1
|
Wright SS, Wang C, Ta A, Havira MS, Ruan J, Rathinam VA, Vanaja SK. A bacterial toxin co-opts caspase-3 to disable active gasdermin D and limit macrophage pyroptosis. Cell Rep 2024; 43:114004. [PMID: 38522070 PMCID: PMC11095105 DOI: 10.1016/j.celrep.2024.114004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
During infections, host cells are exposed to pathogen-associated molecular patterns (PAMPs) and virulence factors that stimulate multiple signaling pathways that interact additively, synergistically, or antagonistically. The net effect of such higher-order interactions is a vital determinant of the outcome of host-pathogen interactions. Here, we demonstrate one such complex interplay between bacterial exotoxin- and PAMP-induced innate immune pathways. We show that two caspases activated during enterohemorrhagic Escherichia coli (EHEC) infection by lipopolysaccharide (LPS) and Shiga toxin (Stx) interact in a functionally antagonistic manner; cytosolic LPS-activated caspase-11 cleaves full-length gasdermin D (GSDMD), generating an active pore-forming N-terminal fragment (NT-GSDMD); subsequently, caspase-3 activated by EHEC Stx cleaves the caspase-11-generated NT-GSDMD to render it nonfunctional, thereby inhibiting pyroptosis and interleukin-1β maturation. Bacteria typically subvert inflammasomes by targeting upstream components such as NLR sensors or full-length GSDMD but not active NT-GSDMD. Thus, our findings uncover a distinct immune evasion strategy where a bacterial toxin disables active NT-GSDMD by co-opting caspase-3.
Collapse
Affiliation(s)
- Skylar S Wright
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Chengliang Wang
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Atri Ta
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | - Jianbin Ruan
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Vijay A Rathinam
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Sivapriya Kailasan Vanaja
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA.
| |
Collapse
|
2
|
Wang G, Wang J, Momeni MR. Epigallocatechin-3-gallate and its nanoformulation in cervical cancer therapy: the role of genes, MicroRNA and DNA methylation patterns. Cancer Cell Int 2023; 23:335. [PMID: 38129839 PMCID: PMC10740301 DOI: 10.1186/s12935-023-03161-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Green tea, a popular and healthy nonalcoholic drink consumed globally, is abundant in natural polyphenols. One of these polyphenols is epigallocatechin-3-gallate (EGCG), which offers a range of health benefits, such as metabolic regulation, antioxidant properties, anti-inflammatory effects, and potential anticancer properties. Clinical research has shown that EGCG can inhibit cancers in the male and female reproductive systems, including ovarian, cervical, endometrial, breast, testicular, and prostate cancers. Further research on cervical cancer has revealed the crucial role of epigenetic mechanisms in the initiation and progression of this type of cancer. These include changes to the DNA, histones, and non-coding RNAs, such as microRNAs. These changes are reversible and can occur even before genetic mutations, making them a potential target for intervention therapies. One promising approach to cancer prevention and treatment is the use of specific agents (known as epi-drugs) that target the cancer epigenome or epigenetic dysregulation. Phytochemicals, a group of diverse molecules, have shown potential in modulating cancer processes through their interaction with the epigenetic machinery. Among these, green tea and its main polyphenol EGCG have been extensively studied. This review highlights the therapeutic effects of EGCG and its nanoformulations on cervical cancer. It also discusses the epigenetic events involved in cervical cancer, such as DNA methylation and microRNA dysregulation, which may be affected by EGCG.
Collapse
Affiliation(s)
- Guichun Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jinyi Wang
- School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
| | | |
Collapse
|
3
|
Garofalo M, Payros D, Taieb F, Oswald E, Nougayrède JP, Oswald IP. From ribosome to ribotoxins: understanding the toxicity of deoxynivalenol and Shiga toxin, two food borne toxins. Crit Rev Food Sci Nutr 2023:1-13. [PMID: 37862145 DOI: 10.1080/10408398.2023.2271101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Ribosomes that synthesize proteins are among the most central and evolutionarily conserved organelles. Given the key role of proteins in cellular functions, prokaryotic and eukaryotic pathogens have evolved potent toxins to inhibit ribosomal functions and weaken their host. Many of these ribotoxin-producing pathogens are associated with food. For example, food can be contaminated with bacterial pathogens that produce the ribotoxin Shiga toxin, but also with the fungal ribotoxin deoxynivalenol. Shiga toxin cleaves ribosomal RNA, while deoxynivalenol binds to and inhibits the peptidyl transferase center. Despite their distinct modes of action, both groups of ribotoxins hinder protein translation, but also trigger other comparable toxic effects, which depend or not on the activation of the ribotoxic stress response. Ribotoxic stress response-dependent effects include inflammation and apoptosis, whereas ribotoxic stress response-independent effects include endoplasmic reticulum stress, oxidative stress, and autophagy. For other effects, such as cell cycle arrest and cytoskeleton modulation, the involvement of the ribotoxic stress response is still controversial. Ribotoxins affect one organelle yet induce multiple toxic effects with multiple consequences for the cell. The ribosome can therefore be considered as the cellular "Achilles heel" targeted by food borne ribotoxins. Considering the high toxicity of ribotoxins, they pose a substantial health risk, as humans are highly susceptible to widespread exposure to these toxins through contaminated food sources.
Collapse
Affiliation(s)
- Marion Garofalo
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Delphine Payros
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Frederic Taieb
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Toulouse, France
| | | | - Isabelle P Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
4
|
Tang J, Lu X, Zhang T, Feng Y, Xu Q, Li J, Lan Y, Luo H, Zeng L, Xiang Y, Zhang Y, Li Q, Mao X, Tang B, Zeng D. Shiga toxin 2 A-subunit induces mitochondrial damage, mitophagy and apoptosis via the interaction of Tom20 in Caco-2 cells. Heliyon 2023; 9:e20012. [PMID: 37809632 PMCID: PMC10559750 DOI: 10.1016/j.heliyon.2023.e20012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/18/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Shiga toxin type 2 (Stx2) is the primary virulence factor produced by Shiga toxin-producing enterohemorrhagic Escherichia coli (STEC), which causes epidemic outbreaks of gastrointestinal sickness and potentially fatal sequela hemolytic uremic syndrome (HUS). Most studies on Stx2-induced apoptosis have been performed with holotoxins, but the mechanism of how the A and B subunits of Stx2 cause apoptosis in cells is not clear. Here, we found that Stx2 A-subunit (Stx2A) induced mitochondrial damage, PINK1/Parkin-dependent mitophagy and apoptosis in Caco-2 cells. PINK1/Parkin-dependent mitophagy caused by Stx2A reduced apoptosis by decreasing the accumulation of reactive oxidative species (ROS). Mechanistically, Stx2A interacts with Tom20 on mitochondria to initiate the translocation of Bax to mitochondria, leading to mitochondrial damage and apoptosis. Overall, these data suggested that Stx2A induces mitochondrial damage, mitophagy and apoptosis via the interaction of Tom20 in Caco-2 cells and that mitophagy caused by Stx2A ameliorates apoptosis by eliminating damaged mitochondria. These findings provide evidence for the potential use of Tom20 inhibition as an anti-Shiga toxin therapy.
Collapse
Affiliation(s)
- Jie Tang
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Xiaoxue Lu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Tao Zhang
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yuyang Feng
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qiaolin Xu
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Jing Li
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yuanzhi Lan
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Huaxing Luo
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Linghai Zeng
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yuanyuan Xiang
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yan Zhang
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Qian Li
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xuhu Mao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Bin Tang
- Department of Clinical Laboratory, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Jiangjin, Chongqing, 402260, China
| | - Dongzhu Zeng
- Department of General Surgery, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| |
Collapse
|
5
|
Hung SW, Li Y, Chen X, Chu KO, Zhao Y, Liu Y, Guo X, Man GCW, Wang CC. Green Tea Epigallocatechin-3-Gallate Regulates Autophagy in Male and Female Reproductive Cancer. Front Pharmacol 2022; 13:906746. [PMID: 35860020 PMCID: PMC9289441 DOI: 10.3389/fphar.2022.906746] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
With a rich abundance of natural polyphenols, green tea has become one of the most popular and healthiest nonalcoholic beverages being consumed worldwide. Epigallocatechin-3-gallate (EGCG) is the predominant catechin found in green tea, which has been shown to promote numerous health benefits, including metabolic regulation, antioxidant, anti-inflammatory, and anticancer. Clinical studies have also shown the inhibitory effects of EGCG on cancers of the male and female reproductive system, including ovarian, cervical, endometrial, breast, testicular, and prostate cancers. Autophagy is a natural, self-degradation process that serves important functions in both tumor suppression and tumor cell survival. Naturally derived products have the potential to be an effective and safe alternative in balancing autophagy and maintaining homeostasis during tumor development. Although EGCG has been shown to play a critical role in the suppression of multiple cancers, its role as autophagy modulator in cancers of the male and female reproductive system remains to be fully discussed. Herein, we aim to provide an overview of the current knowledge of EGCG in targeting autophagy and its related signaling mechanism in reproductive cancers. Effects of EGCG on regulating autophagy toward reproductive cancers as a single therapy or cotreatment with other chemotherapies will be reviewed and compared. Additionally, the underlying mechanisms and crosstalk of EGCG between autophagy and other cellular processes, such as reactive oxidative stress, ER stress, angiogenesis, and apoptosis, will be summarized. The present review will help to shed light on the significance of green tea as a potential therapeutic treatment for reproductive cancers through regulating autophagy.
Collapse
Affiliation(s)
- Sze Wan Hung
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yiran Li
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyan Chen
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Obstetrics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen University, Shenzhen, China
| | - Kai On Chu
- Department of Ophthalmology and Visual Sciences, Hong Kong Eye Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Yiwei Zhao
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yingyu Liu
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Obstetrics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen University, Shenzhen, China
| | - Xi Guo
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Gene Chi-Wai Man
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Orthopaedics and Traumatology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- *Correspondence: Gene Chi-Wai Man, ; Chi Chiu Wang,
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; and Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- *Correspondence: Gene Chi-Wai Man, ; Chi Chiu Wang,
| |
Collapse
|
6
|
Tao L, Liu K, Li J, Zhang Y, Cui L, Dong J, Meng X, Zhu G, Wang H. Selenomethionine alleviates NF-κB-mediated inflammation in bovine mammary epithelial cells induced by Escherichia coli by enhancing autophagy. Int Immunopharmacol 2022; 110:108989. [PMID: 35785729 DOI: 10.1016/j.intimp.2022.108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/29/2022] [Accepted: 06/19/2022] [Indexed: 11/28/2022]
Abstract
Autophagy is crucial for the maintenance of homeostasis under stimuli related to infection. Selenium (Se) plays variable roles in defence against infection and Selenomethionine (Se-Met) is a common Se supplementation. This study aimed to understand whether Se-Met could regulate the nuclear factor-kappa B (NF-κB) signaling pathway through autophagy. Mammary alveolar cell-T (MAC-T) was challenged with Escherichia coli (E. coli). Western blotting and real-time quantitative PCR (RT-qPCR) were used to detect the protein expression and mRNA expression of cytokines. Immunofluorescence assays were performed to observe the expression of intracellular LC3. The results showed that E. coli inhibited autophagy by decreasing the LC3-Ⅱ protein levels, and the Atg5 and Beclin1 protein levels were increased after 4 h. Infection also decreased the number of LC3 puncta. E. coli increased the phosphorylation of p65 and IκBα protein. Concomitantly, the levels of interleukin (IL)-1β, IL-6, IL-8 and tumour necrosis factor (TNF)-α mRNA increased at 3 and 4 h post-infection. We further explored the regulatory role of autophagy on NF-κB-mediated inflammation with autophagy modulators and shAtg5. The results indicated that the autophagy activator reduced the phosphorylation of p65 and IκBα and the mRNA expression of IL-1β, IL-6, IL-8 and TNF-α. Additionally, activating autophagy weakened the adhesion to MAC-T of E. coli. Autophagy inhibitors exacerbated NF-κB-mediated inflammation and strengthened the adhesion of E. coli to cells. We then examined the effects of Se-Met on NF-κB-mediated inflammation through autophagy. The data suggested that Se-Met enhanced LC3-II expression, inhibited the E. coli-induced phosphorylation of p65 and IκBα, and suppressed the adhesion ability of E. coli to MAC-T and that the effects of Se-Met in attenuating NF-κB-mediated inflammation were partially blocked by an autophagy inhibitor. In summary, Se-Met alleviated NF-κB-mediated inflammation induced by E. coli by enhancing autophagy in bovine mammary epithelial cells.
Collapse
Affiliation(s)
- Luyao Tao
- College of Veterinary Medicine, Yangzhou University; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, 225009 Jiangsu, China.
| | - Kangjun Liu
- College of Veterinary Medicine, Yangzhou University; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, 225009 Jiangsu, China.
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, 225009 Jiangsu, China.
| | - Yihui Zhang
- College of Veterinary Medicine, Yangzhou University; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China; Experimental Farm of Yangzhou University, Yangzhou, 225009 Jiangsu, China.
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, 225009 Jiangsu, China.
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou University; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, 225009 Jiangsu, China.
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, 225009 Jiangsu, China.
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, 225009 Jiangsu, China.
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, 225009 Jiangsu, China.
| |
Collapse
|
7
|
Abstract
Assessing the threat posed by bacterial samples is fundamentally important to safeguarding human health. Whole-genome sequence analysis of bacteria provides a route to achieving this goal. However, this approach is fundamentally constrained by the scope, the diversity, and our understanding of the bacterial genome sequences that are available for devising threat assessment schemes. For example, genome-based strategies offer limited utility for assessing the threat associated with pathogens that exploit novel virulence mechanisms or are recently emergent. To address these limitations, we developed PathEngine, a machine learning strategy that features the use of phenotypic hallmarks of pathogenesis to assess pathogenic threat. PathEngine successfully classified potential pathogenic threats with high accuracy and thereby establishes a phenotype-based, sequence-independent pipeline for threat assessment. Bacterial pathogen identification, which is critical for human health, has historically relied on culturing organisms from clinical specimens. More recently, the application of machine learning (ML) to whole-genome sequences (WGSs) has facilitated pathogen identification. However, relying solely on genetic information to identify emerging or new pathogens is fundamentally constrained, especially if novel virulence factors exist. In addition, even WGSs with ML pipelines are unable to discern phenotypes associated with cryptic genetic loci linked to virulence. Here, we set out to determine if ML using phenotypic hallmarks of pathogenesis could assess potential pathogenic threat without using any sequence-based analysis. This approach successfully classified potential pathogenetic threat associated with previously machine-observed and unobserved bacteria with 99% and 85% accuracy, respectively. This work establishes a phenotype-based pipeline for potential pathogenic threat assessment, which we term PathEngine, and offers strategies for the identification of bacterial pathogens.
Collapse
|
8
|
Oloomi M, Moazzezy N, Bouzari S. Protein kinase signaling by Shiga Toxin subunits. JOURNAL OF MEDICAL SIGNALS & SENSORS 2022; 12:57-63. [PMID: 35265466 PMCID: PMC8804587 DOI: 10.4103/jmss.jmss_79_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/24/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022]
Abstract
Background: Escherichia coli produces Shiga toxin (Stx), a pentamer composed of one A subunit and four B subunits. The B subunit of Stx (StxB) mediated the attachment of the holotoxin to the cell surface while the A subunit (StxA) has N-glycosidase activity, resulting in protein synthesis and cell death inhibition. Stx-induced cytotoxicity and apoptosis have been observed in various cell lines, although the signaling effectors are not precisely defined. Activated by protein kinases (PK), the signaling pathway in human tumors plays an oncogenic role. Tumor proliferation, survival, and metastasis are promoted by kinase receptors. In this regard, PK regulatory effects on the cellular constituents of the tumor microenvironment can affect immunosuppressive purposes. Methods: In this study, kinase inhibitors were used to evaluate the influence of Stx and its subunits on HeLa and Vero cells. Selective inhibitors of protein kinase C (PKC), CaM kinase (calmodulin kinase), protein kinase A (PKA), and protein kinase G (PKG) were used to compare the signaling activity of each subunit. Results: The ribotoxic activity in the target cells will lead to rapid protein synthesis inhibition and cell death in the mammalian host. The expression of Bcl2 family members was also assessed. Protein kinase signaling by Stx and its A and B subunits was induced by PKA, PKG, and PKC in HeLa cells. CaM kinase induction was significant in Vero cells. StxB significantly induced the pro-apoptotic Bax signaling factor in HeLa cells. Conclusion: The assessment of different signaling pathways utilized by Stx and its subunits could help in a better understanding of various cell death responses. The use of inhibitors can block cell damage and disease progression and create therapeutic compounds for targeted cancer therapy. Inhibition of these pathways is the primary clinical goal.
Collapse
|
9
|
Shiga Toxins as Antitumor Tools. Toxins (Basel) 2021; 13:toxins13100690. [PMID: 34678982 PMCID: PMC8538568 DOI: 10.3390/toxins13100690] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/12/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Shiga toxins (Stxs), also known as Shiga-like toxins (SLT) or verotoxins (VT), constitute a family of structurally and functionally related cytotoxic proteins produced by the enteric pathogens Shigella dysenteriae type 1 and Stx-producing Escherichia coli (STEC). Infection with these bacteria causes bloody diarrhea and other pathological manifestations that can lead to HUS (hemolytic and uremic syndrome). At the cellular level, Stxs bind to the cellular receptor Gb3 and inhibit protein synthesis by removing an adenine from the 28S rRNA. This triggers multiple cellular signaling pathways, including the ribotoxic stress response (RSR), unfolded protein response (UPR), autophagy and apoptosis. Stxs cause several pathologies of major public health concern, but their specific targeting of host cells and efficient delivery to the cytosol could potentially be exploited for biomedical purposes. Moreover, high levels of expression have been reported for the Stxs receptor, Gb3/CD77, in Burkitt's lymphoma (BL) cells and on various types of solid tumors. These properties have led to many attempts to develop Stxs as tools for biomedical applications, such as cancer treatment or imaging, and several engineered Stxs are currently being tested. We provide here an overview of these studies.
Collapse
|
10
|
Havira MS, Ta A, Kumari P, Wang C, Russo AJ, Ruan J, Rathinam VA, Vanaja SK. Shiga toxin suppresses noncanonical inflammasome responses to cytosolic LPS. Sci Immunol 2020; 5:5/53/eabc0217. [PMID: 33246946 DOI: 10.1126/sciimmunol.abc0217] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/02/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022]
Abstract
Inflammatory caspase-dependent cytosolic lipopolysaccharide (LPS) sensing is a critical arm of host defense against bacteria. How pathogens overcome this pathway to establish infections is largely unknown. Enterohemorrhagic Escherichia coli (EHEC) is a clinically important human pathogen causing hemorrhagic colitis and hemolytic uremic syndrome. We found that a bacteriophage-encoded virulence factor of EHEC, Shiga toxin (Stx), suppresses caspase-11-mediated activation of the cytosolic LPS sensing pathway. Stx was essential and sufficient to inhibit pyroptosis and interleukin-1 (IL-1) responses elicited specifically by cytosolic LPS. The catalytic activity of Stx was necessary for suppression of inflammasome responses. Stx impairment of inflammasome responses to cytosolic LPS occurs at the level of gasdermin D activation. Stx also suppresses inflammasome responses in vivo after LPS challenge and bacterial infection. Overall, this study assigns a previously undescribed inflammasome-subversive function to a well-known bacterial toxin, Stx, and reveals a new phage protein-based pathogen blockade of cytosolic immune surveillance.
Collapse
Affiliation(s)
- Morena S Havira
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Atri Ta
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Puja Kumari
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Chengliang Wang
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Ashley J Russo
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Jianbin Ruan
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Vijay A Rathinam
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Sivapriya Kailasan Vanaja
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA.
| |
Collapse
|
11
|
Molecular Biology of Escherichia Coli Shiga Toxins' Effects on Mammalian Cells. Toxins (Basel) 2020; 12:toxins12050345. [PMID: 32456125 PMCID: PMC7290813 DOI: 10.3390/toxins12050345] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Shiga toxins (Stxs), syn. Vero(cyto)toxins, are potent bacterial exotoxins and the principal virulence factor of enterohemorrhagic Escherichia coli (EHEC), a subset of Shiga toxin-producing E. coli (STEC). EHEC strains, e.g., strains of serovars O157:H7 and O104:H4, may cause individual cases as well as large outbreaks of life-threatening diseases in humans. Stxs primarily exert a ribotoxic activity in the eukaryotic target cells of the mammalian host resulting in rapid protein synthesis inhibition and cell death. Damage of endothelial cells in the kidneys and the central nervous system by Stxs is central in the pathogenesis of hemolytic uremic syndrome (HUS) in humans and edema disease in pigs. Probably even more important, the toxins also are capable of modulating a plethora of essential cellular functions, which eventually disturb intercellular communication. The review aims at providing a comprehensive overview of the current knowledge of the time course and the consecutive steps of Stx/cell interactions at the molecular level. Intervention measures deduced from an in-depth understanding of this molecular interplay may foster our basic understanding of cellular biology and microbial pathogenesis and pave the way to the creation of host-directed active compounds to mitigate the pathological conditions of STEC infections in the mammalian body.
Collapse
|
12
|
Verotoxin-1-Induced ER Stress Triggers Apoptotic or Survival Pathways in Burkitt Lymphoma Cells. Toxins (Basel) 2020; 12:toxins12050316. [PMID: 32403276 PMCID: PMC7291219 DOI: 10.3390/toxins12050316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023] Open
Abstract
Shiga toxins (Stxs) expressed by the enterohaemorrhagic Escherichia coli and enteric Shigella dysenteriae 1 pathogens are protein synthesis inhibitors. Stxs have been shown to induce apoptosis via the activation of extrinsic and intrinsic pathways in many cell types (epithelial, endothelial, and B cells) but the link between the protein synthesis inhibition and caspase activation is still unclear. Endoplasmic reticulum (ER) stress induced by the inhibition of protein synthesis may be this missing link. Here, we show that the treatment of Burkitt lymphoma (BL) cells with verotoxin-1 (VT-1 or Stx1) consistently induced the ER stress response by activation of IRE1 and ATF6-two ER stress sensors-followed by increased expression of the transcription factor C/REB homologous protein (CHOP). However, our data suggest that, although ER stress is systematically induced by VT-1 in BL cells, its role in cell death appears to be cell specific and can be the opposite: ER stress may enhance VT-1-induced apoptosis through CHOP or play a protective role through ER-phagy, depending on the cell line. Several engineered Stxs are currently under investigation as potential anti-cancer agents. Our results suggest that a better understanding of the signaling pathways induced by Stxs is needed before using them in the clinic.
Collapse
|
13
|
Yang S, Shao S, Huang B, Yang D, Zeng L, Gan Y, Long D, Chen J, Wang J. Tea polyphenols alleviate tri-ortho-cresyl phosphate-induced autophagy of mouse ovarian granulosa cells. ENVIRONMENTAL TOXICOLOGY 2020; 35:478-486. [PMID: 31793191 DOI: 10.1002/tox.22883] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/09/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Tri-ortho-cresyl phosphate (TOCP), a widely used plasticizer in industry, can cause female reproductive damage. Tea polyphenols (TPs) have multiple health effects via inhibiting oxidative stress. However, the reproductive protection of TPs in TOCP-induced female reproductive system damage is yet to be elucidated. In the study, TOCP inhibited cell viability and induced autophagy of mouse ovarian granulosa cells; while TPs could rescue the inhibition of viability and induction of autophagy. 3-MA, an autophagy inhibitor, could also rescue the inhibition of cell viability. These results indicated that TPs played a protective role in TOCP-induced autophagy. Furthermore, TPs could inhibit the induction of oxidative stress of the cells by TOCP, which implying that TPs might alleviate TOCP-induced autophagy via inhibiting oxidative stress. Furthermore, TPs could rescue TOCP-induced autophagy and oxidative stress in the mouse ovarian tissues. Taken together, these results indicated that TPs could protect TOCP-induced ovarian damage via inhibiting oxidative stress.
Collapse
Affiliation(s)
- Si Yang
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang, China
| | - Shuxin Shao
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Nursing School of Gongqing Institute of Science and Technology, Gongqing, China
| | - Boshu Huang
- School of Public Health, Nanchang University, Nanchang, China
| | - Dan Yang
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Lin Zeng
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Yu Gan
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
| | - Dingxin Long
- School of Public Health, University of South China, Hengyang, China
| | - Jiaxiang Chen
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang, China
| | - Jinglei Wang
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang, China
| |
Collapse
|
14
|
Role of Shiga Toxins in Cytotoxicity and Immunomodulatory Effects of Escherichia coli O157:H7 during Host-Bacterial Interactions in vitro. Toxins (Basel) 2020; 12:toxins12010048. [PMID: 31947665 PMCID: PMC7020462 DOI: 10.3390/toxins12010048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/19/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) strains are food-borne pathogens that can cause different clinical conditions. Shiga toxin 2a and/or 2c (Stx2)-producing E. coli O157:H7 is the serotype most frequently associated with severe human disease. In this work we analyzed the hypothesis that host cells participate in Stx2 production, cell damage, and inflammation during EHEC infection. With this aim, macrophage-differentiated THP-1 cells and the intestinal epithelial cell line HCT-8 were incubated with E. coli O157:H7. A time course analysis of cellular and bacterial survival, Stx2 production, stx2 transcription, and cytokine secretion were analyzed in both human cell lines. We demonstrated that macrophages are able to internalize and kill EHEC. Simultaneously, Stx2 produced by internalized bacteria played a major role in macrophage death. In contrast, HCT-8 cells were completely resistant to EHEC infection. Besides, macrophages and HCT-8 infected cells produce IL-1β and IL-8 inflammatory cytokines, respectively. At the same time, bacterial stx2-specific transcripts were detected only in macrophages after EHEC infection. The interplay between bacteria and host cells led to Stx production, triggering of inflammatory response and cell damage, all of which could contribute to a severe outcome after EHEC infections.
Collapse
|
15
|
Datan E, Salman S. Autophagic cell death in viral infection: Do TAM receptors play a role? TAM RECEPTORS IN HEALTH AND DISEASE 2020; 357:123-168. [DOI: 10.1016/bs.ircmb.2020.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
16
|
Patry C, Plotnicki K, Betzen C, Ortiz AP, Pappan KL, Satchell SC, Mathieson PW, Bielaszewska M, Karch H, Tönshoff B, Rafat N. Metabolomic analysis of Shiga toxin 2a-induced injury in conditionally immortalized glomerular endothelial cells. Metabolomics 2019; 15:131. [PMID: 31576432 DOI: 10.1007/s11306-019-1594-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/25/2019] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Shiga toxin 2a (Stx2a) induces hemolytic uremic syndrome (STEC HUS) by targeting glomerular endothelial cells (GEC). OBJECTIVES We investigated in a metabolomic analysis the response of a conditionally immortalized, stable glomerular endothelial cell line (ciGEnC) to Stx2a stimulation as a cell culture model for STEC HUS. METHODS CiGEnC were treated with tumor necrosis factor-(TNF)α, Stx2a or sequentially with TNFα and Stx2a. We performed a metabolomic high-throughput screening by lipid- or gas chromatography and subsequent mass spectrometry. Metabolite fold changes in stimulated ciGEnC compared to untreated cells were calculated. RESULTS 320 metabolites were identified and investigated. In response to TNFα + Stx2a, there was a predominant increase in intracellular free fatty acids and amino acids. Furthermore, lipid- and protein derived pro-inflammatory mediators, oxidative stress and an augmented intracellular energy turnover were increased in ciGEnC. Levels of most biochemicals related to carbohydrate metabolism remained unchanged. CONCLUSION Stimulation of ciGEnC with TNFα + Stx2a is associated with profound metabolic changes indicative of increased inflammation, oxidative stress and energy turnover.
Collapse
Affiliation(s)
- Christian Patry
- Department of Pediatrics I, University Children's Hospital Heidelberg, 69120, Heidelberg, Germany
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Kathrin Plotnicki
- Department of Pediatrics I, University Children's Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Christian Betzen
- Department of Pediatrics I, University Children's Hospital Heidelberg, 69120, Heidelberg, Germany
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Alba Perez Ortiz
- Department of Neonatology, University Children's Hospital Mannheim, University of Heidelberg, 68167, Mannheim, Germany
| | - Kirk L Pappan
- Metabolon, Inc., 617 Davis Drive, Suite 400, Durham, NC, 27713, USA
| | - Simon C Satchell
- Learning and Research Southmead Hospital Bristol, University of Bristol, Bristol, BS8 1TH, UK
| | - Peter W Mathieson
- The Principal's Office, University of Edinburgh, Edinburgh, EH8 9YL, UK
| | - Martina Bielaszewska
- Institute for Hygiene, University of Münster, 48149, Münster, Germany
- Reference Laboratory for E. coli and Shigella, National Public Health Institute, Srobarova 48, 10042, Prague, Czech Republic
| | - Helge Karch
- Institute for Hygiene, University of Münster, 48149, Münster, Germany
| | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Neysan Rafat
- Department of Pediatrics I, University Children's Hospital Heidelberg, 69120, Heidelberg, Germany.
- Department of Neonatology, University Children's Hospital Mannheim, University of Heidelberg, 68167, Mannheim, Germany.
- Department of Pharmaceutical Sciences, Bahá'í Institute of Higher Education (BIHE), Teheran, Iran.
| |
Collapse
|
17
|
Suppressing autophagy: a strategy by Escherichia coli O157:H7 for its survival on host epithelial cells. Cell Death Dis 2018; 9:64. [PMID: 29352117 PMCID: PMC5833748 DOI: 10.1038/s41419-017-0095-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 11/09/2022]
|
18
|
Escherichia coli O157:H7 suppresses host autophagy and promotes epithelial adhesion via Tir-mediated and cAMP-independent activation of protein kinase A. Cell Death Discov 2017; 3:17055. [PMID: 28975041 PMCID: PMC5624281 DOI: 10.1038/cddiscovery.2017.55] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/07/2017] [Indexed: 11/18/2022] Open
Abstract
Autophagy is a pivotal innate immune response that not only degrades cytosolic components, but also serves as one of the critical antimicrobial mechanisms eliminating intracellular pathogens. However, its role in host defense against extracellular pathogens is largely unknown. Here we showed that E. coli O157:H7 altered autophagy to evade host defense and facilitate adhesion. Enhancing host cell autophagy with tumor necrosis factor (TNF), host starvation or rapamycin reduced the adherence of E. coli O157:H7 to HT-29 cells. As a key regulator of autophagy, protein kinase A (PKA) was activated by E. coli O157:H7 infection. PKA inhibition by H89 abrogated E. coli O157:H7 inhibition of autophagy and prevented bacterial epithelial adhesion. Thus, PKA had a mediatory role in blocking autophagy and E. coli O157:H7 epithelial adhesion. Furthermore, deletion of translocated intimin receptor (tir) prevented PKA activation, whereas ectopic tir expression in a Δtir mutant strain restored its ability to activate PKA and inhibited autophagy in host cells. This indicated that Tir and PKA played pivotal roles in manipulating host autophagy during infection. Consistent with autophagy inhibition, E. coli O157:H7 infection inhibited endoplasmic reticulum (ER) stress in HT-29 cells, which was reversed by TNF, starvation, or H89 treatment. Additionally, E. coli O157:H7-induced PKA activation suppressed extracellular signal-regulated kinase 1/2 (ERK1/2) activation and enhanced phosphatidylinositol 3-kinase/Akt (PI3K/Akt) signaling, thereby repressing autophagic signaling. Conversely, PKA inhibition prevented downregulation of ERK1/2 signaling due to E. coli O157:H7 infection. In summary, E. coli O157:H7 inhibited host autophagy via Tir-mediated PKA activation that favored bacterial persistence on intestinal epithelial cell surfaces.
Collapse
|
19
|
Castrejón-Jiménez NS, Leyva-Paredes K, Hernández-González JC, Luna-Herrera J, García-Pérez BE. The role of autophagy in bacterial infections. Biosci Trends 2016; 9:149-59. [PMID: 26166368 DOI: 10.5582/bst.2015.01035] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Autophagy is a highly conserved catabolic process for the degradation of cytosolic components including damaged organelles, protein aggregates, and intracellular bacteria through a lysosome-dependent pathway. Autophagy can be induced in response to stress conditions. Furthermore, autophagy has been described as involved in both innate and adaptive immune responses, and several studies have shown that certain microorganisms can be eliminated by the autophagic route in a process known as xenophagy. However, several pathogens have developed different strategies to evade or exploit autophagy to ensure their survival. Here, we review the role of autophagy in response to bacterial pathogens.
Collapse
Affiliation(s)
- Nayeli Shantal Castrejón-Jiménez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N
| | | | | | | | | |
Collapse
|
20
|
Shiga Toxins as Multi-Functional Proteins: Induction of Host Cellular Stress Responses, Role in Pathogenesis and Therapeutic Applications. Toxins (Basel) 2016; 8:toxins8030077. [PMID: 26999205 PMCID: PMC4810222 DOI: 10.3390/toxins8030077] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 12/17/2022] Open
Abstract
Shiga toxins (Stxs) produced by Shiga toxin-producing bacteria Shigella dysenteriae serotype 1 and select serotypes of Escherichia coli are primary virulence factors in the pathogenesis of hemorrhagic colitis progressing to potentially fatal systemic complications, such as hemolytic uremic syndrome and central nervous system abnormalities. Current therapeutic options to treat patients infected with toxin-producing bacteria are limited. The structures of Stxs, toxin-receptor binding, intracellular transport and the mode of action of the toxins have been well defined. However, in the last decade, numerous studies have demonstrated that in addition to being potent protein synthesis inhibitors, Stxs are also multifunctional proteins capable of activating multiple cell stress signaling pathways, which may result in apoptosis, autophagy or activation of the innate immune response. Here, we briefly present the current understanding of Stx-activated signaling pathways and provide a concise review of therapeutic applications to target tumors by engineering the toxins.
Collapse
|
21
|
Tang B, Li Q, Zhao XH, Wang HG, Li N, Fang Y, Wang K, Jia YP, Zhu P, Gu J, Li JX, Jiao YJ, Tong WD, Wang M, Zou QM, Zhu FC, Mao XH. Shiga toxins induce autophagic cell death in intestinal epithelial cells via the endoplasmic reticulum stress pathway. Autophagy 2016; 11:344-54. [PMID: 25831014 DOI: 10.1080/15548627.2015.1023682] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Shiga toxins (Stxs) are a family of cytotoxic proteins that lead to the development of bloody diarrhea, hemolytic-uremic syndrome, and central nervous system complications caused by bacteria such as S. dysenteriae, E. coli O157:H7 and E. coli O104:H4. Increasing evidence indicates that macroautophagy (autophagy) is a key factor in the cell death induced by Stxs. However, the associated mechanisms are not yet clear. This study showed that Stx2 induces autophagic cell death in Caco-2 cells, a cultured line model of human enterocytes. Inhibition of autophagy using pharmacological inhibitors, such as 3-methyladenine and bafilomycin A1, or silencing of the autophagy genes ATG12 or BECN1 decreased the Stx2-induced death in Caco-2 cells. Furthermore, there were numerous instances of dilated endoplasmic reticulum (ER) in the Stx2-treated Caco-2 cells, and repression of ER stress due to the depletion of viable candidates of DDIT3 and NUPR1. These processes led to Stx2-induced autophagy and cell death. Finally, the data showed that the pseudokinase TRIB3-mediated DDIT3 expression and AKT1 dephosphorylation upon ER stress were triggered by Stx2. Thus, the data indicate that Stx2 causes autophagic cell death via the ER stress pathway in intestinal epithelial cells.
Collapse
Key Words
- 3-MA, 3-methyladenine
- AO, acridine orange
- ATF4, activating transcription factor 4
- ATG, autophagy-related
- BECN1, Beclin 1, autophagy-related
- Baf A1, bafilomycin A1
- CASP3, caspase 3, apoptosis-related cysteine peptidase
- DDIT3, DNA-damage-inducible transcript 3
- E. coli O157:H7
- EHEC O157, Escherichia coli O157:H7
- ER stress
- FACS, fluorescence activated cell sorting
- MAP1LC3B, microtubule-associated protein 1 light chain 3 beta
- MAPK, mitogen-activated protein kinase
- MDC, monodansylcadaverine
- NUPR1, nuclear protein, transcriptional regulator, 1
- PARP1, poly (ADP-ribose) polymerase 1
- PBS, phosphate-buffered saline
- PI, propidium iodide
- Shiga toxins
- Stxs, Shiga toxins
- TEM, transmission electron microscopy
- TRIB3, tribbles pseudokinase 3
- Thap, thapsigargin
- WT, wild type
- Z-VAD, Z-VAD-FMK
- autophagic cell death
- autophagy
- Δ, knockout
Collapse
Affiliation(s)
- Bin Tang
- a National Engineering Research Center for Immunobiological Products; Department of Microbiology and Biochemical Pharmacy; College of Pharmacy; Third Military Medical University ; Chongqing , China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Shiga Toxins Activate the NLRP3 Inflammasome Pathway To Promote Both Production of the Proinflammatory Cytokine Interleukin-1β and Apoptotic Cell Death. Infect Immun 2015; 84:172-86. [PMID: 26502906 DOI: 10.1128/iai.01095-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/16/2015] [Indexed: 02/06/2023] Open
Abstract
Shiga toxin (Stx)-mediated immune responses, including the production of the proinflammatory cytokines tumor necrosis-α (TNF-α) and interleukin-1β (IL-1β), may exacerbate vascular damage and accelerate lethality. However, the immune signaling pathway activated in response to Stx is not well understood. Here, we demonstrate that enzymatically active Stx, which leads to ribotoxic stress, triggers NLRP3 inflammasome-dependent caspase-1 activation and IL-1β secretion in differentiated macrophage-like THP-1 (D-THP-1) cells. The treatment of cells with a chemical inhibitor of glycosphingolipid biosynthesis, which suppresses the expression of the Stx receptor globotriaosylceramide and subsequent endocytosis of the toxin, substantially blocked activation of the NLRP3 inflammasome and processing of caspase-1 and IL-1β. Processing and release of both caspase-1 and IL-1β were significantly reduced or abolished in Stx-intoxicated D-THP-1 cells in which the expression of NLRP3 or ASC was stably knocked down. Furthermore, Stx mediated the activation of caspases involved in apoptosis in an NLRP3- or ASC-dependent manner. In Stx-intoxicated cells, the NLRP3 inflammasome triggered the activation of caspase-8/3, leading to the initiation of apoptosis, in addition to caspase-1-dependent pyroptotic cell death. Taken together, these results suggest that Stxs trigger the NLRP3 inflammasome pathway to release proinflammatory IL-1β as well as to promote apoptotic cell death.
Collapse
|
23
|
Xu J, Fotouhi M, McPherson PS. Phosphorylation of the exchange factor DENND3 by ULK in response to starvation activates Rab12 and induces autophagy. EMBO Rep 2015; 16:709-18. [PMID: 25925668 DOI: 10.15252/embr.201440006] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/31/2015] [Indexed: 01/21/2023] Open
Abstract
Unc-51-like kinases (ULKs) are the most upstream kinases in the initiation of autophagy, yet the molecular mechanisms underlying their function are poorly understood. We report a new role for ULK in the induction of autophagy. ULK-mediated phosphorylation of the guanine nucleotide exchange factor DENND3 at serines 554 and 572 upregulates its GEF activity toward the small GTPase Rab12. Through binding to LC3 and associating with LC3-positive autophagosomes, active Rab12 facilitates autophagosome trafficking, thus establishing a crucial role for the ULK/DENND3/Rab12 axis in starvation-induced autophagy.
Collapse
Affiliation(s)
- Jie Xu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Maryam Fotouhi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
24
|
Menge C, Loos D, Bridger PS, Barth S, Werling D, Baljer G. Bovine macrophages sense Escherichia coli Shiga toxin 1. Innate Immun 2015; 21:655-64. [PMID: 25907071 DOI: 10.1177/1753425915581215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 03/10/2015] [Indexed: 11/17/2022] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) infections in cattle are asymptomatic; however, Stx impairs the initiation of an adaptive immune response by targeting bovine peripheral and intraepithelial lymphocytes. As presumptive bovine mucosal macrophages (Mø) are also sensitive to Stx, STEC may even exert immune modulatory effects by acting on steps preceding lymphocyte activation at the Mø level. We therefore studied the expression of the Stx receptor (CD77), cellular phenotype and functions after incubation of primary bovine monocyte-derived Mø with purified Stx1. A significant portion of bovine Mø expressed CD77 on their surface, with the recombinant B-subunit of Stx1 binding to >50% of the cells. Stx1 down-regulated significantly surface expression of CD14, CD172a and co-stimulatory molecules CD80 and CD86 within 4 h of incubation, while MHC-II expression remained unaffected. Furthermore, incubation of Mø with Stx1 increased significantly numbers of transcripts for IL-4, IL-6, IL-10, IFN-γ, TNF-α, IL-8 and GRO-α but not for IL-12, TGF-β, MCP-1 and RANTES. In the course of bovine STEC infections, Stx1 appears to induce in Mø a mixed response pattern reminiscent of regulatory Mø, which may amplify the direct suppressive effect of the toxin on lymphocytes.
Collapse
Affiliation(s)
- Christian Menge
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig University, Gießen, Germany
| | - Daniela Loos
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig University, Gießen, Germany
| | - Philip S Bridger
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig University, Gießen, Germany
| | - Stefanie Barth
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig University, Gießen, Germany
| | - Dirk Werling
- Royal Veterinary College, Department of Pathology and Pathogen Biology, Hatfield, UK
| | - Georg Baljer
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig University, Gießen, Germany
| |
Collapse
|
25
|
DAP1, a negative regulator of autophagy, controls SubAB-mediated apoptosis and autophagy. Infect Immun 2014; 82:4899-908. [PMID: 25183729 DOI: 10.1128/iai.02213-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Autophagy and apoptosis play critical roles in cellular homeostasis and survival. Subtilase cytotoxin (SubAB), produced by non-O157 type Shiga-toxigenic Escherichia coli (STEC), is an important virulence factor in disease. SubAB, a protease, cleaves a specific site on the endoplasmic reticulum (ER) chaperone protein BiP/GRP78, leading to ER stress, and induces apoptosis. Here we report that in HeLa cells, activation of a PERK (RNA-dependent protein kinase [PKR]-like ER kinase)-eIF2α (α subunit of eukaryotic initiation factor 2)-dependent pathway by SubAB-mediated BiP cleavage negatively regulates autophagy and induces apoptosis through death-associated protein 1 (DAP1). We found that SubAB treatment decreased the amounts of autophagy markers LC3-II and p62 as well as those of mTOR (mammalian target of rapamycin) signaling proteins ULK1 and S6K. These proteins showed increased expression levels in PERK knockdown or DAP1 knockdown cells. In addition, depletion of DAP1 in HeLa cells dramatically inhibited the SubAB-stimulated apoptotic pathway: SubAB-induced Bax/Bak conformational changes, Bax/Bak oligomerization, cytochrome c release, activation of caspases, and poly(ADP-ribose) polymerase (PARP) cleavage. These results show that DAP1 is a key regulator, through PERK-eIF2α-dependent pathways, of the induction of apoptosis and reduction of autophagy by SubAB.
Collapse
|
26
|
Long DX, Hu D, Wang P, Wu YJ. Induction of autophagy in human neuroblastoma SH-SY5Y cells by tri-ortho-cresyl phosphate. Mol Cell Biochem 2014; 396:33-40. [PMID: 24990248 DOI: 10.1007/s11010-014-2139-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/17/2014] [Indexed: 01/24/2023]
Abstract
Tri-ortho-cresyl phosphate (TOCP) is an organophosphorus ester and has been widely used in industry. It is found that TOCP induced delayed neurotoxicity in humans and sensitive animal species. However, the mechanism of TOCP-induced neural cytotoxicity remains unclear. In this study, we studied whether autophagy is involved in TOCP-induced neural cytotoxicity in human neuroblastoma SH-SY5Y cells. We found that 0.5 and 1.0 mM TOCP treatment significantly increased the ectopic accumulation of microtubule-associated protein 1 light chain 3 (LC3)-immunopositive puncta, Beclin 1, and LC3-II/LC3-I levels in SH-SY5Y cells in a dose-dependent manner. Notably, by monodansylcadaverine staining method, we found abundant punctate fluorescent acidic vesicular organelles in TOCP-treated cells. Furthermore, ultrastructural observation under the transmission electron microscope indicated that the cytoplasm was occupied by autophagosomes in TOCP-treated SH-SY5Y cells. Thus, these results suggest that TOCP may induce autophagy, and autophagy may be involved in the development of TOCP-induced neural cytotoxicity.
Collapse
Affiliation(s)
- Ding-Xin Long
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxi Road, Beijing, 100101, People's Republic of China
| | | | | | | |
Collapse
|
27
|
Lee MS, Kim MH, Tesh VL. Shiga toxins expressed by human pathogenic bacteria induce immune responses in host cells. J Microbiol 2013; 51:724-30. [PMID: 24385347 DOI: 10.1007/s12275-013-3429-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/22/2013] [Indexed: 12/22/2022]
Abstract
Shiga toxins are a family of genetically and structurally related toxins that are the primary virulence factors produced by the bacterial pathogens Shigella dysenteriae serotype 1 and certain Escherichia coli strains. The toxins are multifunctional proteins inducing protein biosynthesis inhibition, ribotoxic and ER stress responses, apoptosis, autophagy, and inflammatory cytokine and chemokine production. The regulated induction of inflammatory responses is key to minimizing damage upon injury or pathogen-mediated infections, requiring the concerted activation of multiple signaling pathways to control cytokine/chemokine expression. Activation of host cell signaling cascades is essential for Shiga toxin-mediated proinflammatory responses and the contribution of the toxins to virulence. Many studies have been reported defining the inflammatory response to Shiga toxins in vivo and in vitro, including production and secretion of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), macrophage inflammatory protein-1α/β (MIP-1α/β), macrophage chemoattractant monocyte chemoattractant protein 1 (MCP-1), interleukin 8 (IL-8), interleukin 6 (IL-6), and Groβ. These cytokines and chemokines may contribute to damage in the colon and development of life threatening conditions such as acute renal failure (hemolytic uremic syndrome) and neurological abnormalities. In this review, we summarize recent findings in Shiga toxin-mediated inflammatory responses by different types of cells in vitro and in animal models. Signaling pathways involved in the inflammatory responses are briefly reviewed.
Collapse
Affiliation(s)
- Moo-Seung Lee
- Infection and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Republic of Korea,
| | | | | |
Collapse
|
28
|
Shiga toxin type 2dact displays increased binding to globotriaosylceramide in vitro and increased lethality in mice after activation by elastase. Toxins (Basel) 2013; 5:2074-92. [PMID: 24217397 PMCID: PMC3847715 DOI: 10.3390/toxins5112074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/31/2013] [Accepted: 11/04/2013] [Indexed: 01/24/2023] Open
Abstract
Shiga toxin type 2dact (Stx2dact), an Stx2 variant originally identified from Escherichia coli O91:H21 strain B2F1, displays increased cytotoxicity after activation by elastase present in intestinal mucus. Activation is a result of cleavage of two amino acids from the C-terminal tail of the A2 subunit. In this study, we hypothesized that activation leads to increased binding of toxin to its receptor on host cells both in vitro and in vivo. To test this theory, Stx2dact was treated with elastase or buffer alone and then each toxin was assessed for binding to purified globotriaosylceramide (Gb3) in an enzyme-linked immunosorbent assay, or cells in culture by immunofluorescence, or flow cytometry. Elastase- and buffer-treated Stx2dact were also evaluated for binding to mouse kidney tissue and for relative lethality in mice. We found that activated Stx2dact had a greater capacity to bind purified Gb3, cells in culture, and mouse kidney tissue and was more toxic for mice than was non-activated Stx2dact. Thus, one possible mechanism for the augmented cytotoxicity of Stx2dact after activation is its increased capacity to bind target cells, which, in turn, may cause greater lethality of elastase-treated toxin for mice and enhanced virulence for humans of E. coli strains that express Stx2dact.
Collapse
|
29
|
Greenfield LK, Jones NL. Modulation of autophagy by Helicobacter pylori and its role in gastric carcinogenesis. Trends Microbiol 2013; 21:602-12. [PMID: 24156875 DOI: 10.1016/j.tim.2013.09.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/09/2013] [Accepted: 09/12/2013] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori infection represents the strongest known risk factor for the development of gastric cancer. The vacuolating cytotoxin (VacA) plays a key role in disease pathogenesis by exerting pleiotrophic effects on the host. One effect of acute VacA exposure is the induction of autophagy. However, prolonged exposure to the toxin disrupts autophagy by preventing maturation of the autolysosome. Novel insights into the mechanism and consequences of this phenomenon have emerged, but many aspects remain largely unknown. Current evidence supports a scenario in which H. pylori-suppressed autophagy facilitates intracellular survival and persistence of the pathogen, while also generating an environment favoring carcinogenesis.
Collapse
Affiliation(s)
- Laura K Greenfield
- Departments of Paediatrics and Physiology, University of Toronto, Cell Biology Program, Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| | | |
Collapse
|
30
|
Jo EK, Yuk JM, Shin DM, Sasakawa C. Roles of autophagy in elimination of intracellular bacterial pathogens. Front Immunol 2013; 4:97. [PMID: 23653625 PMCID: PMC3644824 DOI: 10.3389/fimmu.2013.00097] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/11/2013] [Indexed: 12/22/2022] Open
Abstract
As a fundamental intracellular catabolic process, autophagy is important and required for the elimination of protein aggregates and damaged cytosolic organelles during a variety of stress conditions. Autophagy is now being recognized as an essential component of innate immunity; i.e., the recognition, selective targeting, and elimination of microbes. Because of its crucial roles in the innate immune system, therapeutic targeting of bacteria by means of autophagy activation may prove a useful strategy to combat intracellular infections. However, important questions remain, including which molecules are critical in bacterial targeting by autophagy, and which mechanisms are involved in autophagic clearance of intracellular microbes. In this review, we discuss the roles of antibacterial autophagy in intracellular bacterial infections (Mycobacteria, Salmonella, Shigella, Listeria, and Legionella) and present recent evidence in support of molecular mechanisms driving autophagy to target bacteria and eliminate invading pathogens.
Collapse
Affiliation(s)
- Eun-Kyeong Jo
- Department of Microbiology, College of Medicine, Chungnam National University Daejeon, South Korea ; Infection Signaling Network Research Center, School of Medicine, Chungnam National University Daejeon, South Korea
| | | | | | | |
Collapse
|
31
|
Calcium-dependent neutral cysteine protease and organophosphate-induced delayed neuropathy. Chem Biol Interact 2012; 200:114-8. [PMID: 23092810 DOI: 10.1016/j.cbi.2012.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 09/17/2012] [Accepted: 10/03/2012] [Indexed: 11/22/2022]
Abstract
A few organophosphorus compounds (OPs) can cause toxic neuropathy known as organophosphorus ester-induced delayed neuropathy (OPIDN). Although the incidents of OPIDN have been documented for over a century, its molecular mechanisms underlying the axonopathy are still unclear. Recently, increasing evidences suggest that proteases are closely associated with OPIDN. Herein, we have summarized the roles of calcium-dependent cysteine proteases (calpains) in OPIDN. The activation of calpains should be an early molecular event during the onset and development of OPIDN. However, the understanding of the mechanism underlying the disruption of Ca(2+) homeostasis and the activation of calpain by neurotoxic OPs is still limited. Therefore, a better understanding of molecular mechanisms that can prevent the disturbance in cellular Ca(2+) homeostasis can facilitate to establish the novel therapeutic strategies for OPIDN.
Collapse
|
32
|
Verma NK, Conroy J, Lyons PE, Coleman J, O'Sullivan MP, Kornfeld H, Kelleher D, Volkov Y. Autophagy induction by silver nanowires: a new aspect in the biocompatibility assessment of nanocomposite thin films. Toxicol Appl Pharmacol 2012; 264:451-61. [PMID: 22959926 DOI: 10.1016/j.taap.2012.08.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 01/07/2023]
Abstract
Nanomaterials and their enabled products have increasingly been attracting global attention due to their unique physicochemical properties. Among these emerging products, silver nanowire (AgNW)-based thin films are being developed for their promising applications in next generation nanoelectronics and nanodevices. However, serious concerns remain about possible health and safety risks they may pose. Here, we employed a multi-modal systematic biocompatibility assessment of thin films incorporating AgNW. To represent the possible routes of nanomaterial entry during occupational or environmental exposure, we employed four different cell lines of epithelial, endothelial, gastric, and phagocytic origin. Utilizing a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we observed a low level of cytotoxicity of AgNW, which was dependent on cell type, nanowire lengths, doses and incubation times. Similarly, no major cytotoxic effects were induced by AgNW-containing thin films, as detected by conventional cell viability and imaging assays. However, transmission electron microscopy and Western immunoblotting analysis revealed AgNW-induced autophasosome accumulation together with an upregulation of the autophagy marker protein LC3. Autophagy represents a crucial mechanism in maintaining cellular homeostasis, and our data for the first time demonstrate triggering of such mechanism by AgNW in human phagocytic cells. Finally, atomic force microscopy revealed significant changes in the topology of cells attaching and growing on these films as substrates. Our findings thus emphasize the necessity of comprehensive biohazard assessment of nanomaterials in modern applications and devices and a thorough analysis of risks associated with their possible contact with humans through occupational or environmental exposure.
Collapse
Affiliation(s)
- Navin K Verma
- Institute of Molecular Medicine, Trinity College Dublin, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Leyva-Illades D, Cherla RP, Lee MS, Tesh VL. Regulation of cytokine and chemokine expression by the ribotoxic stress response elicited by Shiga toxin type 1 in human macrophage-like THP-1 cells. Infect Immun 2012; 80:2109-20. [PMID: 22431646 PMCID: PMC3370584 DOI: 10.1128/iai.06025-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 03/04/2012] [Indexed: 01/20/2023] Open
Abstract
Shiga toxins (Stxs) are cytotoxins produced by the enteric pathogens Shigella dysenteriae serotype 1 and Shiga toxin-producing Escherichia coli (STEC). Stxs bind to a membrane glycolipid receptor, enter cells, and undergo retrograde transport to ultimately reach the cytosol, where the toxins exert their protein synthesis-inhibitory activity by depurination of a single adenine residue from the 28S rRNA component of eukaryotic ribosomes. The depurination reaction activates the ribotoxic stress response, leading to signaling via the mitogen-activated protein kinase (MAPK) pathways (Jun N-terminal protein kinase [JNK], p38, and extracellular signal-regulated kinase [ERK]) in human epithelial, endothelial, and myeloid cells. We previously showed that treatment of human macrophage-like THP-1 cells with Stxs resulted in increased cytokine and chemokine expression. In the present study, we show that individual inactivation of ERK, JNK, and p38 MAPKs using pharmacological inhibitors in the presence of Stx1 resulted in differential regulation of the cytokines tumor necrosis factor alpha and interleukin-1β (IL-1β) and chemokines IL-8, growth-regulated protein-β, macrophage inflammatory protein-1α (MIP-1α), and MIP-1β. THP-1 cells exposed to Stx1 upregulate the expression of select dual-specificity phosphatases (DUSPs), enzymes that dephosphorylate and inactivate MAPKs in mammalian cells. In this study, we confirmed DUSP1 protein production by THP-1 cells treated with Stx1. DUSP1 inhibition by triptolide showed that ERK and p38 phosphorylation is regulated by DUSP1, while JNK phosphorylation is not. Inhibition of p38 MAPK signaling blocked the ability of Stx1 to induce DUSP1 mRNA expression, suggesting that an autoregulatory signaling loop may be activated by Stxs. Thus, Stxs appear to be capable of eliciting signals which both activate and deactivate signaling for increased cytokine/chemokine production in human macrophage-like cells.
Collapse
Affiliation(s)
- Dinorah Leyva-Illades
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, Bryan, Texas, USA
| | | | | | | |
Collapse
|
34
|
Changes in beclin-1 and micro-calpain expression in tri-ortho-cresyl phosphate-induced delayed neuropathy. Toxicol Lett 2012; 210:276-84. [PMID: 22366639 DOI: 10.1016/j.toxlet.2012.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/10/2012] [Accepted: 02/13/2012] [Indexed: 11/23/2022]
Abstract
Tri-ortho-cresyl phosphate (TOCP) can cause toxic neuropathy known as organophosphate-induced delayed neuropathy (OPIDN), which is pathologically characterized by the swollen axon containing aggregations of neurofilaments, microtubules, and multivesicular vesicles. Autophagy is a self-degradative process which plays a housekeeping role in removing misfolded proteins and damaged organelles. The current study was designed to investigate the possible roles of autophagy in the pathogenesis of OPIDN. Adult hens were treated with a dose of 750mg/kg TOCP by gavage, or injected subcutaneously with 60mg/kg phenylmethanesulfonyl fluoride (PMSF) dissolved in DMSO 24h earlier and subsequently treated with TOCP, then sacrificed on the time-points of 0, 1, 5, 10, and 21 days after dosing of TOCP respectively. The levels of beclin-1 and μ-calpain in tibial nerves and spinal cords were determined by immunoblotting. The results showed that in both tissues TOCP increased the expression of μ-calpain while decreased that of beclin-1. When given before TOCP administration, PMSF pretreatment could protect hens against the delayed neuropathy. In the meantime, pretreatment with PMSF reduced calpain expression below basal and increased beclin-1 expression above basal in tibial nerve, whereas it simply returned calpain and beclin-1 expression to their basal levels in spinal cord. In conclusion, the intoxication of TOCP was associated with a significant change of beclin-1 in hen nervous tissues, which suggested that disruption of autophagy-regulated machinery in neurons might be involved in the pathogenesis of OPIDN.
Collapse
|