: P53 Upregulated Modulator of Apoptosis; RIG-I: Retinoic acid-Inducible Gene-I; Tat: Transactivator Protein of HIV; TLR: Toll-like receptor; ULK1: Unc51 Like Autophagy Activating Kinase 1; UPR: Unfolded Protein Response; Vpr: Viral Protein Regulatory; XBP1: X-Box Binding Protein 1.
Collapse
Affiliation(s)
- Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Past eur Institute of IRAN, Tehran, Iran
| | - Sudharsana R. Ande
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Javad Alizadeh
- Department of Human Anatomy & Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children‘s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Research Institute of Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
| | - Shahrzad Rahimizadeh
- Department of Medical Microbiology, Assiniboine Community College, School of Health and Human Services and Continuing Education, Winnipeg, MB, Canada
| | - Aryana Shariati
- Department of Human Anatomy & Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hadis Malek
- Department of Biology, Islamic Azad University, Mashhad, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Kathleen K. M. Glover
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Affan A. Sher
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Kevin M. Coombs
- Children‘s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Saeid Ghavami
- Department of Human Anatomy & Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children‘s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Research Institute of Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
- Health Policy Research Centre, Shiraz Medical University of Medical Science, Shiraz, Iran
| |
Collapse
|
20
|
Peng BH, Wang T. West Nile Virus Induced Cell Death in the Central Nervous System. Pathogens 2019; 8:pathogens8040215. [PMID: 31683807 PMCID: PMC6963722 DOI: 10.3390/pathogens8040215] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/21/2022] Open
Abstract
West Nile virus (WNV), a mosquito-borne, single-stranded flavivirus, has caused annual outbreaks of viral encephalitis in the United States since 1999. The virus induces acute infection with a clinical spectrum ranging from a mild flu-like febrile symptom to more severe neuroinvasive conditions, including meningitis, encephalitis, acute flaccid paralysis, and death. Some WNV convalescent patients also developed long-term neurological sequelae. Neither the treatment of WNV infection nor an approved vaccine is currently available for humans. Neuronal death in the central nervous system (CNS) is a hallmark of WNV-induced meningitis and encephalitis. However, the underlying mechanisms of WNV-induced neuronal damage are not well understood. In this review, we discuss current findings from studies of WNV infection in vitro in the CNS resident cells and the in vivo animal models, and provide insights into WNV-induced neuropathogenesis.
Collapse
Affiliation(s)
- Bi-Hung Peng
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
21
|
Shin S, Kim K, Kim HR, Ylaya K, Do SI, Hewitt SM, Park HS, Roe JS, Chung JY, Song J. Deubiquitylation and stabilization of Notch1 intracellular domain by ubiquitin-specific protease 8 enhance tumorigenesis in breast cancer. Cell Death Differ 2019; 27:1341-1354. [PMID: 31527799 DOI: 10.1038/s41418-019-0419-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/31/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022] Open
Abstract
Notch, an essential factor in tissue development and homoeostasis, has been reported to play an oncogenic function in a variety of cancers. Here, we report ubiquitin-specific protease 8 (USP8) as a novel deubiquitylase of Notch1 intracellular domain (NICD). USP8 specifically stabilizes and deubiquitylates NICD through a direct interaction. The inhibition of USP8 downregulated the Notch signalling pathway via NICD destabilization, resulting in the retardation of cellular growth, wound closure, and colony forming ability of breast cancer cell lines. These phenomena were restored by the reconstitution of NICD or USP8, supporting the direct interaction between these two proteins. The expression levels of NICD and USP8 proteins were positively correlated in patients with advanced breast cancer. Taken together, our results suggest that USP8 functions as a positive regulator of Notch signalling, offering a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Soyeon Shin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyungeun Kim
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 03181, Republic of Korea
| | - Hwa-Ryeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kris Ylaya
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sung-Im Do
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, 03181, Republic of Korea
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hee-Sae Park
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
22
|
Basal Level p53 Suppresses Antiviral Immunity against Foot-and-Mouth Disease Virus. Viruses 2019; 11:v11080727. [PMID: 31394868 PMCID: PMC6723088 DOI: 10.3390/v11080727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/04/2022] Open
Abstract
Tumor suppressor protein p53 (p53) is a master transcription factor that plays key roles in cell cycle arrest, apoptosis, senescence, and metabolism, as well as regulation of innate immunity during virus infection. In order to facilitate their replication and spreading, viruses have evolved to manipulate p53 function through different strategies, with some requiring active p53 while others demand reduction/inhibition of p53 activity. However, there are no clear-cut reports about the roles of p53 during the infection of foot-and-mouth disease virus (FMDV), the causative agent of a highly contagious foot-and-mouth disease (FMD) of cloven-hoofed animals. Here we showed that p53 level was dynamically regulated during FMDV infection, being degraded at the early infection stage but recovered to the basal level at the late stage. Cells depleted of p53 showed inhibited FMDV replication and enhanced expression of the immune-related genes, whereas overexpression of p53 didn’t affect the viral replication. Viral challenge assay with p53 knockout mice obtained similar results, with viral load decreased, histopathological changes alleviated, and lifespan extended in the p53 knockout mice. Together, these data demonstrate that basal level p53 is required for efficient FMDV replication by suppressing the innate immunity.
Collapse
|
23
|
Hetman M, Slomnicki LP. Ribosomal biogenesis as an emerging target of neurodevelopmental pathologies. J Neurochem 2018; 148:325-347. [PMID: 30144322 DOI: 10.1111/jnc.14576] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022]
Abstract
Development of the nervous system is carried out by complex gene expression programs that are regulated at both transcriptional and translational level. In addition, quality control mechanisms such as the TP53-mediated apoptosis or neuronal activity-stimulated survival ensure successful neurogenesis and formation of functional circuitries. In the nucleolus, production of ribosomes is essential for protein synthesis. In addition, it participates in chromatin organization and regulates the TP53 pathway via the ribosomal stress response. Its tight regulation is required for maintenance of genomic integrity. Mutations in several ribosomal components and trans-acting ribosomal biogenesis factors result in neurodevelopmental syndromes that present with microcephaly, autism, intellectual deficits and/or progressive neurodegeneration. Furthermore, ribosomal biogenesis is perturbed by exogenous factors that disrupt neurodevelopment including alcohol or Zika virus. In this review, we present recent literature that argues for a role of dysregulated ribosomal biogenesis in pathogenesis of various neurodevelopmental syndromes. We also discuss potential mechanisms through which such dysregulation may lead to cellular pathologies of the developing nervous system including insufficient proliferation and/or loss of neuroprogenitors cells, apoptosis of immature neurons, altered neuronal morphogenesis, and neurodegeneration.
Collapse
Affiliation(s)
- Michal Hetman
- Departments of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, USA.,Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Lukasz P Slomnicki
- Departments of Neurological Surgery, Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, USA
| |
Collapse
|
24
|
Aloni-Grinstein R, Charni-Natan M, Solomon H, Rotter V. p53 and the Viral Connection: Back into the Future ‡. Cancers (Basel) 2018; 10:cancers10060178. [PMID: 29866997 PMCID: PMC6024945 DOI: 10.3390/cancers10060178] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 01/14/2023] Open
Abstract
The discovery of the tumor suppressor p53, through its interactions with proteins of tumor-promoting viruses, paved the way to the understanding of p53 roles in tumor virology. Over the years, accumulating data suggest that WTp53 is involved in the viral life cycle of non-tumor-promoting viruses as well. These include the influenza virus, smallpox and vaccinia viruses, the Zika virus, West Nile virus, Japanese encephalitis virus, Human Immunodeficiency Virus Type 1, Human herpes simplex virus-1, and more. Viruses have learned to manipulate WTp53 through different strategies to improve their replication and spreading in a stage-specific, bidirectional way. While some viruses require active WTp53 for efficient viral replication, others require reduction/inhibition of WTp53 activity. A better understanding of WTp53 functionality in viral life may offer new future clinical approaches, based on WTp53 manipulation, for viral infections.
Collapse
Affiliation(s)
- Ronit Aloni-Grinstein
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel.
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Box 19, 74100 Ness-Ziona, Israel.
| | - Meital Charni-Natan
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Hilla Solomon
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
25
|
Kumar R, Singh N, Abdin MZ, Patel AH, Medigeshi GR. Dengue Virus Capsid Interacts with DDX3X-A Potential Mechanism for Suppression of Antiviral Functions in Dengue Infection. Front Cell Infect Microbiol 2018; 7:542. [PMID: 29387631 PMCID: PMC5776122 DOI: 10.3389/fcimb.2017.00542] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/26/2017] [Indexed: 11/28/2022] Open
Abstract
Dengue virus is a pathogen of global concern and has a huge impact on public health system in low- and middle-income countries. The capsid protein of dengue virus is least conserved among related flavivirus and there is very limited information on the role of cytosolic proteins that interact with dengue virus capsid. We identified DEAD (Asp-Glu-Ala-Asp) Box Helicase 3, an X-Linked (DDX3X), cytosolic ATP-dependent RNA helicase as a dengue virus capsid-interacting protein. We show that the N-terminal region of capsid is important for interaction with DDX3X, while the N-terminal domain of DDX3X seems to be involved in interaction with dengue capsid. DDX3X was down-regulated in dengue virus infected cells at later stages of infection. Our results show that DDX3X is an antiviral protein as suppression of DDX3X expression by siRNA led to an increase in viral titers and overexpression of DDX3X led to inhibition of viral replication. Knock-down of DDX3X did not affect induction of type I interferon response upon infection suggesting that the effect of DDX3X knock-down is independent of the interferon-dependent pathways that DDX3X modulates under normal conditions. Thus, our study identifies DDX3X as a dengue virus capsid interacting protein and indicates a potential link between the antiviral functions of DDX3X and dengue capsid at later stages of dengue infection.
Collapse
Affiliation(s)
- Rinki Kumar
- Clinical and Cellular Virology Lab, Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, India.,Department of Biotechnology, Jamia Hamdard, New Delhi, India
| | - Nirpendra Singh
- Regional Center for Biotechnology, NCR-Biotech Science Cluster, Faridabad, India
| | - Malik Z Abdin
- Department of Biotechnology, Jamia Hamdard, New Delhi, India
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Guruprasad R Medigeshi
- Clinical and Cellular Virology Lab, Vaccine and Infectious Disease Research Center, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, Faridabad, India
| |
Collapse
|
26
|
Slomnicki LP, Chung DH, Parker A, Hermann T, Boyd NL, Hetman M. Ribosomal stress and Tp53-mediated neuronal apoptosis in response to capsid protein of the Zika virus. Sci Rep 2017; 7:16652. [PMID: 29192272 PMCID: PMC5709411 DOI: 10.1038/s41598-017-16952-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023] Open
Abstract
We report here that in rat and human neuroprogenitor cells as well as rat embryonic cortical neurons Zika virus (ZIKV) infection leads to ribosomal stress that is characterized by structural disruption of the nucleolus. The anti-nucleolar effects were most pronounced in postmitotic neurons. Moreover, in the latter system, nucleolar presence of ZIKV capsid protein (ZIKV-C) was associated with ribosomal stress and apoptosis. Deletion of 22 C-terminal residues of ZIKV-C prevented nucleolar localization, ribosomal stress and apoptosis. Consistent with a casual relationship between ZIKV-C-induced ribosomal stress and apoptosis, ZIKV-C-overexpressing neurons were protected by loss-of-function manipulations targeting the ribosomal stress effector Tp53 or knockdown of the ribosomal stress mediator RPL11. Finally, capsid protein of Dengue virus, but not West Nile virus, induced ribosomal stress and apoptosis. Thus, anti-nucleolar and pro-apoptotic effects of protein C are flavivirus-species specific. In the case of ZIKV, capsid protein-mediated ribosomal stress may contribute to neuronal death, neurodevelopmental disruption and microcephaly.
Collapse
Affiliation(s)
- Lukasz P Slomnicki
- Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, 40292, USA
| | - Dong-Hoon Chung
- Center of Predictive Medicine and the Department of Microbiology & Immunology, University of Louisville, Louisville, Kentucky, 40292, USA
| | - Austin Parker
- Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, 40292, USA
| | - Taylor Hermann
- Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, 40292, USA
| | - Nolan L Boyd
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky, 40292, USA
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center and the Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, 40292, USA.
- Pharmacology & Toxicology, University of Louisville, Louisville, Kentucky, 40292, USA.
| |
Collapse
|
27
|
Differentiated Human SH-SY5Y Cells Provide a Reductionist Model of Herpes Simplex Virus 1 Neurotropism. J Virol 2017; 91:JVI.00958-17. [PMID: 28956768 DOI: 10.1128/jvi.00958-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022] Open
Abstract
Neuron-virus interactions that occur during herpes simplex virus (HSV) infection are not fully understood. Neurons are the site of lifelong latency and are a crucial target for long-term suppressive therapy or viral clearance. A reproducible neuronal model of human origin would facilitate studies of HSV and other neurotropic viruses. Current neuronal models in the herpesvirus field vary widely and have caveats, including incomplete differentiation, nonhuman origins, or the use of dividing cells that have neuropotential but lack neuronal morphology. In this study, we used a robust approach to differentiate human SH-SY5Y neuroblastoma cells over 2.5 weeks, producing a uniform population of mature human neuronal cells. We demonstrate that terminally differentiated SH-SY5Y cells have neuronal morphology and express proteins with subcellular localization indicative of mature neurons. These neuronal cells are able to support a productive HSV-1 infection, with kinetics and overall titers similar to those seen in undifferentiated SH-SY5Y cells and the related SK-N-SH cell line. However, terminally differentiated, neuronal SH-SY5Y cells release significantly less extracellular HSV-1 by 24 h postinfection (hpi), suggesting a unique neuronal response to viral infection. With this model, we are able to distinguish differences in neuronal spread between two strains of HSV-1. We also show expression of the antiviral protein cyclic GMP-AMP synthase (cGAS) in neuronal SH-SY5Y cells, which is the first demonstration of the presence of this protein in nonepithelial cells. These data provide a model for studying neuron-virus interactions at the single-cell level as well as via bulk biochemistry and will be advantageous for the study of neurotropic viruses in vitroIMPORTANCE Herpes simplex virus (HSV) affects millions of people worldwide, causing painful oral and genital lesions, in addition to a multitude of more severe symptoms such as eye disease, neonatal infection, and, in rare cases, encephalitis. Presently, there is no cure available to treat those infected or prevent future transmission. Due to the ability of HSV to cause a persistent, lifelong infection in the peripheral nervous system, the virus remains within the host for life. To better understand the basis of virus-neuron interactions that allow HSV to persist within the host peripheral nervous system, improved neuronal models are required. Here we describe a cost-effective and scalable human neuronal model system that can be used to study many neurotropic viruses, such as HSV, Zika virus, dengue virus, and rabies virus.
Collapse
|
28
|
Lim SM, van den Ham HJ, Oduber M, Martina E, Zaaraoui-Boutahar F, Roose JM, van IJcken WFJ, Osterhaus ADME, Andeweg AC, Koraka P, Martina BEE. Transcriptomic Analyses Reveal Differential Gene Expression of Immune and Cell Death Pathways in the Brains of Mice Infected with West Nile Virus and Chikungunya Virus. Front Microbiol 2017; 8:1556. [PMID: 28861067 PMCID: PMC5562671 DOI: 10.3389/fmicb.2017.01556] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/02/2017] [Indexed: 12/11/2022] Open
Abstract
West Nile virus (WNV) and chikungunya virus (CHIKV) are arboviruses that are constantly (re-)emerging and expanding their territory. Both viruses often cause a mild form of disease, but severe forms of the disease can consist of neurological symptoms, most often observed in the elderly and young children, respectively, for which the mechanisms are poorly understood. To further elucidate the mechanisms responsible for end-stage WNV and CHIKV neuroinvasive disease, we used transcriptomics to compare the induction of effector pathways in the brain during the early and late stage of disease in young mice. In addition to the more commonly described cell death pathways such as apoptosis and autophagy, we also found evidence for the differential expression of pyroptosis and necroptosis cell death markers during both WNV and CHIKV neuroinvasive disease. In contrast, no evidence of cell dysfunction was observed, indicating that cell death may be the most important mechanism of disease. Interestingly, there was overlap when comparing immune markers involved in neuroinvasive disease to those seen in neurodegenerative diseases. Nonetheless, further validation studies are needed to determine the activation and involvement of these effector pathways at the end stage of disease. Furthermore, evidence for a strong inflammatory response was found in mice infected with WNV and CHIKV. The transcriptomics profile measured in mice with WNV and CHIKV neuroinvasive disease in our study showed strong overlap with the mRNA profile described in the literature for other viral neuroinvasive diseases. More studies are warranted to decipher the role of cell inflammation and cell death in viral neuroinvasive disease and whether common mechanisms are active in both neurodegenerative and brain infectious diseases.
Collapse
Affiliation(s)
| | | | - Minoushka Oduber
- Department of Viroscience, Erasmus Medical CenterRotterdam, Netherlands
| | | | | | - Jeroen M Roose
- Artemis One Health Research FoundationDelft, Netherlands
| | | | - Albert D M E Osterhaus
- Artemis One Health Research FoundationDelft, Netherlands.,Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary MedicineHannover, Germany
| | - Arno C Andeweg
- Department of Viroscience, Erasmus Medical CenterRotterdam, Netherlands
| | - Penelope Koraka
- Department of Viroscience, Erasmus Medical CenterRotterdam, Netherlands
| | - Byron E E Martina
- Artemis One Health Research FoundationDelft, Netherlands.,Department of Viroscience, Erasmus Medical CenterRotterdam, Netherlands
| |
Collapse
|
29
|
Teng Y, Liu S, Guo X, Liu S, Jin Y, He T, Bi D, Zhang P, Lin B, An X, Feng D, Mi Z, Tong Y. An Integrative Analysis Reveals a Central Role of P53 Activation via MDM2 in Zika Virus Infection Induced Cell Death. Front Cell Infect Microbiol 2017; 7:327. [PMID: 28775961 PMCID: PMC5517408 DOI: 10.3389/fcimb.2017.00327] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/03/2017] [Indexed: 12/15/2022] Open
Abstract
Zika virus (ZIKV) infection is an emerging global threat that is suspected to be associated with fetal microcephaly. However, the molecular mechanisms underlying ZIKV disease pathogenesis in humans remain elusive. Here, we investigated the human protein interaction network associated with ZIKV infection using a systemic virology approach, and reconstructed the transcriptional regulatory network to analyze the mechanisms underlying ZIKV-elicited microcephaly pathogenesis. The bioinformatics findings in this study show that P53 is the hub of the genetic regulatory network for ZIKV-related and microcephaly-associated proteins. Importantly, these results imply that the ZIKV capsid protein interacts with mouse double-minute-2 homolog (MDM2), which is involved in the P53-mediated apoptosis pathway, activating the death of infected neural cells. We also found that synthetic mimics of the ZIKV capsid protein induced cell death in vitro and in vivo. This study provides important insight into the relationship between ZIKV infection and brain diseases.
Collapse
Affiliation(s)
- Yue Teng
- State Key Laboratory of Pathogen and BiosecurityBeijing, China.,Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Shufeng Liu
- Center for Infectious Diseases, SRI InternationalHarrisonburg, VA, United States
| | - Xiaocan Guo
- Massachusetts Institute of TechnologyCambridge, MA, United States
| | - Shuxia Liu
- College of Nuclear Science and Technology, Beijing Normal UniversityBeijing, China
| | - Yuan Jin
- Beijing Institute of BiotechnologyBeijing, China
| | - Tongtong He
- State Key Laboratory of Pathogen and BiosecurityBeijing, China
| | - Dehua Bi
- State Key Laboratory of Pathogen and BiosecurityBeijing, China
| | - Pei Zhang
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and TechnologyWuhan, China
| | - Baihan Lin
- Computational Neuroscience Program, Department of Psychology, Physics, and Computer Science and Engineering; Institute for Protein Design, University of WashingtonSeattle, WA, United States
| | - Xiaoping An
- State Key Laboratory of Pathogen and BiosecurityBeijing, China
| | - Dan Feng
- Division of Standard Operational Management, Institute of Hospital Management, Chinese PLA General HospitalBeijing, China
| | - Zhiqiang Mi
- State Key Laboratory of Pathogen and BiosecurityBeijing, China
| | - Yigang Tong
- State Key Laboratory of Pathogen and BiosecurityBeijing, China
| |
Collapse
|
30
|
Lopez-Denman AJ, Mackenzie JM. The IMPORTance of the Nucleus during Flavivirus Replication. Viruses 2017; 9:v9010014. [PMID: 28106839 PMCID: PMC5294983 DOI: 10.3390/v9010014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 12/24/2022] Open
Abstract
Flaviviruses are a large group of arboviruses of significant medical concern worldwide. With outbreaks a common occurrence, the need for efficient viral control is required more than ever. It is well understood that flaviviruses modulate the composition and structure of membranes in the cytoplasm that are crucial for efficient replication and evading immune detection. As the flavivirus genome consists of positive sense RNA, replication can occur wholly within the cytoplasm. What is becoming more evident is that some viral proteins also have the ability to translocate to the nucleus, with potential roles in replication and immune system perturbation. In this review, we discuss the current understanding of flavivirus nuclear localisation, and the function it has during flavivirus infection. We also describe-while closely related-the functional differences between similar viral proteins in their nuclear translocation.
Collapse
Affiliation(s)
- Adam J Lopez-Denman
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia.
- Department of Physiology, Anatomy & Microbiology, La Trobe University, Melbourne 3086, Australia.
| | - Jason M Mackenzie
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
31
|
ZIKA virus elicits P53 activation and genotoxic stress in human neural progenitors similar to mutations involved in severe forms of genetic microcephaly. Cell Death Dis 2016; 7:e2440. [PMID: 27787521 PMCID: PMC5133962 DOI: 10.1038/cddis.2016.266] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/20/2016] [Accepted: 07/26/2016] [Indexed: 12/30/2022]
Abstract
Epidemiological evidence from the current outbreak of Zika virus (ZIKV) and recent studies in animal models indicate a strong causal link between ZIKV and microcephaly. ZIKV infection induces cell-cycle arrest and apoptosis in proliferating neural progenitors. However, the mechanisms leading to these phenotypes are still largely obscure. In this report, we explored the possible similarities between transcriptional responses induced by ZIKV in human neural progenitors and those elicited by three different genetic mutations leading to severe forms of microcephaly in mice. We found that the strongest similarity between all these conditions is the activation of common P53 downstream genes. In agreement with these observations, we report that ZIKV infection increases total P53 levels and nuclear accumulation, as well as P53 Ser15 phosphorylation, correlated with genotoxic stress and apoptosis induction. Interestingly, increased P53 activation and apoptosis are induced not only in cells expressing high levels of viral antigens but also in cells showing low or undetectable levels of the same proteins. These results indicate that P53 activation is an early and specific event in ZIKV-infected cells, which could result from cell-autonomous and/or non-cell-autonomous mechanisms. Moreover, we highlight a small group of P53 effector proteins that could act as critical mediators, not only in ZIKV-induced microcephaly but also in many genetic microcephaly syndromes.
Collapse
|
32
|
Paul AM, Acharya D, Le L, Wang P, Stokic DS, Leis AA, Alexopoulou L, Town T, Flavell RA, Fikrig E, Bai F. TLR8 Couples SOCS-1 and Restrains TLR7-Mediated Antiviral Immunity, Exacerbating West Nile Virus Infection in Mice. THE JOURNAL OF IMMUNOLOGY 2016; 197:4425-4435. [PMID: 27798161 DOI: 10.4049/jimmunol.1600902] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/29/2016] [Indexed: 12/11/2022]
Abstract
West Nile virus (WNV) is a neurotropic ssRNA flavivirus that can cause encephalitis, meningitis, and death in humans and mice. Human TLR7 and TLR8 and mouse TLR7 recognize viral ssRNA motifs and induce antiviral immunity. However, the role of mouse TLR8 in antiviral immunity is poorly understood. In this article, we report that TLR8-deficient (Tlr8-/-) mice were resistant to WNV infection compared with wild-type controls. Efficient WNV clearance and moderate susceptibility to WNV-mediated neuronal death in Tlr8-/- mice were attributed to overexpression of Tlr7 and IFN-stimulated gene-56 expression, whereas reduced expression of the proapoptotic gene coding Bcl2-associated X protein was observed. Interestingly, suppressor of cytokine signaling (SOCS)-1 directly associated with TLR8, but not with TLR7, indicating a novel role for TLR8 regulation of SOCS-1 function, whereas selective small interfering RNA knockdown of Socs-1 resulted in induced IFN-stimulated gene-56 and Tlr7 expression following WNV infection. Collectively, we report that TLR8 coupling with SOCS-1 inhibits TLR7-mediated antiviral immunity during WNV infection in mice.
Collapse
Affiliation(s)
- Amber M Paul
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406
| | - Dhiraj Acharya
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406
| | - Linda Le
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406
| | - Penghua Wang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520.,Department of Microbiology and Immunology, School of Medicine, New York Medical College, Valhalla, NY 10595
| | - Dobrivoje S Stokic
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS 39216
| | - A Arturo Leis
- Center for Neuroscience and Neurological Recovery, Methodist Rehabilitation Center, Jackson, MS 39216
| | - Lena Alexopoulou
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, INSERM, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Terrence Town
- Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520; and.,Howard Hughes Medical Institute, New Haven, CT 06520
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520.,Howard Hughes Medical Institute, New Haven, CT 06520
| | - Fengwei Bai
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406;
| |
Collapse
|
33
|
Zhang F, Hammack C, Ogden SC, Cheng Y, Lee EM, Wen Z, Qian X, Nguyen HN, Li Y, Yao B, Xu M, Xu T, Chen L, Wang Z, Feng H, Huang WK, Yoon KJ, Shan C, Huang L, Qin Z, Christian KM, Shi PY, Xu M, Xia M, Zheng W, Wu H, Song H, Tang H, Ming GL, Jin P. Molecular signatures associated with ZIKV exposure in human cortical neural progenitors. Nucleic Acids Res 2016; 44:8610-8620. [PMID: 27580721 PMCID: PMC5063002 DOI: 10.1093/nar/gkw765] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/21/2016] [Accepted: 08/22/2016] [Indexed: 12/21/2022] Open
Abstract
Zika virus (ZIKV) infection causes microcephaly and has been linked to other brain abnormalities. How ZIKV impairs brain development and function is unclear. Here we systematically profiled transcriptomes of human neural progenitor cells exposed to Asian ZIKVC, African ZIKVM, and dengue virus (DENV). In contrast to the robust global transcriptome changes induced by DENV, ZIKV has a more selective and larger impact on expression of genes involved in DNA replication and repair. While overall expression profiles are similar, ZIKVC, but not ZIKVM, induces upregulation of viral response genes and TP53. P53 inhibitors can block the apoptosis induced by both ZIKVC and ZIKVM in hNPCs, with higher potency against ZIKVC-induced apoptosis. Our analyses reveal virus- and strain-specific molecular signatures associated with ZIKV infection. These datasets will help to investigate ZIKV-host interactions and identify neurovirulence determinants of ZIKV.
Collapse
Affiliation(s)
- Feiran Zhang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Christy Hammack
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Sarah C Ogden
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Yichen Cheng
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Emily M Lee
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Zhexing Wen
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Departments of Psychiatry and Behavioral Science, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xuyu Qian
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Biomedical Engineering Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ha Nam Nguyen
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892, USA
| | - Tianlei Xu
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Li Chen
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Zhiqin Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hao Feng
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Wei-Kai Huang
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ki-Jun Yoon
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chao Shan
- Department of Biochemistry & Molecular Biology, Department of Pharmacology & Toxicology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Luoxiu Huang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Kimberly M Christian
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, Department of Pharmacology & Toxicology, Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mingjiang Xu
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Arbovirus (arthropod-borne virus) infections are increasingly important causes of neurologic disease in the United States through both endemic transmission and travel-associated infections. This article reviews the major arbovirus infections that can cause neurologic disease likely to be encountered in the United States. RECENT FINDINGS West Nile virus continues to be an important cause of epidemic encephalitis, while emerging arbovirus infections such as dengue and chikungunya have rapidly expanded their geographic distribution. As emerging arboviruses expand in new geographic regions, neurologic abnormalities are reported in new patient populations. SUMMARY Emerging arbovirus infections are increasingly important causes of neurologic disease throughout the world and in the United States. While no US Food and Drug Administration (FDA)-approved therapy is yet available for these infections, prompt recognition and diagnosis from the consulting neurologist will ensure appropriate supportive care for the patient.
Collapse
|
35
|
Mitochondrial p53 Contributes to Reovirus-Induced Neuronal Apoptosis and Central Nervous System Injury in a Mouse Model of Viral Encephalitis. J Virol 2016; 90:7684-91. [PMID: 27307572 DOI: 10.1128/jvi.00583-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/08/2016] [Indexed: 01/29/2023] Open
Abstract
UNLABELLED The tumor suppressor p53 plays a critical part in determining cell fate both as a regulator of the transcription of several proapoptotic genes and through its binding interactions with Bcl-2 family proteins at mitochondria. We now demonstrate that p53 protein levels are increased in infected brains during reovirus encephalitis. This increase occurs in the cytoplasm of reovirus-infected neurons and is associated with the activation of caspase 3. Increased levels of p53 in reovirus-infected brains are not associated with increased expression levels of p53 mRNA, suggesting that p53 regulation occurs at the protein level. Increased levels of p53 are also not associated with the increased expression levels of p53-regulated, proapoptotic genes. In contrast, upregulated p53 accumulates in mitochondria. Previous reports demonstrated that the binding of p53 to Bak at mitochondria causes Bak activation and results in apoptosis. We now show that Bak is activated and that activated Bak is bound to p53 during reovirus encephalitis. In addition, survival is enhanced in reovirus-infected Bak(-/-) mice compared to controls, demonstrating a role for Bak in reovirus pathogenesis. Inhibition of the mitochondrial translocation of p53 with pifithrin μ prevents the formation of p53/Bak complexes following reovirus infection of ex vivo brain slice cultures and results in decreased apoptosis and tissue injury. These results suggest that the mitochondrial localization of p53 regulates reovirus-induced pathogenesis in the central nervous system (CNS) through its interactions with Bak. IMPORTANCE There are virtually no specific treatments of proven efficacy for virus-induced neuroinvasive diseases. A better understanding of the pathogenesis of virus-induced CNS injury is crucial for the rational development of novel therapies. Our studies demonstrate that p53 is activated in the brain following reovirus infection and may provide a therapeutic target for virus-induced CNS disease.
Collapse
|
36
|
Abstract
Dengue virus affects hundreds of millions of people each year around the world, causing a tremendous social and economic impact on affected countries. The aim of this review is to summarize our current knowledge of the functions, structure, and interactions of the viral capsid protein. The primary role of capsid is to package the viral genome. There are two processes linked to this function: the recruitment of the viral RNA during assembly and the release of the genome during infection. Although particle assembly takes place on endoplasmic reticulum membranes, capsid localizes in nucleoli and lipid droplets. Why capsid accumulates in these locations during infection remains unknown. In this review, we describe available data and discuss new ideas on dengue virus capsid functions and interactions. We believe that a deeper understanding of how the capsid protein works during infection will create opportunities for novel antiviral strategies, which are urgently needed to control dengue virus infections.
Collapse
Affiliation(s)
- Laura A Byk
- Fundación Instituto Leloir-National Research Council for Science and Technology (CONICET), Buenos Aires 1405, Argentina;
| | - Andrea V Gamarnik
- Fundación Instituto Leloir-National Research Council for Science and Technology (CONICET), Buenos Aires 1405, Argentina;
| |
Collapse
|
37
|
Apoptosis, autophagy and unfolded protein response pathways in Arbovirus replication and pathogenesis. Expert Rev Mol Med 2016; 18:e1. [PMID: 26781343 PMCID: PMC4836210 DOI: 10.1017/erm.2015.19] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Arboviruses are pathogens that widely affect the health of people in different communities around the world. Recently, a few successful approaches toward production of effective vaccines against some of these pathogens have been developed, but treatment and prevention of the resulting diseases remain a major health and research concern. The arbovirus infection and replication processes are complex, and many factors are involved in their regulation. Apoptosis, autophagy and the unfolded protein response (UPR) are three mechanisms that are involved in pathogenesis of many viruses. In this review, we focus on the importance of these pathways in the arbovirus replication and infection processes. We provide a brief introduction on how apoptosis, autophagy and the UPR are initiated and regulated, and then discuss the involvement of these pathways in regulation of arbovirus pathogenesis.
Collapse
|
38
|
Lee MS, Jeong MH, Lee HW, Han HJ, Ko A, Hewitt SM, Kim JH, Chun KH, Chung JY, Lee C, Cho H, Song J. PI3K/AKT activation induces PTEN ubiquitination and destabilization accelerating tumourigenesis. Nat Commun 2015; 6:7769. [PMID: 26183061 PMCID: PMC4518267 DOI: 10.1038/ncomms8769] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 06/08/2015] [Indexed: 12/16/2022] Open
Abstract
The activity of the phosphatase and tensin homologue (PTEN) is known to be suppressed via post-translational modification. However, the mechanism and physiological significance by which post-translational modifications lead to PTEN suppression remain unclear. Here we demonstrate that PTEN destabilization is induced by EGFR- or oncogenic PI3K mutation-mediated AKT activation in cervical cancer. EGFR/PI3K/AKT-mediated ubiquitination and degradation of PTEN are dependent on the MKRN1 E3 ligase. These processes require the stabilization of MKRN1 via AKT-mediated phosphorylation. In cervical cancer patients with high levels of pAKT and MKRN1 expression, PTEN protein levels are low and correlate with a low 5-year survival rate. Taken together, our results demonstrate that PI3K/AKT signals enforce positive-feedback regulation by suppressing PTEN function. Mutations and post-translational modifications of the PI3K/AKT pathway inhibitor PTEN are a feature of many cancers, but these have not been associated with cervical cancer. Here, the authors identify a PI3K/AKT-mediated ubiquitination degradation pathway of PTEN that occurs in patients with cervical cancer.
Collapse
Affiliation(s)
- Min-Sik Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Man-Hyung Jeong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Hyun-Woo Lee
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Hyun-Ji Han
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Aram Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Center for Cancer Research, National Cancer Institute, NIH MSC 1500, Bethesda, Maryland 20892, USA
| | - Jae-Hoon Kim
- 1] Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 135-720, Republic of Korea [2] Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Kyung-Hee Chun
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Center for Cancer Research, National Cancer Institute, NIH MSC 1500, Bethesda, Maryland 20892, USA
| | - Cheolju Lee
- BRI, Korea Institute of Science and Technology, Seoul 136-791, Korea
| | - Hanbyoul Cho
- 1] Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 135-720, Republic of Korea [2] Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Jaewhan Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| |
Collapse
|
39
|
Rawlinson SM, Moseley GW. The nucleolar interface of
RNA
viruses. Cell Microbiol 2015; 17:1108-20. [DOI: 10.1111/cmi.12465] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/27/2015] [Accepted: 06/01/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Stephen M. Rawlinson
- Viral Pathogenesis Laboratory Department of Biochemistry and Molecular Biology Bio21 Molecular Science and Biotechnology Institute The University of Melbourne Melbourne Australia
| | - Gregory W. Moseley
- Viral Pathogenesis Laboratory Department of Biochemistry and Molecular Biology Bio21 Molecular Science and Biotechnology Institute The University of Melbourne Melbourne Australia
| |
Collapse
|
40
|
Moller-Tank S, Maury W. Phosphatidylserine receptors: enhancers of enveloped virus entry and infection. Virology 2014; 468-470:565-580. [PMID: 25277499 PMCID: PMC4252826 DOI: 10.1016/j.virol.2014.09.009] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 07/15/2014] [Accepted: 09/08/2014] [Indexed: 12/23/2022]
Abstract
A variety of both RNA and DNA viruses envelop their capsids in a lipid bilayer. One of the more recently appreciated benefits this envelope is incorporation of phosphatidylserine (PtdSer). Surface exposure of PtdSer disguises viruses as apoptotic bodies; tricking cells into engulfing virions. This mechanism is termed apoptotic mimicry. Several PtdSer receptors have been identified to enhance virus entry and we have termed this group of proteins PtdSer-mediated virus entry enhancing receptors or PVEERs. These receptors enhance entry of a range of enveloped viruses. Internalization of virions by PVEERs provides a broad mechanism of entry with little investment by the virus itself. PVEERs may allow some viruses to attach to cells, thereby making viral glycoprotein/cellular receptor interactions more probable. Alternatively, other viruses may rely entirely on PVEERs for internalization into endosomes. This review provides an overview of PtdSer receptors that serve as PVEERs and the biology behind virion/PVEER interaction. Phosphatidylserine (PtdSer) receptors can mediate entry of enveloped viruses. PtdSer is present on the outer leaflet of the virion envelope. PtdSer receptors are expressed on a variety of primary cells and cell lines. Characteristics of PtdSer receptors that mediate virus entry are defined.
Collapse
Affiliation(s)
- Sven Moller-Tank
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | - Wendy Maury
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
41
|
Mlera L, Melik W, Bloom ME. The role of viral persistence in flavivirus biology. Pathog Dis 2014; 71:137-63. [PMID: 24737600 PMCID: PMC4154581 DOI: 10.1111/2049-632x.12178] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 12/30/2022] Open
Abstract
In nature, vector borne flaviviruses are persistently cycled between either the tick or mosquito vector and small mammals such as rodents, skunks, and swine. These viruses account for considerable human morbidity and mortality worldwide. Increasing and substantial evidence of viral persistence in humans, which includes the isolation of RNA by RT PCR and infectious virus by culture, continues to be reported. Viral persistence can also be established in vitro in various human, animal, arachnid, and insect cell lines in culture. Although some research has focused on the potential roles of defective virus particles, evasion of the immune response through the manipulation of autophagy and/or apoptosis, the precise mechanism of flavivirus persistence is still not well understood. We propose additional research for further understanding of how viral persistence is established in different systems. Avenues for additional studies include determining whether the multifunctional flavivirus protein NS5 has a role in viral persistence, the development of relevant animal models of viral persistence, and investigating the host responses that allow vector borne flavivirus replication without detrimental effects on infected cells. Such studies might shed more light on the viral–host relationships and could be used to unravel the mechanisms for establishment of persistence. Persistent infections by vector borne flaviviruses are an important, but inadequately studied topic.
Collapse
Affiliation(s)
- Luwanika Mlera
- Rocky Mountain Laboratories, Laboratory of Virology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | | | | |
Collapse
|
42
|
Salvetti A, Greco A. Viruses and the nucleolus: the fatal attraction. Biochim Biophys Acta Mol Basis Dis 2013; 1842:840-7. [PMID: 24378568 PMCID: PMC7135015 DOI: 10.1016/j.bbadis.2013.12.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 12/05/2013] [Accepted: 12/09/2013] [Indexed: 12/13/2022]
Abstract
Viruses are small obligatory parasites and as a consequence, they have developed sophisticated strategies to exploit the host cell's functions to create an environment that favors their own replication. A common feature of most – if not all – families of human and non-human viruses concerns their interaction with the nucleolus. The nucleolus is a multifunctional nuclear domain, which, in addition to its well-known role in ribosome biogenesis, plays several crucial other functions. Viral infection induces important nucleolar alterations. Indeed, during viral infection numerous viral components localize in nucleoli, while various host nucleolar proteins are redistributed in other cell compartments or are modified, and non-nucleolar cellular proteins reach the nucleolus. This review highlights the interactions reported between the nucleolus and some human or animal viral families able to establish a latent or productive infection, selected on the basis of their known interactions with the nucleolus and the nucleolar activities, and their links with virus replication and/or pathogenesis. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease. Most viruses interact with the nucleolus that plays a major role in virus life cycle. Virus/nucleolus interaction is crucial for virus replication and pathogenesis. Role of nucleoli in the infection with selected RNA viruses and herpes viruses
Collapse
Affiliation(s)
- Anna Salvetti
- Centre International de Recherche en Infectiologie (CIRI, International Center for Infectiology Research), Inserm U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, 46 Allée d'Italie, 69365 Lyon CEDEX, France; LabEx Ecofect, Université de Lyon, 69007 Lyon, France.
| | - Anna Greco
- Centre International de Recherche en Infectiologie (CIRI, International Center for Infectiology Research), Inserm U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon, 46 Allée d'Italie, 69365 Lyon CEDEX, France; LabEx Ecofect, Université de Lyon, 69007 Lyon, France.
| |
Collapse
|
43
|
Suppression of PPARγ through MKRN1-mediated ubiquitination and degradation prevents adipocyte differentiation. Cell Death Differ 2013; 21:594-603. [PMID: 24336050 DOI: 10.1038/cdd.2013.181] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 11/05/2013] [Accepted: 11/11/2013] [Indexed: 11/08/2022] Open
Abstract
The central regulator of adipogenesis, PPARγ, is a nuclear receptor that is linked to obesity and metabolic diseases. Here we report that MKRN1 is an E3 ligase of PPARγ that induces its ubiquitination, followed by proteasome-dependent degradation. Furthermore, we identified two lysine sites at 184 and 185 that appear to be targeted for ubiquitination by MKRN1. Stable overexpression of MKRN1 reduced PPARγ protein levels and suppressed adipocyte differentiation in 3T3-L1 and C3H10T1/2 cells. In contrast, MKRN1 depletion stimulated adipocyte differentiation in these cells. Finally, MKRN1 knockout MEFs showed an increased capacity for adipocyte differentiation compared with wild-type MEFs, with a concomitant increase of PPARγ and adipogenic markers. Together, these data indicate that MKRN1 is an elusive PPARγ E3 ligase that targets PPARγ for proteasomal degradation by ubiquitin-dependent pathways, and further depict MKRN1 as a novel target for diseases involving PPARγ.
Collapse
|
44
|
Non-encapsidation activities of the capsid proteins of positive-strand RNA viruses. Virology 2013; 446:123-32. [PMID: 24074574 PMCID: PMC3818703 DOI: 10.1016/j.virol.2013.07.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/11/2013] [Accepted: 07/20/2013] [Indexed: 02/08/2023]
Abstract
Viral capsid proteins (CPs) are characterized by their role in forming protective shells around viral genomes. However, CPs have additional and important roles in the virus infection cycles and in the cellular responses to infection. These activities involve CP binding to RNAs in both sequence-specific and nonspecific manners as well as association with other proteins. This review focuses on CPs of both plant and animal-infecting viruses with positive-strand RNA genomes. We summarize the structural features of CPs and describe their modulatory roles in viral translation, RNA-dependent RNA synthesis, and host defense responses. We review regulatory activities of the capsid proteins of (+)-strand RNA viruses. Activities of capsid proteins due to RNA binding and protein binding. Effects of capsid proteins on viral processes. Effects of capsid proteins on cellular processes. Regulatory activities of the capsid proteins are affected by capsid concentrations.
Collapse
|
45
|
A single amino acid substitution in the core protein of West Nile virus increases resistance to acidotropic compounds. PLoS One 2013; 8:e69479. [PMID: 23874963 PMCID: PMC3715472 DOI: 10.1371/journal.pone.0069479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 06/10/2013] [Indexed: 12/13/2022] Open
Abstract
West Nile virus (WNV) is a worldwide distributed mosquito-borne flavivirus that naturally cycles between birds and mosquitoes, although it can infect multiple vertebrate hosts including horses and humans. This virus is responsible for recurrent epidemics of febrile illness and encephalitis, and has recently become a global concern. WNV requires to transit through intracellular acidic compartments at two different steps to complete its infectious cycle. These include fusion between the viral envelope and the membrane of endosomes during viral entry, and virus maturation in the trans-Golgi network. In this study, we followed a genetic approach to study the connections between viral components and acidic pH. A WNV mutant with increased resistance to the acidotropic compound NH4Cl, which blocks organelle acidification and inhibits WNV infection, was selected. Nucleotide sequencing revealed that this mutant displayed a single amino acid substitution (Lys 3 to Glu) on the highly basic internal capsid or core (C) protein. The functional role of this replacement was confirmed by its introduction into a WNV infectious clone. This single amino acid substitution also increased resistance to other acidification inhibitor (concanamycin A) and induced a reduction of the neurovirulence in mice. Interestingly, a naturally occurring accompanying mutation found on prM protein abolished the resistant phenotype, supporting the idea of a genetic crosstalk between the internal C protein and the external glycoproteins of the virion. The findings here reported unveil a non-previously assessed connection between the C viral protein and the acidic pH necessary for entry and proper exit of flaviviruses.
Collapse
|
46
|
Mairiang D, Zhang H, Sodja A, Murali T, Suriyaphol P, Malasit P, Limjindaporn T, Finley RL. Identification of new protein interactions between dengue fever virus and its hosts, human and mosquito. PLoS One 2013; 8:e53535. [PMID: 23326450 PMCID: PMC3543448 DOI: 10.1371/journal.pone.0053535] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 12/03/2012] [Indexed: 11/26/2022] Open
Abstract
The four divergent serotypes of dengue virus are the causative agents of dengue fever, dengue hemorrhagic fever and dengue shock syndrome. About two-fifths of the world's population live in areas where dengue is prevalent, and thousands of deaths are caused by the viruses every year. Dengue virus is transmitted from one person to another primarily by the yellow fever mosquito, Aedes aegypti. Recent studies have begun to define how the dengue viral proteins interact with host proteins to mediate viral replication and pathogenesis. A combined analysis of these studies, however, suggests that many virus-host protein interactions remain to be identified, especially for the mosquito host. In this study, we used high-throughput yeast two-hybrid screening to identify mosquito and human proteins that physically interact with dengue proteins. We tested each identified host protein against the proteins from all four serotypes of dengue to identify interactions that are conserved across serotypes. We further confirmed many of the interactions using co-affinity purification assays. As in other large-scale screens, we identified some previously detected interactions and many new ones, moving us closer to a complete host - dengue protein interactome. To help summarize and prioritize the data for further study, we combined our interactions with other published data and identified a subset of the host-dengue interactions that are now supported by multiple forms of evidence. These data should be useful for understanding the interplay between dengue and its hosts and may provide candidates for drug targets and vector control strategies.
Collapse
Affiliation(s)
- Dumrong Mairiang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Huamei Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Ann Sodja
- Department of Biology, Wayne State University, Detroit, Michigan, United States of America
| | - Thilakam Murali
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Prapat Suriyaphol
- Bioinformatics and Data Management for Research Unit, Faculty of Medicine Siriraj Hospital, and Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand
| | - Prida Malasit
- Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, Thailand
| | - Thawornchai Limjindaporn
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Russell L. Finley
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|
47
|
Lee EW, Kim JH, Ahn YH, Seo J, Ko A, Jeong M, Kim SJ, Ro JY, Park KM, Lee HW, Park EJ, Chun KH, Song J. Ubiquitination and degradation of the FADD adaptor protein regulate death receptor-mediated apoptosis and necroptosis. Nat Commun 2012; 3:978. [PMID: 22864571 DOI: 10.1038/ncomms1981] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 06/28/2012] [Indexed: 12/15/2022] Open
Abstract
Fas-associated protein with death domain (FADD) is a pivotal component of death receptor-mediated extrinsic apoptosis and necroptosis. Here we show that FADD is regulated by Makorin Ring Finger Protein 1 (MKRN1) E3 ligase-mediated ubiquitination and proteasomal degradation. MKRN1 knockdown results in FADD protein stabilization and formation of the rapid death-inducing signalling complex, which causes hypersensitivity to extrinsic apoptosis by facilitating caspase-8 and caspase-3 cleavage in response to death signals. We also show that MKRN1 and FADD are involved in the regulation of necrosome formation and necroptosis upon caspase inhibition. Downregulation of MKRN1 results in severe defects of tumour growth upon tumour necrosis factor-related apoptosis-inducing ligand treatment in a xenograft model using MDA-MB-231 breast cancer cells. Suppression of tumour growth by MKRN1 depletion is relieved by simultaneous FADD knockdown. Our data reveal a novel mechanism by which fas-associated protein with death domain is regulated via an ubiquitination-induced degradation pathway.
Collapse
Affiliation(s)
- Eun-Woo Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
The West Nile virus capsid protein blocks apoptosis through a phosphatidylinositol 3-kinase-dependent mechanism. J Virol 2012; 87:872-81. [PMID: 23115297 DOI: 10.1128/jvi.02030-12] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
West Nile virus (WNV) is a mosquito-transmitted pathogen that can cause serious disease in humans. Our laboratories are focused on understanding how interactions between WNV proteins and host cells contribute to virus replication and pathogenesis. WNV replication is relatively slow, and on the basis of earlier studies, the virus appears to activate survival pathways that delay host cell death during virus replication. The WNV capsid is the first viral protein produced in infected cells; however, its role in virus assembly is not required until after replication of the genomic RNA. Accordingly, from a temporal perspective, it is perfectly suited to block host cell apoptosis during virus replication. In the present study, we provide evidence that the WNV capsid protein blocks apoptosis through a phosphatidylinositol (PI) 3-kinase-dependent pathway. Specifically, expression of this protein in the absence of other viral proteins increases the levels of phosphorylated Akt, a prosurvival kinase that blocks apoptosis through multiple mechanisms. Treatment of cells with the PI 3-kinase inhibitor LY294002 abrogates the protective effects of the WNV capsid protein.
Collapse
|
49
|
Wang T, Yu B, Lin L, Zhai X, Han Y, Qin Y, Guo Z, Wu S, Zhong X, Wang Y, Tong L, Zhang F, Si X, Zhao W, Zhong Z. A functional nuclear localization sequence in the VP1 capsid protein of coxsackievirus B3. Virology 2012; 433:513-21. [PMID: 23010168 PMCID: PMC7111942 DOI: 10.1016/j.virol.2012.08.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/25/2012] [Accepted: 08/23/2012] [Indexed: 01/07/2023]
Abstract
The capsid proteins of some RNA viruses can translocate to the nucleus and interfere with cellular phenotypes. In this study we found that the VP1 capsid protein of coxsackievirus B3 (CVB3) was dominantly localized in the nucleus of the cells transfected with VP1-expressing plasmid. The VP1 nuclear localization also occurred in the cells infected with CVB3. Truncation analysis indicated that the VP1 nuclear localization sequence located near the C-terminal. The substitution of His220 with threonine completely abolished its translocation. The VP1 proteins of other CVB types might have the nuclear localization potential because this region was highly conserved. Moreover, the VP1 nuclear localization induced cell cycle deregulation, including a prolonged S phase and shortened G2-M phase. Besides these findings, we also found a domain between Ala72 and Phe106 that caused the VP1 truncates dotted distributed in the cytoplasm. Our results suggest a new pathogenic mechanism of CVB.
Collapse
Affiliation(s)
- Tianying Wang
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Choi AG, Wong J, Marchant D, Luo H. The ubiquitin-proteasome system in positive-strand RNA virus infection. Rev Med Virol 2012; 23:85-96. [PMID: 22782620 PMCID: PMC7169083 DOI: 10.1002/rmv.1725] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/29/2012] [Accepted: 06/18/2012] [Indexed: 12/12/2022]
Abstract
Positive-stranded RNA viruses, like many other viruses, have evolved to exploit the host cellular machinery to their own advantage. In eukaryotic cells, the ubiquitin-proteasome system (UPS) that serves as the major intracellular pathway for protein degradation and modification plays a crucial role in the regulation of many fundamental cellular functions. A growing amount of evidence has suggested that the UPS can be utilized by positive-sense RNA viruses. The UPS eliminates excess viral proteins that prevent viral replication and modulates the function of viral proteins through post-translational modification mediated by ubiquitin or ubiquitin-like proteins. This review will discuss the current understanding of how positive RNA viruses have evolved various mechanisms to usurp the host UPS to modulate the function and stability of viral proteins. In addition to the pro-viral function, UPS-mediated viral protein degradation may also constitute a host defense process against some positive-stranded RNA viral infections. This issue will also be discussed in the current review.
Collapse
Affiliation(s)
- Alex GoEun Choi
- UBC James Hogg Research Centre, Institute for Heart + Lung Health, St. Paul's Hospital, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|