1
|
Engelhardt S, Trutzenberg A, Kopischke M, Probst K, McCollum C, Hofer J, Hückelhoven R. Barley RIC157, a potential RACB scaffold protein, is involved in susceptibility to powdery mildew. PLANT MOLECULAR BIOLOGY 2023; 111:329-344. [PMID: 36562946 PMCID: PMC10090020 DOI: 10.1007/s11103-022-01329-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/03/2022] [Indexed: 06/15/2023]
Abstract
CRIB motif-containing barley RIC157 is a novel ROP scaffold protein that interacts directly with barley RACB, promotes susceptibility to fungal penetration, and colocalizes with RACB at the haustorial neck. Successful obligate pathogens benefit from host cellular processes. For the biotrophic ascomycete fungus Blumeria hordei (Bh) it has been shown that barley RACB, a small monomeric G-protein (ROP, Rho of plants), is required for full susceptibility to fungal penetration. The susceptibility function of RACB probably lies in its role in cell polarity, which may be co-opted by the pathogen for invasive ingrowth of its haustorium. However, how RACB supports fungal penetration success and which other host proteins coordinate this process is incompletely understood. RIC (ROP-Interactive and CRIB-(Cdc42/Rac Interactive Binding) motif-containing) proteins are considered scaffold proteins which can interact directly with ROPs via a conserved CRIB motif. Here we describe a previously uncharacterized barley RIC protein, RIC157, which can interact directly with RACB in planta. We show that, in the presence of constitutively activated RACB, RIC157 shows a localization at the cell periphery/plasma membrane, whereas it otherwise localizes to the cytoplasm. RIC157 appears to mutually stabilize the plasma membrane localization of the activated ROP. During fungal infection, RIC157 and RACB colocalize at the penetration site, particularly at the haustorial neck. Additionally, transiently overexpressed RIC157 renders barley epidermal cells more susceptible to fungal penetration. We discuss that RIC157 may promote fungal penetration into barley epidermal cells by operating probably downstream of activated RACB.
Collapse
Affiliation(s)
- Stefan Engelhardt
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany
| | - Adriana Trutzenberg
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany
| | - Michaela Kopischke
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany
| | - Katja Probst
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany
| | - Christopher McCollum
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany
| | - Johanna Hofer
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany
| | - Ralph Hückelhoven
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany.
| |
Collapse
|
2
|
Ntefidou M, Eklund DM, Le Bail A, Schulmeister S, Scherbel F, Brandl L, Dörfler W, Eichstädt C, Bannmüller A, Ljung K, Kost B. Physcomitrium patens PpRIC, an ancestral CRIB-domain ROP effector, inhibits auxin-induced differentiation of apical initial cells. Cell Rep 2023; 42:112130. [PMID: 36790931 DOI: 10.1016/j.celrep.2023.112130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/03/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
RHO guanosine triphosphatases are important eukaryotic regulators of cell differentiation and behavior. Plant ROP (RHO of plant) family members activate specific, incompletely characterized downstream signaling. The structurally simple land plant Physcomitrium patens is missing homologs of key animal and flowering plant RHO effectors but contains a single CRIB (CDC42/RAC interactive binding)-domain-containing RIC (ROP-interacting CRIB-containing) protein (PpRIC). Protonemal P. patens filaments elongate based on regular division and PpROP-dependent tip growth of apical initial cells, which upon stimulation by the hormone auxin differentiate caulonemal characteristics. PpRIC interacts with active PpROP1, co-localizes with this protein at the plasma membrane at the tip of apical initial cells, and accumulates in the nucleus. Remarkably, PpRIC is not required for tip growth but is targeted to the nucleus to block caulonema differentiation downstream of auxin-controlled gene expression. These observations establish functions of PpRIC in mediating crosstalk between ROP and auxin signaling, which contributes to the maintenance of apical initial cell identity.
Collapse
Affiliation(s)
- Maria Ntefidou
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - D Magnus Eklund
- Physiology and Environmental Toxicology, Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden
| | - Aude Le Bail
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Sylwia Schulmeister
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Franziska Scherbel
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Lisa Brandl
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Wolfgang Dörfler
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Chantal Eichstädt
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Anna Bannmüller
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Benedikt Kost
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
3
|
Trutzenberg A, Engelhardt S, Weiß L, Hückelhoven R. Barley guanine nucleotide exchange factor HvGEF14 is an activator of the susceptibility factor HvRACB and supports host cell entry by Blumeria graminis f. sp. hordei. MOLECULAR PLANT PATHOLOGY 2022; 23:1524-1537. [PMID: 35849420 PMCID: PMC9452760 DOI: 10.1111/mpp.13246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
In barley (Hordeum vulgare), signalling rat sarcoma homolog (RHO) of plants guanosine triphosphate hydrolases (ROP GTPases) support the penetration success of Blumeria graminis f. sp. hordei but little is known about ROP activation. Guanine nucleotide exchange factors (GEFs) facilitate the exchange of ROP-bound GDP for GTP and thereby turn ROPs into a signalling-activated ROP-GTP state. Plants possess a unique class of GEFs harbouring a plant-specific ROP nucleotide exchanger domain (PRONE). Here, we performed phylogenetic analyses and annotated barley PRONE-GEFs. The leaf epidermal-expressed PRONE-GEF HvGEF14 undergoes a transcriptional down-regulation on inoculation with B. graminis f. sp. hordei and directly interacts with the ROP GTPase and susceptibility factor HvRACB in yeast and in planta. Overexpression of activated HvRACB or of HvGEF14 led to the recruitment of ROP downstream interactor HvRIC171 to the cell periphery. HvGEF14 further supported direct interaction of HvRACB with a HvRACB-GTP-binding CRIB (Cdc42/Rac Interactive Binding motif) domain-containing HvRIC171 truncation. Finally, the overexpression of HvGEF14 caused enhanced susceptibility to fungal entry, while HvGEF14 RNAi provoked a trend to more penetration resistance. HvGEF14 might therefore play a role in the activation of HvRACB in barley epidermal cells during fungal penetration.
Collapse
Affiliation(s)
- Adriana Trutzenberg
- Chair of Phytopathology, School of Life SciencesTechnical University of MunichFreising‐WeihenstephanGermany
| | - Stefan Engelhardt
- Chair of Phytopathology, School of Life SciencesTechnical University of MunichFreising‐WeihenstephanGermany
| | - Lukas Weiß
- Chair of Phytopathology, School of Life SciencesTechnical University of MunichFreising‐WeihenstephanGermany
| | - Ralph Hückelhoven
- Chair of Phytopathology, School of Life SciencesTechnical University of MunichFreising‐WeihenstephanGermany
| |
Collapse
|
4
|
Weiß L, Gaelings L, Reiner T, Mergner J, Kuster B, Fehér A, Hensel G, Gahrtz M, Kumlehn J, Engelhardt S, Hückelhoven R. Posttranslational modification of the RHO of plants protein RACB by phosphorylation and cross-kingdom conserved ubiquitination. PLoS One 2022; 17:e0258924. [PMID: 35333858 PMCID: PMC8956194 DOI: 10.1371/journal.pone.0258924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/10/2021] [Indexed: 11/19/2022] Open
Abstract
Small RHO-type G-proteins act as signaling hubs and master regulators of polarity in eukaryotic cells. Their activity is tightly controlled, as defective RHO signaling leads to aberrant growth and developmental defects. Two major processes regulate G-protein activity: canonical shuttling between different nucleotide bound states and posttranslational modification (PTM), of which the latter can support or suppress RHO signaling, depending on the individual PTM. In plants, regulation of Rho of plants (ROPs) signaling activity has been shown to act through nucleotide exchange and GTP hydrolysis, as well as through lipid modification, but there is little data available on phosphorylation or ubiquitination of ROPs. Hence, we applied proteomic analyses to identify PTMs of the barley ROP RACB. We observed in vitro phosphorylation by barley ROP binding kinase 1 and in vivo ubiquitination of RACB. Comparative analyses of the newly identified RACB phosphosites and human RHO protein phosphosites revealed conservation of modified amino acid residues, but no overlap of actual phosphorylation patterns. However, the identified RACB ubiquitination site is conserved in all ROPs from Hordeum vulgare, Arabidopsis thaliana and Oryza sativa and in mammalian Rac1 and Rac3. Point mutation of this ubiquitination site leads to stabilization of RACB. Hence, this highly conserved lysine residue may regulate protein stability across different kingdoms.
Collapse
Affiliation(s)
- Lukas Weiß
- Chair of Phytopathology, Technical University of Munich (TUM), Freising, Germany
| | - Lana Gaelings
- Chair of Phytopathology, Technical University of Munich (TUM), Freising, Germany
| | - Tina Reiner
- Chair of Phytopathology, Technical University of Munich (TUM), Freising, Germany
| | - Julia Mergner
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
- Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), TUM, Freising, Germany
| | - Attila Fehér
- Chair of Plant Biology, University of Szeged, and Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Götz Hensel
- Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Manfred Gahrtz
- Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Jochen Kumlehn
- Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Stefan Engelhardt
- Chair of Phytopathology, Technical University of Munich (TUM), Freising, Germany
| | - Ralph Hückelhoven
- Chair of Phytopathology, Technical University of Munich (TUM), Freising, Germany
| |
Collapse
|
5
|
Zhang Z, Zhang X, Na R, Yang S, Tian Z, Zhao Y, Zhao J. StRac1 plays an important role in potato resistance against Phytophthora infestans via regulating H 2O 2 production. JOURNAL OF PLANT PHYSIOLOGY 2020; 253:153249. [PMID: 32829122 DOI: 10.1016/j.jplph.2020.153249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
ROP GTPases (Rho-related GTPases from plant), a unique subgroup of the Rho family in plants, is a group of key regulators of different signaling pathways controlling plant growth and development, cell polarity and differentiation, and plant response against biotic and abiotic stresses. The present study determined the potential regulatory mechanism of potato ROP GTPase (StRac1) against Phytophthora infestans (P. infestans) infection. Protein secondary structure analysis indicated that StRAC1 is a Rho GTPase. The expression level of StRac1 was variable in different tissues of potato, with the highest expression in young leaves of both Shepody and Hutou potato varieties. After challenging with P. infestans, the expression level of StRac1was higher in resistance varieties Zihuabai and Longshu 7 than in susceptible varieties Shepody and Desiree. StRAC1 fusion with GFP subcellularly localized at the plasma membrane (PM) in tobacco epidermal cells. The potato with transient or stable over-expression of CA-StRac1 (constitutively active form of StRac1)exhibited a dramatic enhancement of its resistance against P. infestans infections. The increased resistance level in transgenic potato was accompanied with elevated H2O2 levels. Importantly, silencing StRac1 via virus-induced gene silencing (VIGS) in potato resulted in higher susceptibility to P. infestans infection than in control plants. In summary, our data reveal that StRac1 regulates potato resistance against P. infestans via positively modulating the accumulation of H2O2.
Collapse
Affiliation(s)
- Zhiwei Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, 010019 China.
| | - Xiaoluo Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, 010019 China.
| | - Ren Na
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China.
| | - Shuqing Yang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, 010019 China.
| | - Zaimin Tian
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, 010019 China.
| | - Yan Zhao
- Institutes of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, 100101 China.
| | - Jun Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, 010019 China.
| |
Collapse
|
6
|
Engelhardt S, Trutzenberg A, Hückelhoven R. Regulation and Functions of ROP GTPases in Plant-Microbe Interactions. Cells 2020; 9:E2016. [PMID: 32887298 PMCID: PMC7565977 DOI: 10.3390/cells9092016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Rho proteins of plants (ROPs) form a specific clade of Rho GTPases, which are involved in either plant immunity or susceptibility to diseases. They are intensively studied in grass host plants, in which ROPs are signaling hubs downstream of both cell surface immune receptor kinases and intracellular nucleotide-binding leucine-rich repeat receptors, which activate major branches of plant immune signaling. Additionally, invasive fungal pathogens may co-opt the function of ROPs for manipulation of the cytoskeleton, cell invasion and host cell developmental reprogramming, which promote pathogenic colonization. Strikingly, mammalian bacterial pathogens also initiate both effector-triggered susceptibility for cell invasion and effector-triggered immunity via Rho GTPases. In this review, we summarize central concepts of Rho signaling in disease and immunity of plants and briefly compare them to important findings in the mammalian research field. We focus on Rho activation, downstream signaling and cellular reorganization under control of Rho proteins involved in disease progression and pathogen resistance.
Collapse
Affiliation(s)
| | | | - Ralph Hückelhoven
- Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Straße 2, 85354 Freising, Germany; (S.E.); (A.T.)
| |
Collapse
|
7
|
Hoefle C, McCollum C, Hückelhoven R. Barley ROP-Interactive Partner-a organizes into RAC1- and MICROTUBULE-ASSOCIATED ROP-GTPASE ACTIVATING PROTEIN 1-dependent membrane domains. BMC PLANT BIOLOGY 2020; 20:94. [PMID: 32122296 PMCID: PMC7053138 DOI: 10.1186/s12870-020-2299-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/21/2020] [Indexed: 06/07/2023]
Abstract
BACKGROUND Small ROP (also called RAC) GTPases are key factors in polar cell development and in interaction with the environment. ROP-Interactive Partner (RIP) proteins are predicted scaffold or ROP-effector proteins, which function downstream of activated GTP-loaded ROP proteins in establishing membrane heterogeneity and cellular organization. Grass ROP proteins function in cell polarity, resistance and susceptibility to fungal pathogens but grass RIP proteins are little understood. RESULTS We found that the barley (Hordeum vulgare L.) RIPa protein can interact with barley ROPs in yeast. Fluorescent-tagged RIPa, when co-expressed with the constitutively activated ROP protein CA RAC1, accumulates at the cell periphery or plasma membrane. Additionally, RIPa, locates into membrane domains, which are laterally restricted by microtubules when co-expressed with RAC1 and MICROTUBULE-ASSOCIATED ROP-GTPASE ACTIVATING PROTEIN 1. Both structural integrity of MICROTUBULE-ASSOCIATED ROP-GTPASE ACTIVATING PROTEIN 1 and microtubule stability are key to maintenance of RIPa-labeled membrane domains. In this context, RIPa also accumulates at the interface of barley and invading hyphae of the powdery mildew fungus Blumeria graminis f.sp. hordei. CONCLUSIONS Data suggest that barley RIPa interacts with barley ROPs and specifies RAC1 activity-associated membrane domains with potential signaling capacity. Lateral diffusion of this RAC1 signaling capacity is spatially restricted and the resulting membrane heterogeneity requires intact microtubules and MICROTUBULE-ASSOCIATED ROP-GTPASE ACTIVATING PROTEIN 1. Focal accumulation of RIPa at sites of fungal attack may indicate locally restricted ROP activity at sites of fungal invasion.
Collapse
Affiliation(s)
- Caroline Hoefle
- Chair of Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil Ramann Str. 2, 85354, Freising, Germany
| | - Christopher McCollum
- Chair of Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil Ramann Str. 2, 85354, Freising, Germany
| | - Ralph Hückelhoven
- Chair of Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil Ramann Str. 2, 85354, Freising, Germany.
| |
Collapse
|
8
|
Ku YS, Sintaha M, Cheung MY, Lam HM. Plant Hormone Signaling Crosstalks between Biotic and Abiotic Stress Responses. Int J Mol Sci 2018; 19:ijms19103206. [PMID: 30336563 PMCID: PMC6214094 DOI: 10.3390/ijms19103206] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/13/2018] [Accepted: 10/14/2018] [Indexed: 01/01/2023] Open
Abstract
In the natural environment, plants are often bombarded by a combination of abiotic (such as drought, salt, heat or cold) and biotic (necrotrophic and biotrophic pathogens) stresses simultaneously. It is critical to understand how the various response pathways to these stresses interact with one another within the plants, and where the points of crosstalk occur which switch the responses from one pathway to another. Calcium sensors are often regarded as the first line of response to external stimuli to trigger downstream signaling. Abscisic acid (ABA) is a major phytohormone regulating stress responses, and it interacts with the jasmonic acid (JA) and salicylic acid (SA) signaling pathways to channel resources into mitigating the effects of abiotic stresses versus defending against pathogens. The signal transduction in these pathways are often carried out via GTP-binding proteins (G-proteins) which comprise of a large group of proteins that are varied in structures and functions. Deciphering the combined actions of these different signaling pathways in plants would greatly enhance the ability of breeders to develop food crops that can thrive in deteriorating environmental conditions under climate change, and that can maintain or even increase crop yield.
Collapse
Affiliation(s)
- Yee-Shan Ku
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Mariz Sintaha
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Ming-Yan Cheung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
9
|
Good Riddance? Breaking Disease Susceptibility in the Era of New Breeding Technologies. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8070114] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Nottensteiner M, Zechmann B, McCollum C, Hückelhoven R. A barley powdery mildew fungus non-autonomous retrotransposon encodes a peptide that supports penetration success on barley. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3745-3758. [PMID: 29757394 PMCID: PMC6022598 DOI: 10.1093/jxb/ery174] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/09/2018] [Indexed: 05/22/2023]
Abstract
Pathogens overcome plant immunity by means of secreted effectors. Host effector targets often act in pathogen defense, but might also support fungal accommodation or nutrition. The barley ROP GTPase HvRACB is involved in accommodation of fungal haustoria of the powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh) in barley epidermal cells. We found that HvRACB interacts with the ROP-interactive peptide 1 (ROPIP1) that is encoded on the active non-long terminal repeat retroelement Eg-R1 of Bgh. Overexpression of ROPIP1 in barley epidermal cells and host-induced post-transcriptional gene silencing (HIGS) of ROPIP1 suggested that ROPIP1 is involved in virulence of Bgh. Bimolecular fluorescence complementation and co-localization supported that ROPIP1 can interact with activated HvRACB in planta. We show that ROPIP1 is expressed by Bgh on barley and translocated into the cytoplasm of infected barley cells. ROPIP1 is recruited to microtubules upon co-expression of MICROTUBULE ASSOCIATED ROP GTPase ACTIVATING PROTEIN (HvMAGAP1) and can destabilize cortical microtubules. The data suggest that Bgh ROPIP targets HvRACB and manipulates host cell microtubule organization for facilitated host cell entry. This points to a possible neo-functionalization of retroelement-derived transcripts for the evolution of a pathogen virulence effector.
Collapse
Affiliation(s)
- Mathias Nottensteiner
- Chair of Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, Waco, TX, USA
| | - Christopher McCollum
- Chair of Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Ralph Hückelhoven
- Chair of Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Correspondence:
| |
Collapse
|
11
|
Schnepf V, Vlot AC, Kugler K, Hückelhoven R. Barley susceptibility factor RACB modulates transcript levels of signalling protein genes in compatible interaction with Blumeria graminis f.sp. hordei. MOLECULAR PLANT PATHOLOGY 2018; 19:393-404. [PMID: 28026097 PMCID: PMC6638053 DOI: 10.1111/mpp.12531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 05/30/2023]
Abstract
RHO (rat sarcoma homologue) GTPases (guanosine triphosphatases) are regulators of downstream transcriptional responses of eukaryotes to intracellular and extracellular stimuli. For plants, little is known about the function of Rho-like GTPases [called RACs (rat sarcoma-related C botulinum substrate) or ROPs (RHO of plants)] in transcriptional reprogramming of cells. However, in plant hormone response and innate immunity, RAC/ROP proteins influence gene expression patterns. The barley RAC/ROP RACB is required for full susceptibility of barley to the powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh). We compared the transcriptomes of barley plants either silenced for RACB or over-expressing constitutively activated RACB with and without inoculation with Bgh. This revealed a large overlap of the barley transcriptome during the early response to Bgh and during the over-expression of constitutively activated RACB. Global pathway analyses and stringent analyses of differentially expressed genes suggested that RACB influences, amongst others, the expression of signalling receptor kinases. Transient induced gene silencing of RACB-regulated signalling genes (a leucine-rich repeat protein, a leucine-rich repeat receptor-like kinase and an S-domain SD1-receptor-like kinase) suggested that they might be involved in RACB-modulated susceptibility to powdery mildew. We discuss the function of RACB in regulating the transcriptional responses of susceptible barley to Bgh.
Collapse
Affiliation(s)
- Vera Schnepf
- Phytopathology, School of Life Sciences WeihenstephanTechnical University of MunichFreisingD‐85354Germany
| | - A. Corina Vlot
- Helmholtz Zentrum Muenchen, Department of Environmental SciencesInstitute of Biochemical Plant PathologyNeuherbergD‐85764Germany
| | - Karl Kugler
- Helmholtz Zentrum MuenchenPlant Genome and Systems BiologyNeuherbergD‐85764Germany
| | - Ralph Hückelhoven
- Phytopathology, School of Life Sciences WeihenstephanTechnical University of MunichFreisingD‐85354Germany
| |
Collapse
|
12
|
Martínez-Cruz J, Romero D, de Vicente A, Pérez-García A. Transformation of the cucurbit powdery mildew pathogen Podosphaera xanthii by Agrobacterium tumefaciens. THE NEW PHYTOLOGIST 2017; 213:1961-1973. [PMID: 27864969 DOI: 10.1111/nph.14297] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
The obligate biotrophic fungal pathogen Podosphaera xanthii is the main causal agent of powdery mildew in cucurbit crops all over the world. A major limitation of molecular studies of powdery mildew fungi (Erysiphales) is their genetic intractability. In this work, we describe a robust method based on the promiscuous transformation ability of Agrobacterium tumefaciens for reliable transformation of P. xanthii. The A. tumefaciens-mediated transformation (ATMT) system yielded transformants of P. xanthii with diverse transferred DNA (T-DNA) constructs. Analysis of the resultant transformants showed the random integration of T-DNA into the P. xanthii genome. The integrations were maintained in successive generations in the presence of selection pressure. Transformation was found to be transient, because in the absence of selection agent, the introduced genetic markers were lost due to excision of T-DNA from the genome. The ATMT system represents a potent tool for genetic manipulation of P. xanthii and will likely be useful for studying other biotrophic fungi. We hope that this method will contribute to the development of detailed molecular studies of the intimate interaction established between powdery mildew fungi and their host plants.
Collapse
Affiliation(s)
- Jesús Martínez-Cruz
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' - Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga. Bulevar Louis Pasteur 31, Málaga, 29071, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' - Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga. Bulevar Louis Pasteur 31, Málaga, 29071, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' - Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga. Bulevar Louis Pasteur 31, Málaga, 29071, Spain
| | - Alejandro Pérez-García
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' - Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga. Bulevar Louis Pasteur 31, Málaga, 29071, Spain
| |
Collapse
|
13
|
Reiner T, Hoefle C, Hückelhoven R. A barley SKP1-like protein controls abundance of the susceptibility factor RACB and influences the interaction of barley with the barley powdery mildew fungus. MOLECULAR PLANT PATHOLOGY 2016; 17:184-95. [PMID: 25893638 PMCID: PMC6638371 DOI: 10.1111/mpp.12271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In an increasing number of plant-microbe interactions, it has become evident that the abundance of immunity-related proteins is controlled by the ubiquitin-26S proteasome system. In the interaction of barley with the biotrophic barley powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh), the RAC/ROP [RAT SARCOMA-related C3 botulinum toxin substrate/RAT SARCOMA HOMOLOGUE (RHO) of plants] guanosine triphosphatase (GTPase) HvRACB supports the fungus in a compatible interaction. By contrast, barley HvRBK1, a ROP-binding receptor-like cytoplasmic kinase that interacts with and can be activated by constitutively activated HvRACB, limits fungal infection success. We have identified a barley type II S-phase kinase 1-associated (SKP1)-like protein (HvSKP1-like) as a molecular interactor of HvRBK1. SKP1 proteins are subunits of the SKP1-cullin 1-F-box (SCF)-E3 ubiquitin ligase complex that acts in the specific recognition and ubiquitination of protein substrates for subsequent proteasomal degradation. Transient induced gene silencing of either HvSKP1-like or HvRBK1 increased protein abundance of constitutively activated HvRACB in barley epidermal cells, whereas abundance of dominant negative RACB only weakly increased. In addition, silencing of HvSKP1-like enhanced the susceptibility of barley to haustorium establishment by Bgh. In summary, our results suggest that HvSKP1-like, together with HvRBK1, controls the abundance of HvRACB and, at the same time, modulates the outcome of the barley-Bgh interaction. A possible feedback mechanism from RAC/ROP-activated HvRBK1 on the susceptibility factor HvRACB is discussed.
Collapse
Affiliation(s)
- Tina Reiner
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann Straße 2, D-85350, Freising-Weihenstephan, Germany
| | - Caroline Hoefle
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann Straße 2, D-85350, Freising-Weihenstephan, Germany
| | - Ralph Hückelhoven
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann Straße 2, D-85350, Freising-Weihenstephan, Germany
| |
Collapse
|
14
|
Zhang Z, Yang F, Na R, Zhang X, Yang S, Gao J, Fan M, Zhao Y, Zhao J. AtROP1 negatively regulates potato resistance to Phytophthora infestans via NADPH oxidase-mediated accumulation of H2O2. BMC PLANT BIOLOGY 2014; 14:392. [PMID: 25547733 PMCID: PMC4323192 DOI: 10.1186/s12870-014-0392-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 12/19/2014] [Indexed: 05/11/2023]
Abstract
BACKGROUND Small GTPases are monomeric guanine nucleotide-binding proteins. In plants, ROPs regulate plant cell polarity, plant cell differentiation and development as well as biotic and abiotic stress signaling pathways. RESULTS We report the subcellular localization of the AtRop1 protein at the plasma membrane in tobacco epidermal cells using GFP fusions. Additionally, transient and stable expression of a dominant negative form (DN) of the Arabidopsis AtRop1 in potato led to H2O2 accumulation associated with the reduced development of Phytophthora infestans Montagne de Bary and smaller lesions on infected potato leaves. The expression of the Strboh-D gene, a NADPH oxidase homologue in potato, was analyzed by RT-PCR. Expression of this gene was maintained in DN-AtRop1 transgenic plants after infection with P. infestans. In transgenic potato lines, the transcript levels of salicylic acid (SA) and jasmonic acid (JA) marker genes (Npr1 and Lox, respectively) were analyzed. The Lox gene was induced dramatically whereas expression of Npr1, a gene up-regulated by SA, decreased slightly in DN-AtRop1 transgenic plants after infection with P. infestans. CONCLUSIONS In conclusion, our results indicate that DN-AtROP1 affects potato resistance to P. infestans. This is associated with increased NADPH oxidase-mediated H2O2 production and JA signaling.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Department of Agronomy, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, 010019, China.
| | - Fan Yang
- Department of Agronomy, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, 010019, China.
| | - Ren Na
- Department of Agronomy, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, 010019, China.
| | - Xiaoluo Zhang
- Department of Agronomy, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, 010019, China.
| | - Shuqing Yang
- Department of Agronomy, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, 010019, China.
| | - Jing Gao
- Department of Agronomy, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, 010019, China.
| | - Mingshou Fan
- Department of Agronomy, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, 010019, China.
| | - Yan Zhao
- Institutes of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, 100101, China.
| | - Jun Zhao
- Department of Agronomy, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, 010019, China.
| |
Collapse
|
15
|
Nagawa S, Xu T, Yang Z. RHO GTPase in plants: Conservation and invention of regulators and effectors. Small GTPases 2014; 1:78-88. [PMID: 21686259 DOI: 10.4161/sgtp.1.2.14544] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 12/13/2010] [Accepted: 12/20/2010] [Indexed: 12/30/2022] Open
Abstract
Plants possess a single subfamily of Rho GTPases, ROP, which does usual things as do Rho-family GTPases in animal and fungal systems, namely participating in the spatial control of cellular processes by signaling to the cytoskeleton and vesicular trafficking. As one would expect, ROPs are modulated by conserved regulators such as DHR2-type GEFs, RhoGAPs and Rho GDIs. What is surprising is that plants have invented new regulators such as PRONE-type GEFs (known as RopGEFs) and effectors such as RICs and ICRs/RIPs in the regulation of the cytoskeleton and vesicular trafficking. This review will discuss recent work on characterizing ROP regulators and effectors as well as addressing why and how a mixture of conserved and novel Rho signaling mechanisms is utilized to modulate fundamental cellular processes such as cytoskeletal dynamics/reorganization and vesicular trafficking.
Collapse
Affiliation(s)
- Shingo Nagawa
- Center for Plant Cell Biology; Department of Botany and Plant Sciences; University of California; Riverside, CA USA
| | | | | |
Collapse
|
16
|
The Podosphaera xanthii haustorium, the fungal Trojan horse of cucurbit-powdery mildew interactions. Fungal Genet Biol 2014; 71:21-31. [PMID: 25151531 DOI: 10.1016/j.fgb.2014.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 01/04/2023]
Abstract
The powdery mildew fungi are obligate biotrophic plant pathogens that develop a specialized structure for parasitism termed haustorium, which is responsible for nutrient uptake and factor exchange with the plant. In this work, we present a detailed microscopy analysis of the haustoria of the cucurbit powdery mildew fungus Podosphaera xanthii, a major limiting factor for cucurbit production worldwide. Despite being located inside plant epidermal cells, transmission electron microscopy (TEM) analysis showed the characteristic highly irregular outline of the extrahaustorial membrane that separates the extrahaustorial matrix of haustoria from the cytoplasm of the plant cell. TEM analysis also revealed the presence of some vesicles and electron-dense plaques of material surrounding the haustoria. In confocal microscopy analysis and aniline blue staining we found a positive correlation between haustorial development and deposition of callose, which is distributed as plaques around haustorial complex. In this study, a method for the isolation of P. xanthii haustoria was also adapted, which permitted the analysis of the formation of haustorial lobes and the visualization of vacuoles and the pool of vesicles inside the haustorial complex. Our findings suggested that the haustorial lobes were responsible for vesicular trafficking and most likely act as the main mediators of the fungus-plant dialogue. All of these findings were integrated into a model of the P. xanthii-host cellular interactions.
Collapse
|
17
|
Kawano Y, Kaneko-Kawano T, Shimamoto K. Rho family GTPase-dependent immunity in plants and animals. FRONTIERS IN PLANT SCIENCE 2014; 5:522. [PMID: 25352853 PMCID: PMC4196510 DOI: 10.3389/fpls.2014.00522] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/16/2014] [Indexed: 05/21/2023]
Abstract
In plants, sophisticated forms of immune systems have developed to cope with a variety of pathogens. Accumulating evidence indicates that Rac (also known as Rop), a member of the Rho family of small GTPases, is a key regulator of immunity in plants and animals. Like other small GTPases, Rac/Rop GTPases function as a molecular switch downstream of immune receptors by cycling between GDP-bound inactive and GTP-bound active forms in cells. Rac/Rop GTPases trigger various immune responses, thereby resulting in enhanced disease resistance to pathogens. In this review, we highlight recent studies that have contributed to our current understanding of the Rac/Rop family GTPases and the upstream and downstream proteins involved in plant immunity. We also compare the features of effector-triggered immunity between plants and animals, and discuss the in vivo monitoring of Rac/Rop activation.
Collapse
Affiliation(s)
- Yoji Kawano
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and TechnologyIkoma, Japan
- *Correspondence: Yoji Kawano, Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan e-mail:
| | | | - Ko Shimamoto
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and TechnologyIkoma, Japan
| |
Collapse
|
18
|
Lapin D, Van den Ackerveken G. Susceptibility to plant disease: more than a failure of host immunity. TRENDS IN PLANT SCIENCE 2013; 18:546-54. [PMID: 23790254 DOI: 10.1016/j.tplants.2013.05.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/15/2013] [Accepted: 05/21/2013] [Indexed: 05/23/2023]
Abstract
Susceptibility to infectious diseases caused by pathogens affects most plants in their natural habitat and leads to yield losses in agriculture. However, plants are not helpless because their immune system can deal with the vast majority of attackers. Nevertheless, adapted pathogens are able to circumvent or avert host immunity making plants susceptible to these uninvited guests. In addition to the failure of the plant immune system, there are other host processes that contribute to plant disease susceptibility. In this review, we discuss recent studies that show the active role played by the host in supporting disease, focusing mainly on biotrophic stages of infection. Plants attract pathogens, enable their entry and accommodation, and facilitate nutrient provision.
Collapse
Affiliation(s)
- Dmitry Lapin
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
19
|
Venus Y, Oelmüller R. Arabidopsis ROP1 and ROP6 influence germination time, root morphology, the formation of F-actin bundles, and symbiotic fungal interactions. MOLECULAR PLANT 2013; 6:872-86. [PMID: 23118477 DOI: 10.1093/mp/sss101] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The RHO-related GTPases ROP1 and ROP6 and the ROP1-interacting protein RIC4 in Arabidopsis are involved in various processes of F-actin dynamics, cell growth, and plant/microbe interactions. The knockout rop1 and rop1 rop6 seeds germinate earlier and are impaired in root hair development. Also root hair branching is strongly affected by manipulation of the RHO-related GTPase (ROP) levels. Furthermore, in the double knockout line rop1 rop6, no actin bundle formation can be detected. We demonstrate that these proteins are required for establishing a mutualistic interaction between the root-colonizing endophytic fungus Piriformospora indica and Arabidopsis. The fungus promotes growth of wild-type plants. rop1, rop6, rop1 rop6, ric4, 35S::ROP1, and 35S::ROP6 seedlings are impaired in the response to the fungus. Since the different root architectures have no effect on root colonization, the impaired response to P. indica should be caused by ROP-mediated events in the root cells. In wild-type roots, P. indica stimulates the formation of F-actin bundles and this does not occur in the rop1 rop6 knockout line. Furthermore, the fungus stimulates the expression of the calmodulin-binding protein gene Cbp60g, and this response is severely reduced in the rop mutants. We propose that ROP1 and ROP6 are required for F-actin bundle formation in the roots, which is required for P. indica-mediated growth promotion in Arabidopsis.
Collapse
Affiliation(s)
- Yvonne Venus
- Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, Dornburger Straβe 159, D-07743 Jena, Germany
| | | |
Collapse
|
20
|
Malinsky J, Opekarová M, Grossmann G, Tanner W. Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:501-29. [PMID: 23638827 DOI: 10.1146/annurev-arplant-050312-120103] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The existence of specialized microdomains in plasma membranes, postulated for almost 25 years, has been popularized by the concept of lipid or membrane rafts. The idea that detergent-resistant membranes are equivalent to lipid rafts, which was generally abandoned after a decade of vigorous data accumulation, contributed to intense discussions about the validity of the raft concept. The existence of membrane microdomains, meanwhile, has been verified by unequivocal independent evidence. This review summarizes the current state of research in plants and fungi with respect to common aspects of both kingdoms. In these organisms, principally immobile microdomains large enough for microscopic detection have been visualized. These microdomains are found in the context of cell-cell interactions (plant symbionts and pathogens), membrane transport, stress, and polarized growth, and the data corroborate at least three mechanisms of formation. As documented in this review, modern methods of visualization of lateral membrane compartments are also able to uncover the functional relevance of membrane microdomains.
Collapse
Affiliation(s)
- Jan Malinsky
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic.
| | | | | | | |
Collapse
|
21
|
Huesmann C, Reiner T, Hoefle C, Preuss J, Jurca ME, Domoki M, Fehér A, Hückelhoven R. Barley ROP binding kinase1 is involved in microtubule organization and in basal penetration resistance to the barley powdery mildew fungus. PLANT PHYSIOLOGY 2012; 159:311-20. [PMID: 22415513 PMCID: PMC3375967 DOI: 10.1104/pp.111.191940] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/12/2012] [Indexed: 05/20/2023]
Abstract
Certain plant receptor-like cytoplasmic kinases were reported to interact with small monomeric G-proteins of the RHO of plant (ROP; also called RAC) family in planta and to be activated by this interaction in vitro. We identified a barley (Hordeum vulgare) partial cDNA of a ROP binding protein kinase (HvRBK1) in yeast (Saccharomyces cerevisiae) two-hybrid screenings with barley HvROP bait proteins. Protein interaction of the constitutively activated (CA) barley HvROPs CA HvRACB and CA HvRAC1 with full-length HvRBK1 was verified in yeast and in planta. Green fluorescent protein-tagged HvRBK1 appears in the cytoplasm and nucleoplasm, but CA HvRACB or CA HvRAC1 can recruit green fluorescent protein-HvRBK1 to the cell periphery. Barley HvRBK1 is an active kinase in vitro, and activity is enhanced by CA HvRACB or GTP-loaded HvRAC1. Hence, HvRBK1 might act downstream of active HvROPs. Transient-induced gene silencing of barley HvRBK1 supported penetration by the parasitic fungus Blumeria graminis f. sp. hordei, suggesting a function of the protein in basal disease resistance. Transient knockdown of HvRBK1 also influenced the stability of cortical microtubules in barley epidermal cells. Hence, HvRBK1 might function in basal resistance to powdery mildew by influencing microtubule organization.
Collapse
|
22
|
Hückelhoven R, Panstruga R. Cell biology of the plant-powdery mildew interaction. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:738-46. [PMID: 21924669 DOI: 10.1016/j.pbi.2011.08.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/09/2011] [Accepted: 08/17/2011] [Indexed: 05/08/2023]
Abstract
Powdery mildew fungi represent a paradigm for obligate biotrophic parasites, which only propagate in long-lasting intimate interactions with living host cells. These highly specialized phytopathogens induce re-organization of host cell architecture and physiology for their own demands. This probably includes the corruption of basal host cellular functions for successful fungal pathogenesis. Recent studies revealed secretory processes by both interaction partners as key incidents of the combat at the plant-fungus interface. The analysis of cellular events during plant-powdery mildew interactions may not only lead to a better understanding of plant pathological features, but may also foster novel discoveries in the area of plant cell biology.
Collapse
Affiliation(s)
- Ralph Hückelhoven
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann-Straße 2, 85350 Freising-Weihenstephan, Germany
| | | |
Collapse
|
23
|
Mucha E, Fricke I, Schaefer A, Wittinghofer A, Berken A. Rho proteins of plants – Functional cycle and regulation of cytoskeletal dynamics. Eur J Cell Biol 2011; 90:934-43. [PMID: 21277045 DOI: 10.1016/j.ejcb.2010.11.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 11/25/2010] [Accepted: 11/25/2010] [Indexed: 10/24/2022] Open
|
24
|
Hoefle C, Huesmann C, Schultheiss H, Börnke F, Hensel G, Kumlehn J, Hückelhoven R. A barley ROP GTPase ACTIVATING PROTEIN associates with microtubules and regulates entry of the barley powdery mildew fungus into leaf epidermal cells. THE PLANT CELL 2011; 23:2422-39. [PMID: 21685259 PMCID: PMC3160019 DOI: 10.1105/tpc.110.082131] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/28/2011] [Accepted: 06/05/2011] [Indexed: 05/19/2023]
Abstract
Little is known about the function of host factors involved in disease susceptibility. The barley (Hordeum vulgare) ROP (RHO of plants) G-protein RACB is required for full susceptibility of the leaf epidermis to invasion by the biotrophic fungus Blumeria graminis f. sp hordei. Stable transgenic knockdown of RACB reduced the ability of barley to accommodate haustoria of B. graminis in intact epidermal leaf cells and to form hairs on the root epidermis, suggesting that RACB is a common element of root hair outgrowth and ingrowth of haustoria in leaf epidermal cells. We further identified a barley MICROTUBULE-ASSOCIATED ROP-GTPASE ACTIVATING PROTEIN (MAGAP1) interacting with RACB in yeast and in planta. Fluorescent MAGAP1 decorated cortical microtubules and was recruited by activated RACB to the cell periphery. Under fungal attack, MAGAP1-labeled microtubules built a polarized network at sites of successful defense. By contrast, microtubules loosened where the fungus succeeded in penetration. Genetic evidence suggests a function of MAGAP1 in limiting susceptibility to penetration by B. graminis. Additionally, MAGAP1 influenced the polar organization of cortical microtubules. These results add to our understanding of how intact plant cells accommodate fungal infection structures and suggest that RACB and MAGAP1 might be antagonistic players in cytoskeleton organization for fungal entry.
Collapse
Affiliation(s)
- Caroline Hoefle
- Lehrstuhl für Phytopathologie, Technische Universität München, D-85350 Freising-Weihenstephan, Germany
| | - Christina Huesmann
- Lehrstuhl für Phytopathologie, Technische Universität München, D-85350 Freising-Weihenstephan, Germany
| | - Holger Schultheiss
- University of Giessen, Institute of Phytopathology and Applied Zoology, 35392 Giessen, Germany
| | - Frederik Börnke
- Division of Biochemistry, Department of Biology, University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | - Ralph Hückelhoven
- Lehrstuhl für Phytopathologie, Technische Universität München, D-85350 Freising-Weihenstephan, Germany
- Address correspondence to
| |
Collapse
|
25
|
Nibau C, Cheung AY. New insights into the functional roles of CrRLKs in the control of plant cell growth and development. PLANT SIGNALING & BEHAVIOR 2011; 6:655-9. [PMID: 21455018 PMCID: PMC3172831 DOI: 10.4161/psb.6.5.14951] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 01/25/2011] [Indexed: 05/20/2023]
Abstract
Receptor-like kinases (RLKs) are a family of transmembrane proteins with a variable ligand-binding extracellular domain and a cytoplasmic kinase domain. In Arabidopsis, there are ~600 RLKs believed to have diverse functions during plant growth, development and interactions with the environment. Based on the variable extracellular domain, RLKs can be classified into different subfamilies. The CrRLK subfamily contains 17 members in Arabidopsis and characterization of some of its members suggests a role for these proteins in the regulation of growth and reproduction. The present review focuses on the roles of CrRLKs in the regulation of polarized growth with emphasis on the newly identified signal transduction pathways activated downstream of CrRLKs. A picture is emerging where CrRLKs are part of a conserved signal transduction cascade important for growth maintenance in different cell types.
Collapse
Affiliation(s)
- Candida Nibau
- Institute of Biological, Rural and Environmental Sciences, Aberystwyth University, Aberystwyth, Ceredigion, UK.
| | | |
Collapse
|
26
|
Liu W, Chen AM, Luo L, Sun J, Cao LP, Yu GQ, Zhu JB, Wang YZ. Characterization and expression analysis of Medicago truncatula ROP GTPase family during the early stage of symbiosis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:639-52. [PMID: 20590994 DOI: 10.1111/j.1744-7909.2010.00944.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
ROPs (Rho-related GTPases of plants) are small GTPases that are plant-specific signaling proteins. They act as molecular switches in a variety of developmental processes. In this study, seven cDNA clones coding for ROP GTPases have been isolated in Medicago truncatula, and conserved and divergent domains are identified in these predicted MtROP proteins. Phylogenetic analysis has indicated that MtROPs are distributed into groups II, III, IV but group I. MtROP genes are expressed in various tissues at different levels. A quantitative reverse transcription PCR analysis indicated that these MtROP genes have different expression profiles in the roots in response to infection with rhizobia. The expression of MtROP3, MtROP5 and MtROP6 are increased, as the expression of Nod factor or rhizobial-induced marker genes--NFP, Rip1 and Enod11; MtROP10 has showed enhanced expression at a certain post-inoculation time point. No significant changes in MtROP7 and MtROP9 expression have been detected and MtROP8 expression is dramatically decreased by about 80%-90%. Additionally, ROP promoter-GUS analysis has showed that MtROP3, MtROP5 and MtROP6 have elevated expression in transgenic root hairs after rhizobial inoculation. These results might suggest a role for some ROP GTPases in the regulation of early stages during rhizobial infection in symbiosis.
Collapse
Affiliation(s)
- Wei Liu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
|
29
|
Pathuri IP, Zellerhoff N, Schaffrath U, Hensel G, Kumlehn J, Kogel KH, Eichmann R, Hückelhoven R. Constitutively activated barley ROPs modulate epidermal cell size, defense reactions and interactions with fungal leaf pathogens. PLANT CELL REPORTS 2008; 27:1877-87. [PMID: 18784924 DOI: 10.1007/s00299-008-0607-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/15/2008] [Accepted: 08/26/2008] [Indexed: 05/09/2023]
Abstract
RHO-like monomeric G-proteins of plants (ROPs, also called RACs), are involved in plant development and interaction with the environment. The barley (Hordeum vulgare) ROP protein HvRACB has been shown to be required for entry of the biotrophic powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh) into living host cells. To get a deeper insight into evolutionarily conserved functions of ROPs in cell polarity and pathogen responses, we stably expressed constitutively activated (CA) mutant variants of different barley ROPs (HvRACB, HvRAC1, HvRAC3) in barley. CA HvROPs induced epidermal cell expansion and/or abolished polarity in tip growing root hairs. All three CA HvROPs enhanced susceptibility of barley to penetration by Bgh whereas only CA HvRAC1 supported whole cell H(2)O(2) production in non-penetrated cells. Despite increasing penetration by Bgh, CA HvRAC1 promoted callose deposition at sites of fungal attack and resistance to penetration by Magnaporthe oryzae. The data show an involvement of ROPs in polar growth processes of the monocot barley and in responses to fungal pathogens with different life style.
Collapse
|
30
|
Zappel NF, Panstruga R. Heterogeneity and lateral compartmentalization of plant plasma membranes. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:632-40. [PMID: 18774330 DOI: 10.1016/j.pbi.2008.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 07/25/2008] [Accepted: 07/29/2008] [Indexed: 05/24/2023]
Abstract
Membrane specialization through lateral compartmentalization is pivotal to the development of organisms and their response to environmental signals. The membrane raft hypothesis is lively discussed as a concept for domain formation. In recent years plant scientists have begun to critically assess the membrane raft hypothesis, and this provided the first insights into the mechanisms underlying microdomain formation in plant plasma membranes. Several groups have now shown that phytosterols can induce phase separation, a prerequisite for the formation of membrane rafts. Furthermore, the protein repertoire of detergent-resistant membranes (DRMs) has been extensively characterized and the degree of fatty acid desaturation has been identified as an important factor in DRM formation. Recent studies comprising sterol-deficient mutants demonstrated the importance of correct sterol composition and endocytosis for proper membrane compartmentalization.
Collapse
Affiliation(s)
- Nana Friderike Zappel
- Max Planck Institute for Plant Breeding Research, Department of Plant Microbe Interactions, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | | |
Collapse
|
31
|
Abstract
The plant apoplast constitutes a space for early recognition of potentially harmful non-self. Basal pathogen recognition operates via dynamic sensing of conserved microbial patterns by pattern recognition receptors or of elicitor-active molecules released from plant cell walls during infection. Recognition elicits defence reactions depending on cellular export via SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex-mediated vesicle fusion or plasma membrane transporter activity. Lipid rafts appear also involved in focusing immunity-associated proteins to the site of pathogen contact. Simultaneously, pathogen effectors target recognition, apoplastic host proteins and transport for cell wall-associated defence. This microreview highlights most recent reports on the arms race for plant disease and immunity at the cell surface.
Collapse
Affiliation(s)
- Caroline Hoefle
- Lehrstuhl für Phytopathologie, Technische Universität München, Am Hochanger 2, 85350 Freising, Germany
| | | |
Collapse
|