1
|
VanPortfliet JJ, Lei Y, Martinez CG, Wong J, Pflug K, Sitcheran R, Kneeland SC, Murray SA, McGuire PJ, Cannon CL, West AP. Caspase-11 drives macrophage hyperinflammation in models of Polg-related mitochondrial disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593693. [PMID: 38798587 PMCID: PMC11118447 DOI: 10.1101/2024.05.11.593693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Mitochondrial diseases (MtD) represent a significant public health challenge due to their heterogenous clinical presentation, often severe and progressive symptoms, and the lack of effective therapies. Environmental exposures, such bacterial and viral infection, can further compromise mitochondrial function and exacerbate the progression of MtD. Infections in MtD patients more frequently progress to sepsis, pneumonia, and other detrimental inflammatory endpoints. However, the underlying immune alterations that enhance immunopathology in MtD remain unclear, constituting a key gap in knowledge that complicates treatment and increases mortality in this population. Here we employ in vitro and in vivo approaches to clarify the molecular and cellular basis for innate immune hyperactivity in models of polymerase gamma (Polg)-related MtD. We reveal that type I interferon (IFN-I)-mediated upregulation of caspase-11 and guanylate-binding proteins (GBPs) increase macrophage sensing of the opportunistic microbe Pseudomonas aeruginosa (PA) in Polg mutant mice. Furthermore, we show that excessive macrophage cytokine secretion and pyroptotic cell death contribute to lung inflammation and morbidity after infection with PA. Our work sheds new light on innate immune dysregulation in MtD and reveals potential targets for limiting infection- and inflammation-related complications in Polg-related MtD.
Collapse
Affiliation(s)
- Jordyn J. VanPortfliet
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| | - Yuanjiu Lei
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, Texas 77807, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Camila Guerra Martinez
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| | - Jessica Wong
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | - Kathryn Pflug
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| | - Raquel Sitcheran
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| | | | | | - Peter. J. McGuire
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Carolyn L. Cannon
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| | - A. Phillip West
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| |
Collapse
|
2
|
Zhang Y, Tu J, Li Y, Wang Y, Lu L, Wu C, Yu XY, Li Y. Inflammation macrophages contribute to cardiac homeostasis. CARDIOLOGY PLUS 2023. [DOI: 10.1097/cp9.0000000000000035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
3
|
Downing T, Lee MJ, Archbold C, McDonnell A, Rahm A. Informing plasmid compatibility with bacterial hosts using protein-protein interaction data. Genomics 2022; 114:110509. [PMID: 36273742 DOI: 10.1016/j.ygeno.2022.110509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 10/19/2022] [Indexed: 01/15/2023]
Abstract
The compatibility of plasmids with new host cells is significant given their role in spreading antimicrobial resistance (AMR) and virulence factor genes. Evaluating this using in vitro screening is laborious and can be informed by computational analyses of plasmid-host compatibility through rates of protein-protein interactions (PPIs) between plasmid and host cell proteins. We identified large excesses of such PPIs in eight important plasmids, including pOXA-48, using most known bacteria (n = 4363). 23 species had high rates of interactions with four blaOXA-48-positive plasmids. We also identified 48 species with high interaction rates with plasmids common in Escherichia coli. We found a strong association between one plasmid and the fimbrial adhesin operon pil, which could enhance host cell adhesion in aqueous environments. An excess rate of PPIs could be a sign of host-plasmid compatibility, which is important for AMR control given that plasmids like pOXA-48 move between species with ease.
Collapse
Affiliation(s)
- Tim Downing
- School of Biotechnology, Dublin City University, Dublin, Ireland; The Pirbright Institute, UK.
| | - Min Jie Lee
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Conor Archbold
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Adam McDonnell
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Alexander Rahm
- GAATI Lab, University of French Polynesia, Tahiti, French Polynesia
| |
Collapse
|
4
|
Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, Liang H, Song X, Wu M. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther 2022; 7:199. [PMID: 35752612 PMCID: PMC9233671 DOI: 10.1038/s41392-022-01056-1] [Citation(s) in RCA: 323] [Impact Index Per Article: 161.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative opportunistic pathogen that infects patients with cystic fibrosis, burn wounds, immunodeficiency, chronic obstructive pulmonary disorder (COPD), cancer, and severe infection requiring ventilation, such as COVID-19. P. aeruginosa is also a widely-used model bacterium for all biological areas. In addition to continued, intense efforts in understanding bacterial pathogenesis of P. aeruginosa including virulence factors (LPS, quorum sensing, two-component systems, 6 type secretion systems, outer membrane vesicles (OMVs), CRISPR-Cas and their regulation), rapid progress has been made in further studying host-pathogen interaction, particularly host immune networks involving autophagy, inflammasome, non-coding RNAs, cGAS, etc. Furthermore, numerous technologic advances, such as bioinformatics, metabolomics, scRNA-seq, nanoparticles, drug screening, and phage therapy, have been used to improve our understanding of P. aeruginosa pathogenesis and host defense. Nevertheless, much remains to be uncovered about interactions between P. aeruginosa and host immune responses, including mechanisms of drug resistance by known or unannotated bacterial virulence factors as well as mammalian cell signaling pathways. The widespread use of antibiotics and the slow development of effective antimicrobials present daunting challenges and necessitate new theoretical and practical platforms to screen and develop mechanism-tested novel drugs to treat intractable infections, especially those caused by multi-drug resistance strains. Benefited from has advancing in research tools and technology, dissecting this pathogen's feature has entered into molecular and mechanistic details as well as dynamic and holistic views. Herein, we comprehensively review the progress and discuss the current status of P. aeruginosa biophysical traits, behaviors, virulence factors, invasive regulators, and host defense patterns against its infection, which point out new directions for future investigation and add to the design of novel and/or alternative therapeutics to combat this clinically significant pathogen.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanmin Zhou
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, 430071, P.R. China
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haihua Liang
- College of Life Sciences, Northwest University, Xi'an, ShaanXi, 710069, China
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Min Wu
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA.
| |
Collapse
|
5
|
Tan Q, Ai Q, He Y, Li F, Yu J. P. aeruginosa biofilm activates the NLRP3 inflammasomes in vitro. Microb Pathog 2022; 164:105379. [PMID: 35038547 DOI: 10.1016/j.micpath.2021.105379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 01/29/2023]
Abstract
The ability of P.aeruginosa to form biofilms renders common treatments inefficient, thereby promoting chronic infection. Inflammasomes activate caspase-1, which is important for the maturation of IL-1β and IL-18 and evoke an inflammatory response. We aimed to investigate the activation of inflammasomes induced by P.aeruginosa biofilm. THP-1 cells were mock-infected or infected with PAO1 biofilms. Protein levels of caspase-1 p20, pro-caspase-1, caspase-4 p20, and pro-caspase-4 in THP-1 macrophages were determined by Western blotting. The expression of NLRC4 and NLRP3 was measured by RT-PCR. The production of IL-1β and IL-18 was monitored using ELISA. P. aeruginosa biofilm significantly elevated caspase-1 levels, and decreased NLRC4 levels. Additionally, caspase-4 and NLRP3 levels were significantly increased. P.aeruginosa biofilm significantly enhanced IL-1β and IL-18 production. We concluded that P. aeruginosa biofilm induced the production of IL-1β and IL-18, possibly via NLRP3 inflammasomes, rather than NLRC4 inflammasomes.
Collapse
Affiliation(s)
- Qi Tan
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Qing Ai
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Yu He
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Fang Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Jialin Yu
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; The Third Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
6
|
Matilla MA, Velando F, Monteagudo-Cascales E, Krell T. Flagella, Chemotaxis and Surface Sensing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:185-221. [DOI: 10.1007/978-3-031-08491-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Type IV Pili of Streptococcus sanguinis Contribute to Pathogenesis in Experimental Infective Endocarditis. Microbiol Spectr 2021; 9:e0175221. [PMID: 34756087 PMCID: PMC8579931 DOI: 10.1128/spectrum.01752-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus sanguinis is a common cause of infective endocarditis (IE). Efforts by research groups are aimed at identifying and characterizing virulence factors that contribute to the ability of this organism to cause IE. This Gram-positive pathogen causes heart infection by gaining access to the bloodstream, adhering to host extracellular matrix protein and/or platelets, colonizing the aortic endothelium, and incorporating itself into the aortic vegetation. While many virulence factors have been reported to contribute to the ability of S. sanguinis to cause IE, it is noteworthy that type IV pili (T4P) have not been described to be a virulence factor in this organism, although S. sanguinis strains typically encode these pili. Type IV pili are molecular machines that are capable of mediating diverse virulence functions and surface motility. T4P have been shown to mediate twitching motility in some strains of S. sanguinis, although in most strains it has been difficult to detect twitching motility. While we found that T4P are dispensable for direct in vitro platelet binding and aggregation phenotypes, we show that they are critical to the development of platelet-dependent biofilms representative of the cardiac vegetation. We also observed that T4P are required for in vitro invasion of S. sanguinis into human aortic endothelial cells, which indicates that S. sanguinis may use T4P to take advantage of an intracellular niche during infection. Importantly, we show that T4P of S. sanguinis are critical to disease progression (vegetation development) in a native valve IE rabbit model. The results presented here expand our understanding of IE caused by S. sanguinis and identify T4P as an important virulence factor for this pathogen. IMPORTANCE This work provides evidence that type IV pili produced by Streptococcus sanguinis SK36 are critical to the ability of these bacteria to attach to and colonize the aortic heart valve (endocarditis). We found that an S. sanguinis type IV pili mutant strain was defective in causing platelet-dependent aggregation in a 24-h infection assay but not in a 1-h platelet aggregation assay, suggesting that the type IV pili act at later stages of vegetation development. In a rabbit model of disease, a T4P mutant strain does not develop mature vegetations that form on the heart, indicating that this virulence factor is critical to disease and could be a target for IE therapy.
Collapse
|
8
|
Serpen JY, Armenti ST, Prasov L. Immunogenetics of the Ocular Anterior Segment: Lessons from Inherited Disorders. J Ophthalmol 2021; 2021:6691291. [PMID: 34258050 PMCID: PMC8257379 DOI: 10.1155/2021/6691291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 05/06/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022] Open
Abstract
Autoimmune and autoinflammatory diseases cause morbidity in multiple organ systems including the ocular anterior segment. Genetic disorders of the innate and adaptive immune system present an avenue to study more common inflammatory disorders and host-pathogen interactions. Many of these Mendelian disorders have ophthalmic manifestations. In this review, we highlight the ophthalmic and molecular features of disorders of the innate immune system. A comprehensive literature review was performed using PubMed and the Online Mendelian Inheritance in Man databases spanning 1973-2020 with a focus on three specific categories of genetic disorders: RIG-I-like receptors and downstream signaling, inflammasomes, and RNA processing disorders. Tissue expression, clinical associations, and animal and functional studies were reviewed for each of these genes. These genes have broad roles in cellular physiology and may be implicated in more common conditions with interferon upregulation including systemic lupus erythematosus and type 1 diabetes. This review contributes to our understanding of rare inherited conditions with ocular involvement and has implications for further characterizing the effect of perturbations in integral molecular pathways.
Collapse
Affiliation(s)
- Jasmine Y. Serpen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
- Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Stephen T. Armenti
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Lev Prasov
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Vidaillac C, Chotirmall SH. Pseudomonas aeruginosa in bronchiectasis: infection, inflammation, and therapies. Expert Rev Respir Med 2021; 15:649-662. [PMID: 33736539 DOI: 10.1080/17476348.2021.1906225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: Bronchiectasis is a chronic endobronchial suppurative disease characterized by irreversibly dilated bronchi damaged by repeated polymicrobial infections and predominantly, neutrophilic airway inflammation. Some consider bronchiectasis a syndromic consequence of several different causes whilst others view it as an individual disease entity. In most patients, identifying an underlying cause remains challenging. The acquisition and colonization of affected airways by Pseudomonas aeruginosa represent a critical and adverse clinical consequence for its progression and management.Areas covered: In this review, we outline clinical and pre-clinical peer-reviewed research published in the last 5 years, focusing on the pathogenesis of bronchiectasis and the role of P. aeruginosa and its virulence in shaping host inflammatory and immune responses in the airway. We further detail its role in airway infection, the lung microbiome, and address therapeutic options in bronchiectasis.Expert opinion: P. aeruginosa represents a key pulmonary pathogen in bronchiectasis that causes acute and/or chronic airway infection. Eradication can prevent adverse clinical consequence and/or disease progression. Novel therapeutic strategies are emerging and include combination-based approaches. Addressing airway infection caused by P. aeruginosa in bronchiectasis is necessary to prevent airway damage, loss of lung function and exacerbations, all of which contribute to adverse clinical outcome.
Collapse
Affiliation(s)
- Celine Vidaillac
- Oxford University Clinical Research Unit, University of Oxford, Ho Chi Minh City, Vietnam.,Center for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
10
|
Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int J Mol Sci 2021; 22:3128. [PMID: 33803907 PMCID: PMC8003266 DOI: 10.3390/ijms22063128] [Citation(s) in RCA: 253] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is a dominant pathogen in people with cystic fibrosis (CF) contributing to morbidity and mortality. Its tremendous ability to adapt greatly facilitates its capacity to cause chronic infections. The adaptability and flexibility of the pathogen are afforded by the extensive number of virulence factors it has at its disposal, providing P. aeruginosa with the facility to tailor its response against the different stressors in the environment. A deep understanding of these virulence mechanisms is crucial for the design of therapeutic strategies and vaccines against this multi-resistant pathogen. Therefore, this review describes the main virulence factors of P. aeruginosa and the adaptations it undergoes to persist in hostile environments such as the CF respiratory tract. The very large P. aeruginosa genome (5 to 7 MB) contributes considerably to its adaptive capacity; consequently, genomic studies have provided significant insights into elucidating P. aeruginosa evolution and its interactions with the host throughout the course of infection.
Collapse
Affiliation(s)
| | | | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland; (I.J.-M.); (M.S.-M.)
| |
Collapse
|
11
|
Sun J, LaRock DL, Skowronski EA, Kimmey JM, Olson J, Jiang Z, O'Donoghue AJ, Nizet V, LaRock CN. The Pseudomonas aeruginosa protease LasB directly activates IL-1β. EBioMedicine 2020; 60:102984. [PMID: 32979835 PMCID: PMC7511813 DOI: 10.1016/j.ebiom.2020.102984] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pulmonary damage by Pseudomonas aeruginosa during cystic fibrosis lung infection and ventilator-associated pneumonia is mediated both by pathogen virulence factors and host inflammation. Impaired immune function due to tissue damage and inflammation, coupled with pathogen multidrug resistance, complicates the management of these deep-seated infections. Pathological inflammation during infection is driven by interleukin-1β (IL-1β), but the molecular processes involved are not fully understood. METHODS We examined IL-1β activation in a pulmonary model infection of Pseudomonas aeruginosa and in vitro using genetics, specific inhibitors, recombinant proteins, and targeted reporters of protease activity and IL-1β bioactivity. FINDINGS Caspase-family inflammasome proteases canonically regulate maturation of this proinflammatory cytokine, but we report that plasticity in IL-1β proteolytic activation allows for its direct maturation by the pseudomonal protease LasB. LasB promotes IL-1β activation, neutrophilic inflammation, and destruction of lung architecture characteristic of severe P. aeruginosa pulmonary infection. INTERPRETATION Preservation of lung function and effective immune clearance may be enhanced by selectively controlling inflammation. Discovery of this IL-1β regulatory mechanism provides a distinct target for anti-inflammatory therapeutics, such as matrix metalloprotease inhibitors that inhibit LasB and limit inflammation and pathology during P. aeruginosa pulmonary infections. FUNDING Full details are provided in the Acknowledgements section.
Collapse
Affiliation(s)
- Josh Sun
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, United States
| | - Doris L LaRock
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta GA, United States
| | - Elaine A Skowronski
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, United States
| | | | - Joshua Olson
- Department of Pediatrics, UC San Diego, La Jolla, CA, United States
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, United States
| | - Victor Nizet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, CA, United States; Department of Pediatrics, UC San Diego, La Jolla, CA, United States
| | - Christopher N LaRock
- Department of Microbiology and Immunology, Emory School of Medicine, Atlanta GA, United States; Division of Infectious Diseases, Emory School of Medicine, Atlanta GA, United States; Antimicrobial Resistance Center, Emory University, Atlanta GA, United States.
| |
Collapse
|
12
|
Gao P, Guo K, Pu Q, Wang Z, Lin P, Qin S, Khan N, Hur J, Liang H, Wu M. oprC Impairs Host Defense by Increasing the Quorum-Sensing-Mediated Virulence of Pseudomonas aeruginosa. Front Immunol 2020; 11:1696. [PMID: 32849593 PMCID: PMC7417366 DOI: 10.3389/fimmu.2020.01696] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/25/2020] [Indexed: 02/05/2023] Open
Abstract
Pseudomonas aeruginosa, found widely in the wild, causes infections in the lungs and several other organs in healthy people but more often in immunocompromised individuals. P. aeruginosa infection leads to inflammasome assembly, pyroptosis, and cytokine release in the host. OprC is one of the bacterial porins abundant in the outer membrane vesicles responsible for channel-forming and copper binding. Recent research has revealed that OprC transports copper, an essential trace element involved in various physiological processes, into bacteria during copper deficiency. Here, we found that oprC deletion severely impaired bacterial motility and quorum-sensing systems, as well as lowered levels of lipopolysaccharide and pyocyanin in P. aeruginosa. In addition, oprC deficiency impeded the stimulation of TLR2 and TLR4 and inflammasome activation, resulting in decreases in proinflammatory cytokines and improved disease phenotypes, such as attenuated bacterial loads, lowered lung barrier damage, and longer mouse survival. Moreover, oprC deficiency significantly alleviated pyroptosis in macrophages. Mechanistically, oprC gene may impact quorum-sensing systems in P. aeruginosa to alter pyroptosis and inflammatory responses in cells and mice through the STAT3/NF-κB signaling pathway. Our findings characterize OprC as a critical virulence regulator, providing the groundwork for further dissection of the pathogenic mechanism of OprC as a potential therapeutic target of P. aeruginosa.
Collapse
Affiliation(s)
- Pan Gao
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Kai Guo
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Qinqin Pu
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Zhihan Wang
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States.,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Ping Lin
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Shugang Qin
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Nadeem Khan
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Haihua Liang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
13
|
Lorenz A, Preuße M, Bruchmann S, Pawar V, Grahl N, Pils MC, Nolan LM, Filloux A, Weiss S, Häussler S. Importance of flagella in acute and chronicPseudomonas aeruginosainfections. Environ Microbiol 2018; 21:883-897. [DOI: 10.1111/1462-2920.14468] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Anne Lorenz
- Institute of Molecular BacteriologyHelmholtz Centre for Infection Research Braunschweig Germany
- Institute of Molecular Bacteriology, TWINCORE GmbHCenter for Clinical and Experimental Infection Research Hannover Germany
| | - Matthias Preuße
- Institute of Molecular BacteriologyHelmholtz Centre for Infection Research Braunschweig Germany
- Institute of Molecular Bacteriology, TWINCORE GmbHCenter for Clinical and Experimental Infection Research Hannover Germany
| | - Sebastian Bruchmann
- Institute of Molecular BacteriologyHelmholtz Centre for Infection Research Braunschweig Germany
- Institute of Molecular Bacteriology, TWINCORE GmbHCenter for Clinical and Experimental Infection Research Hannover Germany
- Wellcome Sanger Institute Cambridge UK
| | - Vinay Pawar
- Institute of Molecular BacteriologyHelmholtz Centre for Infection Research Braunschweig Germany
- Institute of Immunology, Medical School Hannover Hannover Germany
| | - Nora Grahl
- Institute of Molecular BacteriologyHelmholtz Centre for Infection Research Braunschweig Germany
- Institute of Molecular Bacteriology, TWINCORE GmbHCenter for Clinical and Experimental Infection Research Hannover Germany
| | - Marina C. Pils
- Mouse PathologyAnimal Experimental Unit, Helmholtz Centre for Infection Research Braunschweig Germany
| | - Laura M. Nolan
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life SciencesImperial College London London UK
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life SciencesImperial College London London UK
| | - Siegfried Weiss
- Institute of Immunology, Medical School Hannover Hannover Germany
| | - Susanne Häussler
- Institute of Molecular BacteriologyHelmholtz Centre for Infection Research Braunschweig Germany
- Institute of Molecular Bacteriology, TWINCORE GmbHCenter for Clinical and Experimental Infection Research Hannover Germany
| |
Collapse
|
14
|
Riquelme SA, Ahn D, Prince A. Pseudomonas aeruginosa and Klebsiella pneumoniae Adaptation to Innate Immune Clearance Mechanisms in the Lung. J Innate Immun 2018; 10:442-454. [PMID: 29617698 PMCID: PMC6785651 DOI: 10.1159/000487515] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 01/02/2023] Open
Abstract
Many different species of gram-negative bacteria are associated with infection in the lung, causing exacerbations of chronic obstructive pulmonary disease, cystic fibrosis (CF), and ventilator-associated pneumonias. These airway pathogens must adapt to common host clearance mechanisms that include killing by antimicrobial peptides, antibiotics, oxidative stress, and phagocytosis by leukocytes. Bacterial adaptation to the host is often evident phenotypically, with increased extracellular polysaccharide production characteristic of some biofilm-associated organisms. Given the relatively limited repertoire of bacterial strategies to elude airway defenses, it seems likely that organisms sharing the same ecological niche might also share common strategies to persistently infect the lung. In this review, we will highlight some of the major factors responsible for the adaptation of Pseudomonas aeruginosa to the lung, addressing how growth in biofilms enables persistent infection, relevant to, but not limited to, the pathogenesis of infection in CF. In contrast, we will discuss how carbapenem-resistant Klebsiella pneumoniae evade immune clearance, an organism often associated with ventilator-associated pneumonia and health-care-acquired pneumonias, but not a typical pathogen in CF.
Collapse
Affiliation(s)
| | | | - Alice Prince
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
15
|
NOD-like receptor(s) and host immune responses with Pseudomonas aeruginosa infection. Inflamm Res 2018; 67:479-493. [PMID: 29353310 DOI: 10.1007/s00011-018-1132-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Molecular mechanisms underlying the interactions between Pseudomonas aeruginosa, the common opportunistic pathogen in cystic fibrosis individuals, and host induce a number of marked inflammatory responses and associate with complex therapeutic problems due to bacterial resistance to antibiotics in chronic stage of infection. METHODS Pseudomonas aeruginosa is recognized by number of pattern recognition receptors (PRRs); NOD-like receptors (NLRs) are a class of PRRs, which can recognize a variety of endogenous and exogenous ligands, thereby playing a critical role in innate immunity. RESULTS NLR activation initiates forming of a multi-protein complex called inflammasome that induces activation of caspase-1 and resulted in cleavage of pro-inflammatory cytokines interleukin (IL)-1β and IL-18. When the IL-1β is secreted excessively, this causes tissue damage and extensive inflammatory responses that are potentially hazardous for the host. CONCLUSIONS Recent evidence has laid out inflammasome-forming NLR far beyond inflammation. This review summarizes current knowledge regarding the various roles played by different NLRs and associated down-signals, either in recognition of P. aeruginosa or may be associated with such bacterial pathogen infection, which may relate to for the complexity of lung diseases caused by P. aeruginosa.
Collapse
|
16
|
Cordero MD, Alcocer-Gómez E. Inflammasome in the Pathogenesis of Pulmonary Diseases. EXPERIENTIA SUPPLEMENTUM (2012) 2018; 108:111-151. [PMID: 30536170 PMCID: PMC7123416 DOI: 10.1007/978-3-319-89390-7_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lung diseases are common and significant causes of illness and death around the world. Inflammasomes have emerged as an important regulator of lung diseases. The important role of IL-1 beta and IL-18 in the inflammatory response of many lung diseases has been elucidated. The cleavage to turn IL-1 beta and IL-18 from their precursors into the active forms is tightly regulated by inflammasomes. In this chapter, we structurally review current evidence of inflammasome-related components in the pathogenesis of acute and chronic lung diseases, focusing on the "inflammasome-caspase-1-IL-1 beta/IL-18" axis.
Collapse
Affiliation(s)
- Mario D. Cordero
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center (CIBM), University of Granada, Armilla, Spain
| | - Elísabet Alcocer-Gómez
- Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
17
|
NLRP3 Is a Critical Regulator of Inflammation and Innate Immune Cell Response during Mycoplasma pneumoniae Infection. Infect Immun 2017; 86:IAI.00548-17. [PMID: 29061706 DOI: 10.1128/iai.00548-17] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/16/2017] [Indexed: 12/18/2022] Open
Abstract
Mycoplasma pneumoniae is an atypical bacterial respiratory pathogen known to cause a range of airway inflammation and lung and extrapulmonary pathologies. We recently reported that an M. pneumoniae-derived ADP-ribosylating and vacuolating toxin called community-acquired respiratory distress syndrome (CARDS) toxin is capable of triggering NLRP3 (NLR-family, leucine-rich repeat protein 3) inflammasome activation and interleukin-1β (IL-1β) secretion in macrophages. However, it is unclear whether the NLRP3 inflammasome is important for the immune response during M. pneumoniae acute infection. In the current study, we utilized in vitro and in vivo models of M. pneumoniae infection to characterize the role of the NLRP3 inflammasome during acute infection. M. pneumoniae-infected macrophages deficient for inflammasome components NLRP3, ASC (apoptosis speck-like protein containing a caspase activation and recruitment domain), or caspase-1 failed to process and secrete IL-1β. The MyD88/NF-κB signaling pathway was found to be critical for proinflammatory gene expression in macrophages infected with M. pneumoniae C57BL/6 mice deficient for NLRP3 expression were unable to produce IL-1β in the airways during acute infection, and lack of this inflammatory response led to deficient immune cell activation and delayed bacterial clearance. These findings are the first to report the importance of the NLRP3 inflammasome in regulating the inflammatory response and influencing the progression of M. pneumoniae during acute infection.
Collapse
|
18
|
Yerramothu P, Vijay AK, Willcox MDP. Inflammasomes, the eye and anti-inflammasome therapy. Eye (Lond) 2017; 32:491-505. [PMID: 29171506 DOI: 10.1038/eye.2017.241] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/28/2017] [Indexed: 02/08/2023] Open
Abstract
Inflammasomes, key molecular regulators that play an important role in inflammation, consist of a central protein, an adaptor protein ASC (apoptosis speck-like protein) and a caspase-1 protein. Upon activation, caspase-1 induces maturation of cytokines such as interleukin-1β (IL-1β) and interleukin-18 (IL-18). The release of these cytokines can result in inflammation. Inflammasomes are activated by a variety of factors and their activation involves complex signalling leading to resolution of infection, but can also contribute to the pathology of inflammatory, autoimmune, and infectious diseases. The role of NLRP1, NLRP3, NLRC4 and AIM2 inflammasomes in the pathogenesis of ocular diseases such as glaucoma, age related macular degeneration (AMD), diabetic retinopathy, dry eye and infections of the eye has been established over the past decade. In experimental studies and models, inhibition of inflammasomes generally helps to reduce the inflammation associated with these eye diseases, but as yet the role of these inflammasomes in many human eye diseases is unknown. Therefore, a need exists to study and understand various aspects of inflammasomes and their contribution to the pathology of human eye diseases. The goal of this review is to discuss the role of inflammasomes in the pathology of eye diseases, scope for anti-inflammasome therapy, and current research gaps in inflammasome-related eye disease.
Collapse
Affiliation(s)
- P Yerramothu
- School of Optometry and Vision Science, Faculty of Science, University of New South Wales, Sydney, Australia
| | - A K Vijay
- School of Optometry and Vision Science, Faculty of Science, University of New South Wales, Sydney, Australia
| | - M D P Willcox
- School of Optometry and Vision Science, Faculty of Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
19
|
Basso P, Wallet P, Elsen S, Soleilhac E, Henry T, Faudry E, Attrée I. Multiple Pseudomonas species secrete exolysin-like toxins and provoke Caspase-1-dependent macrophage death. Environ Microbiol 2017; 19:4045-4064. [PMID: 28654176 DOI: 10.1111/1462-2920.13841] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/02/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022]
Abstract
Pathogenic bacteria secrete protein toxins that provoke apoptosis or necrosis of eukaryotic cells. Here, we developed a live-imaging method, based on incorporation of a DNA-intercalating dye into membrane-damaged host cells, to study the kinetics of primary bone marrow-derived macrophages (BMDMs) mortality induced by opportunistic pathogen Pseudomonas aeruginosa expressing either Type III Secretion System (T3SS) toxins or the pore-forming toxin, Exolysin (ExlA). We found that ExlA promotes the activation of Caspase-1 and maturation of interleukin-1β. BMDMs deficient for Caspase-1 and Caspase-11 were resistant to ExlA-induced death. Furthermore, by using KO BMDMs, we determined that the upstream NLRP3/ASC complex leads to the Caspase-1 activation. We also demonstrated that Pseudomonas putida and Pseudomonas protegens and the Drosophila pathogen Pseudomonas entomophila, which naturally express ExlA-like toxins, are cytotoxic toward macrophages and provoke the same type of pro-inflammatory death as does ExlA+ P. aeruginosa. These results demonstrate that ExlA-like toxins of two-partner secretion systems from diverse Pseudomonas species activate the NLRP3 inflammasome and provoke inflammatory pyroptotic death of macrophages.
Collapse
Affiliation(s)
- Pauline Basso
- CNRS-ERL5261, INSERM, U1036, CEA, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, University Grenoble Alpes, France
| | - Pierre Wallet
- CIRI, Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, F-69007, France
| | - Sylvie Elsen
- CNRS-ERL5261, INSERM, U1036, CEA, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, University Grenoble Alpes, France
| | - Emmanuelle Soleilhac
- CMBA Platform, Biosciences and Biotechnology Institute of Grenoble, University Grenoble Alpes, CEA, INSERM; Genetics & Chemogenomics, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Lyon, F-69007, France
| | - Eric Faudry
- CNRS-ERL5261, INSERM, U1036, CEA, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, University Grenoble Alpes, France
| | - Ina Attrée
- CNRS-ERL5261, INSERM, U1036, CEA, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, University Grenoble Alpes, France
| |
Collapse
|
20
|
Salicylidene Acylhydrazides and Hydroxyquinolines Act as Inhibitors of Type Three Secretion Systems in Pseudomonas aeruginosa by Distinct Mechanisms. Antimicrob Agents Chemother 2017; 61:AAC.02566-16. [PMID: 28396545 DOI: 10.1128/aac.02566-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/23/2017] [Indexed: 12/27/2022] Open
Abstract
Type 3 secretion systems (T3SSs) are major virulence factors in Gram-negative bacteria. Pseudomonas aeruginosa expresses two T3SSs, namely, an injectisome (iT3SS) translocating effector proteins in the host cell cytosol and a flagellum (fT3SS) ensuring bacterial motility. Inhibiting these systems is an appealing therapeutic strategy for acute infections. This study examines the protective effects of the salicylidene acylhydrazide INP0341 and of the hydroxyquinoline INP1750 (previously described as T3SS inhibitors in other species) toward cytotoxic effects of P. aeruginosain vitro Both compounds reduced cell necrosis and inflammasome activation induced by reference strains or clinical isolates expressing T3SS toxins or only the translocation apparatus. INP0341 inhibited iT3SS transcriptional activation, including in strains with constitutive iT3SS expression, and reduced the total expression of toxins, suggesting it targets iT3SS gene transcription. INP1750 inhibited toxin secretion and flagellar motility and impaired the activity of the YscN ATPase from Yersinia pseudotuberculosis (homologous to the ATPase present in the basal body of P. aeruginosa iT3SS and fT3SS), suggesting that it rather targets a T3SS core constituent with high homology among iT3SS and fT3SS. This mode of action is similar to that previously described for INP1855, another hydroxyquinoline, against P. aeruginosa Thus, although acting by different mechanisms, INP0341 and INP1750 appear as useful inhibitors of the virulence of P. aeruginosa Hydroxyquinolines may have a broader spectrum of activity by the fact they act upon two virulence factors (iT3SS and fT3SS).
Collapse
|
21
|
Ryu JC, Kim MJ, Kwon Y, Oh JH, Yoon SS, Shin SJ, Yoon JH, Ryu JH. Neutrophil pyroptosis mediates pathology of P. aeruginosa lung infection in the absence of the NADPH oxidase NOX2. Mucosal Immunol 2017; 10:757-774. [PMID: 27554297 DOI: 10.1038/mi.2016.73] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/21/2016] [Indexed: 02/04/2023]
Abstract
Nod-like receptor family, CARD domain-containing 4 (NLRC4) inflammasome activation is required for efficient clearance of intracellular pathogens through caspsase-1-dependent pyroptosis in macrophages. Although neutrophils have a critical role in protection from Pseudomonas aeruginosa infection, the mechanisms regulating inflammasome-mediated pyroptosis in neutrophils and its physiological role are largely unknown. We sought to determine the specific mechanisms regulating neutrophil pyroptosis in P. aeruginosa strain PAO1 (PAO1) lung infection and to identify the pathological role of this process. Nox2-/- models with reduced neutrophil antibacterial activity exhibited increased neutrophil pyroptosis, which was mediated by flagellin, a pathogenic PAO1 component. We also demonstrate that PAO1-induced pyroptosis depended on NLRC4 and Toll-like receptor 5 (TLR5) in neutrophils generated from Nlrc4-/- or Tlr5-/- mice. Our study reveals previously unknown mechanisms and physiological role of neutrophil pyroptosis during P. aeruginosa lung infection. Furthermore, our findings regarding neutrophil pyroptosis in the context of neutrophil dysfunction may explain the causes of acute and/or chronic infectious diseases discovered in immune-compromised patients.
Collapse
Affiliation(s)
- J-C Ryu
- Research Center for Natural Human Defense System, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - M-J Kim
- Research Center for Natural Human Defense System, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Y Kwon
- Research Center for Natural Human Defense System, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - J-H Oh
- Research Center for Natural Human Defense System, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - S S Yoon
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.,Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - S J Shin
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.,Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - J-H Yoon
- Research Center for Natural Human Defense System, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea.,The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| | - J-H Ryu
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Abstract
Urinary tract infections (UTIs) cause a huge burden of morbidity worldwide with recurrent UTIs becoming increasingly frequent owing to the emergence of antibiotic-resistant bacterial strains. Interactions between the innate and adaptive immune responses to pathogens colonizing the urinary tract have been the focus of much research. Inflammasomes are part of the innate immune defence and can respond rapidly to infectious insult. Assembly of the multiprotein inflammasome complex activates caspase-1, processes proinflammatory cytokines IL-1β and IL-18, and induces pyroptosis. These effector pathways, in turn, act at different levels to either prevent or resolve infection, or eliminate the infectious agent itself. In certain instances, inflammasome activation promotes tissue pathology; however, the precise functions of inflammasomes in UTIs remain unexplored. An improved understanding of inflammasomes could provide novel approaches for the design of diagnostics and therapeutics for complicated UTIs, enabling us to overcome the challenge of drug resistance.
Collapse
|
23
|
Ratner D, Orning MPA, Lien E. Bacterial secretion systems and regulation of inflammasome activation. J Leukoc Biol 2016; 101:165-181. [PMID: 27810946 DOI: 10.1189/jlb.4mr0716-330r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 01/03/2023] Open
Abstract
Innate immunity is critical for host defenses against pathogens, but many bacteria display complex ways of interacting with innate immune signaling, as they may both activate and evade certain pathways. Gram-negative bacteria can exhibit specialized nanomachine secretion systems for delivery of effector proteins into mammalian cells. Bacterial types III, IV, and VI secretion systems (T3SS, T4SS, and T6SS) are known for their impact on caspase-1-activating inflammasomes, necessary for producing bioactive inflammatory cytokines IL-1β and IL-18, key participants of anti-bacterial responses. Here, we discuss how these secretion systems can mediate triggering and inhibition of inflammasome signaling. We propose that a fine balance between secretion system-mediated activation and inhibition can determine net activation of inflammasome activity and control inflammation, clearance, or spread of the infection.
Collapse
Affiliation(s)
- Dmitry Ratner
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and
| | - M Pontus A Orning
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and.,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
| | - Egil Lien
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; and .,Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
| |
Collapse
|
24
|
Deviant Behavior: Tick-Borne Pathogens and Inflammasome Signaling. Vet Sci 2016; 3:vetsci3040027. [PMID: 29056735 PMCID: PMC5606592 DOI: 10.3390/vetsci3040027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/11/2022] Open
Abstract
In the face of an assault, host cells mount an immediate response orchestrated by innate immunity. Two of the best described innate immune signaling networks are the Toll- and the Nod-like receptor pathways. Extensive work has been done characterizing both signaling cascades with several recent advances on the forefront of inflammasome biology. In this review, we will discuss how more commonly-studied pathogens differ from tick-transmitted microbes in the context of Nod-like receptor signaling and inflammasome formation. Because pathogens transmitted by ticks have unique characteristics, we offer the opinion that these microbes can be used to uncover novel principles of Nod-like receptor biology.
Collapse
|
25
|
Anantharajah A, Mingeot-Leclercq MP, Van Bambeke F. Targeting the Type Three Secretion System in Pseudomonas aeruginosa. Trends Pharmacol Sci 2016; 37:734-749. [PMID: 27344210 DOI: 10.1016/j.tips.2016.05.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/15/2016] [Accepted: 05/17/2016] [Indexed: 12/11/2022]
Abstract
The injectisome type three secretion system (T3SS) is a major virulence factor in Pseudomonas aeruginosa. This bacterium is responsible for severe infections in immunosuppressed or cystic fibrosis patients and has become resistant to many antibiotics. Inhibitors of T3SS may therefore constitute an innovative therapeutic target. After a brief description of the T3SS and its regulation, this review presents strategies to inhibit T3SS-mediated toxicity and describes the main families of existing inhibitors. Over the past few years, 12 classes of small-molecule inhibitors and two types of antibody have been discovered and evaluated in vitro for their capacity to inhibit T3SS expression or function, and to protect host cells from T3SS-mediated cytotoxicity. While only one small molecule has been tested in vivo, a bifunctional antibody targeting both the translocation apparatus of the T3SS and a surface polysaccharide is currently in Phase II clinical trials.
Collapse
Affiliation(s)
- Ahalieyah Anantharajah
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Paule Mingeot-Leclercq
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Françoise Van Bambeke
- Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
26
|
Huus KE, Joseph J, Zhang L, Wong A, Aaron SD, Mah TF, Sad S. Clinical Isolates of Pseudomonas aeruginosa from Chronically Infected Cystic Fibrosis Patients Fail To Activate the Inflammasome during Both Stable Infection and Pulmonary Exacerbation. THE JOURNAL OF IMMUNOLOGY 2016; 196:3097-108. [PMID: 26895832 DOI: 10.4049/jimmunol.1501642] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/20/2016] [Indexed: 12/13/2022]
Abstract
Immune recognition of pathogen-associated ligands leads to assembly and activation of inflammasomes, resulting in the secretion of inflammatory cytokines IL-1β and IL-18 and an inflammatory cell death called pyroptosis. Inflammasomes are important for protection against many pathogens, but their role during chronic infectious disease is poorly understood. Pseudomonas aeruginosa is an opportunistic pathogen that persists in the lungs of cystic fibrosis (CF) patients and may be responsible for the repeated episodes of pulmonary exacerbation characteristic of CF. P. aeruginosa is capable of inducing potent inflammasome activation during acute infection. We hypothesized that to persist within the host during chronic infection, P. aeruginosa must evade inflammasome activation, and pulmonary exacerbations may be the result of restoration of inflammasome activation. We therefore isolated P. aeruginosa from chronically infected CF patients during stable infection and exacerbation and evaluated the impact of these isolates on inflammasome activation in macrophages and neutrophils. P. aeruginosa isolates from CF patients failed to induce inflammasome activation, as measured by the secretion of IL-1β and IL-18 and by pyroptotic cell death, during both stable infection and exacerbation. Inflammasome evasion likely was due to reduced expression of inflammasome ligands and reduced motility and was not observed in environmental isolates or isolates from acute, non-CF infection. These results reveal a novel mechanism of pathogen adaptation by P. aeruginosa to avoid detection by inflammasomes in CF patients and indicate that P. aeruginosa-activated inflammasomes are not involved in CF pulmonary exacerbations.
Collapse
Affiliation(s)
- Kelsey E Huus
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Julie Joseph
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Li Zhang
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Alex Wong
- Department of Biology, Faculty of Science, Carleton University, Ottawa, Ontario K1N 6N5, Canada; and
| | - Shawn D Aaron
- Ottawa Hospital Research Institute, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Thien-Fah Mah
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Subash Sad
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada;
| |
Collapse
|
27
|
Jabir MS, Hopkins L, Ritchie ND, Ullah I, Bayes HK, Li D, Tourlomousis P, Lupton A, Puleston D, Simon AK, Bryant C, Evans TJ. Mitochondrial damage contributes to Pseudomonas aeruginosa activation of the inflammasome and is downregulated by autophagy. Autophagy 2015; 11:166-82. [PMID: 25700738 PMCID: PMC4502769 DOI: 10.4161/15548627.2014.981915] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The nucleotide-binding domain, leucine-rich repeat containing family caspase recruitment domain containing 4 (NLRC4) inflammasome can be activated by pathogenic bacteria via products translocated through the microbial type III secretion apparatus (T3SS). Recent work has shown that activation of the NLRP3 inflammasome is downregulated by autophagy, but the influence of autophagy on NLRC4 activation is unclear. We set out to determine how autophagy might influence this process, using the bacterium Pseudomonas aeruginosa, which activates the NLRC4 inflammasome via its T3SS. Infection resulted in T3SS-dependent mitochondrial damage with increased production of reactive oxygen intermediates and release of mitochondrial DNA. Inhibiting mitochondrial reactive oxygen release or degrading intracellular mitochondrial DNA abrogated NLRC4 inflammasome activation. Moreover, macrophages lacking mitochondria failed to activate NLRC4 following infection. Removal of damaged mitochondria by autophagy significantly attenuated NLRC4 inflammasome activation. Mitochondrial DNA bound specifically to NLRC4 immunoprecipitates and transfection of mitochondrial DNA directly activated the NLRC4 inflammasome; oxidation of the DNA enhanced this effect. Manipulation of autophagy altered the degree of inflammasome activation and inflammation in an in vivo model of P. aeruginosa infection. Our results reveal a novel mechanism contributing to NLRC4 activation by P. aeruginosa via mitochondrial damage and release of mitochondrial DNA triggered by the bacterial T3SS that is downregulated by autophagy.
Collapse
Key Words
- AIM2, absent in melanoma 2
- ATG, autophagy related
- ATPIF1, ATPase inhibitory factor 1
- BID, BH3 interacting domain death agonist
- BMDM, bone marrow-derived macrophages
- BrdU, 5-bromo-2-deoxyuridine
- CASP, caspase
- DNA detection
- GFP, green fluorescent protein
- IL1B, interleukin 1, β
- LC3B, microtubule-associated protein 1 light chain 3 β
- LDH, lactate dehydrogenase
- LPS, lipopolysaccharide
- MT-CO1, mitochondrially encoded cytochrome c oxidase I
- Mito-TEMPO, (2-(2, 2, 6, 6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride
- NAC, N-acetylcysteine
- NAIP, NLR family apoptosis inhibitor
- NGS, normal goat serum
- NLR proteins
- NLR, nucleotide-binding domain, leucine-rich repeat containing
- NLRC4, NLR family, CARD domain containing 4
- NLRP3, NLR family, pyrin domain containing 3
- PBS, phosphate-buffered saline
- PINK1, PTEN induced putative kinase 1
- Rn18s, 18S rRNA
- T3SS, type III secretion system
- TNF, tumor necrosis factor
- TUBB5, tubulin, β 5 class I
- Three-MA, 3-methyladenine
- Vav, vav 1 oncogene
- infection
- mitophagy
- mtDNA, mitochondrial DNA
- type III secretion system
Collapse
Affiliation(s)
- Majid Sakhi Jabir
- a Institute of Immunity, Infection and Inflammation ; University of Glasgow ; UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kazmierczak BI, Schniederberend M, Jain R. Cross-regulation of Pseudomonas motility systems: the intimate relationship between flagella, pili and virulence. Curr Opin Microbiol 2015; 28:78-82. [PMID: 26476804 DOI: 10.1016/j.mib.2015.07.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 10/22/2022]
Abstract
Pseudomonas aeruginosa navigates using two distinct forms of motility, swimming and twitching. A polar flagellum and Type 4 pili power these movements, respectively, allowing P. aeruginosa to attach to and colonize surfaces. Single cell imaging and particle tracking algorithms have revealed a wide range of bacterial surface behaviors which are regulated by second messengers cyclic-di-GMP and cAMP; the production of these signals is, in turn, responsive to the engagement of motility organelles with a surface. Innate immune defense systems, long known to recognize structural components of flagella, appear to respond to motility itself. The association of motility with both upregulation of virulence and induction of host defense mechanisms underlies the complex contributions of flagella and pili to P. aeruginosa pathogenesis.
Collapse
Affiliation(s)
- Barbara I Kazmierczak
- Department of Microbial Pathogenesis, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520-8022, USA; Department of Medicine (Infectious Diseases), Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520-8022, USA.
| | - Maren Schniederberend
- Department of Medicine (Infectious Diseases), Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520-8022, USA
| | - Ruchi Jain
- Department of Medicine (Infectious Diseases), Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520-8022, USA
| |
Collapse
|
29
|
Patankar YR, Mabaera R, Berwin B. Differential ASC requirements reveal a key role for neutrophils and a noncanonical IL-1β response to Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 2015; 309:L902-13. [PMID: 26472815 DOI: 10.1152/ajplung.00228.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/17/2015] [Indexed: 12/17/2022] Open
Abstract
The NLRC4 inflammasome is responsible for IL-1β processing by macrophages in response to Pseudomonas aeruginosa infection. We therefore hypothesized that mice that lack ASC, an NLRC4 inflammasome adaptor protein necessary for in vitro IL-1β production by macrophages, would be preferentially protected from a hyperinflammatory lethal challenge that is dependent on bacterial type three secretion system (T3SS) activity. We report herein that lack of ASC does not confer preferential protection in response to P. aeruginosa acute infection and that ASC(-/-) mice are capable of producing robust amounts of IL-1β comparable with C57BL/6 mice. We now identify that neutrophils represent the ASC-independent source of IL-1β production during the acute phases of infection both in models of acute pneumonia and peritonitis. Consequently, depletion of neutrophils in ASC(-/-) mice leads to a marked deficit in IL-1β production in vivo. The pulmonary neutrophil IL-1β response is predominantly dependent on caspase-1, which contrasts with data derived from ocular infection. These studies therefore identify a noncanonical mechanism of IL-1β production by neutrophils independent of ASC and demonstrate the first physiological contribution of neutrophils as an important source of IL-1β in response to acute P. aeruginosa infection during acute pneumonia and peritonitis.
Collapse
Affiliation(s)
- Yash R Patankar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Rodwell Mabaera
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Brent Berwin
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| |
Collapse
|
30
|
Secretion of Flagellar Proteins by the Pseudomonas aeruginosa Type III Secretion-Injectisome System. J Bacteriol 2015; 197:2003-11. [PMID: 25845843 DOI: 10.1128/jb.00030-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/30/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The opportunistic pathogen Pseudomonas aeruginosa utilizes an injectisome-type III secretion system (injectisome-T3SS) to elicit cytotoxicity toward epithelial cells and macrophages. Macrophage killing results from the cytotoxic properties of the translocated effector proteins (ExoS, ExoT, ExoU, and ExoY) and inflammasome-mediated induction of pyroptosis. Inflammasome activation can occur following Nlrc4-mediated recognition of cytosolic translocated flagellin (FliC). In the present study, we demonstrate that FliC is a secretion substrate of both the injectisome- and flagellum-associated T3SSs. Molecular analyses indicate that the first 20 amino-terminal residues of FliC are sufficient for secretion by the injectisome-T3SS and that the first 100 residues are sufficient for translocation of FliC into host cells. Although maximal inflammasome activation requires FliC, activation can also occur in the absence of FliC. This prompted us to examine whether other flagellar components might also be translocated into cells to elicit inflammasome activation. Indeed, we find that the flagellar cap (FliD), hook-associated (FlgK and FlgL), hook (FlgE), and rod (FlgE) proteins are secretion substrates of the injectisome-T3SS. None of these proteins, however, result in increased inflammasome activation when they are overexpressed in a fliC mutant and appear to be translocated into host cells. While a role in inflammasome activation has been excluded, these data raise the possibility that flagellar components, which are highly conserved between different bacterial species, trigger other specific host responses from the extracellular milieu or contribute to the pathogenesis of P. aeruginosa. IMPORTANCE The inflammasome is a host defense mechanism that recognizes invading bacteria and triggers an inflammatory immune response. The opportunistic pathogen P. aeruginosa produces both inflammasome agonists and antagonists. In this study, we demonstrate that overexpression of an agonist suppresses the activity of an antagonist, thereby resulting in inflammasome activation. Since the relative expression levels of agonists and antagonists likely vary between strains, these differences could be important predictors of whether a particular P. aeruginosa strain elicits inflammasome activation.
Collapse
|
31
|
Faure E, Mear JB, Faure K, Normand S, Couturier-Maillard A, Grandjean T, Balloy V, Ryffel B, Dessein R, Chignard M, Uyttenhove C, Guery B, Gosset P, Chamaillard M, Kipnis E. Pseudomonas aeruginosa type-3 secretion system dampens host defense by exploiting the NLRC4-coupled inflammasome. Am J Respir Crit Care Med 2014; 189:799-811. [PMID: 24555512 DOI: 10.1164/rccm.201307-1358oc] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RATIONALE Pseudomonas aeruginosa, a major problem pathogen responsible for severe infections in critically ill patients, triggers, through a functional type-3 secretion system (T3SS), the activation of an intracellular cytosolic sensor of innate immunity, NLRC4. Although the NLRC4-inflammasome-dependent response contributes to increased clearance of intracellular pathogens, it seems that NLRC4 inflammasome activation decreases the clearance of P. aeruginosa, a mainly extracellular pathogen. OBJECTIVES We sought to determine the underlying mechanisms of this effect of the activation of NLRC4 by P. aeruginosa. METHODS We established acute lung injury in wild-type and Nlrc4(-/-) mice using sublethal intranasal inocula of P. aeruginosa strain CHA expressing or not a functional T3SS. We studied 96-hour survival, lung injury, bacterial clearance from the lungs, cytokine secretion in bronchoalveolar lavage, lung antimicrobial peptide expression by quantitative polymerase chain reaction, and flow cytometry analysis of lung cells. MEASUREMENTS AND MAIN RESULTS Nlrc4(-/-) mice showed enhanced bacterial clearance and decreased lung injury contributing to increased survival against extracellular P. aeruginosa strain expressing a functional T3SS. The mechanism involved decreased NLRC4-inflammasome-driven IL-18 secretion attenuating lung injury caused by excessive neutrophil recruitment. Additionally, in the lungs of Nlrc4(-/-) mice secretion of IL-17 by innate immune cells was increased and responsible for increased expression of lung epithelial antimicrobial peptides. Furthermore, IL-18 secretion was found to repress IL-17 and IL-17-driven lung antimicrobial peptide expression. CONCLUSIONS We report a new role of the T3SS apparatus itself, independently of exotoxin translocation. Through NLRC4 inflammasome activation, the T3SS promotes IL-18 secretion, which dampens a beneficial IL-17-mediated antimicrobial host response.
Collapse
Affiliation(s)
- Emmanuel Faure
- 1 Pseudomonas aeruginosa Host-Pathogen Translational Research Group, Université Droit et Santé de Lille, Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ishida K, Sekizuka T, Hayashida K, Matsuo J, Takeuchi F, Kuroda M, Nakamura S, Yamazaki T, Yoshida M, Takahashi K, Nagai H, Sugimoto C, Yamaguchi H. Amoebal endosymbiont Neochlamydia genome sequence illuminates the bacterial role in the defense of the host amoebae against Legionella pneumophila. PLoS One 2014; 9:e95166. [PMID: 24747986 PMCID: PMC3991601 DOI: 10.1371/journal.pone.0095166] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/24/2014] [Indexed: 11/19/2022] Open
Abstract
Previous work has shown that the obligate intracellular amoebal endosymbiont Neochlamydia S13, an environmental chlamydia strain, has an amoebal infection rate of 100%, but does not cause amoebal lysis and lacks transferability to other host amoebae. The underlying mechanism for these observations remains unknown. In this study, we found that the host amoeba could completely evade Legionella infection. The draft genome sequence of Neochlamydia S13 revealed several defects in essential metabolic pathways, as well as unique molecules with leucine-rich repeats (LRRs) and ankyrin domains, responsible for protein-protein interaction. Neochlamydia S13 lacked an intact tricarboxylic acid cycle and had an incomplete respiratory chain. ADP/ATP translocases, ATP-binding cassette transporters, and secretion systems (types II and III) were well conserved, but no type IV secretion system was found. The number of outer membrane proteins (OmcB, PomS, 76-kDa protein, and OmpW) was limited. Interestingly, genes predicting unique proteins with LRRs (30 genes) or ankyrin domains (one gene) were identified. Furthermore, 33 transposases were found, possibly explaining the drastic genome modification. Taken together, the genomic features of Neochlamydia S13 explain the intimate interaction with the host amoeba to compensate for bacterial metabolic defects, and illuminate the role of the endosymbiont in the defense of the host amoebae against Legionella infection.
Collapse
Affiliation(s)
- Kasumi Ishida
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kyoko Hayashida
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Junji Matsuo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Fumihiko Takeuchi
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shinji Nakamura
- Division of Biomedical Imaging Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomohiro Yamazaki
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mitsutaka Yoshida
- Division of Ultrastructural Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kaori Takahashi
- Division of Ultrastructural Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroki Nagai
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Chihiro Sugimoto
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
33
|
Sallenave JM. Phagocytic and signaling innate immune receptors: are they dysregulated in cystic fibrosis in the fight against Pseudomonas aeruginosa? Int J Biochem Cell Biol 2014; 52:103-7. [PMID: 24508137 DOI: 10.1016/j.biocel.2014.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/12/2014] [Accepted: 01/17/2014] [Indexed: 12/17/2022]
Abstract
Cystic fibrosis (CF) is a genetic disease that affects mainly the lung and the digestive system, causing progressive disability and organ failure. The most prevalent CFTR mutation dF508 (which constitutes 70% of all mutations) results in an incorrect targeting of the CFTR molecule to the membrane. It is now a well-accepted concept that mucosal innate immune responses are dysregulated in cystic fibrosis through a cycle of infectious and inflammatory episodes. However, although much work has focused on the late consequences of chronic lung inflammation in CF, very little is known on the early events leading to infection and colonization, such as that of Pseudomonas aeruginosa (P.a). We review here the involvement of a range of innate phagocytic/signaling receptors in the control of this pathogen (mannose receptor, complement receptor-3, Toll-like receptors, etc.) and evaluate the possibility that the activity of some of these receptors may be dysregulated in cystic fibrosis, potentially explaining the florid infections encountered in this disease.
Collapse
Affiliation(s)
- Jean-Michel Sallenave
- Institut Pasteur, Unité de Défense Innée et Inflammation, Paris, France; INSERM UMR1152 'Physiopathologie et épidémiologie des maladies respiratoires', France; University Paris Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
34
|
Lovewell RR, Patankar YR, Berwin B. Mechanisms of phagocytosis and host clearance of Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 2014; 306:L591-603. [PMID: 24464809 DOI: 10.1152/ajplung.00335.2013] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen responsible for a high incidence of acute and chronic pulmonary infection. These infections are particularly prevalent in patients with chronic obstructive pulmonary disease and cystic fibrosis: much of the morbidity and pathophysiology associated with these diseases is due to a hypersusceptibility to bacterial infection. Innate immunity, primarily through inflammatory cytokine production, cellular recruitment, and phagocytic clearance by neutrophils and macrophages, is the key to endogenous control of P. aeruginosa infection. In this review, we highlight recent advances toward understanding the innate immune response to P. aeruginosa, with a focus on the role of phagocytes in control of P. aeruginosa infection. Specifically, we summarize the cellular and molecular mechanisms of phagocytic recognition and uptake of P. aeruginosa, and how current animal models of P. aeruginosa infection reflect clinical observations in the context of phagocytic clearance of the bacteria. Several notable phenotypic changes to the bacteria are consistently observed during chronic pulmonary infections, including changes to mucoidy and flagellar motility, that likely enable or reflect their ability to persist. These traits are likewise examined in the context of how the bacteria avoid phagocytic clearance, inflammation, and sterilizing immunity.
Collapse
Affiliation(s)
- Rustin R Lovewell
- Dept. of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr., Lebanon, NH 03756.
| | | | | |
Collapse
|
35
|
Dowling JK, Becker CE, Bourke NM, Corr SC, Connolly DJ, Quinn SR, Pandolfi PP, Mansell A, O'Neill LAJ. Promyelocytic leukemia protein interacts with the apoptosis-associated speck-like protein to limit inflammasome activation. J Biol Chem 2014; 289:6429-6437. [PMID: 24407287 DOI: 10.1074/jbc.m113.539692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The apoptosis-associated speck-like protein containing a caspase-activating recruitment domain (ASC) is an essential component of several inflammasomes, multiprotein complexes that regulate caspase-1 activation and inflammation. We report here an interaction between promyelocytic leukemia protein (PML) and ASC. We observed enhanced formation of ASC dimers in PML-deficient macrophages. These macrophages also display enhanced levels of ASC in the cytosol. Furthermore, IL-1β production was markedly enhanced in these macrophages in response to both NLRP3 and AIM2 inflammasome activation and following bone marrow-derived macrophage infection with herpes simplex virus-1 (HSV-1) and Salmonella typhimurium. Collectively, our data indicate that PML limits ASC function, retaining ASC in the nucleus.
Collapse
Affiliation(s)
- Jennifer K Dowling
- Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Christine E Becker
- Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Nollaig M Bourke
- Centre for Innate Immunity and Infectious Disease, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia
| | - Sinead C Corr
- Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Dympna J Connolly
- Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Susan R Quinn
- Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Paolo P Pandolfi
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 01605
| | - Ashley Mansell
- Centre for Innate Immunity and Infectious Disease, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia
| | - Luke A J O'Neill
- Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
36
|
Abstract
Type IV pili (T4P) are multifunctional protein fibers produced on the surfaces of a wide variety of bacteria and archaea. The major subunit of T4P is the type IV pilin, and structurally related proteins are found as components of the type II secretion (T2S) system, where they are called pseudopilins; of DNA uptake/competence systems in both Gram-negative and Gram-positive species; and of flagella, pili, and sugar-binding systems in the archaea. This broad distribution of a single protein family implies both a common evolutionary origin and a highly adaptable functional plan. The type IV pilin is a remarkably versatile architectural module that has been adopted widely for a variety of functions, including motility, attachment to chemically diverse surfaces, electrical conductance, acquisition of DNA, and secretion of a broad range of structurally distinct protein substrates. In this review, we consider recent advances in this research area, from structural revelations to insights into diversity, posttranslational modifications, regulation, and function.
Collapse
|
37
|
Malireddi RKS, Kanneganti TD. Role of type I interferons in inflammasome activation, cell death, and disease during microbial infection. Front Cell Infect Microbiol 2013; 3:77. [PMID: 24273750 PMCID: PMC3824101 DOI: 10.3389/fcimb.2013.00077] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 10/24/2013] [Indexed: 12/17/2022] Open
Abstract
Interferons (IFNs) were discovered over a half-century ago as antiviral factors. The role of type I IFNs has been studied in the pathogenesis of both acute and chronic microbial infections. Deregulated type I IFN production results in a damaging cascade of cell death, inflammation, and immunological host responses that can lead to tissue injury and disease progression. Here, we summarize the role of type I IFNs in the regulation of cell death and disease during different microbial infections, ranging from viruses and bacteria to fungal pathogens. Understanding the specific mechanisms driving type I IFN-mediated cell death and disease could aid in the development of targeted therapies.
Collapse
|
38
|
Kausar S, Asif M, Bibi N, Rashid S. Comparative molecular docking analysis of cytoplasmic dynein light chain DYNLL1 with pilin to explore the molecular mechanism of pathogenesis caused by Pseudomonas aeruginosa PAO. PLoS One 2013; 8:e76730. [PMID: 24098557 PMCID: PMC3789673 DOI: 10.1371/journal.pone.0076730] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/26/2013] [Indexed: 11/19/2022] Open
Abstract
Cytoplasmic dynein light chain 1 (DYNLL1) is a component of large protein complex, which is implicated in cargo transport processes, and is known to interact with many cellular and viral proteins through its short consensus motif (K/R)XTQT. Still, it remains to be explored that bacterial proteins also exhibit similar recognition sequences to make them vulnerable to host defense mechanism. We employed multiple docking protocols including AUTODOCK, PatchDock, ZDOCK, DOCK/PIERR and CLUSPRO to explore the DYNLL1 and Pilin interaction followed by molecular dynamics simulation assays. Subsequent structural comparison of the predicted binding site for DYNLL1-Pilin complex against the experimentally verified DYNLL1 binding partners was performed to cross check the residual contributions and to determine the binding mode. On the basis of in silico analysis, here we describe a novel interaction of DYNLL1 and receptor binding domain of Pilin (the main protein constituent of bacterial type IV Pili) of gram negative bacteria Pseudomonas aeruginosa (PAO), which is the third most common nosocomial pathogen associated with the life-threatening infections. Evidently, our results underscore that Pilin specific motif (KSTQD) exhibits a close structural similarity to that of Vaccinia virus polymerase, P protein Rabies and P protein Mokola viruses. We speculate that binding of DYNLL1 to Pilin may trigger an uncontrolled inflammatory response of the host immune system during P. aeruginosa chronic infections thereby opening a new pioneering area to investigate the role of DYNLL1 in gram negative bacterial infections other than viral infections. Moreover, by manifesting a strict correspondence between sequence and function, our study anticipates a novel drug target site to control the complications caused by P. aeruginosa infections.
Collapse
Affiliation(s)
- Samina Kausar
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Asif
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Nousheen Bibi
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
- * E-mail:
| |
Collapse
|
39
|
Silva GK, Costa RS, Silveira TN, Caetano BC, Horta CV, Gutierrez FRS, Guedes PMDM, Andrade WA, De Niz M, Gazzinelli RT, Zamboni DS, Silva JS. Apoptosis-associated speck-like protein containing a caspase recruitment domain inflammasomes mediate IL-1β response and host resistance to Trypanosoma cruzi infection. THE JOURNAL OF IMMUNOLOGY 2013; 191:3373-83. [PMID: 23966627 DOI: 10.4049/jimmunol.1203293] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The innate immune response to Trypanosoma cruzi infection comprises several pattern recognition receptors (PRRs), including TLR-2, -4, -7, and -9, as well as the cytosolic receptor Nod1. However, there are additional PRRs that account for the host immune responses to T. cruzi. In this context, the nucleotide-binding oligomerization domain-like receptors (NLRs) that activate the inflammasomes are candidate receptors that deserve renewed investigation. Following pathogen infection, NLRs form large molecular platforms, termed inflammasomes, which activate caspase-1 and induce the production of active IL-1β and IL-18. In this study, we evaluated the involvement of inflammasomes in T. cruzi infection and demonstrated that apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) inflammasomes, including NLR family, pyrin domain-containing 3 (NLRP3), but not NLR family, caspase recruitment domain-containing 4 or NLR family, pyrin domain-containing 6, are required for triggering the activation of caspase-1 and the secretion of IL-1β. The mechanism by which T. cruzi mediates the activation of the ASC/NLRP3 pathway involves K⁺ efflux, lysosomal acidification, reactive oxygen species generation, and lysosomal damage. We also demonstrate that despite normal IFN-γ production in the heart, ASC⁻/⁻ and caspase-1⁻/⁻ infected mice exhibit a higher incidence of mortality, cardiac parasitism, and heart inflammation. These data suggest that ASC inflammasomes are critical determinants of host resistance to infection with T. cruzi.
Collapse
Affiliation(s)
- Grace Kelly Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
BACKGROUND Two distinct forms of intestinal epithelial cell (IEC) extrusion are described: 1 with preserved epithelial integrity and 1 that introduced breaches in the epithelial lining. In this study, we sought to determine the mechanism underlying the IEC extrusion that alters the permeability of the gut epithelium. METHODS IEC extrusions in polarized T84 monolayer were induced with nigericin. Epithelial permeability was assessed with transepithelial electrical resistance and movements of latex microspheres and green fluorescent protein-transfected Escherichia coli across the monolayer. In vivo IEC extrusion was modulated in wild-type and a colitic (interleukin-10 knock-out) mouse model with caspase-1 activation and inhibition. Luminal aspirates and mucosal biopsies from control patients and patients with inflammatory bowel disease were analyzed for caspase-1 and caspase-3&7 activation. RESULTS Caspase-1-induced IEC extrusion in T84 monolayers resulted in dose-dependent and time-dependent barrier dysfunction, reversible with caspase-1 inhibition. Moreover, the movements of microspheres and microbes across the treated epithelial monolayers were observed. Increased caspase-1-mediated IEC extrusion in interleukin-10 knock-out mice corresponded to enhanced permeation of dextran, microspheres, and translocation of E. coli compared with wild type. Caspase-1 inhibition in interleukin-10 knock-out mice resulted in a time-dependent reduction in cell extrusion and normalization of permeability to microspheres. Increased IEC extrusion in wild-type mice was induced with caspase-1 activation. In human luminal aspirates, the ratio of positively stained caspase-1 to caspase-3&7 cells were 1:1 and 2:1 in control patients and patients with inflammatory bowel disease, respectively; these observations were confirmed by cytochemical analysis of mucosal biopsies. CONCLUSIONS IEC extrusion mediated by caspase-1 activation contributes to altered intestinal permeability in vitro and in vivo.
Collapse
|
41
|
Flagellar motility is a key determinant of the magnitude of the inflammasome response to Pseudomonas aeruginosa. Infect Immun 2013; 81:2043-52. [PMID: 23529619 DOI: 10.1128/iai.00054-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated that bacterial flagellar motility is a fundamental mechanism by which host phagocytes bind and ingest bacteria. Correspondingly, loss of bacterial motility, consistently observed in clinical isolates from chronic Pseudomonas aeruginosa infections, enables bacteria to evade association and ingestion of P. aeruginosa by phagocytes both in vitro and in vivo. Since bacterial interactions with the phagocyte cell surface are required for type three secretion system-dependent NLRC4 inflammasome activation by P. aeruginosa, we hypothesized that reduced bacterial association with phagocytes due to loss of bacterial motility, independent of flagellar expression, will lead to reduced inflammasome activation. Here we report that inflammasome activation is reduced in response to nonmotile P. aeruginosa. Nonmotile P. aeruginosa elicits reduced IL-1β production as well as caspase-1 activation by peritoneal macrophages and bone marrow-derived dendritic cells in vitro. Importantly, nonmotile P. aeruginosa also elicits reduced IL-1β levels in vivo in comparison to those elicited by wild-type P. aeruginosa. This is the first demonstration that loss of bacterial motility results in reduced inflammasome activation and antibacterial IL-1β host response. These results provide a critical insight into how the innate immune system responds to bacterial motility and, correspondingly, how pathogens have evolved mechanisms to evade the innate immune system.
Collapse
|
42
|
Cohen TS, Prince AS. Activation of inflammasome signaling mediates pathology of acute P. aeruginosa pneumonia. J Clin Invest 2013; 123:1630-7. [PMID: 23478406 DOI: 10.1172/jci66142] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 01/17/2013] [Indexed: 01/03/2023] Open
Abstract
The respiratory tract is exceptionally well defended against infection from inhaled bacteria, with multiple proinflammatory signaling cascades recruiting phagocytes to clear airway pathogens. However, organisms that efficiently activate damaging innate immune responses, such as those mediated by the inflammasome and caspase-1, may cause pulmonary damage and interfere with bacterial clearance. The extracellular, opportunistic pathogen Pseudomonas aeruginosa expresses not only pathogen-associated molecular patterns that activate NF-κB signaling in epithelial and immune cells, but also flagella that activate the NLRC4 inflammasome. We demonstrate that induction of inflammasome signaling, ascribed primarily to the alveolar macrophage, impaired P. aeruginosa clearance and was associated with increased apoptosis/pyroptosis and mortality in a murine model of acute pneumonia. Strategies that limited inflammasome activation, including infection by fliC mutants, depletion of macrophages, deletion of NLRC4, reduction of IL-1β and IL-18 production, inhibition of caspase-1, and inhibition of downstream signaling in IL-1R- or IL-18R-null mice, all resulted in enhanced bacterial clearance and diminished pathology. These results demonstrate that the inflammasome provides a potential target to limit the pathological consequences of acute P. aeruginosa pulmonary infection.
Collapse
Affiliation(s)
- Taylor S Cohen
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
43
|
Gomes MTR, Campos PC, de Almeida LA, Oliveira FS, Costa MMS, Marim FM, Pereira GSM, Oliveira SC. The role of innate immune signals in immunity to Brucella abortus. Front Cell Infect Microbiol 2012; 2:130. [PMID: 23112959 PMCID: PMC3480720 DOI: 10.3389/fcimb.2012.00130] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 10/04/2012] [Indexed: 01/18/2023] Open
Abstract
Innate immunity serves as the first line of defense against infectious agents such as intracellular bacteria. The innate immune platform includes Toll-like receptors (TLRs), retinoid acid-inducible gene-I-like receptors and other cytosolic nucleic acid sensors, nucleotide-binding and oligomerization domain-like receptors, adaptors, kinases and other signaling molecules that are required to elicit effective responses against different pathogens. Our research group has been using the Gram-negative bacteria Brucella abortus as a model of pathogen. We have demonstrated that B. abortus triggers MAPK and NF-κB signaling pathways in macrophages in a MyD88 and IRAK-4-dependent manner. Furthermore, we claimed that so far TLR9 is the most important single TLR during Brucella infection. The identification of host receptors that recognize pathogen-derived nucleic acids has revealed an essential role for nucleic acid sensing in the triggering of immunity to intracellular pathogens. Besides TLRs, herein we describe recent advances in NOD1, NOD2, and type I IFN receptors in innate immune pathways during B. abortus infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sergio C. Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas GeraisBelo Horizonte, MG, Brazil
| |
Collapse
|
44
|
Abstract
The extensively studied cytokine IL-1β is an important mediator of the inflammatory response. However, dysregulated release of IL-1β can be detrimental and is attributed to the progression and pathogenesis of multiple inflammatory diseases including, rhuematoid arthritis (RA), atherosclerosis, type 2 diabetes (T2D), Alzheimers disease and gout. IL-1β is encoded as a pro-protein. A multi-protein molecular scaffold termed the "Inflammasome" is responsible for the tightly controlled and coordinated processing of pro-IL-1β. The activation of several NLR (nucleotide-binding oligomerization domain (NOD)-like receptor) family members and PYHIN (pyrin and HIN domain) proteins can drive the formation of inflammasomes. However, the exact biochemical mechanisms governing their activation have been the subject of much research. Different inflammasomes have been demonstrated to respond to the same pathogen inducing a cooperative immune response accountable for the clearance of infection. Here, we review current knowledge surrounding the biochemical regulation of the NLRP1, NLRP3, NLRC4, AIM2 and IFI16 inflammasomes.
Collapse
Affiliation(s)
- Jennifer K Dowling
- Inflammation Research Group, School of Biochemistry and Immunology, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| | | |
Collapse
|
45
|
Gavrilin MA, Abdelaziz DHA, Mostafa M, Abdulrahman BA, Grandhi J, Akhter A, Abu Khweek A, Aubert DF, Valvano MA, Wewers MD, Amer AO. Activation of the pyrin inflammasome by intracellular Burkholderia cenocepacia. THE JOURNAL OF IMMUNOLOGY 2012; 188:3469-77. [PMID: 22368275 DOI: 10.4049/jimmunol.1102272] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Burkholderia cenocepacia is an opportunistic pathogen that causes chronic infection and induces progressive respiratory inflammation in cystic fibrosis patients. Recognition of bacteria by mononuclear cells generally results in the activation of caspase-1 and processing of IL-1β, a major proinflammatory cytokine. In this study, we report that human pyrin is required to detect intracellular B. cenocepacia leading to IL-1β processing and release. This inflammatory response involves the host adapter molecule ASC and the bacterial type VI secretion system (T6SS). Human monocytes and THP-1 cells stably expressing either small interfering RNA against pyrin or YFP-pyrin and ASC (YFP-ASC) were infected with B. cenocepacia and analyzed for inflammasome activation. B. cenocepacia efficiently activates the inflammasome and IL-1β release in monocytes and THP-1. Suppression of pyrin levels in monocytes and THP-1 cells reduced caspase-1 activation and IL-1β release in response to B. cenocepacia challenge. In contrast, overexpression of pyrin or ASC induced a robust IL-1β response to B. cenocepacia, which correlated with enhanced host cell death. Inflammasome activation was significantly reduced in cells infected with T6SS-defective mutants of B. cenocepacia, suggesting that the inflammatory reaction is likely induced by an as yet uncharacterized effector(s) of the T6SS. Together, we show for the first time, to our knowledge, that in human mononuclear cells infected with B. cenocepacia, pyrin associates with caspase-1 and ASC forming an inflammasome that upregulates mononuclear cell IL-1β processing and release.
Collapse
Affiliation(s)
- Mikhail A Gavrilin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Fang R, Tsuchiya K, Kawamura I, Shen Y, Hara H, Sakai S, Yamamoto T, Fernandes-Alnemri T, Yang R, Hernandez-Cuellar E, Dewamitta SR, Xu Y, Qu H, Alnemri ES, Mitsuyama M. Critical roles of ASC inflammasomes in caspase-1 activation and host innate resistance to Streptococcus pneumoniae infection. THE JOURNAL OF IMMUNOLOGY 2011; 187:4890-9. [PMID: 21957143 DOI: 10.4049/jimmunol.1100381] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Streptococcus pneumoniae is a Gram-positive, extracellular bacterium that is responsible for significant mortality and morbidity worldwide. Pneumolysin (PLY), a cytolysin produced by all clinical isolates of the pneumococcus, is one of the most important virulence factors of this pathogen. We have previously reported that PLY is an essential factor for activation of caspase-1 and consequent secretion of IL-1β and IL-18 in macrophages infected with S. pneumoniae. However, the host molecular factors involved in caspase-1 activation are still unclear. To further elucidate the mechanism of caspase-1 activation in macrophages infected with S. pneumoniae, we examined the involvement of inflammasomes in inducing this cellular response. Our study revealed that apoptosis-associated specklike protein containing a caspase recruitment domain (ASC), an adaptor protein for inflammasome receptors such as nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) and absent in melanoma 2 (AIM2), is essentially required for the induction of caspase-1 activation by S. pneumoniae. Caspase-1 activation was partially impaired in NLRP3(-/-) macrophages, whereas knockdown and knockout of AIM2 resulted in a clear decrease in caspase-1 activation in response to S. pneumoniae. These results suggest that ASC inflammasomes, including AIM2 and NLRP3, are critical for caspase-1 activation induced by S. pneumoniae. Furthermore, ASC(-/-) mice were more susceptible than wild-type mice to S. pneumoniae, with impaired secretion of IL-1β and IL-18 into the bronchoalveolar lavage after intranasal infection, suggesting that ASC inflammasomes contribute to the protection of host from infection with PLY-producing S. pneumoniae.
Collapse
Affiliation(s)
- Rendong Fang
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|