1
|
Ruan GT, Deng L, Xie HL, Shi JY, Liu XY, Zheng X, Chen Y, Lin SQ, Zhang HY, Liu CA, Ge YZ, Song MM, Hu CL, Zhang XW, Yang M, Hu W, Cong MH, Zhu LC, Wang KH, Shi HP. Systemic inflammation and insulin resistance-related indicator predicts poor outcome in patients with cancer cachexia. Cancer Metab 2024; 12:3. [PMID: 38273418 PMCID: PMC10809764 DOI: 10.1186/s40170-024-00332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The C-reactive protein (CRP)-triglyceride-glucose (TyG) index (CTI), which is a measure representing the level of inflammation and insulin resistance (IR), is related to poor cancer prognosis; however, the CTI has not been validated in patients with cancer cachexia. Thus, this study aimed to explore the potential clinical value of the CTI in patients with cancer cachexia. METHODS In this study, our prospective multicenter cohort included 1411 patients with cancer cachexia (mean age 59.45 ± 11.38, 63.3% male), which was a combined analysis of multiple cancer types. We randomly selected 30% of the patients for the internal test cohort (mean age 58.90 ± 11.22% 61.4% male). Additionally, we included 307 patients with cancer cachexia in the external validation cohort (mean age 61.16 ± 11, 58.5% male). Receiver operating characteristic (ROC) and calibration curves were performed to investigate the prognostic value of CTI. The prognostic value of the CTI was also investigated performing univariate and multivariate survival analyses. RESULTS The survival curve indicated that the CTI showed a significant prognostic value in the total, internal, and external validation cohorts. Prognostic ROC curves and calibration curves revealed that the CTI showed good consistency in predicting the survival of patients with cancer cachexia. Multivariate survival analysis showed that an elevated CTI increased the risk of death by 22% (total cohort, 95% confidence interval [CI] = 1.13-1.33), 34% (internal test cohort, 95%CI = 1.11-1.62), and 35% (external validation cohort, 95%CI = 1.14-1.59) for each increase in the standard deviation of CTI. High CTI reliably predicted shorter survival (total cohort, hazard ratio [HR] = 1.45, 95%CI = 1.22-1.71; internal test cohort, HR = 1.62, 95%CI = 1.12-2.36; external validation cohort, HR = 1.61, 95%CI = 1.15-2.26). High CTI significantly predicted shorter survival in different tumor subgroups, such as esophageal [HR = 2.11, 95%CI = 1.05-4.21] and colorectal cancer [HR = 2.29, 95%CI = 1.42-3.71]. The mediating effects analysis found that the mediating proportions of PGSGA, ECOG PS, and EORTC QLQ-C30 on the direct effects of CTI were 21.72%, 19.63%, and 11.61%, respectively We found that there was a significant positive correlation between the CTI and 90-day [HR = 2.48, 95%CI = 1.52-4.14] and 180-day mortality [HR = 1.77,95%CI = 1.24-2.55] in patients with cancer cachexia. CONCLUSION The CTI can predict the short- and long-term survival of patients with cancer cachexia and provide a useful prognostic tool for clinical practice.
Collapse
Affiliation(s)
- Guo-Tian Ruan
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Li Deng
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Hai-Lun Xie
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Jin-Yu Shi
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Xiao-Yue Liu
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Xin Zheng
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Yue Chen
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Shi-Qi Lin
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - He-Yang Zhang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Chen-An Liu
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Yi-Zhong Ge
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Meng-Meng Song
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Chun-Lei Hu
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Xiao-Wei Zhang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Ming Yang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China
| | - Wen Hu
- Clinical Nutrition Department, Sichuan University West China Hospital, Chengdu, 610041, Sichuan, China
| | - Ming-Hua Cong
- Comprehensive Oncology Department, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100038, China
| | - Li-Chen Zhu
- Department of Immunology, School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, China
| | - Kun-Hua Wang
- Yunnan University, Kunming, 650091, China
- General Surgery Clinical Medical Center of Yunnan Province, Kunming, 650032, China
| | - Han-Ping Shi
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China.
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, 10 Tie Yi Road, Beijing, 100053, China.
- Key Laboratory of Cancer FSMP for State Market Regulation, 10 Tie Yi Road, Beijing, 100038, China.
- Laboratory for Clinical Medicine, Capital Medical University, 10 Tie Yi Road, Beijing, 100038, China.
| |
Collapse
|
2
|
Microencapsulated islet transplantation alleviates podocyte injury in diabetic nephropathy via inhibiting Notch-1 signaling. Transpl Immunol 2022; 72:101579. [PMID: 35278650 DOI: 10.1016/j.trim.2022.101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/06/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Podocyte injury has a critical role in the pathogenesis of diabetic nephropathy (DN). Microencapsulated islet transplantation (MIT) is identified as an effective method for improving the clinical condition of DN. This study aimed to explore the role and mechanism of MIT in alleviating podocyte injury in DN. METHODS A mouse model of DN was constructed using streptozotocin (STZ). Mice were divided into 3 groups: the untreated diabetic nephropathy group (DN group), the microencapsulated islet transplantation-treated group (MIT group) and the control group. The mice were raised for 6 weeks posterior to islet transplantation to identify the role of MIT. Renal function and structure of glomerular filtration barrier were assessed by urine analysis, histopathological examination, and transmission electron microscopy. The expression levels of several proteins including Caspase-3, Bcl2/Bax, β-galactosidase, Ki-67, synaptopodin, WT-1, Jagged-1, Notch-1, and Hes-1 in renal tissues were identified via immunohistochemistry (IHC), immunofluorescence (IF), and western blotting techniques. RESULTS Compared with the DN group, the MIT group presented decreased levels of blood glucose, urinary albumin/creatinine, urea nitrogen, and serum creatinine while their body weight gradually increased. Glomerular injury in the MIT group was significantly better than that in the DN group. The MIT group indicated significantly decreased expression of Caspase-3, β-galactosidase, Bax/Bcl-2, and Ki-67 when compared with DN group, while the proportion of synaptopodin- and WT-1-positive cells was significantly increased (P < 0.05). The protein expression of Jagged-1, Notch-1, and Hes-1 in the glomerulus of the MIT group was significantly lower than that in the DN group (P < 0.05). CONCLUSION MIT alleviates podocyte injury induced by DN by inhibiting Notch-1 signaling. The identification of signaling pathways influencing podocyte restoration can help evaluate personalized medicine efficacy for patients treated with islet transplantation.
Collapse
|
3
|
Choi MY, Lim SJ, Kim MJ, Wee YM, Kwon H, Jung CH, Kim YH, Han DJ, Shin S. Islet isograft transplantation improves insulin sensitivity in a murine model of type 2 diabetes. Endocrine 2021; 72:660-671. [PMID: 33713015 DOI: 10.1007/s12020-021-02655-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/29/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE Type 2 diabetes develops in the presence of chronic overnutrition and genetic susceptibility, and causes insulin resistance and relative insulin deficiency. We hypothesized that islet transplantation can improve insulin sensitivity by modifying the mediators of insulin sensitivity in the pancreas, liver, muscle, and adipose tissues. METHODS Eight-week-old male mice were used as both recipients and donors in this study. To induce type 2 diabetes with partial β-cell failure, the mice were fed a high-fat diet for 4 weeks and then injected with low-dose streptozotocin. Approximately 400 islet cells from a donor mouse were injected into the renal capsule of a recipient mouse for islet transplantation. After 6 weeks following transplantation, the mediators of insulin sensitivity in the pancreas, liver, muscle, and adipose tissues were quantitatively compared between islet-transplanted and non-transplanted groups. RESULTS Intravenous glucose tolerance test showed that whereas the non-transplanted mice failed to show notable reductions in the glucose level, the islet-transplanted mice showed significant reductions in the serum glucose level to ~200 mg/dL at 6 weeks after islet transplantation. The islet-transplanted mice showed significantly higher Matsuda index and significantly lower HOMA-IR than did the non-transplanted mice, thus signifying improved insulin sensitivity. CONCLUSIONS Islet transplantation resulted in improvements in multiple indices of insulin sensitivity in a murine model of type 2 diabetes. Islet transplantation may be utilized to improve insulin sensitivity in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Monica Young Choi
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seong Jun Lim
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mi Joung Kim
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yu-Mee Wee
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyunwook Kwon
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chang Hee Jung
- Asan Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young Hoon Kim
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Duck Jong Han
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung Shin
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Huang C, Zhou Y, Huang H, Zheng Y, Kong L, Zhang H, Zhang Y, Wang H, Yang M, Xu X, Chen B. Islet Transplantation Reverses Podocyte Injury in Diabetic Nephropathy or Induced by High Glucose via Inhibiting RhoA/ROCK/NF- κB Signaling Pathway. J Diabetes Res 2021; 2021:9570405. [PMID: 33778085 PMCID: PMC7969114 DOI: 10.1155/2021/9570405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/26/2020] [Accepted: 12/21/2020] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE Abnormal signaling pathways play a crucial role in the mechanisms of podocyte injury in diabetic nephropathy. They also affect the recovery of podocytes after islet transplantation (IT). However, the specific signaling abnormalities that affect the therapeutic effect of IT on podocytes remains unclear. The purpose of this study was to assess whether the RhoA/ROCK/NF-κB signaling pathway is related to podocyte restoration after IT. METHODS A mouse model of diabetic nephropathy was established in vivo using streptozotocin. The mice were then subsequently reared for 4 weeks after islet transplantation to determine the effect of IT. Islet cells, CCG-1423 (RhoA Inhibitor), and fasudil (ROCK inhibitor) were then cocultured with podocytes in vitro to assess their protective effects on podocyte injury induced by high glucose (HG). Protein expression levels of RhoA, ROCK1, synaptopodin, IL-6, and MCP-1 in kidney tissues were then measured using immunohistochemistry and Western blotting techniques. RESULTS Islet transplantation reduced the expression levels of RhoA/ROCK1 and that of related inflammatory factors such as IL-6 and MCP-1 in the kidney podocytes of diabetic nephropathy. In the same line, islet cells reduced the expression of RhoA, ROCK1, and pp65 in immortalized podocytes under high glucose (35.0 mmol/L glucose) conditions. CONCLUSIONS Islet transplantation can reverse podocyte injury in diabetes nephropathy by inhibiting the RhoA/ROCK1 signaling pathway. Islet cells have a strong protective effect on podocytes treated with high glucose (35.0 mmol/L glucose). Discovery of signaling pathways affecting podocyte recovery is helpful for individualized efficacy evaluation and targeted therapy of islet transplantation patients.
Collapse
Affiliation(s)
- Chongchu Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Yi Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Hongjian Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Yushu Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Lijun Kong
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Hewei Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Yan Zhang
- Transplantation Centre, The First Affiliated Hospital of Wenzhou Medical University, 325015 Wenzhou, Zhejiang Province, China
| | - Hongwei Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Mei Yang
- Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, 325015 Wenzhou, Zhejiang Province, China
| | - Xiaona Xu
- Operating Room, The First Affiliated Hospital of Wenzhou Medical University, 325015 Wenzhou, Zhejiang Province, China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| |
Collapse
|
5
|
Rickels MR, Robertson RP. Pancreatic Islet Transplantation in Humans: Recent Progress and Future Directions. Endocr Rev 2019; 40:631-668. [PMID: 30541144 PMCID: PMC6424003 DOI: 10.1210/er.2018-00154] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022]
Abstract
Pancreatic islet transplantation has become an established approach to β-cell replacement therapy for the treatment of insulin-deficient diabetes. Recent progress in techniques for islet isolation, islet culture, and peritransplant management of the islet transplant recipient has resulted in substantial improvements in metabolic and safety outcomes for patients. For patients requiring total or subtotal pancreatectomy for benign disease of the pancreas, isolation of islets from the diseased pancreas with intrahepatic transplantation of autologous islets can prevent or ameliorate postsurgical diabetes, and for patients previously experiencing painful recurrent acute or chronic pancreatitis, quality of life is substantially improved. For patients with type 1 diabetes or insulin-deficient forms of pancreatogenic (type 3c) diabetes, isolation of islets from a deceased donor pancreas with intrahepatic transplantation of allogeneic islets can ameliorate problematic hypoglycemia, stabilize glycemic lability, and maintain on-target glycemic control, consequently with improved quality of life, and often without the requirement for insulin therapy. Because the metabolic benefits are dependent on the numbers of islets transplanted that survive engraftment, recipients of autoislets are limited to receive the number of islets isolated from their own pancreas, whereas recipients of alloislets may receive islets isolated from more than one donor pancreas. The development of alternative sources of islet cells for transplantation, whether from autologous, allogeneic, or xenogeneic tissues, is an active area of investigation that promises to expand access and indications for islet transplantation in the future treatment of diabetes.
Collapse
Affiliation(s)
- Michael R Rickels
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - R Paul Robertson
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
- Division of Endocrinology, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- Pacific Northwest Diabetes Research Institute, Seattle, Washington
| |
Collapse
|
6
|
Zhu X, Guo F, Tang H, Huang C, Xie G, Huang T, Li Y, Liu C, Wang H, Chen B. Islet Transplantation Attenuating Testicular Injury in Type 1 Diabetic Rats Is Associated with Suppression of Oxidative Stress and Inflammation via Nrf-2/HO-1 and NF- κB Pathways. J Diabetes Res 2019; 2019:8712492. [PMID: 31583254 PMCID: PMC6748178 DOI: 10.1155/2019/8712492] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/17/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
Testicular structural and functional impairment is a serious complication in male diabetes mellitus (DM) patients that leads to impaired fertility in adulthood. In contrast to other endocrine therapies, islet transplantation (IT) can effectively prevent and even reverse diabetic nephropathy and myocardial damage. However, whether IT can alleviate diabetes-induced testicular injury remains unclear. In this study, we sought to investigate the effect of IT on diabetes-induced testicular damage. A diabetic rat model was established by streptozotocin injection. DM, IT, and insulin treatment (INS) groups were compared after 4 weeks of respective treatment. We confirmed that IT could effectively attenuate diabetes-induced testicular damage and recover sperm counts more extensively compared with INS in diabetic rats. In addition, significantly higher levels of superoxide dismutase (SOD) activity and lower contents of malondialdehyde (MDA) were detected in the testes of the IT group versus diabetic rats. Mechanism studies revealed that IT significantly activates the expression of Nrf-2, HO-1, and NQO-1 and inhibits upregulation of the NF-κB expression in response to DM, while INS only exhibit slight impact on the protein expression. Therefore, we speculate that IT may prevent the progression of testicular damage by downregulating oxidative stress and inhibiting inflammation via Nrf-2/HO-1 and NF-κB pathways.
Collapse
Affiliation(s)
- Xiandong Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Feixia Guo
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325000, China
| | - Hengjie Tang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Chongchu Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Gangyin Xie
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Tingting Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Yonglin Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Chengyang Liu
- Department of Surgery, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongwei Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| |
Collapse
|
7
|
Gebe JA, Preisinger A, Gooden MD, D'Amico LA, Vernon RB. Local, Controlled Release In Vivo of Vascular Endothelial Growth Factor Within a Subcutaneous Scaffolded Islet Implant Reduces Early Islet Necrosis and Improves Performance of the Graft. Cell Transplant 2018; 27:531-541. [PMID: 29756517 PMCID: PMC6038045 DOI: 10.1177/0963689718754562] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Islet transplantation remains the only alternative to daily insulin therapy for control of type 1 diabetes (T1D) in humans. To avoid the drawbacks of intrahepatic islet transplantation, we are developing a scaffolded islet implant to transplant islets into nonhepatic sites. The implant test bed, sized for mice, consists of a limited (2-mm) thickness, large-pore polymeric sponge scaffold perforated with peripheral cavities that contain islets suspended in a collagen hydrogel. A central cavity in the scaffold holds a 2-mm diameter alginate sphere for controlled release of the angiogenic cytokine vascular endothelial growth factor ( VEGF). Host microvessels readily penetrate the scaffold and collagen gel to vascularize the islets. Here, we evaluate the performance of the implant in a subcutaneous (SC) graft site. Implants incorporating 500 syngeneic islets reversed streptozotocin-induced diabetes in mice approximately 30 d after SC placement. Controlled release of a modest quantity (20 ng) of VEGF within the implant significantly reduced the time to normoglycemia compared to control implants lacking VEGF. Investigation of underlying causes for this effect revealed that inclusion of 20 ng of VEGF in the implants significantly reduced central necrosis of islets 24 h after grafting and increased implant vascularization (measured 12 d after grafting). Collectively, our results demonstrate (1) that the scaffolded islet implant design can reverse diabetes in SC sites in the absence of prevascularization of the graft site and (2) that relatively low quantities of VEGF, delivered by controlled release within the implant, can be a useful approach to limit islet stress after grafting.
Collapse
Affiliation(s)
- John A Gebe
- 1 Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Anton Preisinger
- 1 Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Michel D Gooden
- 1 Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Leonard A D'Amico
- 1 Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.,2 Cancer Immunotherapy Trials, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Robert B Vernon
- 1 Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| |
Collapse
|
8
|
Rydzon B, Monson RS, Oberholzer J, Varady KA, Bellin MD, Danielson KK. Long term (4 years) improved insulin sensitivity following islet cell transplant in type 1 diabetes. Diabetes Metab Res Rev 2018; 34:10.1002/dmrr.2972. [PMID: 29230944 PMCID: PMC5873303 DOI: 10.1002/dmrr.2972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Impaired insulin sensitivity (IS) predicts complications and mortality in type 1 diabetes (T1D). Insulin sensitivity improves shortly after islet cell transplant for T1D, yet long-term changes in IS and associated factors such as patient characteristics, transplant factors, clinical management, and IS-related biomarkers are unknown. METHODS Up to 9 years (mean 4) of longitudinal data were available on 22 adults (18 female) with T1D who received 1 to 3 transplants in Phase 1/2 or 3 clinical trials (2004-2014). Metabolic testing posttransplant estimated IS by the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR; 111 observations) and the Simple Index of Insulin Sensitivity (SIis ; 95 observations). RESULTS Simple Index of Insulin Sensitivity significantly increased the first year posttransplant (P = .02), then stabilized (P = .39); HOMA-IR remained stable posttransplant (P = .92). Adjusting for age and BMI, higher SIis was associated with lower HbA1c following transplant (P = .03). Greater IS as measured by lower HOMA-IR and higher SIis was associated with lower fasting C-peptide (both P ≤ .04) and also with higher exenatide dose (both P ≤ .01). More islets transplanted were associated with higher SIis (P < .0001). Lower leptin at transplant predicted lower HOMA-IR and higher SIis after transplant, and lower bone marker receptor activator of nuclear factor kappa-B ligand predicted lower HOMA-IR (all P ≤ .01). CONCLUSIONS Insulin sensitivity measured by SIis was improved several years following transplant, while IS measured by HOMA-IR did not worsen. Higher exenatide dose, more islets transplanted, and diet and exercise (lowering leptin and receptor activator of nuclear factor kappa-B ligand) may improve IS, which may enhance glycaemic control and lower metabolic demand on transplanted islets. Long-term clamp studies are needed to confirm these results.
Collapse
Affiliation(s)
- Brett Rydzon
- Division of Transplant Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Division of Epidemiology & Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| | - Rebecca S. Monson
- Division of Transplant Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jose Oberholzer
- Division of Transplant Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Krista A. Varady
- Department of Kinesiology & Nutrition, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Melena D. Bellin
- Division of Pediatric Endocrinology, Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Kirstie K. Danielson
- Division of Transplant Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Division of Epidemiology & Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Zheng X, Huang B, Luo S, Yang D, Bao W, Li J, Yao B, Weng J, Yan J. A new model to estimate insulin resistance via clinical parameters in adults with type 1 diabetes. Diabetes Metab Res Rev 2017; 33. [PMID: 28029212 DOI: 10.1002/dmrr.2880] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 08/30/2016] [Accepted: 12/19/2016] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS Insulin resistance (IR) is a risk factor to assess the development of micro- and macro-vascular complications in type 1 diabetes (T1D). However, diabetes management in adults with T1D is limited by the difficulty of lacking simple and reliable methods to estimate insulin resistance. The aim of this study was to develop a new model to estimate IR via clinical parameters in adults with T1D. METHODS A total of 36 adults with adulthood onset T1D (n = 20) or childhood onset T1D (n = 16) were recruited by quota sampling. After an overnight insulin infusion to stabilize the blood glucose at 5.6 to 7.8 mmol/L, they underwent a 180-minute euglycemic-hyperinsulinemic clamp. Glucose disposal rate (GDR, mg kg-1 min-1 ) was calculated by data collected from the last 30 minutes during the test. Demographic factors (age, sex, and diabetes duration) and metabolic parameters (blood pressure, glycated hemoglobin A1c [HbA1c ], waist to hip ratio [WHR], and lipids) were collected to evaluate insulin resistance. Then, age at diabetes onset and clinical parameters were used to develop a model to estimate lnGDR by stepwise linear regression. RESULTS From the stepwise process, a best model to estimate insulin resistance was generated, including HbA1c , diastolic blood pressure, and WHR. Age at diabetes onset did not enter any of the models. We proposed the following new model to estimate IR as in GDR for adults with T1D: lnGDR = 4.964 - 0.121 × HbA1c (%) - 0.012 × diastolic blood pressure (mmHg) - 1.409 × WHR, (adjusted R2 = 0.616, P < .01). CONCLUSIONS/INTERPRETATION Insulin resistance in adults living with T1D can be estimated using routinely collected clinical parameters. This simple model provides a potential tool for estimating IR in large-scale epidemiological studies of adults with T1D regardless of age at onset.
Collapse
Affiliation(s)
- Xueying Zheng
- Department of Endocrinology and Metabolic Disease, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Bin Huang
- Department of Endocrinology and Metabolic Disease, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Sihui Luo
- Department of Endocrinology and Metabolic Disease, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Daizhi Yang
- Department of Endocrinology and Metabolic Disease, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Wei Bao
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Jin Li
- Department of Endocrinology and Metabolic Disease, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Bin Yao
- Department of Endocrinology and Metabolic Disease, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Jianping Weng
- Department of Endocrinology and Metabolic Disease, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Jinhua Yan
- Department of Endocrinology and Metabolic Disease, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| |
Collapse
|
10
|
Rickels MR, Kong SM, Fuller C, Dalton-Bakes C, Ferguson JF, Reilly MP, Teff KL, Naji A. Insulin sensitivity index in type 1 diabetes and following human islet transplantation: comparison of the minimal model to euglycemic clamp measures. Am J Physiol Endocrinol Metab 2014; 306:E1217-24. [PMID: 24691031 PMCID: PMC4025062 DOI: 10.1152/ajpendo.00667.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insulin sensitivity is impaired in type 1 diabetes (T1D) and may be enhanced by islet transplantation, an effect best explained by improved metabolic control. While the minimal model index of insulin sensitivity, SI, has been used in studies of T1D, it has not before been evaluated against gold-standard measures derived from the euglycemic clamp. We sought to determine how well minimal model SI derived from an insulin-modified frequently sampled intravenous glucose tolerance (FSIGT) test compared with total body and peripheral insulin sensitivity estimates derived from the hyperinsulinemic-euglycemic clamp in subjects with T1D and following islet transplantation. Twenty-one T1D subjects were evaluated, including a subgroup (n = 12) studied again after intrahepatic islet transplantation, with results compared with normal controls (n = 11 for the FSIGT). The transplant recipients received 9,648 ± 666 islet equivalents/kg with reduction in HbA1c from 7.1 ± 0.2 to 5.5 ± 0.1% (P < 0.01) and 10/12 were insulin independent. FSIGT-derived SI was reduced in T1D pre- compared with posttransplant and with normal [1.76 ± 0.45 vs. 4.21 ± 0.34 vs. 4.45 ± 0.81 × 10(-4)(μU/ml)(-1)·min(-1); P < 0.01 for both]. Similarly, clamp-derived total body, and by the isotopic dilution method with [6,6-(2)H2]glucose, peripheral insulin sensitivity increased in T1D from pre- to posttransplant (P < 0.05 for both). The predictive power (r(2)) between volume-corrected SIC and measures of total and peripheral insulin sensitivity was 0.66 and 0.70, respectively (P < 0.00001 for both). That the minimal model SIC is highly correlated to the clamp-derived measures indicates that the FSIGT is an appropriate methodology for the determination of insulin sensitivity in T1D and following islet transplantation.
Collapse
Affiliation(s)
- Michael R Rickels
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania;
| | - Stephanie M Kong
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carissa Fuller
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cornelia Dalton-Bakes
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jane F Ferguson
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Muredach P Reilly
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Karen L Teff
- Monell Chemical Senses Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Ali Naji
- Division of Transplantation, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Chhabra P, Brayman KL. Overcoming barriers in clinical islet transplantation: current limitations and future prospects. Curr Probl Surg 2014; 51:49-86. [PMID: 24411187 DOI: 10.1067/j.cpsurg.2013.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Rickels MR, Kong SM, Fuller C, Dalton-Bakes C, Ferguson JF, Reilly MP, Teff KL, Naji A. Improvement in insulin sensitivity after human islet transplantation for type 1 diabetes. J Clin Endocrinol Metab 2013; 98:E1780-5. [PMID: 24085506 PMCID: PMC3816271 DOI: 10.1210/jc.2013-1764] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Islet transplantation can improve metabolic control for type 1 diabetes (T1D), an effect anticipated to improve insulin sensitivity. However, current immunosuppression regimens containing tacrolimus and sirolimus have been shown to induce insulin resistance in rodents. OBJECTIVE The objective of the study was to evaluate the effect of islet transplantation on insulin sensitivity in T1D using euglycemic clamps with the isotopic dilution method to distinguish between effects at the liver and skeletal muscle. DESIGN, SETTING, AND PARTICIPANTS Twelve T1D subjects underwent evaluation in the Clinical and Translational Research Center before and between 6 and 7 months after the transplant and were compared with normal control subjects. INTERVENTION The intervention included intrahepatic islet transplantation according to a Clinical Islet Transplantation Consortium protocol under low-dose tacrolimus and sirolimus immunosuppression. MAIN OUTCOME MEASURES Total body (M/Δinsulin), hepatic (1/endogenous glucose production ·basal insulin) and peripheral [(Rd - endogenous glucose production)/Δinsulin] insulin sensitivity assessed by hyperinsulinemic (1 mU·kg(-1)·min(-1)) euglycemic (∼90 mg/dL) clamps with 6,6-(2)H2-glucose tracer infusion were measured. RESULTS Glycosylated hemoglobin was reduced in the transplant recipients from 7.0% ± 0.3% to 5.6% ± 0.1% (P < .01). There were increases in total (0.11 ± 0.01 to 0.15 ± 0.02 dL/min·kg per microunit per milliliter), hepatic [2.3 ± 0.1 to 3.7 ± 0.4 × 10(2) ([milligrams per kilogram per minute](-1)·(microunits per milliliter)(-1))], and peripheral (0.08 ± 0.01 to 0.12 ± 0.02 dL/min·kg per microunit per milliliter) insulin sensitivity from before to after transplantation (P < .05 for all). All insulin sensitivity measures were less than normal in T1D before (P ≤ .05) and not different from normal after transplantation. CONCLUSIONS Islet transplantation results in improved insulin sensitivity mediated by effects at both the liver and skeletal muscle. Modern dosing of glucocorticoid-free immunosuppression with low-dose tacrolimus and sirolimus does not induce insulin resistance in this population.
Collapse
Affiliation(s)
- Michael R Rickels
- MD, MS, Perelman School of Medicine at the University of Pennsylvania, 12-134 Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, Pennsylvania 19104.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Vernon RB, Preisinger A, Gooden MD, D'Amico LA, Yue BB, Bollyky PL, Kuhr CS, Hefty TR, Nepom GT, Gebe JA. Reversal of diabetes in mice with a bioengineered islet implant incorporating a type I collagen hydrogel and sustained release of vascular endothelial growth factor. Cell Transplant 2013; 21:2099-110. [PMID: 23231959 DOI: 10.3727/096368912x636786] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have developed a bioengineered implant (BI) to evaluate strategies to promote graft survival and function in models of islet transplantation in mice. The BI, sized for implantation within a fold of intestinal mesentery, consists of a disk-shaped, polyvinyl alcohol sponge infused with a type I collagen hydrogel that contains dispersed donor islets. To promote islet vascularization, the BI incorporates a spherical alginate hydrogel for sustained release of vascular endothelial growth factor (VEGF). BIs that contained 450-500 islets from syngeneic (C57Bl/6) donors and 20 ng of VEGF reversed streptozotocin (STZ)-induced diabetes in 100% of mice (8/8), whereas BIs that contained an equivalent number of islets, but which lacked VEGF, reversed STZ-induced diabetes in only 62.5% of mice (5/8). Between these "+VEGF" and "-VEGF" groups, the time to achieve normoglycemia (8-18 days after implantation) did not differ statistically; however, transitory, postoperative hypoglycemia was markedly reduced in the +VEGF group relative to the -VEGF group. Notably, none of the mice that achieved normoglycemia in these two groups required exogenous insulin therapy once the BIs began to fully regulate levels of blood glucose. Moreover, the transplanted mice responded to glucose challenge in a near-normal manner, as compared to the responses of healthy, nondiabetic (control) mice that had not received STZ. In future studies, the BIs described here will serve as platforms to evaluate the capability of immunomodulatory compounds, delivered locally within the BI, to prevent or reverse diabetes in the setting of autoimmune (type 1) diabetes.
Collapse
Affiliation(s)
- Robert B Vernon
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Rickels MR, Liu C, Shlansky-Goldberg RD, Soleimanpour SA, Vivek K, Kamoun M, Min Z, Markmann E, Palangian M, Dalton-Bakes C, Fuller C, Chiou AJ, Barker CF, Luning Prak ET, Naji A. Improvement in β-cell secretory capacity after human islet transplantation according to the CIT07 protocol. Diabetes 2013; 62:2890-7. [PMID: 23630300 PMCID: PMC3717864 DOI: 10.2337/db12-1802] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/24/2013] [Indexed: 12/15/2022]
Abstract
The Clinical Islet Transplantation 07 (CIT07) protocol uses antithymocyte globulin and etanercept induction, islet culture, heparinization, and intensive insulin therapy with the same low-dose tacrolimus and sirolimus maintenance immunosuppression as in the Edmonton protocol. To determine whether CIT07 improves engrafted islet β-cell mass, our center measured β-cell secretory capacity from glucose-potentiated arginine tests at days 75 and 365 after transplantation and compared those results with the results previously achieved by our group using the Edmonton protocol and normal subjects. All subjects were insulin free, with CIT07 subjects receiving fewer islet equivalents from a median of one donor compared with two donors for Edmonton protocol subjects. The acute insulin response to glucose-potentiated arginine (AIRpot) was greater in the CIT07 protocol than in the Edmonton protocol and was less in both cohorts than in normal subjects, with similar findings for C-peptide. The CIT07 subjects who completed reassessment at day 365 exhibited increasing AIRpot by trend relative to that of day 75. These data indicate that engrafted islet β-cell mass is markedly improved with the CIT07 protocol, especially given more frequent use of single islet donors. Although several peritransplant differences may have each contributed to this improvement, the lack of deterioration in β-cell secretory capacity over time in the CIT07 protocol suggests that low-dose tacrolimus and sirolimus are not toxic to islets.
Collapse
Affiliation(s)
- Michael R Rickels
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Long-standing type 1 diabetes (T1D) is associated with an absolute loss of endogenous insulin secretion (circulating C-peptide is undetectable) and a related defect in glucose counter-regulation that is often complicated by hypoglycemia unawareness, markedly increasing the risk for severe hypoglycemia. Both the transplantation of isolated islets and a whole pancreas can restore β-cell secretory capacity, improve glucose counter-regulation, and return hypoglycemia awareness, thus alleviating severe hypoglycemia. The transplantation of islets may require more than one donor pancreas, and the recovery of endocrine function for now appears more durable with a whole pancreas; however, islet transplantation outcomes are steadily improving. Because not all patients with T1D experiencing severe hypoglycemia are candidates to receive a whole pancreas, and since not all pancreata are technically suitable for whole organ transplantation, islet and pancreas transplantation are evolving as complementary approaches for the recovery of endocrine function in patients with the most problematic T1D.
Collapse
Affiliation(s)
- Michael R Rickels
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Institute for Diabetes, Obesity, and Metabolism, 12-134 Translational Research Center, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Soleimanpour SA, Hirshberg B, Bunnell DJ, Sumner AE, Ader M, Remaley AT, Rother KI, Rickels MR, Harlan DM. Metabolic function of a suboptimal transplanted islet mass in nonhuman primates on rapamycin monotherapy. Cell Transplant 2011; 21:1297-304. [PMID: 22080915 PMCID: PMC3508173 DOI: 10.3727/096368911x603620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although islet transplantation may restore insulin independence to individuals with type 1 diabetes mellitus, most have abnormal glucose tolerance. We asked whether the defective glucose tolerance is due to inadequate β-cell mass or to impaired insulin sensitivity. We performed metabolic studies on four cynomolgus primates before inducing diabetes with streptozotocin (STZ), then again 2-3 weeks after restoring insulin independence via intrahepatic islet transplantation utilizing a calcineurin inhibitor-free immunosuppressive regimen (induction with rabbit antithymocyte globulin and maintenance therapy with rapamycin). Engrafted β-cell mass was assessed by acute insulin and C-peptide responses to glucose (AIR(glu) and ACR(glu)) and arginine (AIR(arg) and ACR(arg)). Insulin sensitivity (S(I)) was determined in naive and transplanted primates from an intravenous glucose tolerance test using the minimal model. α-Cell function was determined by the acute glucagon response to arginine (AGR(arg)). Glucose tolerance (K(g)) decreased from 4.1 ± 0.5%/min in naive primates to 1.8 ± 0.3%/min in transplanted primates (p < 0.01). Following transplantation, AIR(glu) was 28.7 ± 13.1 μU/ml compared to 169.9 ± 43.1 μU/ml (p < 0.03) in the naive condition, ACR(glu) was 14.5 ± 6.0 ng/ml compared to 96.5 ± 17.0 ng/ml naive (p < 0.01), AIR(arg) was 29.1 ± 13.1 μU/ml compared to 91.4 ± 28.2 μU/ml naive (p < 0.05), and ACR(arg) was 1.11 ± 0.51 ng/ml compared to 2.79 ± 0.77 ng/ml naive (p < 0.05). S(I) did not differ from naive to posttransplant states. AGR(arg) was reduced in transplanted primates (349 ± 118 pg/ml) when compared to both naive (827 ± 354 pg/ml) and post-STZ diabetic primates (1020 ± 440 pg/ml) (p < 0.01 for both comparisons). These data suggest that impaired glucose tolerance observed in islet transplant recipients is secondary to low functional β-cell mass and not to insulin resistance shortly after transplant. Furthermore, improved glycemic control achieved via islet transplantation over the diabetic state might be attained, in part, via reduced glucagon secretion.
Collapse
|