1
|
Guillén N. Pathogenicity and virulence of Entamoeba histolytica, the agent of amoebiasis. Virulence 2023; 14:2158656. [PMID: 36519347 DOI: 10.1080/21505594.2022.2158656] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The amoeba parasite Entamoeba histolytica is the causative agent of human amebiasis, an enteropathic disease affecting millions of people worldwide. This ancient protozoan is an elementary example of how parasites evolve with humans, e.g. taking advantage of multiple mechanisms to evade immune responses, interacting with microbiota for nutritional and protective needs, utilizing host resources for growth, division, and encystation. These skills of E. histolytica perpetuate the species and incidence of infection. However, in 10% of infected cases, the parasite turns into a pathogen; the host-parasite equilibrium is then disorganized, and the simple lifecycle based on two cell forms, trophozoites and cysts, becomes unbalanced. Trophozoites acquire a virulent phenotype which, when non-controlled, leads to intestinal invasion with the onset of amoebiasis symptoms. Virulent E. histolytica must cross mucus, epithelium, connective tissue and possibly blood. This highly mobile parasite faces various stresses and a powerful host immune response, with oxidative stress being a challenge for its survival. New emerging research avenues and omics technologies target gene regulation to determine human or parasitic factors activated upon infection, their role in virulence activation, and in pathogenesis; this research bears in mind that E. histolytica is a resident of the complex intestinal ecosystem. The goal is to eradicate amoebiasis from the planet, but the parasitic life of E. histolytica is ancient and complex and will likely continue to evolve with humans. Advances in these topics are summarized here.
Collapse
Affiliation(s)
- Nancy Guillén
- Cell Biology and Infection Department, Institut Pasteur and Centre National de la Recherche Scientifique CNRS-ERM9195, Paris, France
| |
Collapse
|
2
|
Gilmartin AA, Ralston KS, Petri WA. Inhibition of Amebic Cysteine Proteases Blocks Amebic Trogocytosis but Not Phagocytosis. J Infect Dis 2021; 221:1734-1739. [PMID: 31999350 DOI: 10.1093/infdis/jiz671] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/29/2020] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Entamoeba histolytica kills human cells by ingesting fragments of live cells until the cell eventually dies, a process termed amebic trogocytosis. In a previous study, we showed that acidified amebic lysosomes are required for both amebic trogocytosis and phagocytosis, as well as cell killing. METHODS Amebic cysteine proteases (CPs) were inhibited using an irreversible inhibitor, E-64d. RESULTS Interfering with amebic CPs decreased amebic trogocytosis and amebic cytotoxicity but did not impair phagocytosis. CONCLUSIONS We show that amebic CPs are required for amebic trogocytosis and cell killing but not phagocytosis. These data suggest that amebic CPs play a distinct role in amebic trogocytosis and cell killing.
Collapse
Affiliation(s)
- Allissia A Gilmartin
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Katherine S Ralston
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
| | - William A Petri
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA.,Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.,Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
3
|
Guillen N. Signals and signal transduction pathways in Entamoeba histolytica during the life cycle and when interacting with bacteria or human cells. Mol Microbiol 2020; 115:901-915. [PMID: 33249684 DOI: 10.1111/mmi.14657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 01/17/2023]
Abstract
Entamoeba histolytica is the etiological agent of amebiasis in humans. This ameba parasite resides as a commensal in the intestine where it shares intestinal resources with the bacterial microbiome. In the intestinal ecosystem, the ameba encysts and eventually develops disease by invading the tissues. E. histolytica possesses cell surface receptors for the proper sensing of signals involved in encystation or sustaining parasite interaction with bacteria and human cells. Among those receptors are the Gal/GalNAc lectin, G protein-coupled receptors, and transmembrane kinases. In addition there are recently discovered, promising proteins, including orthologs of Toll-type receptors and β trefoil lectins. These proteins trigger a wide variety of signal transduction pathways; however, most of the players involved in the signaling pathways evoked in this parasite are unknown. This review provides an overview of amoebic receptors and their role in encystation, adherence to bacteria or human cells, as well as the reported intracellular signal transduction processes that they can trigger. This knowledge is essential for understanding the lifestyle of E. histolytica and its cytopathic effect on bacteria and human cells that are responsible for infection.
Collapse
Affiliation(s)
- Nancy Guillen
- Institut Pasteur, Centre National de la Recherche Scientifique, CNRS-ERL9195, Paris, France
| |
Collapse
|
4
|
Abstract
Trogocytosis is part of an emerging, exciting theme of cell-cell interactions both within and between species, and it is relevant to host-pathogen interactions in many different contexts. Trogocytosis is a process in which one cell physically extracts and ingests "bites" of cellular material from another cell. It was first described in eukaryotic microbes, where it was uncovered as a mechanism by which amoebae kill cells. Trogocytosis is potentially a fundamental form of eukaryotic cell-cell interaction, since it also occurs in multicellular organisms, where it has functions in the immune system, in the central nervous system, and during development. There are numerous scenarios in which trogocytosis occurs and an ever-evolving list of functions associated with this process. Many aspects of trogocytosis are relevant to microbial pathogenesis. It was recently discovered that immune cells perform trogocytosis to kill Trichomonas vaginalis parasites. Additionally, through trogocytosis, Entamoeba histolytica acquires and displays human cell membrane proteins, enabling immune evasion. Intracellular bacteria seem to exploit host cell trogocytosis, since they can use it to spread from cell to cell. Thus, a picture is emerging in which trogocytosis plays critical roles in normal physiology, infection, and disease.
Collapse
|
5
|
López-Rosas I, López-Camarillo C, Salinas-Vera YM, Hernández-de la Cruz ON, Palma-Flores C, Chávez-Munguía B, Resendis-Antonio O, Guillen N, Pérez-Plasencia C, Álvarez-Sánchez ME, Ramírez-Moreno E, Marchat LA. Entamoeba histolytica Up-Regulates MicroRNA-643 to Promote Apoptosis by Targeting XIAP in Human Epithelial Colon Cells. Front Cell Infect Microbiol 2019; 8:437. [PMID: 30671387 PMCID: PMC6333105 DOI: 10.3389/fcimb.2018.00437] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that function as negative regulators of gene expression. Recent evidences suggested that host cells miRNAs are involved in the progression of infectious diseases, but its role in amoebiasis remains largely unknown. Here, we reported an unexplored role for miRNAs of human epithelial colon cells during the apoptosis induced by Entamoeba histolytica. We demonstrated for the first time that SW-480 colon cells change their miRNAs profile in response to parasite exposure. Our data showed that virulent E. histolytica trophozoites induced apoptosis of SW-480 colon cells after 45 min interaction, which was associated to caspases-3 and -9 activation. Comprehensive profiling of 667 miRNAs using Taqman Low-Density Arrays showed that 6 and 15 miRNAs were significantly (FC > 1.5; p < 0.05) modulated in SW-480 cells after 45 and 75 min interaction with parasites, respectively. Remarkably, no significant regulation of the 6-miRNAs signature (miR-526b-5p, miR-150, miR-643, miR-615-5p, miR-525, and miR-409-3p) was found when SW-480 cells were exposed to non-virulent Entamoeba dispar. Moreover, we confirmed that miR-150, miR-643, miR-615-5p, and miR-525 exhibited similar regulation in SW-480 and Caco2 colon cells after 45 min interaction with trophozoites. Exhaustive bioinformatic analysis of the six-miRNAs signature revealed intricate miRNAs-mRNAs co-regulation networks in which the anti-apoptotic XIAP, API5, BCL2, and AKT1 genes were the major targets of the set of six-miRNAs. Of these, we focused in the study of functional relationships between miR-643, upregulated at 45 min interaction, and its predicted target X-linked inhibitor of apoptosis protein (XIAP). Interestingly, interplay of amoeba with SW-480 cells resulted in downregulation of XIAP consistent with apoptosis activation. More importantly, loss of function studies using antagomiRs showed that forced inhibition of miR-643 leads to restoration of XIAP levels and suppression of both apoptosis and caspases-3 and -9 activation. Congruently, mechanistic studies using luciferase reporter assays confirmed that miR-643 exerts a postranscripcional negative regulation of XIAP by targeting its 3′-UTR indicating that it's a downstream effector. In summary, we provide novel lines of evidence suggesting that early-branched eukaryote E. histolytica may promote apoptosis of human colon cells by modulating, in part, the host microRNome which highlight an unexpected role for miRNA-643/XIAP axis in the host cellular response to parasites infection.
Collapse
Affiliation(s)
- Itzel López-Rosas
- Catedrática CONACYT, Laboratorio de Genómica Funcional y Biología Molecular, Colegio de Postgraduados Campus Campeche, Campeche, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de Mexico, Mexico City, Mexico
| | - Yarely M Salinas-Vera
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de Mexico, Mexico City, Mexico
| | | | | | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Osbaldo Resendis-Antonio
- Instituto Nacional de Medicina Genómica y Coordinación de la Investigación Científica, Red de Apoyo a la Investigación, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Nancy Guillen
- Unidad de Análisis Cuantitativo de Imágenes, Instituto Pasteur, Paris, France
| | - Carlos Pérez-Plasencia
- Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | - Esther Ramírez-Moreno
- Programa en Biomedicina Molecular y Red de Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Laurence A Marchat
- Programa en Biomedicina Molecular y Red de Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
6
|
St-Pierre J, Moreau F, Cornick S, Quach J, Begum S, Aracely Fernandez L, Gorman H, Chadee K. The macrophage cytoskeleton acts as a contact sensor upon interaction with Entamoeba histolytica to trigger IL-1β secretion. PLoS Pathog 2017; 13:e1006592. [PMID: 28837696 PMCID: PMC5587335 DOI: 10.1371/journal.ppat.1006592] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/06/2017] [Accepted: 08/18/2017] [Indexed: 01/09/2023] Open
Abstract
Entamoeba histolytica (Eh) is the causative agent of amebiasis, one of the major causes of dysentery-related morbidity worldwide. Recent studies have underlined the importance of the intercellular junction between Eh and host cells as a determinant in the pathogenesis of amebiasis. Despite the fact that direct contact and ligation between Eh surface Gal-lectin and EhCP-A5 with macrophage α5β1 integrin are absolute requirements for NLRP3 inflammasome activation and IL-1β release, many other undefined molecular events and downstream signaling occur at the interface of Eh and macrophage. In this study, we investigated the molecular events at the intercellular junction that lead to recognition of Eh through modulation of the macrophage cytoskeleton. Upon Eh contact with macrophages key cytoskeletal-associated proteins were rapidly post-translationally modified only with live Eh but not with soluble Eh proteins or fragments. Eh ligation with macrophages rapidly activated caspase-6 dependent cleavage of the cytoskeletal proteins talin, Pyk2 and paxillin and caused robust release of the pro-inflammatory cytokine, IL-1β. Macrophage cytoskeletal cleavages were dependent on Eh cysteine proteinases EhCP-A1 and EhCP-A4 but not EhCP-A5 based on pharmacological blockade of Eh enzyme inhibitors and EhCP-A5 deficient parasites. These results unravel a model where the intercellular junction between macrophages and Eh form an area of highly interacting proteins that implicate the macrophage cytoskeleton as a sensor for Eh contact that leads downstream to subsequent inflammatory immune responses. The protozoan parasite Entamoeba histolytica can establish an enteric infection in human hosts that leads to symptoms ranging from diarrhea to abscesses in the liver and the brain. Host susceptibility to amebic infection is in part determined by the quality and potency of the host immune response that occurs once the parasite overcomes the mucus bilayers and colonic epithelial barriers, and invades underlying tissues. At the cellular level, one of the key events that shape the inflammatory response occurs during direct parasite interaction with host macrophages via surface proteins. The ensuing cascades of intracellular signaling events have only partly been uncovered. Interestingly, only direct interaction between live parasites and macrophages, as opposed to soluble factors or dead parasites, is a prerequisite to the generation of a prompt raging pro-inflammatory response. We have sought to further elucidate the mechanisms by which macrophages distinguish live parasites and found that the macrophage cell skeleton undergoes rapid significant alteration upon Eh contact. Furthermore, we uncovered a previously unknown role for two Eh enzymes in triggering macrophage pro-inflammatory responses. Through this work, we gain a better understanding of the molecular interactions that occur at the macrophage-ameba interface that regulate host inflammatory responses.
Collapse
Affiliation(s)
- Joëlle St-Pierre
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - France Moreau
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Steve Cornick
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Jeanie Quach
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Sharmin Begum
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Luz Aracely Fernandez
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Hayley Gorman
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
7
|
Perdomo D, Manich M, Syan S, Olivo-Marin JC, Dufour AC, Guillén N. Intracellular traffic of the lysine and glutamic acid rich protein KERP1 reveals features of endomembrane organization in Entamoeba histolytica. Cell Microbiol 2016; 18:1134-52. [PMID: 26857352 DOI: 10.1111/cmi.12576] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 01/06/2016] [Accepted: 02/01/2016] [Indexed: 12/12/2022]
Abstract
The development of amoebiasis is influenced by the expression of the lysine and glutamic acid rich protein 1 (KERP1), a virulence factor involved in Entamoeba histolytica adherence to human cells. Up to date, it is unknown how the protein transits the parasite cytoplasm towards the plasma membrane, specially because this organism lacks a well-defined endoplasmic reticulum (ER) and Golgi apparatus. In this work we demonstrate that KERP1 is present at the cell surface and in intracellular vesicles which traffic in a pathway that is independent of the ER-Golgi anterograde transport. The intracellular displacement of vesicles enriched in KERP1 relies on the actin-rich cytoskeleton activities. KERP1 is also present in externalized vesicles deposited on the surface of human cells. We further report the interactome of KERP1 with its association to endomembrane components and lipids. The model for KERP1 traffic here proposed hints for the first time elements of the endocytic and exocytic paths of E. histolytica.
Collapse
Affiliation(s)
- Doranda Perdomo
- Cell Biology of Parasitism Unit, Institut Pasteur, Paris, France.,INSERM U786, Paris, France.,Sorbonne Paris Cité, Cellule Pasteur, Université Paris Diderot, Paris, France
| | - Maria Manich
- Cell Biology of Parasitism Unit, Institut Pasteur, Paris, France.,INSERM U786, Paris, France
| | - Sylvie Syan
- Cell Biology of Parasitism Unit, Institut Pasteur, Paris, France.,INSERM U786, Paris, France
| | | | - Alexandre C Dufour
- Bioimage Analysis Unit, Institut Pasteur, Paris, France.,CNRS UMR 3691, Paris, France
| | - Nancy Guillén
- Cell Biology of Parasitism Unit, Institut Pasteur, Paris, France.,INSERM U786, Paris, France
| |
Collapse
|
8
|
Petropolis DB, Faust DM, Tolle M, Rivière L, Valentin T, Neuveut C, Hernandez-Cuevas N, Dufour A, Olivo-Marin JC, Guillen N. Human Liver Infection in a Dish: Easy-To-Build 3D Liver Models for Studying Microbial Infection. PLoS One 2016; 11:e0148667. [PMID: 26863526 PMCID: PMC4749187 DOI: 10.1371/journal.pone.0148667] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/21/2016] [Indexed: 12/22/2022] Open
Abstract
Human liver infection is a major cause of death worldwide, but fundamental studies on infectious diseases affecting humans have been hampered by the lack of robust experimental models that accurately reproduce pathogen-host interactions in an environment relevant for the human disease. In the case of liver infection, one consequence of this absence of relevant models is a lack of understanding of how pathogens cross the sinusoidal endothelial barrier and parenchyma. To fill that gap we elaborated human 3D liver in vitro models, composed of human liver sinusoidal endothelial cells (LSEC) and Huh-7 hepatoma cells as hepatocyte model, layered in a structure mimicking the hepatic sinusoid, which enable studies of key features of early steps of hepatic infection. Built with established cell lines and scaffold, these models provide a reproducible and easy-to-build cell culture approach of reduced complexity compared to animal models, while preserving higher physiological relevance compared to standard 2D systems. For proof-of-principle we challenged the models with two hepatotropic pathogens: the parasitic amoeba Entamoeba histolytica and hepatitis B virus (HBV). We constructed four distinct setups dedicated to investigating specific aspects of hepatic invasion: 1) pathogen 3D migration towards hepatocytes, 2) hepatocyte barrier crossing, 3) LSEC and subsequent hepatocyte crossing, and 4) quantification of human hepatic virus replication (HBV). Our methods comprise automated quantification of E. histolytica migration and hepatic cells layer crossing in the 3D liver models. Moreover, replication of HBV virus occurs in our virus infection 3D liver model, indicating that routine in vitro assays using HBV or others viruses can be performed in this easy-to-build but more physiological hepatic environment. These results illustrate that our new 3D liver infection models are simple but effective, enabling new investigations on infectious disease mechanisms. The better understanding of these mechanisms in a human-relevant environment could aid the discovery of drugs against pathogenic liver infection.
Collapse
Affiliation(s)
- Debora B. Petropolis
- Cell Biology of Parasitism Unit, Inserm U786, BCI, Institut Pasteur, Paris, France
- Quantitative Image Analysis, BCI, Institut Pasteur, Paris, France
- * E-mail:
| | - Daniela M. Faust
- Cell Biology of Parasitism Unit, Inserm U786, BCI, Institut Pasteur, Paris, France
| | - Matthieu Tolle
- Cell Biology of Parasitism Unit, Inserm U786, BCI, Institut Pasteur, Paris, France
| | - Lise Rivière
- Hepaciviruses and Innate Immunity Unit, Department of Virology, Institut Pasteur, Paris, France
| | - Tanguy Valentin
- Cell Biology of Parasitism Unit, Inserm U786, BCI, Institut Pasteur, Paris, France
| | - Christine Neuveut
- Hepaciviruses and Innate Immunity Unit, Department of Virology, Institut Pasteur, Paris, France
| | | | - Alexandre Dufour
- Quantitative Image Analysis, BCI, Institut Pasteur, Paris, France
| | | | - Nancy Guillen
- Cell Biology of Parasitism Unit, Inserm U786, BCI, Institut Pasteur, Paris, France
- Quantitative Image Analysis, BCI, Institut Pasteur, Paris, France
| |
Collapse
|
9
|
|
10
|
Marie C, Verkerke HP, Theodorescu D, Petri WA. A whole-genome RNAi screen uncovers a novel role for human potassium channels in cell killing by the parasite Entamoeba histolytica. Sci Rep 2015; 5:13613. [PMID: 26346926 PMCID: PMC4561901 DOI: 10.1038/srep13613] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/30/2015] [Indexed: 01/29/2023] Open
Abstract
The parasite Entamoeba histolytica kills human cells resulting in ulceration, inflammation and invasion of the colonic epithelium. We used the cytotoxic properties of ameba to select a genome-wide RNAi library to reveal novel host factors that control susceptibility to amebic killing. We identified 281 candidate susceptibility genes and bioinformatics analyses revealed that ion transporters were significantly enriched among susceptibility genes. Potassium (K+) channels were the most common transporter identified. Their importance was further supported by colon biopsy of humans with amebiasis that demonstrated suppressed K+ channel expression. Inhibition of human K+ channels by genetic silencing, pharmacologic inhibitors and with excess K+ protected diverse cell types from E. histolytica-induced death. Contact with E. histolytica parasites triggered K+ channel activation and K+ efflux by intestinal epithelial cells, which preceded cell killing. Specific inhibition of Ca2+-dependent K+ channels was highly effective in preventing amebic cytotoxicity in intestinal epithelial cells and macrophages. Blockade of K+ efflux also inhibited caspase-1 activation, IL-1β secretion and pyroptotic death in THP-1 macrophages. We concluded that K+ channels are host mediators of amebic cytotoxicity in multiple cells types and of inflammasome activation in macrophages.
Collapse
Affiliation(s)
- Chelsea Marie
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia USA
| | - Hans P Verkerke
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia USA
| | - Dan Theodorescu
- Department of Surgery, Department of Pharmacology, University of Colorado Comprehensive Cancer Center, University of Colorado, Denver, CO, USA
| | - William A Petri
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia USA
| |
Collapse
|
11
|
Petropolis DB, Faust DM, Deep Jhingan G, Guillen N. A new human 3D-liver model unravels the role of galectins in liver infection by the parasite Entamoeba histolytica. PLoS Pathog 2014; 10:e1004381. [PMID: 25211477 PMCID: PMC4161482 DOI: 10.1371/journal.ppat.1004381] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/01/2014] [Indexed: 11/28/2022] Open
Abstract
Investigations of human parasitic diseases depend on the availability of appropriate in vivo animal models and ex vivo experimental systems, and are particularly difficult for pathogens whose exclusive natural hosts are humans, such as Entamoeba histolytica, the protozoan parasite responsible for amoebiasis. This common infectious human disease affects the intestine and liver. In the liver sinusoids E. histolytica crosses the endothelium and penetrates into the parenchyma, with the concomitant initiation of inflammatory foci and subsequent abscess formation. Studying factors responsible for human liver infection is hampered by the complexity of the hepatic environment and by the restrictions inherent to the use of human samples. Therefore, we built a human 3D-liver in vitro model composed of cultured liver sinusoidal endothelial cells and hepatocytes in a 3D collagen-I matrix sandwich. We determined the presence of important hepatic markers and demonstrated that the cell layers function as a biological barrier. E. histolytica invasion was assessed using wild-type strains and amoebae with altered virulence or different adhesive properties. We showed for the first time the dependence of endothelium crossing upon amoebic Gal/GalNAc lectin. The 3D-liver model enabled the molecular analysis of human cell responses, suggesting for the first time a crucial role of human galectins in parasite adhesion to the endothelial cells, which was confirmed by siRNA knockdown of galectin-1. Levels of several pro-inflammatory cytokines, including galectin-1 and -3, were highly increased upon contact of E. histolytica with the 3D-liver model. The presence of galectin-1 and -3 in the extracellular medium stimulated pro-inflammatory cytokine release, suggesting a further role for human galectins in the onset of the hepatic inflammatory response. These new findings are relevant for a better understanding of human liver infection by E. histolytica. The study of liver infection is based on animal models, but the animal physiology does not always reflect the reality of the human host. This is particularly true for pathogens whose exclusive natural hosts are humans, such as Entamoeba histolytica, the protozoan parasite responsible for amoebiasis. Here, we constructed an experimental human 3D-liver model able to reproduce the first steps of amoebic hepatic infection (barrier crossing, tissue migration and pro-inflammatory reaction). Using this 3D-liver model we were able to decipher the first stages of hepatic invasion by E. histolytica and to unravel the role played by galectin-1 and galectin-3 during amoebic hepatic adhesion and pro-inflammatory reaction. Moreover, the model enables analysis usually not possible with in vivo samples, such as the quantification of pro-inflammatory cytokines released inside the tissue microenvironment. Our 3D-liver model has the potential to bridge the gap between animal models and the reality of the human host for the study of amoebic infection and other infectious diseases of the liver.
Collapse
Affiliation(s)
- Debora B Petropolis
- Institut Pasteur, Cell Biology and Infection Department, Cell Biology of Parasitism Unit, Paris, France; INSERM U786, Paris, France
| | - Daniela M Faust
- Institut Pasteur, Cell Biology and Infection Department, Cell Biology of Parasitism Unit, Paris, France; INSERM U786, Paris, France
| | - Gagan Deep Jhingan
- National Institute of Immunology, Signal Transduction Lab-1 Department, Aruna Asaf Ali Marg, New Delhi, India
| | - Nancy Guillen
- Institut Pasteur, Cell Biology and Infection Department, Cell Biology of Parasitism Unit, Paris, France; INSERM U786, Paris, France
| |
Collapse
|
12
|
Mortimer L, Moreau F, Cornick S, Chadee K. Gal-lectin-dependent contact activates the inflammasome by invasive Entamoeba histolytica. Mucosal Immunol 2014; 7:829-41. [PMID: 24253103 DOI: 10.1038/mi.2013.100] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 02/04/2023]
Abstract
Entamoeba histolytica (Eh) is an extracellular protozoan parasite of the human colon, which occasionally breaches the intestinal barrier. Eradicating ameba that invades is essential for host survival. A defining but uncharacterized feature of amebic invasion is direct contact between ameba and host cells. This event corresponds with a massive pro-inflammatory response. To date, pathogen recognition receptors (PRRs) that are activated by contact with viable Eh are unknown. Here we show that the innate immune system responds in a qualitatively different way to contact with viable Eh vs. soluble ligands produced by viable or dead ameba. This unique Eh Gal-lectin contact-dependent response in macrophages was mediated by activation of the inflammasome. Soluble native Gal-lectin did not induce inflammasome activation, but was sufficient for transcriptional priming of the inflammasome and non-inflammasome-dependent pro-inflammatory cytokine release. We conclude the inflammasome is a pathogenicity sensor for invasive Eh and identify for the first time a PRR that specifically responds to contact with intact parasites in a manner that accords with scale immune response to parasite invasion.
Collapse
Affiliation(s)
- L Mortimer
- Faculty of Medicine, Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
| | - F Moreau
- Faculty of Medicine, Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
| | - S Cornick
- Faculty of Medicine, Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
| | - K Chadee
- Faculty of Medicine, Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Faust DM, Marquay Markiewicz J, Santi-Rocca J, Guillen N. New insights into host-pathogen interactions during Entamoeba histolytica liver infection. Eur J Microbiol Immunol (Bp) 2014; 1:10-8. [PMID: 24466432 DOI: 10.1556/eujmi.1.2011.1.4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Amoebiasis is the third worldwide disease due to a parasite. The causative agent of this disease, the unicellular eukaryote Entamoeba histolytica, causes dysentery and liver abscesses associated with inflammation and human cell death. During liver invasion, before entering the parenchyma, E. histolytica trophozoites are in contact with liver sinusoidal endothelial cells (LSEC). We present data characterizing human LSEC responses to interaction with E. histolytica and identifying amoebic factors involved in the process of cell death in this cell culture model potentially relevant for early steps of hepatic amoebiasis. E. histolytica interferes with host cell adhesion signalling and leads to diminished adhesion and target cell death. Contact with parasites induces disruption of actin stress fibers and focal adhesion complexes. We conclude that interference with LSEC signalling may result from amoeba-triggered changes in the mechanical forces in the vicinity of cells in contact with parasites, sensed and transmitted by focal adhesion complexes. The study highlights for the first time the potential role in the onset of hepatic amoebiasis of the loss of liver endothelium integrity by disturbance of focal adhesion function and adhesion signalling. Among the amoebic factors required for changed LSEC adherence properties we identified the Gal/GalNAC lectin, cysteine proteases and KERP1.
Collapse
Affiliation(s)
- D M Faust
- Institut Pasteur, Cell Biology of Parasitism Unit Inserm U786, Paris France
| | | | - J Santi-Rocca
- Institut Pasteur, Cell Biology of Parasitism Unit Inserm U786, Paris France
| | - N Guillen
- Institut Pasteur, Cell Biology of Parasitism Unit Inserm U786, Paris France
| |
Collapse
|
14
|
Proteases from Entamoeba spp. and Pathogenic Free-Living Amoebae as Virulence Factors. J Trop Med 2013; 2013:890603. [PMID: 23476670 PMCID: PMC3582061 DOI: 10.1155/2013/890603] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/28/2012] [Indexed: 02/01/2023] Open
Abstract
The standard reference for pathogenic and nonpathogenic amoebae is the human parasite Entamoeba histolytica; a direct correlation between virulence and protease expression has been demonstrated for this amoeba. Traditionally, proteases are considered virulence factors, including those that produce cytopathic effects in the host or that have been implicated in manipulating the immune response. Here, we expand the scope to other amoebae, including less-pathogenic Entamoeba species and highly pathogenic free-living amoebae. In this paper, proteases that affect mucin, extracellular matrix, immune system components, and diverse tissues and cells are included, based on studies in amoebic cultures and animal models. We also include proteases used by amoebae to degrade iron-containing proteins because iron scavenger capacity is currently considered a virulence factor for pathogens. In addition, proteases that have a role in adhesion and encystation, which are essential for establishing and transmitting infection, are discussed. The study of proteases and their specific inhibitors is relevant to the search for new therapeutic targets and to increase the power of drugs used to treat the diseases caused by these complex microorganisms.
Collapse
|
15
|
The α-helical regions of KERP1 are important in Entamoeba histolytica adherence to human cells. Sci Rep 2013; 3:1171. [PMID: 23378906 PMCID: PMC3558696 DOI: 10.1038/srep01171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/27/2012] [Indexed: 11/19/2022] Open
Abstract
The lysine and glutamic acid rich protein KERP1 is a unique surface adhesion factor associated with virulence in the human pathogen Entamoeba histolytica. Both the function and structure of this protein remain unknown to this date. Here, we used circular dichroism, analytical ultracentrifugation and bioinformatics modeling to characterize the structure of KERP1. Our findings revealed that it is an α-helical rich protein organized as a trimer, endowed with a very high thermal stability (Tm = 89.6°C). Bioinformatics sequence analyses and 3D-structural modeling indicates that KERP1 central segments could account for protein trimerization. Relevantly, expressing the central region of KERP1 in living parasites, impair their capacity to adhere to human cells. Our observations suggest a link between the inhibitory effect of the isolated central region and the structural features of KERP1.
Collapse
|
16
|
Faust DM, Guillen N. Virulence and virulence factors in Entamoeba histolytica, the agent of human amoebiasis. Microbes Infect 2012; 14:1428-41. [DOI: 10.1016/j.micinf.2012.05.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/09/2012] [Accepted: 05/28/2012] [Indexed: 11/26/2022]
|
17
|
Klotz C, Aebischer T, Seeber F. Stem cell-derived cell cultures and organoids for protozoan parasite propagation and studying host–parasite interaction. Int J Med Microbiol 2012; 302:203-9. [DOI: 10.1016/j.ijmm.2012.07.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
18
|
Girard-Misguich F, Delgado-Ortega M, Berthon P, Rossignol C, Larcher T, Bruel T, Guibon R, Guillén N, Meurens F. Porcine colon explants in the study of innate immune response to Entamoeba histolytica. Vet Immunol Immunopathol 2012; 145:611-7. [PMID: 22297149 DOI: 10.1016/j.vetimm.2012.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/03/2012] [Accepted: 01/05/2012] [Indexed: 11/30/2022]
Abstract
Human amebiasis is caused by the protozoan Entamoeba histolytica. This protozoan is responsible for muco-hemorrhagic diarrhoea and liver abscess in affected populations. E. histolytica can be asymptomatic commensally confined to the intestinal lumen or can result in invasion of the colonic mucosa leading to ulceration and/or liver abscesses. Recently, human colonic explants have been identified as valuable in the study of host-parasite interactions. Here we investigated the potential of porcine colonic explants as an alternative to human tissues which are far less available. Porcine colonic explants were cultured with two strains of E. histolytica, one virulent (HM1:IMSS) and one avirulent (Rahman). Results from histopathological and real-time PCR analysis showed that porcine explants cultured with virulent ameba trophozoites react similarly to their human counterparts with an invasion of the tissue by the trophozoites and the triggering of typical innate immune response against the parasite. On the contrary, explants cultured with avirulent ameba trophozoites were preserved. The study open the way to the use of porcine colonic explants in the study of the complex interactions between the parasite and the host.
Collapse
|