1
|
Sokolov V, Yakovleva T, Stolbov L, Penland RC, Boulton D, Parkinson J, Tang W. A mechanistic modeling platform of SGLT2 inhibition: Implications for type 1 diabetes. CPT Pharmacometrics Syst Pharmacol 2023; 12:831-841. [PMID: 36912425 PMCID: PMC10272306 DOI: 10.1002/psp4.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/01/2023] [Accepted: 02/24/2023] [Indexed: 03/14/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by abnormally high blood glucose concentrations due to dysfunction of the insulin-producing beta-cells in the pancreas. Dapagliflozin, an inhibitor of renal glucose reabsorption, has the potential to improve often suboptimal glycemic control in patients with T1DM through insulin-independent mechanisms and to partially mitigate the adverse effects associated with long-term insulin administration. In this work, we have adapted a systems pharmacology model of type 2 diabetes mellitus to describe the T1DM condition and characterize the effect of dapagliflozin on short- and long-term glycemic markers under various treatment scenarios. The developed platform serves as a quantitative tool for the in silico evaluation of the insulin-glucose-dapagliflozin crosstalk, optimization of the treatment regimens, and it can be further expanded to include additional therapies or other aspects of the disease.
Collapse
Affiliation(s)
| | | | | | - Robert C. Penland
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZenecaWalthamMassachusettsUSA
| | - David Boulton
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZenecaGaithersburgMarylandUSA
| | - Joanna Parkinson
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZenecaGothenburgSweden
| | - Weifeng Tang
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZenecaGaithersburgMarylandUSA
| |
Collapse
|
2
|
Bottinelli C, Cartiser N, Bévalot F, Fanton L, Guitton J. Is insulin intoxication still the perfect crime? Analysis and interpretation of postmortem insulin: review and perspectives in forensic toxicology. Crit Rev Toxicol 2020; 50:324-347. [PMID: 32458714 DOI: 10.1080/10408444.2020.1762540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Insulin is an anabolic hormone essential to glucose homeostasis. Insulin therapy, comprising human insulin (HI) or biosynthetic analogs, is critical for the management of type-1 diabetes and many of type-2 diabetes. However, medication error including non-adapted dose and confusion of insulin type, and misuse, such as massive self-administration or with criminal intent, can have lethal consequences. The aim of this paper is to review the state of knowledge of insulin analysis in biological samples and of the interpretation of insulin concentrations in the situation of insulin-related death investigations. Analytic aspects are considered, as quantification can be strongly impacted by methodology. Immunoanalysis, the historical technique, has a prominent role due to its sensitivity and ease of implementation. Recently, liquid chromatography coupled to mass spectrometry has provided indispensable selectivity in forensic contexts, distinguishing HI, analogs, and degradation products. We review the numerous antemortem (dose, associated pathology, injection-to-death interval, etc.) and postmortem parameters (in corpore degradation, in vitro degradation related to hemolysis, etc.) involved in the interpretation of insulin concentration. The interest and limitations of various alternative matrices providing a valuable complement to blood analysis are discussed. Vitreous humor is one of the most interesting, but the low diffusion of insulin in this matrix entails very low concentrations. Injection site analysis is relevant for identifying which type of insulin was administered. Muscle and renal cortex are matrices of particular interest, although additional studies are required. A table containing most case reports of fatal insulin poisoning published, with analytical data, completes this review. A logic diagram is proposed to highlight analytical issues and the main parameters to be considered for the interpretation of blood concentrations. Finally, it remains a challenge to provide reliable biological data and solid interpretation in the context of death related to insulin overdose. However, the progress of analytical tools is making the "perfect crime" ever more difficult to commit.
Collapse
Affiliation(s)
| | - Nathalie Cartiser
- Département de médecine légale, Hôpital Edouard-Herriot, Hospices Civils de Lyon, Lyon, France
| | | | - Laurent Fanton
- Département de médecine légale, Hôpital Edouard-Herriot, Hospices Civils de Lyon, Lyon, France.,Faculté de médecine Lyon Est, Institut de Médecine Légale, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Jérôme Guitton
- Laboratoire de Toxicologie, ISPB-Faculté de Pharmacie, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Hospices Civils de Lyon, Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalier Lyon-Sud, Pierre Bénite Cedex, France
| |
Collapse
|
3
|
McAuley SA, Ward GM, Horsburgh JC, Gooley JL, Jenkins AJ, MacIsaac RJ, O'Neal DN. Asymmetric changes in circulating insulin levels after an increase compared with a reduction in insulin pump basal rate in people with Type 1 diabetes. Diabet Med 2017; 34:1158-1164. [PMID: 28453877 DOI: 10.1111/dme.13371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 11/30/2022]
Abstract
AIMS To investigate circulating insulin profiles after a clinically relevant insulin pump basal rate increase vs a reduction, and the associated glucose responses. METHODS A cohort of 12 adults with Type 1 diabetes undertook this two-stage university hospital study using Accu-Chek pumps (Roche Diagnostics, Mannheim, Germany) and insulin aspart. An insulin basal rate change of 0.2 unit/h (increase in first stage, reduction in second stage) was implemented at ~09:30 h, after a single overnight basal rate (without bolus insulin), while fasting participants rested. Frequent venous samples for the assessment of plasma free insulin, glucose and cortisol were collected from 60 min before until 300 min after rate change. The primary outcome was time to steady-state insulin. RESULTS The 0.2-unit/h rate change represented a mean ± sd alteration of 23 ± 6%. After the rate increase, the median (interquartile range) times to 80% and 90% steady-state insulin were 170 (45) min and 197 (87) min, respectively. By contrast, after rate reduction, 80% steady-state insulin was not achieved. After the rate increase, mean ± se insulin levels increased by 4.3 ± 3.1%, 12.0 ± 2.9% and 25.6 ± 2.6% at 60, 120 and 300 min, respectively (with no significant difference until 180 min). After the rate reduction, insulin decreased by 8.3 ± 3.0% at 300 min (with no significant difference until 300 min). After rate reduction, glucose levels paradoxically declined by 17.4 ± 3.7% after 300 min; cortisol levels also fell during observation (P = 0.0003). CONCLUSIONS The time to circulating insulin change after a 0.2-unit/h basal rate change was substantial, and was greater after a reduction than after an increase. Counter-regulatory hormone circadian variation may affect glycaemia when implementing minor changes at low basal rates. Both direction of basal rate change, and time of day, warrant consideration when anticipating the clinical effects of basal rate changes.
Collapse
Affiliation(s)
- S A McAuley
- Department of Medicine, University of Melbourne, Melbourne, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Australia
| | - G M Ward
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Australia
- Department of Pathology, St Vincent's Hospital Melbourne, Melbourne, Australia
| | - J C Horsburgh
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - J L Gooley
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - A J Jenkins
- Department of Medicine, University of Melbourne, Melbourne, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Australia
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - R J MacIsaac
- Department of Medicine, University of Melbourne, Melbourne, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Australia
| | - D N O'Neal
- Department of Medicine, University of Melbourne, Melbourne, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Australia
| |
Collapse
|
4
|
Hermansen K, Bohl M, Schioldan AG. Insulin Aspart in the Management of Diabetes Mellitus: 15 Years of Clinical Experience. Drugs 2016; 76:41-74. [PMID: 26607485 PMCID: PMC4700065 DOI: 10.1007/s40265-015-0500-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Limiting excessive postprandial glucose excursions is an important component of good overall glycemic control in diabetes mellitus. Pharmacokinetic studies have shown that insulin aspart, which is structurally identical to regular human insulin except for the replacement of a single proline amino acid with an aspartic acid residue, has a more physiologic time-action profile (i.e., reaches a higher peak and reaches that peak sooner) than regular human insulin. As expected with this improved pharmacokinetic profile, insulin aspart demonstrates a greater glucose-lowering effect compared with regular human insulin. Numerous randomized controlled trials and a meta-analysis have also demonstrated improved postprandial control with insulin aspart compared with regular human insulin in patients with type 1 or type 2 diabetes, as well as efficacy and safety in children, pregnant patients, hospitalized patients, and patients using continuous subcutaneous insulin infusion. Studies have demonstrated that step-wise addition of insulin aspart is a viable intensification option for patients with type 2 diabetes failing on basal insulin. Insulin aspart has shown a good safety profile, with no evidence of increased receptor binding, mitogenicity, stimulation of anti-insulin antibodies, or hypoglycemia compared with regular human insulin. In one meta-analysis, there was evidence of a lower rate of nocturnal hypoglycemia compared with regular human insulin and, in a trial that specifically included patients with a history of recurrent hypoglycemia, a significantly lower rate of severe hypoglycemic episodes. The next generation of insulin aspart (faster-acting insulin aspart) is being developed with a view to further improving on these pharmacokinetic/pharmacodynamic properties.
Collapse
Affiliation(s)
- Kjeld Hermansen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Tage-Hansens Gade 2, 8000, Aarhus C, Denmark.
| | - Mette Bohl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Tage-Hansens Gade 2, 8000, Aarhus C, Denmark
| | - Anne Grethe Schioldan
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Tage-Hansens Gade 2, 8000, Aarhus C, Denmark
| |
Collapse
|
5
|
Petersen SB, Nielsen FS, Ribel U, Sturis J, Skyggebjerg O. Comparison of the pharmacokinetics of three concentrations of insulin aspart during continuous subcutaneous insulin infusion (CSII) in a pig model. ACTA ACUST UNITED AC 2012; 65:230-5. [PMID: 23278690 DOI: 10.1111/j.2042-7158.2012.01596.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 08/30/2012] [Indexed: 12/01/2022]
Abstract
OBJECTIVES The aim of the study was to investigate the pharmacokinetic properties of insulin aspart (IAsp) in three different concentrations given as a continuous subcutaneous insulin infusion (CSII). METHODS A randomized cross-over study was performed in pigs, where IAsp U200, U100 or U20 was given for 8 h with the same total dose. Six pigs were included and blood was sampled during the CSII and 3 h after. KEY FINDINGS The half-life (t(1/2) ) was 24.3 (range 17.3-41.3), 28.8 (range 19.6-54.3) and 23.6 (range 17.4-36.8) min for U200, U100 and U20, respectively. The area under the curve per dose (AUC/D) was determined to be 51.2 ± 19.5, 52.3 ± 12.5 and 51.6 ± 6.7 pm × min/kg for U200, U100 and U20, respectively. The steady state plasma concentration (C(ss) ) was 57.5 ± 27.1, 54.3 ± 10.3 and 55.1 ± 8.0 pm (mean ± SD) for U200, U100 and U20, respectively. Time to steady state (T(ss) ) was 110 ± 36, 98 ± 48 and 90 ± 27 min for U200, U100 and U20, respectively. CONCLUSIONS In conclusion, no significant difference was found in t(1/2) , AUC/D, C(ss) or T(ss) between the three IAsp concentrations when given at a basal rate in CSII.
Collapse
Affiliation(s)
- Signe Beck Petersen
- Insulin Pharmacology, Histology and Delivery, Novo Nordisk A/S, Måløv, Denmark
| | | | | | | | | |
Collapse
|