1
|
Wang X, Yan K, Fu M, Liang S, Zhao H, Fu C, Yang L, Song Z, Sun D, Wan C. EspF of Enterohemorrhagic Escherichia coli Enhances Apoptosis via Endoplasmic Reticulum Stress in Intestinal Epithelial Cells: An Isobaric Tags for Relative and Absolute Quantitation-Based Comparative Proteomic Analysis. Front Microbiol 2022; 13:900919. [PMID: 35847082 PMCID: PMC9279134 DOI: 10.3389/fmicb.2022.900919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
There have been large foodborne outbreaks related to Enterohemorrhagic Escherichia coli (EHEC) around the world. Among its virulence proteins, the EspF encoded by locus of enterocyte effacement is one of the most known functional effector proteins. In this research, we infected the HT-29 cells with the EHEC wild type strain and EspF-deficient EHEC strain. Via the emerging technique isobaric tags for relative and absolute quantitation (iTRAQ), we explored the pathogenic characteristics of EspF within host cells. Our data showed that the differences regarding cellular responses mainly contained immune regulation, protein synthesis, signal transduction, cellular assembly and organization, endoplasmic reticulum (ER) stress, and apoptosis. Notably, compared with the EspF-deficient strain, the protein processing in the ER and ribosome were upregulated during wild type (WT) infection. Our findings proved that the EspF of Enterohemorrhagic Escherichia coli induced ER stress in intestinal epithelial cells; the ER stress-dependent apoptosis pathway was also activated within the host cells. This study provides insight into the virulence mechanism of protein EspF, which will deepen our general understanding of A/E pathogens and their interaction with host proteins.
Collapse
Affiliation(s)
- Xiangyu Wang
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Kaina Yan
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Muqing Fu
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Song Liang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Haiyi Zhao
- Genecreate Biological Engineering Co., Ltd., National Bio-industry Base, Wuhan, China
| | - Changzhu Fu
- MRC Toxicology Unit, School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Lan Yang
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Zhihong Song
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Dayong Sun
- Department of Gastroenterology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Chengsong Wan
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Xue J, Dominguez Rieg JA, Thomas L, White JR, Rieg T. Intestine-Specific NHE3 Deletion in Adulthood Causes Microbial Dysbiosis. Front Cell Infect Microbiol 2022; 12:896309. [PMID: 35719363 PMCID: PMC9204535 DOI: 10.3389/fcimb.2022.896309] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
In the intestine, the Na+/H+ exchanger 3 (NHE3) plays a critical role for Na+ and fluid absorption. NHE3 deficiency predisposes patients to inflammatory bowel disease (IBD). In mice, selective deletion of intestinal NHE3 causes various local and systemic pathologies due to dramatic changes in the intestinal environment, which can influence microbiota colonization. By using metagenome shotgun sequencing, we determined the effect of inducible intestinal epithelial cell-specific deletion of NHE3 (NHE3IEC-KO) in adulthood on the gut microbiome in mice. Compared with control mice, NHE3IEC-KO mice show a significantly different gut microbiome signature, with an unexpected greater diversity. At the phylum level, NHE3IEC-KO mice showed a significant expansion in Proteobacteria and a tendency for lower Firmicutes/Bacteroidetes (F/B) ratio, an indicator of dysbiosis. At the family level, NHE3IEC-KO mice showed significant expansions in Bacteroidaceae, Rikenellaceae, Tannerellaceae, Flavobacteriaceae and Erysipelotrichaceae, but had contractions in Lachnospiraceae, Prevotellaceae and Eubacteriaceae. At the species level, after removing those with lowest occurrence and abundance, we identified 23 species that were significantly expanded (several of which are established pro-inflammatory pathobionts); whereas another 23 species were found to be contracted (some of which are potential anti-inflammatory probiotics) in NHE3IEC-KO mice. These results reveal that intestinal NHE3 deletion creates an intestinal environment favoring the competitive advantage of inflammophilic over anti-inflammatory species, which is commonly featured in conventional NHE3 knockout mice and patients with IBD. In conclusion, our study emphasizes the importance of intestinal NHE3 for gut microbiota homeostasis, and provides a deeper understanding regarding interactions between NHE3, dysbiosis, and IBD.
Collapse
Affiliation(s)
- Jianxiang Xue
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | - Jessica A Dominguez Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States
| | - Linto Thomas
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States
| | - James R White
- Resphera Biosciences LLC, Baltimore, MD, United States
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, United States.,James A. Haley Veterans' Hospital, Tampa, FL, United States.,Center for Hypertension and Kidney Research, University of South Florida, Tampa, FL, United States
| |
Collapse
|
3
|
Cure MC, Cure E. Prolonged NHE Activation may be both Cause and Outcome of Cytokine Release Syndrome in COVID-19. Curr Pharm Des 2022; 28:1815-1822. [PMID: 35838211 DOI: 10.2174/1381612828666220713121741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023]
Abstract
The release of cytokines and chemokines such as IL-1β, IL-2, IL-6, IL-7, IL-10, TNF-α, IFN-γ, CCL2, CCL3, and CXCL10 is increased in critically ill patients with COVID-19. Excessive cytokine release during COVID-19 is related to increased morbidity and mortality. Several mechanisms are put forward for cytokine release syndrome during COVID-19. Here we have mentioned novel pathways. SARS-CoV-2 increases angiotensin II levels by rendering ACE2 nonfunctional. Angiotensin II causes cytokine release via AT1 and AT2 receptors. Moreover, angiotensin II potently stimulates the Na+/H+ exchanger (NHE). It is a pump found in the membranes of many cells that pumps Na+ inward and H+ outward. NHE has nine isoforms. NHE1 is the most common isoform found in endothelial cells and many cells. NHE is involved in keeping the intracellular pH within physiological limits. When the intracellular pH is acidic, NHE is activated, bringing the intracellular pH to physiological levels, ending its activity. Sustained NHE activity is highly pathological and causes many problems. Prolonged NHE activation in COVID-19 may cause a decrease in intracellular pH through H+ ion accumulation in the extracellular area and subsequent redox reactions. The activation reduces the intracellular K+ concentration and leads to Na+ and Ca2+ overload. Increased ROS can cause intense cytokine release by stimulating NF-κB and NLRP3 inflammasomes. Cytokines also cause overstimulation of NHE. As the intracellular pH decreases, SARS-CoV-2 rapidly infects new cells, increasing the viral load. This vicious circle increases morbidity and mortality in patients with COVID-19. On the other hand, SARS-CoV-2 interaction with NHE3 in intestinal tissue is different from other tissues. SARS-CoV-2 can trigger CRS via NHE3 inhibition by disrupting the intestinal microbiota. This review aimed to help develop new treatment models against SARS-CoV-2- induced CRS by revealing the possible effects of SARS-CoV-2 on the NHE.
Collapse
Affiliation(s)
| | - Erkan Cure
- Department of Internal Medicine, Bagcilar Medilife Hospital, Istanbul, Turkey
| |
Collapse
|
4
|
Jenkin KA, Han Y, Lin S, He P, Yun CC. Nedd4-2-dependent Ubiquitination Potentiates the Inhibition of Human NHE3 by Cholera Toxin and Enteropathogenic Escherichia coli. Cell Mol Gastroenterol Hepatol 2021; 13:695-716. [PMID: 34823064 PMCID: PMC8789535 DOI: 10.1016/j.jcmgh.2021.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Diarrhea is one of the most common illnesses and is often caused by bacterial infection. Recently, we have shown that human Na+/H+ exchanger NHE3 (hNHE3), but not non-human NHE3s, interacts with the E3 ubiquitin ligase Nedd4-2. We hypothesize that this property of hNHE3 contributes to the increased severity of diarrhea in humans. METHODS We used humanized mice expressing hNHE3 in the intestine (hNHE3int) to compare the contribution of hNHE3 and mouse NHE3 to diarrhea induced by cholera toxin (CTX) and enteropathogenic Escherichia coli (EPEC). We measured Na+/H+ exchange activity and fluid absorption. The role of Nedd4-2 on hNHE3 activity and ubiquitination was determined by knockdown in Caco-2bbe cells. The effects of protein kinase A (PKA), the primary mediator of CTX-induced diarrhea, on Nedd4-2 and hNHE3 phosphorylation and their interaction were determined. RESULTS The effects of CTX and EPEC were greater in hNHE3int mice than in control wild-type (WT) mice, resulting in greater inhibition of NHE3 activity and increased fluid accumulation in the intestine, the hallmark of diarrhea. Activation of PKA increased ubiquitination of hNHE3 and enhanced interaction of Nedd4-2 with hNHE3 via phosphorylation of Nedd4-2 at S342. S342A mutation mitigated the Nedd4-2-hNHE3 interaction and blocked PKA-induced inhibition of hNHE3. Unlike non-human NHE3s, inhibition of hNHE3 by PKA is independent of NHE3 phosphorylation, suggesting a distinct mechanism of hNHE3 regulation. CONCLUSIONS The effects of CTX and EPEC on hNHE3 are amplified, and the unique properties of hNHE3 may contribute to diarrheal symptoms occurring in humans.
Collapse
Affiliation(s)
- Kayte A. Jenkin
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia,School of Science, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Yiran Han
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia,Atlanta VA Medical Center, Decatur, Georgia
| | - Songbai Lin
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia,Atlanta VA Medical Center, Decatur, Georgia
| | - Peijian He
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - C. Chris Yun
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia,Atlanta VA Medical Center, Decatur, Georgia,Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia,Correspondence Address correspondence to: Chris Yun, PhD, Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia 30324. fax: (404) 727-5767.
| |
Collapse
|
5
|
Wang D, Zhou L, Zhou H, Hou G. Effects of Guava ( Psidium guajava L.) Leaf Extract on the Metabolomics of Serum and Feces in Weaned Piglets Challenged by Escherichia coli. Front Vet Sci 2021; 8:656179. [PMID: 34109234 PMCID: PMC8183609 DOI: 10.3389/fvets.2021.656179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
The effects of dietary supplementation with guava leaf extracts (GE) on intestinal barrier function and serum and fecal metabolome in weaned piglets challenged by enterotoxigenic Escherichia coli (ETEC) were investigated. In total, 50 weaned piglets (Duroc × Yorkshire × Landrace) from 25 pens (two piglets per pen) were randomly divided into five groups: BC (blank control), NC (negative control), S50 (supplemented with 50 mg kg−1 diet GE), S100 (100 mg kg−1 diet GE), and S200 (200 mg kg−1 diet GE), respectively. On day 4, all groups (except BC) were orally challenged with enterotoxigenic ETEC at a dose of 1.0 × 109 colony-forming units (CFUs). After treatment for 28 days, intestinal barrier function and parallel serum and fecal metabolomics analysis were carried out. Results suggested that dietary supplementation with GE (50–200 mg kg−1) increased protein expression of intestinal tight junction proteins (ZO-1, occludin, claudin-1) (p < 0.05) and Na+/H+ exchanger 3 (NHE3) (p < 0.05). Moreover, dietary supplementation with GE (50–200 mg kg−1) increased the level of tetrahydrofolic acid (THF) and reversed the higher level of nicotinamide-adenine dinucleotide phosphate (NADP) induced by ETEC in serum compared with the NC group (p < 0.05), and enhanced the antioxidant capacity of piglets. In addition, dietary addition with GE (100 mg kg−1) reversed the lower level of L-pipecolic acid induced by ETEC in feces compared with the NC group (p < 0.05) and decreased the oxidative stress of piglets. Collectively, dietary supplementation with GE exhibited a positive effect on improving intestinal barrier function. It can reprogram energy metabolism through similar or dissimilar metabolic pathways and finally enhance the antioxidant ability of piglets challenged by ETEC.
Collapse
Affiliation(s)
- Dingfa Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Luli Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hanlin Zhou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Guanyu Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
6
|
Yuan L, van der Mei HC, Busscher HJ, Peterson BW. Two-Stage Interpretation of Changes in TEER of Intestinal Epithelial Layers Protected by Adhering Bifidobacteria During E. coli Challenges. Front Microbiol 2020; 11:599555. [PMID: 33329490 PMCID: PMC7710611 DOI: 10.3389/fmicb.2020.599555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022] Open
Abstract
Mechanisms of gastrointestinal protection by probiotic bacteria against infection involve amongst others, modulation of intestinal epithelial barrier function. Trans-epithelial electrical resistance (TEER) is widely used to evaluate cellular barrier functions. Here, we developed a two-stage interpretative model of the time-dependence of the TEER of epithelial layers grown in a transwell during Escherichia coli challenges in the absence or presence of adhering bifidobacteria. E. coli adhesion in absence or presence of adhering bifidobacteria was enumerated using selective plating. After 4-8 h, E. coli challenges increased TEER to a maximum due to bacterial adhesion and increased expression of a tight-junction protein [zonula occludens-1 (ZO-1)], concurrent with a less dense layer structure, that is indicative of mild epithelial layer damage. Before the occurrence of a TEER-maximum, decreases in electrical conductance (i.e., the reciprocal TEER) did not relate with para-cellular dextran-permeability, but after occurrence of a TEER-maximum, dextran-permeability and conductance increased linearly, indicative of more severe epithelial layer damage. Within 24 h after the occurrence of a TEER maximum, TEER decreased to below the level of unchallenged epithelial layers demonstrating microscopically observable holes and apoptosis. Under probiotic protection by adhering bifidobacteria, TEER-maxima were delayed or decreased in magnitude due to later transition from mild to severe damage, but similar linear relations between conductance and dextran permeability were observed as in absence of adhering bifidobacteria. Based on the time-dependence of the TEER and the relation between conductance and dextran-permeability, it is proposed that bacterial adhesion to epithelial layers first causes mild damage, followed by more severe damage after the occurrence of a TEER-maximum. The mild damage caused by E. coli prior to the occurrence of TEER maxima was reversible upon antibiotic treatment, but the severe damage after occurrence of TEER maxima could not be reverted by antibiotic treatment. Thus, single-time TEER is interpretable in two ways, depending whether increasing to or decreasing from its maximum. Adhering bifidobacteria elongate the time-window available for antibiotic treatment to repair initial pathogen damage to intestinal epithelial layers.
Collapse
Affiliation(s)
| | | | | | - Brandon W. Peterson
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
7
|
Factors associated with typical enteropathogenic Escherichia coli infection among children <5 years old with moderate-to-severe diarrhoea in rural western Kenya, 2008-2012. Epidemiol Infect 2020; 148:e281. [PMID: 33190663 PMCID: PMC7770376 DOI: 10.1017/s0950268820002794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Typical enteropathogenic Escherichia coli (tEPEC) infection is a major cause of diarrhoea and contributor to mortality in children <5 years old in developing countries. Data were analysed from the Global Enteric Multicenter Study examining children <5 years old seeking care for moderate-to-severe diarrhoea (MSD) in Kenya. Stool specimens were tested for enteric pathogens, including by multiplex polymerase chain reaction for gene targets of tEPEC. Demographic, clinical and anthropometric data were collected at enrolment and ~60-days later; multivariable logistic regressions were constructed. Of 1778 MSD cases enrolled from 2008 to 2012, 135 (7.6%) children tested positive for tEPEC. In a case-to-case comparison among MSD cases, tEPEC was independently associated with presentation at enrolment with a loss of skin turgor (adjusted odds ratio (aOR) 2.08, 95% confidence interval (CI) 1.37–3.17), and convulsions (aOR 2.83, 95% CI 1.12–7.14). At follow-up, infants with tEPEC compared to those without were associated with being underweight (OR 2.2, 95% CI 1.3–3.6) and wasted (OR 2.5, 95% CI 1.3–4.6). Among MSD cases, tEPEC was associated with mortality (aOR 2.85, 95% CI 1.47–5.55). This study suggests that tEPEC contributes to morbidity and mortality in children. Interventions aimed at defining and reducing the burden of tEPEC and its sequelae should be urgently investigated, prioritised and implemented.
Collapse
|
8
|
Ugalde-Silva P, Navarro-Garcia F. Coordinated transient interaction of ZO-1 and afadin is required for pedestal maturation induced by EspF from enteropathogenic Escherichia coli. Microbiologyopen 2019; 8:e931. [PMID: 31568664 PMCID: PMC6925160 DOI: 10.1002/mbo3.931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/09/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) infection causes a histopathological lesion including recruitment of F‐actin beneath the attached bacteria and formation of actin‐rich pedestal‐like structures. Another important target of EPEC is the tight junction (TJ), and EspF induces displacement of TJ proteins and increased intestinal permeability. Previously, we determined that an EPEC strain lacking EspF did not cause TJ disruption; meanwhile, pedestals were located on the TJ and smaller than those induced by the wild‐type strain. Therefore, EspF could be playing an important role in both phenotypes. Here, using different cell models, we found that EspF was essential for pedestal maturation through ZO‐1 disassembly from TJ, leading to (a) ZO‐1 recruitment to the pedestal structure; no other main TJ proteins were required. Recruited ZO‐1 allowed the afadin recruitment. (b) Afadin recruitment caused an afadin–ZO‐1 transient interaction, like during TJ formation. (c) Afadin and ZO‐1 were segregated to the tip and the stem of pedestal, respectively, causing pedestal maturation. Initiation of these three discrete phases for pedestal maturation functionally and physically required EspF expression. Pedestal maturation process could help coordinate the epithelial actomyosin function by maintaining the actin‐rich column composing the pedestal structure and could be important in the dynamics of the pedestal movement on epithelial cells.
Collapse
Affiliation(s)
- Paul Ugalde-Silva
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), México City, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), México City, Mexico
| |
Collapse
|
9
|
Watson VE, Jacob ME, Bruno-Bárcena JM, Amirsultan S, Stauffer SH, Píqueras VO, Frias R, Gookin JL. Influence of the intestinal microbiota on disease susceptibility in kittens with experimentally-induced carriage of atypical enteropathogenic Escherichia coli. Vet Microbiol 2019; 231:197-206. [PMID: 30955810 PMCID: PMC6532395 DOI: 10.1016/j.vetmic.2019.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 01/28/2023]
Abstract
Typical enteropathogenic E. coli (tEPEC) carries the highest hazard of death in children with diarrhea and atypical EPEC (aEPEC) was recently identified as significantly associated with diarrheal mortality in kittens. In both children and kittens there is a significant association between aEPEC burden and diarrheal disease, however the infection can be found in individuals with and without diarrhea. It remains unclear to what extent, under what conditions, or by what mechanisms aEPEC serves as a primary pathogen in individuals with diarrhea. It seems likely that a combination of host and bacterial factors enable aEPEC to cause disease in some individuals and not in others. The purpose of this study was to determine the impact of aEPEC on intestinal function and diarrhea in kittens following experimentally-induced carriage and the influence of a disrupted intestinal microbiota on disease susceptibility. Results of this study identify aEPEC as a potential pathogen in kittens. In the absence of disruption to the intestinal microbiota, kittens are resistant to clinical signs of aEPEC carriage but demonstrate significant occult changes in intestinal absorption and permeability. Antibiotic-induced disruption of the intestinal microbiota prior to infection increases subsequent intestinal water loss as determined by % fecal wet weight. Enrichment of the intestinal microbiota with a commensal member of the feline mucosa-associated microbiota, Enterococcus hirae, ameliorated the effects of aEPEC experimental infection on intestinal function and water loss. These observations begin to unravel the mechanisms by which aEPEC infection may be able to exploit susceptible hosts.
Collapse
Affiliation(s)
| | - Megan E Jacob
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - José M Bruno-Bárcena
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC USA
| | | | | | | | - Rafael Frias
- Faculty of Veterinary Medicine, University of Helsinki, Finland; Comparative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jody L Gookin
- Department of Clinical Sciences, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
10
|
Harrison CA, Laubitz D, Ohland CL, Midura-Kiela MT, Patil K, Besselsen DG, Jamwal DR, Jobin C, Ghishan FK, Kiela PR. Microbial dysbiosis associated with impaired intestinal Na +/H + exchange accelerates and exacerbates colitis in ex-germ free mice. Mucosal Immunol 2018; 11:1329-1341. [PMID: 29875400 PMCID: PMC6162102 DOI: 10.1038/s41385-018-0035-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 03/29/2018] [Accepted: 04/15/2018] [Indexed: 02/04/2023]
Abstract
Intestinal epithelial Na+/H+ exchange facilitated by the apical NHE3 (Slc9a3) is a highly regulated process inhibited by intestinal pathogens and in inflammatory bowel diseases. NHE3-/- mice develop spontaneous, bacterially mediated colitis, and IBD-like dysbiosis. Disruption of epithelial Na+/H+ exchange in IBD may thus represent a host response contributing to the altered gut microbial ecology, and may play a pivotal role in modulating the severity of inflammation in a microbiome-dependent manner. To test whether microbiome fostered in an NHE3-deficient environment is able to drive mucosal immune responses affecting the onset or severity of colitis, we performed a series of cohousing experiments and fecal microbiome transplants into germ-free Rag-deficient or IL-10-/- mice. We determined that in the settings where the microbiome of NHE3-deficient mice was stably engrafted in the recipient host, it was able accelerate the onset and amplify severity of experimental colitis. NHE3-deficiency was characterized by the reduction in pH-sensitive butyrate-producing Firmicutes families Lachnospiraceae and Ruminococcaceae (Clostridia clusters IV and XIVa), with an expansion of inflammation-associated Bacteroidaceae. We conclude that the microbiome fostered by impaired epithelial Na+/H+ exchange enhances the onset and severity of colitis through disruption of the gut microbial ecology.
Collapse
Affiliation(s)
- Christy A Harrison
- Department of Pediatrics, Steele Children's Research Center, Tucson, AZ, USA
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Daniel Laubitz
- Department of Pediatrics, Steele Children's Research Center, Tucson, AZ, USA
| | | | | | - Karuna Patil
- University Animal Care, University of Arizona, Tucson, AZ, USA
| | | | - Deepa R Jamwal
- Department of Pediatrics, Steele Children's Research Center, Tucson, AZ, USA
| | - Christian Jobin
- Division of Gastroenterology, Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Fayez K Ghishan
- Department of Pediatrics, Steele Children's Research Center, Tucson, AZ, USA
| | - Pawel R Kiela
- Department of Pediatrics, Steele Children's Research Center, Tucson, AZ, USA.
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
11
|
Das S, Jayaratne R, Barrett KE. The Role of Ion Transporters in the Pathophysiology of Infectious Diarrhea. Cell Mol Gastroenterol Hepatol 2018; 6:33-45. [PMID: 29928670 PMCID: PMC6007821 DOI: 10.1016/j.jcmgh.2018.02.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/26/2018] [Indexed: 12/12/2022]
Abstract
Every year, enteric infections and associated diarrhea kill millions of people. The situation is compounded by increases in the number of enteric pathogens that are acquiring resistance to antibiotics, as well as (hitherto) a relative paucity of information on host molecular targets that may contribute to diarrhea. Many forms of diarrheal disease depend on the dysregulation of intestinal ion transporters, and an associated imbalance between secretory and absorptive functions of the intestinal epithelium. A number of major transporters have been implicated in the pathogenesis of diarrheal diseases and thus an understanding of their expression, localization, and regulation after infection with various bacteria, viruses, and protozoa likely will prove critical in designing new therapies. This article surveys our understanding of transporters that are modulated by specific pathogens and the mechanism(s) involved, thereby illuminating targets that might be exploited for new therapeutic approaches.
Collapse
Key Words
- ATP, adenosine triphosphate
- ATPase, adenosine triphosphatase
- CDI, Clostridium difficile infection
- CFTR, cystic fibrosis transmembrane conductance regulator
- CLCA1, chloride channel accessory 1
- CT, cholera toxin
- CXCR2, C-X-C motif chemokine receptor 2
- DRA, down-regulated in adenoma
- Diarrhea
- ENaC, epithelial sodium channel
- EPEC, enteropathogenic Escherichia coli
- ETEC, enterotoxigenic Escherichia coli
- Enteric Pathogen
- Epithelium
- EspG, Escherichia coli secreted protein G
- GPR39, G-protein coupled receptor 39
- Ion Transport
- KCC, potassium-chloride cotransporter
- LPA, lysophosphatidic acid
- LT, heat-labile toxin
- NHE, sodium/hydrogen exchanger
- NHERF2, sodium/hydrogen exchanger regulatory factor 2
- NKCC, sodium-potassium-2 chloride cotransporter
- ORT, oral rehydration therapy
- PKC, protein kinase C
- SGLT1, sodium-glucose cotransporter 1
- SLC, solute carrier
- ST, heat-stabile toxin
- TNF, tumor necrosis factor
- Tcd, Clostridium difficile toxin
- ZnR, zinc sensing receptor
- cAMP, adenosine 3′,5′-cyclic monophosphate
Collapse
Affiliation(s)
- Soumita Das
- Department of Pathology, University of California San Diego School of Medicine, La Jolla, California
| | - Rashini Jayaratne
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Kim E. Barrett
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California,Correspondence Address correspondence to: Kim E. Barrett, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0063. fax: (858) 246-1788.
| |
Collapse
|
12
|
Singh AP, Sharma S, Pagarware K, Siraji RA, Ansari I, Mandal A, Walling P, Aijaz S. Enteropathogenic E. coli effectors EspF and Map independently disrupt tight junctions through distinct mechanisms involving transcriptional and post-transcriptional regulation. Sci Rep 2018; 8:3719. [PMID: 29487356 PMCID: PMC5829253 DOI: 10.1038/s41598-018-22017-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/14/2018] [Indexed: 01/05/2023] Open
Abstract
Enteropathogenic E. coli infection is characterized by rapid onset of diarrhea but the underlying mechanisms are not well defined. EPEC targets the tight junctions which selectively regulate the permeability of charged and uncharged molecules. Cooperative actions of the EPEC effectors EspF and Map have been reported to mediate tight junction disruption. To analyze the individual contributions of EspF and Map, we generated in vitro models where EspF and Map, derived from the EPEC strain E2348/69, were constitutively expressed in epithelial cells. Here we report that tight junction disruption by EspF and Map is caused by the inhibition of the junctional recruitment of proteins during tight junction assembly. Constitutive expression of EspF and Map depleted the levels of tight junction proteins. EspF down-regulated the transcript levels of claudin-1, occludin and ZO-1, while Map down-regulated only claudin-1 transcripts. Both effectors also caused lysosomal degradation of existing tight junction proteins. We also identified a novel interaction of Map with non-muscle myosin II. Consistent with earlier studies, EspF was found to interact with ZO-1 while actin was the common interacting partner for both effectors. Our data provides evidence for the distinct roles of Map and EspF in tight junction disruption through non-synergistic functions.
Collapse
Affiliation(s)
- Anand Prakash Singh
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Swati Sharma
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kirti Pagarware
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rafay Anwar Siraji
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Imran Ansari
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anupam Mandal
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pangertoshi Walling
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Saima Aijaz
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
13
|
Tapia R, Kralicek SE, Hecht GA. EPEC effector EspF promotes Crumbs3 endocytosis and disrupts epithelial cell polarity. Cell Microbiol 2017; 19. [PMID: 28618099 DOI: 10.1111/cmi.12757] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/19/2017] [Accepted: 06/09/2017] [Indexed: 12/12/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) uses a type III secretion system to inject effector proteins into host intestinal epithelial cells causing diarrhoea. EPEC infection redistributes basolateral proteins β1-integrin and Na+ /K+ ATPase to the apical membrane of host cells. The Crumbs (Crb) polarity complex (Crb3/Pals1/Patj) is essential for epithelial cell polarisation and tight junction (TJ) assembly. Here, we demonstrate that EPEC displaces Crb3 and Pals1 from the apical membrane to the cytoplasm of cultured intestinal epithelial cells and colonocytes of infected mice. In vitro studies show that EspF, but not Map, alters Crb3, whereas both effectors modulate Pals1. EspF perturbs polarity formation in cyst morphogenesis assays and induces endocytosis and apical redistribution of Na+ /K+ ATPase. EspF binds to sorting nexin 9 (SNX9) causing membrane remodelling in host cells. Infection with ΔespF/pespFD3, a mutant strain that ablates EspF binding to SNX9, or inhibition of dynamin, attenuates Crb3 endocytosis caused by EPEC. In addition, infection with ΔespF/pespFD3 has no impact on Na+ /K+ ATPase endocytosis. These data support the hypothesis that EPEC perturbs apical-basal polarity in an EspF-dependent manner, which would contribute to EPEC-associated diarrhoea by disruption of TJ and altering the crucial positioning of membrane transporters involved in the absorption of ions and solutes.
Collapse
Affiliation(s)
- Rocio Tapia
- Department of Medicine and Division of Gastroenterology and Nutrition, Loyola University Chicago, Chicago, IL, USA
| | - Sarah E Kralicek
- Department of Medicine and Division of Gastroenterology and Nutrition, Loyola University Chicago, Chicago, IL, USA
| | - Gail A Hecht
- Department of Medicine and Division of Gastroenterology and Nutrition, Loyola University Chicago, Chicago, IL, USA.,Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA.,Edward Hines Jr. VA Hospital, Hines, IL, USA
| |
Collapse
|
14
|
Tapia R, Kralicek SE, Hecht GA. Modulation of epithelial cell polarity by bacterial pathogens. Ann N Y Acad Sci 2017. [PMID: 28628193 DOI: 10.1111/nyas.13388] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epithelial cells constitute a physical barrier that aids in protecting the host from microbial pathogens. Polarized epithelial cells contain distinct apical and basolateral membrane domains separated by intercellular junctions, including tight junctions (TJs), which contribute to the maintenance of apical-basal polarity. Polarity complexes also contribute to the establishment of TJ formation. Several pathogens perturb epithelial TJ barrier function and structure in addition to causing a loss of apical-basal polarity. Here, we review the impact of pathogenic bacteria on the disruption of cell-cell junctions and epithelial polarity.
Collapse
Affiliation(s)
- Rocio Tapia
- Division of Gastroenterology and Nutrition, Department of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Sarah E Kralicek
- Division of Gastroenterology and Nutrition, Department of Medicine, Loyola University Chicago, Maywood, Illinois
| | - Gail A Hecht
- Division of Gastroenterology and Nutrition, Department of Medicine, Loyola University Chicago, Maywood, Illinois.,Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois.,Edward Hines Jr. VA Hospital, Hines, Illinois
| |
Collapse
|
15
|
Kumar A, Anbazhagan AN, Coffing H, Chatterjee I, Priyamvada S, Gujral T, Saksena S, Gill RK, Alrefai WA, Borthakur A, Dudeja PK. Lactobacillus acidophilus counteracts inhibition of NHE3 and DRA expression and alleviates diarrheal phenotype in mice infected with Citrobacter rodentium. Am J Physiol Gastrointest Liver Physiol 2016; 311:G817-G826. [PMID: 27634011 PMCID: PMC5130543 DOI: 10.1152/ajpgi.00173.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/12/2016] [Indexed: 01/31/2023]
Abstract
Impaired absorption of electrolytes is a hallmark of diarrhea associated with inflammation or enteric infections. Intestinal epithelial luminal membrane NHE3 (Na+/H+ exchanger 3) and DRA (Down-Regulated in Adenoma; Cl-/HCO3- exchanger) play key roles in mediating electroneutral NaCl absorption. We have previously shown decreased NHE3 and DRA function in response to short-term infection with enteropathogenic E coli (EPEC), a diarrheal pathogen. Recent studies have also shown substantial downregulation of DRA expression in a diarrheal model of infection with Citrobacter rodentium, the mouse counterpart of EPEC. Since our previous studies showed that the probiotic Lactobacillus acidophilus (LA) increased DRA and NHE3 function and expression and conferred protective effects in experimental colitis, we sought to evaluate the efficacy of LA in counteracting NHE3 and DRA inhibition and ameliorating diarrhea in a model of C rodentium infection. FVB/N mice challenged with C rodentium [1 × 109 colony-forming units (CFU)] with or without administration of live LA (3 × 109 CFU) were assessed for NHE3 and DRA mRNA and protein expression, mRNA levels of carbonic anhydrase, diarrheal phenotype (assessed by colonic weight-to-length ratio), myeloperoxidase activity, and proinflammatory cytokines. LA counteracted C rodentium-induced inhibition of colonic DRA, NHE3, and carbonic anhydrase I and IV expression and attenuated diarrheal phenotype and MPO activity. Furthermore, LA completely blocked C rodentium induction of IL-1β, IFN-γ, and CXCL1 mRNA and C rodentium-induced STAT3 phosphorylation. In conclusion, our data provide mechanistic insights into antidiarrheal effects of LA in a model of infectious diarrhea and colitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Alip Borthakur
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, Illinois
| | | |
Collapse
|
16
|
Gaytán MO, Martínez-Santos VI, Soto E, González-Pedrajo B. Type Three Secretion System in Attaching and Effacing Pathogens. Front Cell Infect Microbiol 2016; 6:129. [PMID: 27818950 PMCID: PMC5073101 DOI: 10.3389/fcimb.2016.00129] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/27/2016] [Indexed: 02/06/2023] Open
Abstract
Enteropathogenic Escherichia coli and enterohemorrhagic E. coli are diarrheagenic bacterial human pathogens that cause severe gastroenteritis. These enteric pathotypes, together with the mouse pathogen Citrobacter rodentium, belong to the family of attaching and effacing pathogens that form a distinctive histological lesion in the intestinal epithelium. The virulence of these bacteria depends on a type III secretion system (T3SS), which mediates the translocation of effector proteins from the bacterial cytosol into the infected cells. The core architecture of the T3SS consists of a multi-ring basal body embedded in the bacterial membranes, a periplasmic inner rod, a transmembrane export apparatus in the inner membrane, and cytosolic components including an ATPase complex and the C-ring. In addition, two distinct hollow appendages are assembled on the extracellular face of the basal body creating a channel for protein secretion: an approximately 23 nm needle, and a filament that extends up to 600 nm. This filamentous structure allows these pathogens to get through the host cells mucus barrier. Upon contact with the target cell, a translocation pore is assembled in the host membrane through which the effector proteins are injected. Assembly of the T3SS is strictly regulated to ensure proper timing of substrate secretion. The different type III substrates coexist in the bacterial cytoplasm, and their hierarchical secretion is determined by specialized chaperones in coordination with two molecular switches and the so-called sorting platform. In this review, we present recent advances in the understanding of the T3SS in attaching and effacing pathogens.
Collapse
Affiliation(s)
- Meztlli O Gaytán
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Verónica I Martínez-Santos
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Eduardo Soto
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Ciudad de México, Mexico
| |
Collapse
|
17
|
Abstract
Several members of the SLC9A family of Na+/H+ exchangers are expressed in the gut, with varying expression patterns and cellular localization. Not only do they participate in the regulation of basic epithelial cell functions, including control of transepithelial Na+ absorption, intracellular pH (pH i ), cell volume, and nutrient absorption, but also in cellular proliferation, migration, and apoptosis. Additionally, they modulate the extracellular milieu in order to facilitate other nutrient absorption and to regulate the intestinal microbial microenvironment. Na+/H+ exchangers are frequent targets of inhibition in gastrointestinal pathologies, either by intrinsic factors (e.g. bile acids, inflammatory mediators) or infectious agents and associated microbial toxins. Based on emerging evidence, disruption of NHE activity via impaired expression or function of respective isoforms may contribute not only to local and systemic electrolyte imbalance, but also to the disease severity via multiple mechanisms. Here, we review the current state of knowledge about the roles Na+/H+ exchangers play in the pathogenesis of disorders of diverse origin and affecting a range of GI tissues.
Collapse
Affiliation(s)
- Michael A. Gurney
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona, Tucson, Arizona
| | - Daniel Laubitz
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona, Tucson, Arizona
| | - Fayez K. Ghishan
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona, Tucson, Arizona
| | - Pawel R. Kiela
- Department of Pediatrics, Steele Children’s Research Center, University of Arizona, Tucson, Arizona,Department of Immunobiology, University of Arizona, Tucson, Arizona,Correspondence Address correspondence to: Pawel R. Kiela, DVM, PhD, Department of Pediatrics, University of Arizona, 1501 North Campbell Avenue, Tucson, Arizona 85724. fax: (520) 626-4141.Department of Pediatrics, University of Arizona1501 North Campbell AvenueTucsonArizona 85724
| |
Collapse
|
18
|
Pathogen-induced secretory diarrhea and its prevention. Eur J Clin Microbiol Infect Dis 2016; 35:1721-1739. [DOI: 10.1007/s10096-016-2726-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/05/2016] [Indexed: 12/19/2022]
|
19
|
The Locus of Enterocyte Effacement and Associated Virulence Factors of Enterohemorrhagic Escherichia coli. Microbiol Spectr 2016; 2:EHEC-0007-2013. [PMID: 26104209 DOI: 10.1128/microbiolspec.ehec-0007-2013] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A subset of Shiga toxin-producing Escherichia coli strains, termed enterohemorrhagic E. coli (EHEC), is defined in part by the ability to produce attaching and effacing (A/E) lesions on intestinal epithelia. Such lesions are characterized by intimate bacterial attachment to the apical surface of enterocytes, cytoskeletal rearrangements beneath adherent bacteria, and destruction of proximal microvilli. A/E lesion formation requires the locus of enterocyte effacement (LEE), which encodes a Type III secretion system that injects bacterial proteins into host cells. The translocated proteins, termed effectors, subvert a plethora of cellular pathways to the benefit of the pathogen, for example, by recruiting cytoskeletal proteins, disrupting epithelial barrier integrity, and interfering with the induction of inflammation, phagocytosis, and apoptosis. The LEE and selected effectors play pivotal roles in intestinal persistence and virulence of EHEC, and it is becoming clear that effectors may act in redundant, synergistic, and antagonistic ways during infection. Vaccines that target the function of the Type III secretion system limit colonization of reservoir hosts by EHEC and may thus aid control of zoonotic infections. Here we review the features and functions of the LEE-encoded Type III secretion system and associated effectors of E. coli O157:H7 and other Shiga toxin-producing E. coli strains.
Collapse
|
20
|
Gujral T, Kumar A, Priyamvada S, Saksena S, Gill RK, Hodges K, Alrefai WA, Hecht GA, Dudeja PK. Mechanisms of DRA recycling in intestinal epithelial cells: effect of enteropathogenic E. coli. Am J Physiol Cell Physiol 2015; 309:C835-46. [PMID: 26447204 DOI: 10.1152/ajpcell.00107.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/01/2015] [Indexed: 11/22/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) is a food-borne pathogen that causes infantile diarrhea worldwide. EPEC decreases the activity and surface expression of the key intestinal Cl(-)/HCO3(-) exchanger SLC26A3 [downregulated in adenoma (DRA)], contributing to the pathophysiology of early diarrhea. Little is known about the mechanisms governing membrane recycling of DRA. In the current study, Caco-2 cells were used to investigate DRA trafficking under basal conditions and in response to EPEC. Apical Cl(-)/HCO3(-) exchange activity was measured as DIDS-sensitive (125)I(-) uptake. Cell surface biotinylation was performed to assess DRA endocytosis and exocytosis. Inhibition of clathrin-mediated endocytosis by chlorpromazine (60 μM) increased apical Cl(-)/HCO3(-) exchange activity. Dynasore, a dynamin inhibitor, also increased function and surface levels of DRA via decreased endocytosis. Perturbation of microtubules by nocodazole revealed that intact microtubules are essential for basal exocytic (but not endocytic) DRA recycling. Mice treated with colchicine showed a decrease in DRA surface levels as visualized by confocal microscopy. In response to EPEC infection, DRA surface expression was reduced partly via an increase in DRA endocytosis and a decrease in exocytosis. These effects were dependent on the EPEC virulence genes espG1 and espG2. Intriguingly, the EPEC-induced decrease in DRA function was unaltered in the presence of dynasore, suggesting a clathrin-independent internalization of surface DRA. In conclusion, these studies establish the role of clathrin-mediated endocytosis and microtubules in the basal surface expression of DRA and demonstrate that the EPEC-mediated decrease in DRA function and apical expression in Caco-2 cells involves decreased exocytosis.
Collapse
Affiliation(s)
- Tarunmeet Gujral
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Department of Physiology, University of Illinois at Chicago, Chicago, Illinois
| | - Anoop Kumar
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Shubha Priyamvada
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Seema Saksena
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Ravinder K Gill
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Kim Hodges
- Gastroenterology and Nutrition, Department of Medicine, Loyola University, Maywood, Illinois
| | - Waddah A Alrefai
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois; and
| | - Gail A Hecht
- Gastroenterology and Nutrition, Department of Medicine, Loyola University, Maywood, Illinois
| | - Pradeep K Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois; and
| |
Collapse
|
21
|
Rajendran VM, Nanda Kumar NS, Tse CM, Binder HJ. Na-H Exchanger Isoform-2 (NHE2) Mediates Butyrate-dependent Na+ Absorption in Dextran Sulfate Sodium (DSS)-induced Colitis. J Biol Chem 2015; 290:25487-96. [PMID: 26350456 DOI: 10.1074/jbc.m115.654277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Indexed: 12/13/2022] Open
Abstract
Diarrhea associated with ulcerative colitis (UC) occurs primarily as a result of reduced Na(+) absorption. Although colonic Na(+) absorption is mediated by both epithelial Na(+) channels (ENaC) and Na-H exchangers (NHE), inhibition of NHE-mediated Na(+) absorption is the primary cause of diarrhea in UC. As there are conflicting observations reported on NHE expression in human UC, the present study was initiated to identify whether NHE isoforms (NHE2 and NHE3) expression is altered and how Na(+) absorption is regulated in DSS-induced inflammation in rat colon, a model that has been used to study UC. Western blot analyses indicate that neither NHE2 nor NHE3 expression is altered in apical membranes of inflamed colon. Na(+) fluxes measured in vitro under voltage clamp conditions in controls demonstrate that both HCO3 (-)-dependent and butyrate-dependent Na(+) absorption are inhibited by S3226 (NHE3-inhibitor), but not by HOE694 (NHE2-inhibitor) in normal animals. In contrast, in DSS-induced inflammation, butyrate-, but not HCO3 (-)-dependent Na(+) absorption is present and is inhibited by HOE694, but not by S3226. These observations indicate that in normal colon NHE3 mediates both HCO3 (-)-dependent and butyrate-dependent Na(+) absorption, whereas DSS-induced inflammation activates NHE2, which mediates butyrate-dependent (but not HCO3 (-)-dependent) Na(+) absorption. In in vivo loop studies HCO3 (-)-Ringer and butyrate-Ringer exhibit similar rates of water absorption in normal rats, whereas in DSS-induced inflammation luminal butyrate-Ringer reversed water secretion observed with HCO3 (-)-Ringer to fluid absorption. Lumen butyrate-Ringer incubation activated NHE3-mediated Na(+) absorption in DSS-induced colitis. These observations suggest that the butyrate activation of NHE2 would be a potential target to control UC-associated diarrhea.
Collapse
Affiliation(s)
- Vazhaikkurichi M Rajendran
- From the Department of Biochemistry and Molecular Biology, West Virginia University School of Medicine, Morgantown, West Virginia 26506,
| | - Navalpur S Nanda Kumar
- From the Department of Biochemistry and Molecular Biology, West Virginia University School of Medicine, Morgantown, West Virginia 26506
| | - Chung M Tse
- the Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and
| | - Henry J Binder
- the Department of Internal Medicine, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
22
|
Abstract
Enteropathogenic
E. coli (EPEC) causes acute intestinal infections in infants in the developing world. Infection typically spreads through contaminated food and water and leads to severe, watery diarrhea. EPEC attaches to the intestinal epithelial cells and directly injects virulence factors which modulate multiple signaling pathways leading to host cell dysfunction. However, the molecular mechanisms that regulate the onset of diarrhea are poorly defined. A major target of EPEC is the host cell tight junction complex which acts as a barrier and regulates the passage of water and solutes through the paracellular space. In this review, we focus on the EPEC effectors that target the epithelial barrier, alter its functions and contribute to leakage through the tight junctions.
Collapse
Affiliation(s)
- Anand Prakash Singh
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Saima Aijaz
- Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
23
|
Expression of enteropathogenic Escherichia coli map is significantly different than that of other type III secreted effectors in vivo. Infect Immun 2014; 83:130-7. [PMID: 25312947 DOI: 10.1128/iai.02467-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The enteropathogenic Escherichia coli (EPEC) locus of enterocyte effacement (LEE)-encoded effectors EspF and Map are multifunctional and have an impact on the tight junction barrier while the non-LEE-encoded proteins NleH1 and NleH2 possess significant anti-inflammatory activity. In order to address the temporal expression of these important genes in vivo, their promoters were cloned upstream of the luxCDABE operon, and luciferase expression was measured in EPEC-infected mice by bioluminescence using an in vivo imaging system (IVIS). Bioluminescent images of living mice, of excised whole intestines, and of whole intestines longitudinally opened and washed were assessed. The majority of bioluminescent bacteria localized in the cecum by 3 h postinfection, indicating that the cecum is not only a major colonization site of EPEC but also a site of EPEC effector gene expression in mice. espF, nleH1, and nleH2 were abundantly expressed over the course of infection. In contrast, map expression was suppressed at 2 days postinfection, and at 4 days postinfection it was totally abolished. After 2 to 4 days postinfection, when map is suppressed, EPEC colonization is significantly reduced, indicating that map may be one of the factors required to maintain EPEC colonization. This was confirmed in a competitive colonization study and in two models of chronic infection, repeated exposure to ketamine and Citrobacter rodentium infection. Our data suggest that map expression contributes to the maintenance of EPEC colonization.
Collapse
|
24
|
Tang F, Saier MH. Transport proteins promoting Escherichia coli pathogenesis. Microb Pathog 2014; 71-72:41-55. [PMID: 24747185 DOI: 10.1016/j.micpath.2014.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 12/26/2022]
Abstract
Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies.
Collapse
Affiliation(s)
- Fengyi Tang
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA.
| | - Milton H Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA.
| |
Collapse
|
25
|
Exploitation of eukaryotic subcellular targeting mechanisms by bacterial effectors. Nat Rev Microbiol 2013; 11:316-26. [PMID: 23588250 DOI: 10.1038/nrmicro3009] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Several bacterial species have evolved specialized secretion systems to deliver bacterial effector proteins into eukaryotic cells. These effectors have the capacity to modulate host cell pathways in order to promote bacterial survival and replication. The spatial and temporal context in which the effectors exert their biochemical activities is crucial for their function. To fully understand effector function in the context of infection, we need to understand the mechanisms that lead to the precise subcellular localization of effectors following their delivery into host cells. Recent studies have shown that bacterial effectors exploit host cell machinery to accurately target their biochemical activities within the host cell.
Collapse
|
26
|
Singh V, Raheja G, Borthakur A, Kumar A, Gill RK, Alakkam A, Malakooti J, Dudeja PK. Lactobacillus acidophilus upregulates intestinal NHE3 expression and function. Am J Physiol Gastrointest Liver Physiol 2012; 303:G1393-401. [PMID: 23086913 PMCID: PMC3532544 DOI: 10.1152/ajpgi.00345.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A major mechanism of electroneutral NaCl absorption in the human ileum and colon involves coupling of Na(+)/H(+) and Cl(-)/HCO(3)(-) exchangers. Disturbances in these mechanisms have been implicated in diarrheal conditions. Probiotics such as Lactobacillus have been indicated to be beneficial in the management of gastrointestinal disorders, including diarrhea. However, the molecular mechanisms underlying antidiarrheal effects of probiotics have not been fully understood. We have previously demonstrated Lactobacillus acidophilus (LA) to stimulate Cl(-)/HCO3- exchange activity via an increase in the surface levels and expression of the Cl(-)/HCO3- exchanger DRA in vitro and in vivo. However, the effects of LA on NHE3, the Na(+)/H(+) exchanger involved in the coupled electroneutral NaCl absorption, are not known. Current studies were, therefore, undertaken to investigate the effects of LA on the function and expression of NHE3 and to determine the mechanisms involved. Treatment of Caco2 cells with LA or its conditioned culture supernatant (CS) for 8-24 h resulted in a significant increase in Na(+)/H(+) exchange activity, mRNA, and protein levels of NHE3. LA-CS upregulation of NHE3 function and expression was also observed in SK-CO15 cells, a human colonic adenocarcinoma cell line. Additionally, LA treatment increased NHE3 promoter activity, suggesting involvement of transcriptional mechanisms. In vivo, mice gavaged with live LA showed significant increase in NHE3 mRNA and protein expression in the ileum and colonic regions. In conclusion, LA-induced increase in NHE3 expression may contribute to the upregulation of intestinal electrolyte absorption and might underlie the potential antidiarrheal effects of probiotics.
Collapse
Affiliation(s)
- Varsha Singh
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, Illinois
| | - Geetu Raheja
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, Illinois
| | - Alip Borthakur
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, Illinois
| | - Anoop Kumar
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, Illinois
| | - Ravinder K. Gill
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, Illinois
| | - Anas Alakkam
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, Illinois
| | - Jaleh Malakooti
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, Illinois
| | - Pradeep K. Dudeja
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, Illinois
| |
Collapse
|
27
|
Glotfelty LG, Hecht GA. Enteropathogenic E. coli effectors EspG1/G2 disrupt tight junctions: new roles and mechanisms. Ann N Y Acad Sci 2012; 1258:149-58. [PMID: 22731728 DOI: 10.1111/j.1749-6632.2012.06563.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Enteropathogenic E. coli (EPEC) infection is a major cause of infantile diarrhea in the developing world. Using a type-three secretion system, bacterial effector proteins are transferred to the host cell cytosol where they affect multiple physiological functions, ultimately leading to diarrheal disease. Disruption of intestinal epithelial cell tight junctions is a major consequence of EPEC infection and is mediated by multiple effector proteins, among them EspG1 and its homologue EspG2. EspG1/G2 contribute to loss of barrier function via an undefined mechanism that may be linked to their disruption of microtubule networks. Recently new investigations have identified additional roles for EspG. Sequestration of active ADP-ribosylating factor (ARF) proteins and promotion of p21-activated kinase (PAK) activity as well as inhibition of Golgi-mediated protein secretion have all been linked to EspG. In this review, we examine the functions of EspG1/G2 and discuss potential mechanisms of EspG-mediated tight junction disruption.
Collapse
Affiliation(s)
- Lila G Glotfelty
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
28
|
Girardi ACC, Di Sole F. Deciphering the mechanisms of the Na+/H+ exchanger-3 regulation in organ dysfunction. Am J Physiol Cell Physiol 2012; 302:C1569-87. [DOI: 10.1152/ajpcell.00017.2012] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Na+/H+ exchanger-3 (NHE3) belongs to the mammalian NHE protein family and catalyzes the electro-neutral exchange of extracellular sodium for intracellular proton across cellular membranes. Its transport function is of essential importance for the maintenance of the body's salt and water homeostasis as well as acid-base balance. Indeed, NHE3 activity is finely regulated by a variety of stimuli, both acutely and chronically, and its transport function is fundamental for a multiplicity of severe and world-wide infection-pathological conditions. This review aims to provide a concise overview of NHE3 physiology and discusses the role of NHE3 in clinical conditions of prominent importance, specifically in hypertension, diabetic nephropathy, heart failure, acute kidney injury, and diarrhea. Study of NHE3 function in models of these diseases has contributed to the deciphering of mechanisms that control the delicate ion balance disrupted in these disorders. The majority of the findings indicate that NHE3 transport function is activated before the onset of hypertension and inhibited thereafter; NHE3 transport function is also upregulated in diabetic nephropathy and heart failure, while it is reported to be downregulated in acute kidney injury and in diarrhea. The molecular mechanisms activated during these pathological conditions to regulate NHE3 transport function are examined with the aim of linking NHE3 dysfunction to the analyzed clinical disorders.
Collapse
Affiliation(s)
| | - Francesca Di Sole
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; and
- Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
29
|
Annaba F, Sarwar Z, Gill RK, Ghosh A, Saksena S, Borthakur A, Hecht GA, Dudeja PK, Alrefai WA. Enteropathogenic Escherichia coli inhibits ileal sodium-dependent bile acid transporter ASBT. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1216-22. [PMID: 22403793 PMCID: PMC3362099 DOI: 10.1152/ajpgi.00017.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Apical sodium-dependent bile acid transporter (ASBT) is responsible for the absorption of bile acids from the intestine. A decrease in ASBT function and expression has been implicated in diarrhea associated with intestinal inflammation. Whether infection with pathogenic microorganisms such as the enteropathogenic Escherichia coli (EPEC) affect ASBT activity is not known. EPEC is a food-borne enteric pathogen that translocates bacterial effector molecules via type three secretion system (TTSS) into host cells and is a major cause of infantile diarrhea. We investigated the effects of EPEC infection on ileal ASBT function utilizing human intestinal Caco2 cells and HEK-293 cells stably transfected with ASBT-V5 fusion protein (2BT cells). ASBT activity was significantly inhibited following 60 min infection with EPEC but not with nonpathogenic E. coli. Mutations in bacterial escN, espA, espB, and espD, the genes encoding for the elements of bacterial TTSS, ablated EPEC inhibitory effect on ASBT function. Furthermore, mutation in the bacterial BFP gene encoding for bundle-forming pili abrogated the inhibition of ASBT by EPEC, indicating the essential role for bacterial aggregation and the early attachment. The inhibition by EPEC was associated with a significant decrease in the V(max) of the transporter and a reduction in the level of ASBT on the plasma membrane. The inhibition of ASBT by EPEC was blocked in the presence of protein tyrosine phosphatase inhibitors. Our studies provide novel evidence for the alterations in the activity of ASBT by EPEC infection and suggest a possible effect for EPEC in influencing intestinal bile acid homeostasis.
Collapse
Affiliation(s)
- Fadi Annaba
- 1Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and
| | - Zaheer Sarwar
- 1Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and
| | - Ravinder K. Gill
- 1Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and
| | - Amit Ghosh
- 1Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and
| | - Seema Saksena
- 1Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and
| | - Alip Borthakur
- 1Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and
| | - Gail A. Hecht
- 1Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and ,2Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Pradeep K. Dudeja
- 1Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and ,2Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Waddah A. Alrefai
- 1Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and ,2Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
30
|
Abstract
Enteric Escherichia coli (E. coli) are both natural flora of humans and important pathogens causing significant morbidity and mortality worldwide. Traditionally enteric E. coli have been divided into 6 pathotypes, with further pathotypes often proposed. In this review we suggest expansion of the enteric E. coli into 8 pathotypes to include the emerging pathotypes of adherent invasive E. coli (AIEC) and Shiga-toxin producing enteroaggregative E. coli (STEAEC). The molecular mechanisms that allow enteric E. coli to colonize and cause disease in the human host are examined and for two of the pathotypes that express a type 3 secretion system (T3SS) we discuss the complex interplay between translocated effectors and manipulation of host cell signaling pathways that occurs during infection.
Collapse
Affiliation(s)
- Abigail Clements
- Centre for Molecular Microbiology and Infection, Imperial College, London, UK.
| | | | | | | |
Collapse
|
31
|
Hodges K, Hecht G. Interspecies communication in the gut, from bacterial delivery to host-cell response. J Physiol 2011; 590:433-40. [PMID: 22106176 DOI: 10.1113/jphysiol.2011.220822] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Intestinal pathogens have a wide variety of strategies for communicating with host epithelial cells. This review highlights a few key examples of those strategies. Enteropathogenic Escherichia coli (EPEC) use a type III secretion system (T3SS) to alter host ion transport through both transcriptional and post-translational mechanisms. Salmonella use a similar T3SS to invade host cells and modify an intracellular vacuole, which also impacts host vesicle trafficking. Helicobacter pylori use host cell integrins to provide a conformational change which drives the type IV secretion system into the host cell for delivery of CagA. The novel type VI section systems are phage-like apparati that deliver VgrG-1, which causes actin cross-linking and fluid accumulation in a suckling mouse model. An entirely different delivery mechanism is the outer membrane vesicle (OMV) which is composed of bacterial outer membrane wrapped around contents of the periplamsic space. Enterotoxigenic E. coli use OMVs to deliver bundles of heat labile enterotoxin to host cells. Finally we discuss the host responses to these varied methods of communication.
Collapse
Affiliation(s)
- Kim Hodges
- Department of Digestive Disease and Nutrition, University of Illinois at Chicago, 840 S. Wood Street, Room 718, Chicago, IL 60612, USA
| | | |
Collapse
|
32
|
Sandle GI. Infective and inflammatory diarrhoea: mechanisms and opportunities for novel therapies. Curr Opin Pharmacol 2011; 11:634-9. [PMID: 21983454 DOI: 10.1016/j.coph.2011.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 09/23/2011] [Indexed: 01/26/2023]
Abstract
There have been significant advances in unravelling the cellular mechanisms of diarrhoea in common gut infections and colonic inflammation, as well as in the identification of targets for potential antidiarrhoeal drugs. Infective diarrhoea reflects activation of electrogenic Cl⁻ secretion, inhibition of electroneutral NaCl absorption and in some cases, downregulation of tight junctional proteins and increased apoptosis. In colonic inflammation, diarrhoea mainly reflects impairment of colonic Na⁺ and Cl⁻ absorption by inflammatory cytokines, leading to decreased water absorption. Stimulation of endogenous opiate-dependent pathways, manipulation of epithelial ion (Na⁺, K⁺ and Cl⁻) channels and suppression of proinflammatory cytokine production by a variety of drugs and novel molecules, offer opportunities to move evaluation of these potential antisecretory and anti-inflammatory agents from the laboratory into clinical trials.
Collapse
Affiliation(s)
- Geoffrey I Sandle
- Leeds Institute of Molecular Medicine, St James's University Hospital, Leeds LS9 7TF, United Kingdom.
| |
Collapse
|
33
|
Wong ARC, Pearson JS, Bright MD, Munera D, Robinson KS, Lee SF, Frankel G, Hartland EL. Enteropathogenic and enterohaemorrhagic Escherichia coli: even more subversive elements. Mol Microbiol 2011; 80:1420-38. [PMID: 21488979 DOI: 10.1111/j.1365-2958.2011.07661.x] [Citation(s) in RCA: 256] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alexander R C Wong
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang JH, Yu B, He P, Bai X. Roles of Bcl-2 family members, PI3K and NF-κB pathways in Escherichia coli-induced apoptosis in human monocytic U937 cells. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0641-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Saksena S, Tyagi S, Goyal S, Gill RK, Alrefai WA, Ramaswamy K, Dudeja PK. Stimulation of apical Cl⁻/HCO₃⁻(OH⁻) exchanger, SLC26A3 by neuropeptide Y is lipid raft dependent. Am J Physiol Gastrointest Liver Physiol 2010; 299:G1334-43. [PMID: 20884887 PMCID: PMC3006247 DOI: 10.1152/ajpgi.00039.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Neuropeptide Y (NPY), an important proabsorptive hormone of the gastrointestinal tract has been shown to inhibit chloride secretion and stimulate NaCl absorption. However, mechanisms underlying the proabsorptive effects of NPY are not fully understood. The present studies were designed to examine the direct effects of NPY on apical Cl⁻/HCO₃⁻(OH⁻) exchange activity and the underlying mechanisms involved utilizing Caco2 cells. Our results showed that NPY (100 nM, 30 min) significantly increased Cl⁻/HCO₃⁻(OH⁻) exchange activity (∼2-fold). Selective NPY/Y1 or Y2 receptor agonists mimicked the effects of NPY. NPY-mediated stimulation of Cl⁻/HCO₃⁻(OH⁻) exchange activity involved the ERK1/2 MAP kinase-dependent pathway. Cell surface biotinylation studies showed that NPY does not alter DRA (apical Cl⁻/HCO₃⁻(OH⁻) exchanger) surface expression, ruling out the involvement of membrane trafficking events. Interestingly, DRA was found to be predominantly expressed in the detergent-insoluble (DI) and low-density fractions (LDF) of human colonic apical membrane vesicles (AMVs) representing lipid rafts. Depletion of membrane cholesterol by methyl-β-cyclodextrin (MβCD, 10 mM, 1 h) remarkably decreased DRA expression in the DI fractions. Similar results were obtained in Triton-X 100-treated Caco2 plasma membranes. DRA association with lipid rafts in the DI and LDF fractions of Caco2 cells was significantly enhanced (∼45%) by NPY compared with control. MβCD significantly decreased Cl⁻/HCO₃⁻(OH⁻) exchange activity in Caco2 cells as measured by DIDS- or niflumic acid-sensitive ³⁶Cl⁻ uptake (∼50%). Our results demonstrate that NPY modulates Cl⁻/HCO₃⁻(OH⁻) exchange activity by enhancing the association of DRA with lipid rafts, thereby resulting in an increase in Cl⁻/HCO₃⁻(OH⁻) exchange activity. Our findings suggest that the alteration in the association of DRA with lipid rafts may contribute to the proabsorptive effects of NPY in the human intestine.
Collapse
Affiliation(s)
- Seema Saksena
- Dept. of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Illinois 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Staphylococcus aureus induces apoptosis of human monocytic U937 cells via NF-κB signaling pathways. Microb Pathog 2010; 49:252-9. [DOI: 10.1016/j.micpath.2010.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 06/07/2010] [Accepted: 06/16/2010] [Indexed: 01/31/2023]
|
37
|
Abstract
Central to the pathogenesis of many bacterial pathogens is the ability to deliver effector proteins directly into the cells of their eukaryotic host. EspF is one of many effector proteins exclusive to the attaching and effacing pathogen family that includes enteropathogenic (EPEC) and enterohemorrhagic (EHEC) Escherichia coli. Work in recent years has revealed EspF to be one of the most multifunctional effector proteins known, with defined roles in several host cellular processes, including disruption of the epithelial barrier, antiphagocytosis, microvillus effacement, host membrane remodelling, modulation of the cytoskeleton, targeting and disruption of the nucleolus, intermediate filament disruption, cell invasion, mitochondrial dysfunction, apoptosis, and inhibition of several important epithelial transporters. Surprisingly, despite this high number of functions, EspF is a relatively small effector protein, and recent work has begun to decipher the molecular events that underlie its multifunctionality. This review focuses on the activities of EspF within the host cell and discusses recent findings and molecular insights relating to the virulence functions of this fascinating bacterial effector.
Collapse
|
38
|
Shames SR, Deng W, Guttman JA, de Hoog CL, Li Y, Hardwidge PR, Sham HP, Vallance BA, Foster LJ, Finlay BB. The pathogenic E. coli type III effector EspZ interacts with host CD98 and facilitates host cell prosurvival signalling. Cell Microbiol 2010; 12:1322-39. [PMID: 20374249 DOI: 10.1111/j.1462-5822.2010.01470.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Enterohaemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC respectively) are diarrhoeal pathogens that cause the formation of attaching and effacing (A/E) lesions on infected host cells. These pathogens encode a type III secretion system (T3SS) used to inject effector proteins directly into host cells, an essential requirement for virulence. In this study, we identified a function for the type III secreted effector EspZ. Infection with EPEC DeltaespZ caused increased cytotoxicity in HeLa and MDCK cells compared with wild-type EPEC, and expressing espZ in cells abrogated this effect. Using yeast two-hybrid, proteomics, immunofluorescence and co-immunoprecipitation, it was demonstrated that EspZ interacts with the host protein CD98, which contributes to protection against EPEC-mediated cytotoxicity. EspZ enhanced phosphorylation of focal adhesion kinase (FAK) and AKT during infection with EPEC, but CD98 only appeared to facilitate FAK phosphorylation. This study provides evidence that EspZ and CD98 promote host cell survival mechanisms involving FAK during A/E pathogen infection.
Collapse
Affiliation(s)
- Stephanie R Shames
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW The 2009 review on small intestinal ion transport, in this series, focused on recent advances in duodenal bicarbonate secretion, the importance of scaffolding proteins and the pathophysiology of inflammation-associated diarrhea. The current review focuses on advances in ion-coupled solute transport, the dynamic role of the paracellular pathway in transepithelial-fluid transport and of elucidating the cellular basis of diarrheas associated with enteric infections. RECENT FINDINGS In understanding the cellular pathophysiology underlying diarrheal diseases, there is increased focus on the role of altering Na absorptive mechanisms as well as the role of the paracellular pathway. This is not to minimize the role of Cl-secretory pathways, especially cystic fibrosis transmembrane conductance regulator (CFTR), which continues to have pleiotropic roles in modulating other transporters. The Na-glucose cotransporter (SGLT) was the first transporter ever to be cloned. Twenty-one years later, with another first, the crystal structure of the related Na-galactose transporter has been described and opens new avenues to understand structure-function relationships and intelligent drug design for transporters. SUMMARY Progress continues to be made on integrating information obtained from reductionist models into more complex in-vivo animal models and where possible in human studies. Recognition of the coordinated regulation of cellular Na absorptive and Cl-secretory pathways together with the paracellular route in health and disease will help develop a more holistic picture of the multifaceted nature of small intestinal ion transport.
Collapse
|
40
|
Weflen AW, Alto NM, Viswanathan VK, Hecht G. E. coli secreted protein F promotes EPEC invasion of intestinal epithelial cells via an SNX9-dependent mechanism. Cell Microbiol 2010; 12:919-29. [PMID: 20088948 DOI: 10.1111/j.1462-5822.2010.01440.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) infection requires the injection of effector proteins into intestinal epithelial cells (IECs) via type 3 secretion. Type 3-secreted effectors can interfere with IEC signalling pathways via specific protein-protein interactions. For example, E. coli secreted protein F (EspF) binds sorting nexin 9 (SNX9), an endocytic regulator, resulting in tubulation of the plasma membrane. Our aim was to determine the mechanism of EspF/SNX9-induced membrane tubulation. Point mutation of the SNX9 lipid binding domains or truncation of the EspF SNX9 binding domains significantly inhibited tubulation, as did inhibition of clathrin coated pit (CCP) assembly. Although characterized as non-invasive, EPEC are known to invade IECs in vitro and in vivo. Indeed, we found significant invasion of Caco-2 cells by EPEC, which, like tubulation, was blocked by pharmacological inhibition of CCPs. Interestingly, however, inhibition of dynamin activity did not prevent tubulation or EPEC invasion, which is in contrast to Salmonella invasion, which requires dynamin activity. Our data also indicate that EPEC invasion is dependent on EspF and its interaction with SNX9. Together, these findings suggest that EspF promotes EPEC invasion of IECs by harnessing the membrane-deforming activity of SNX9.
Collapse
Affiliation(s)
- Andrew W Weflen
- Department of Medicine, Section of Digestive Disease and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
41
|
Hodges K, Gill R. Infectious diarrhea: Cellular and molecular mechanisms. Gut Microbes 2010; 1:4-21. [PMID: 21327112 PMCID: PMC3035144 DOI: 10.4161/gmic.1.1.11036] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/15/2009] [Accepted: 12/28/2009] [Indexed: 02/03/2023] Open
Abstract
Diarrhea caused by enteric infections is a major factor in morbidity and mortality worldwide. An estimated 2-4 billion episodes of infectious diarrhea occur each year and are especially prevalent in infants. This review highlights the cellular and molecular mechanisms underlying diarrhea associated with the three classes of infectious agents, i.e., bacteria, viruses and parasites. Several bacterial pathogens have been chosen as model organisms, including Vibrio cholerae as a classical example of secretory diarrhea, Clostridium difficile and Shigella species as agents of inflammatory diarrhea and selected strains of pathogenic Escherichia coli (E. coli) to discuss the recent advances in alteration of epithelial ion absorption. Many of the recent studies addressing epithelial ion transport and barrier function have been carried out using viruses and parasites. Here, we focus on the rapidly developing field of viral diarrhea including rotavirus, norovirus and astrovirus infections. Finally we discuss Giardia lamblia and Entamoeba histolytica as examples of parasitic diarrhea. Parasites have a greater complexity than the other pathogens and are capable of creating molecules similar to those produced by the host, such as serotonin and PGE(2). The underlying mechanisms of infectious diarrhea discussed include alterations in ion transport and tight junctions as well as the virulence factors, which alter these processes either through direct effects or indirectly through inflammation and neurotransmitters.
Collapse
|
42
|
Croxen MA, Finlay BB. Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol 2009; 8:26-38. [DOI: 10.1038/nrmicro2265] [Citation(s) in RCA: 668] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
43
|
Esmaili A, Nazir SF, Borthakur A, Yu D, Turner JR, Saksena S, Singla A, Hecht GA, Alrefai WA, Gill RK. Enteropathogenic Escherichia coli infection inhibits intestinal serotonin transporter function and expression. Gastroenterology 2009; 137:2074-83. [PMID: 19747920 PMCID: PMC3727418 DOI: 10.1053/j.gastro.2009.09.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 07/28/2009] [Accepted: 09/03/2009] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Serotonin transporter (SERT) plays a critical role in regulating serotonin (5-hydroxytryptamine [5-HT]) availability in the gut. Elevated 5-HT levels are associated with diarrheal conditions such as irritable bowel syndrome and enteric infections. Whether alteration in SERT activity contributes to the pathophysiology of diarrhea induced by the food-borne pathogen enteropathogenic Escherichia coli (EPEC) is not known. The present studies examined the effects of EPEC infection on SERT activity and expression in intestinal epithelial cells and elucidated the underlying mechanisms. METHODS Caco-2 cells as a model of human intestinal epithelia and EPEC-infected C57BL/6J mouse model of infection were utilized. SERT activity was measured as Na(+) and Cl(-) dependent (3)[H] 5-HT uptake. SERT expression was measured by real-time quantitative reverse-transcription polymerase chain reaction, Western blotting, and immunofluorescence studies. RESULTS Infection of Caco-2 cells with EPEC for 30-120 minutes decreased apical SERT activity (P < .001) in a type 3 secretion system dependent manner and via involvement of protein tyrosine phosphatases. EPEC infection decreased V(max) of the transporter; whereas cell surface biotinylation studies revealed no alteration in the cellular or plasma membrane content of SERT in Caco-2 cells. EPEC infection of mice (24 hours) reduced SERT immunostaining with a corresponding decrease in SERT messenger RNA levels, 5-HT uptake, and mucosal 5-HT content in the small intestine. CONCLUSIONS Our results demonstrate inhibition of SERT by EPEC and define the mechanisms underlying these effects. These data may aid in the development of a novel pharmacotherapy to modulate the serotonergic system in treatment of infectious diarrheal diseases.
Collapse
Affiliation(s)
| | | | | | - Dan Yu
- Department of Pathology, University of Chicago, Chicago, Illinois
| | | | | | | | | | | | - Ravinder K. Gill
- Author to whom all correspondence including reprint requests should be addressed: Ravinder K. Gill, Ph.D., Research Assistant Professor, University of Illinois at Chicago, Jesse Brown V. A. Medical Center, Medical Research Service (600/151),820 South Damen Avenue, Chicago, IL 60612, , Tel: (312) 569-6498, Fax: (312) 569-7458
| |
Collapse
|
44
|
Spehlmann ME, Dann SM, Hruz P, Hanson E, McCole DF, Eckmann L. CXCR2-dependent mucosal neutrophil influx protects against colitis-associated diarrhea caused by an attaching/effacing lesion-forming bacterial pathogen. THE JOURNAL OF IMMUNOLOGY 2009; 183:3332-43. [PMID: 19675161 DOI: 10.4049/jimmunol.0900600] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Enteropathogenic Escherichia coli (EPEC) is a major cause of diarrheal disease in young children, yet symptoms and duration are highly variable for unknown reasons. Citrobacter rodentium, a murine model pathogen that shares important functional features with EPEC, colonizes mice in colon and cecum and causes inflammation, but typically little or no diarrhea. We conducted genome-wide microarray studies to define mechanisms of host defense and disease in C. rodentium infection. A significant fraction of the genes most highly induced in the colon by infection encoded CXC chemokines, particularly CXCL1/2/5 and CXCL9/10, which are ligands for the chemokine receptors CXCR2 and CXCR3, respectively. CD11b(+) dendritic cells were the major producers of CXCL1, CXCL5, and CXCL9, while CXCL2 was mainly induced in macrophages. Infection of gene-targeted mice revealed that CXCR3 had a significant but modest role in defense against C. rodentium, whereas CXCR2 had a major and indispensable function. CXCR2 was required for normal mucosal influx of neutrophils, which act as direct antibacterial effectors. Moreover, CXCR2 loss led to severe diarrhea and failure to express critical components of normal ion and fluid transport, including ATPase beta(2)-subunit, CFTR, and DRA. The antidiarrheal functions were unique to CXCR2, since other immune defects leading to increased bacterial load and inflammation did not cause diarrhea. Thus, CXCR2-dependent processes, particularly mucosal neutrophil influx, not only contribute to host defense against C. rodentium, but provide protection against infection-associated diarrhea.
Collapse
Affiliation(s)
- Martina E Spehlmann
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW In recent years, the field of intestinal physiology has witnessed significant progress in our understanding of the expression and function of ion transport proteins and their genes under physiological and pathophysiological conditions. This review will present some of these most recent advances in the small intestinal ion transport mechanisms. RECENT FINDINGS One of the new and exciting aspects of this field has been the integration of function and structure of several intestinal transport processes. This is well exemplified by the discussed intricacies of intestinal bicarbonate secretion as well as the role of scaffolding PDZ proteins interacting with several transporters. We also discuss some of the most recent data pointing to the role of ion transporters in the pathogenesis of inflammation-associated diarrhea and their potential role in the maintenance of epithelial integrity. SUMMARY Mouse models deficient in some of the key genes encoding ion transporters and their adapter proteins continue to provide important clues into intestinal transport processes. Several of the new in-vivo findings revise or complement past paradigms, many of which were derived from in-vitro approaches. New data on the interdependent functions of multiple transporters, as exemplified here by intestinal bicarbonate secretion, increase the complexity of the intestinal ion transport mechanisms and continue to contribute to a more integrated view of the transport phenomena in the gut. Data from patients and mouse models of intestinal inflammation also increase our understanding of the pathophysiology of inflammation-associated diarrhea.
Collapse
|
46
|
The effector repertoire of enteropathogenic E. coli: ganging up on the host cell. Curr Opin Microbiol 2009; 12:101-9. [PMID: 19144561 PMCID: PMC2697328 DOI: 10.1016/j.mib.2008.11.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 11/25/2008] [Accepted: 11/26/2008] [Indexed: 11/24/2022]
Abstract
Diarrhoeal disease caused by enteropathogenic E. coli (EPEC) is dependent on a delivery system that injects numerous bacterial ‘effector’ proteins directly into host cells. The best-described EPEC effectors are encoded together on the locus of enterocyte effacement (LEE) pathogenicity island and display high levels of multifunctionality and cooperativity within the host cell. More recently, effectors encoded outside the LEE (non-LEE effectors) have been discovered and their functions are beginning to be uncovered. The recent completion of the EPEC genome sequence suggests its effector repertoire consists of at least 21 effector proteins. Here, we describe the genomic location of effectors and discuss recent advances made on effector cellular function as well as their role in the infection process.
Collapse
|
47
|
Viswanathan VK, Hodges K, Hecht G. Enteric infection meets intestinal function: how bacterial pathogens cause diarrhoea. Nat Rev Microbiol 2008; 7:110-9. [PMID: 19116615 DOI: 10.1038/nrmicro2053] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Infectious diarrhoea is a significant contributor to morbidity and mortality worldwide. In bacterium-induced diarrhoea, rapid loss of fluids and electrolytes results from inhibition of the normal absorptive function of the intestine as well as the activation of secretory processes. Advances in the past 10 years in the fields of gastrointestinal physiology, innate immunity and enteric bacterial virulence mechanisms highlight the multifactorial nature of infectious diarrhoea. This review explores the various mechanisms that contribute to loss of fluids and electrolytes following bacterial infections, and attempts to link these events to specific virulence factors and toxins.
Collapse
Affiliation(s)
- V K Viswanathan
- Department of Veterinary Science & Microbiology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
48
|
Guttman JA, Finlay BB. Subcellular alterations that lead to diarrhea during bacterial pathogenesis. Trends Microbiol 2008; 16:535-42. [PMID: 18819802 DOI: 10.1016/j.tim.2008.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 08/20/2008] [Accepted: 08/27/2008] [Indexed: 12/23/2022]
Abstract
Pathogenic microorganisms routinely exploit host cellular functions for their benefit. These alterations often enhance the survival and/or dissemination of the pathogen. However, these effects on the host can be quite debilitating. Consequently, an in-depth understanding of the molecular mechanisms employed by pathogens to manipulate their hosts is crucial. One of the common host phenotypes elicited by enteric pathogens is the generation of diarrhea. Here, we overview the current advances in understanding strategies used by bacterial pathogens to cause diarrheal diseases and discuss how the coordination of various subcellular events can influence disease progression.
Collapse
Affiliation(s)
- Julian A Guttman
- Simon Fraser University, Department of Biological Sciences, Shrum Science Centre, Room B8276, Burnaby, BC V5A 1S6, Canada.
| | | |
Collapse
|