1
|
Lima JEBF, Moreira NCS, Sakamoto-Hojo ET. Mechanisms underlying the pathophysiology of type 2 diabetes: From risk factors to oxidative stress, metabolic dysfunction, and hyperglycemia. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 874-875:503437. [PMID: 35151421 DOI: 10.1016/j.mrgentox.2021.503437] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/08/2021] [Accepted: 12/12/2021] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes (T2D) is a complex multifactorial disease that emerges from the combination of genetic and environmental factors, and obesity, lifestyle, and aging are the most relevant risk factors. Hyperglycemia is the main metabolic feature of T2D as a consequence of insulin resistance and β-cell dysfunction. Among the cellular alterations induced by hyperglycemia, the overproduction of reactive oxygen species (ROS) and consequently oxidative stress, accompanied by a reduced antioxidant response and impaired DNA repair pathways, represent essential mechanisms underlying the pathophysiology of T2D and the development of late complications. Mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and inflammation are also closely correlated with insulin resistance and β-cell dysfunction. This review focus on the mechanisms by which oxidative stress, mitochondrial dysfunction, ER stress, and inflammation are involved in the pathophysiology of T2D, highlighting the importance of the antioxidant response and DNA repair mechanisms counteracting the development of the disease. Moreover, we indicate evidence on how nutritional interventions effectively improve diabetes care. Additionally, we address key molecular characteristics and signaling pathways shared between T2D and Alzheimer's disease (AD), which might probably be implicated in the risk of T2D patients to develop AD.
Collapse
Affiliation(s)
- Jessica E B F Lima
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Natalia C S Moreira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Elza T Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, SP, Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
2
|
Møller P, Stopper H, Collins AR. Measurement of DNA damage with the comet assay in high-prevalence diseases: current status and future directions. Mutagenesis 2021; 35:5-18. [PMID: 31294794 DOI: 10.1093/mutage/gez018] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022] Open
Abstract
The comet assay is widely used in studies on genotoxicity testing, human biomonitoring and clinical studies. The simple version of the assay detects a mixture of DNA strand breaks and alkali-labile sites; these lesions are typically described as DNA strand breaks to distinguish them from oxidatively damaged DNA that are measured with the enzyme-modified comet assay. This review assesses the association between high-prevalence diseases in high-income countries and DNA damage measured with the comet assay in humans. The majority of case-control studies have assessed genotoxicity in white blood cells. Patients with coronary artery disease, diabetes, kidney disease, chronic obstructive pulmonary disease and Alzheimer's disease have on average 2-fold higher levels of DNA strand breaks compared with healthy controls. Patients with coronary artery disease, diabetes, kidney disease and chronic obstructive pulmonary disease also have 2- to 3-fold higher levels of oxidatively damaged DNA in white blood cells than controls, although there is not a clear difference in DNA damage levels between the different diseases. Case-control studies have shown elevated levels of DNA strand breaks in patients with breast cancer, whereas there are only few studies on colorectal and lung cancers. At present, it is not possible to assess if these neoplastic diseases are associated with a different level of DNA damage compared with non-neoplastic diseases.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen H, Denmark
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Andrew R Collins
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Al-Taie A, Sancar M, Izzettin FV. 8-Hydroxydeoxyguanosine: A valuable predictor of oxidative DNA damage in cancer and diabetes mellitus. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00017-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Kohata Y, Ohara M, Nagaike H, Fujikawa T, Osaka N, Goto S, Fukase A, Kushima H, Hiromura M, Terasaki M, Mori Y, Fukui T, Ouchi M, Suzuki T, Hirano T, Yamagishi SI. Association of Hemoglobin A1c, 1,5-Anhydro-D-Glucitol and Glycated Albumin with Oxidative Stress in Type 2 Diabetes Mellitus Patients: A Cross-Sectional Study. Diabetes Ther 2020; 11:655-665. [PMID: 31997224 PMCID: PMC7048877 DOI: 10.1007/s13300-020-00772-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Oxidative stress plays a central role in the development and progression of vascular complications in patients with type 2 diabetes mellitus (T2DM). We have previously shown that markers of glucose variability evaluated by continuous glucose monitoring (CGM) are positively associated with oxidative stress in patients with T2DM. However, the evaluation of the glycemic variability by CGM remains a time- and money-consuming procedure. Therefore, this study investigated the independent correlates of oxidative stress among various other clinical markers routinely measured in primary care. METHODS This was a retrospective cross-sectional study with 234 T2DM patients to examine which clinical variables, including 1,5-anhydro-D-glucitol (1,5-AG) and glycated albumin (GA), were independently associated with oxidative stress. Oxidative stress was measured using the diacron-reactive oxygen metabolites (d-ROMs) test. The relationships between d-ROMs and clinical factors, such as blood glucose, glycated hemoglobin (HbA1c), 1,5-AG, GA, lipid parameters, and blood pressure, were examined. RESULTS Multiple stepwise regression analysis revealed that 1,5-AG (inversely), GA, triglycerides, use of metformin and being female were independently associated with d-ROMs. When patients with T2DM were stratified into two groups with HbA1c < 8.0% and HbA1c ≥ 8.0%, 1,5-AG (inversely), HbA1c, use of metformin and being female were independently associated with d-ROMs in diabetes patients with HbA1c < 8.0%, whereas GA, fasting plasma glucose and being female were independently associated with d-ROMs in patients with HbA1c ≥ 8.0%. CONCLUSION Our present study suggests that 1,5-AG and GA are the strongest correlates of oxidative stress in patients with well and poorly controlled T2DM, respectively.
Collapse
Affiliation(s)
- Yo Kohata
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Makoto Ohara
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan.
| | - Hiroe Nagaike
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Tomoki Fujikawa
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Naoya Osaka
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Satoshi Goto
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Ayako Fukase
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Hideki Kushima
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Munenori Hiromura
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Michishige Terasaki
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Yusaku Mori
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Tomoyasu Fukui
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Motoshi Ouchi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Tatsuya Suzuki
- Division of Geriatric Medicine, Nippon Medical School, Tokyo, Japan
| | - Tsutomu Hirano
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
- Diabetes Center, Ebina General Hospital, Ebina, Japan
| | - Sho-Ichi Yamagishi
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Abudawood M, Tabassum H, Almaarik B, Aljohi A. Interrelationship between oxidative stress, DNA damage and cancer risk in diabetes (Type 2) in Riyadh, KSA. Saudi J Biol Sci 2020; 27:177-183. [PMID: 31889833 PMCID: PMC6933234 DOI: 10.1016/j.sjbs.2019.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/10/2019] [Accepted: 06/23/2019] [Indexed: 12/20/2022] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) is the most widely known type of disorder of the endocrine system marked by hyperglycemia resulting either due to deficiency of insulin and or resistance. Persistent hyperglycemia induces oxidative stress and is suggested to play a prominent role in the pathophysiology underlying T2DM. Besides, oxidative stress can result in DNA damage leading to high cancer risk. Current study aimed to evaluate status of oxidative damage, damage to DNA and cancer biomarkers in regard to increased glucose in T2DM patients and to correlate the glycemic state with cancer. A total of 150 subjects consisting of control (50) and T2DM patients (1 0 0) were enrolled. Additionally, three tertiles were created among the two groups based on levels of HbA1c (Tertile I = 5.37 ± 0.34, n = 50; Tertile II = 6.74 ± 0.20, n = 50; Tertile III = 9.21 ± 1.47, n = 50). Oxidative stress parameters including malondialedehyde (MDA) and antioxidant enzymes were measured. Damage to DNA was analyzed by measuring the levels of DNA damage adduct-8 hydroxy deoxy Guanosine (8-OHdG). To detect cancer resulting from oxidative stress, cancer biomarkers CEA, AFP, CA125, CA-15, CA19-9, prolactin were measured in these subjects. All measurements were analysed by SPSS software. Levels of MDA and antioxidant enzymes altered significantly in T2DM group at p < 0.001 and p < 0.05 level of significance. Significant DNA damage accompanied with elevated levels of CEA, CA19-9 and decreased CA125, AFP and prolactin were noted in T2DM group. CA 19-9 and CEA levels increased at p < 0.05, whereas levels of prolactin decreased significantly (p < 0.001) in T2DM group compared to control. Additionally the mean values of DNA damage adduct 8-OHdG differ significantly at P < 0.01 between the two groups. However, no significant correlation in oxidative stress parameter, antioxidant enzymes, DNA damage and neither with the highest tertile of HbA1c (>7.5%) was noted. Based on the results obtained in the present study, we conclude that there is considerable change in oxidative stress and DNA damage in T2DM patients. Hence, assumption that the oxidative stress could cause cancer in T2DM as a result of hyperglycemic state was not speculated in this study.
Collapse
Affiliation(s)
- Manal Abudawood
- Clinical Laboratory Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hajera Tabassum
- Clinical Laboratory Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Basmah Almaarik
- Clinical Laboratory Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Aljohi
- Central Military Laboratory & Blood Bank, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Choi SW. Life is lognormal! What to do when your data does not follow a normal distribution. Anaesthesia 2018; 71:1363-1366. [PMID: 27734487 DOI: 10.1111/anae.13666] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2016] [Indexed: 11/27/2022]
Affiliation(s)
- S W Choi
- Department of Anaesthesiology, The University of Hong Kong, Hong Kong.
| |
Collapse
|
7
|
Ohara M, Nagaike H, Goto S, Fukase A, Tanabe Y, Tomoyasu M, Yamamoto T, Hayashi T, Fukui T, Hirano T. Improvements of ambient hyperglycemia and glycemic variability are associated with reduction in oxidative stress for patients with type 2 diabetes. Diabetes Res Clin Pract 2018; 139:253-261. [PMID: 29501829 DOI: 10.1016/j.diabres.2018.02.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/31/2018] [Accepted: 02/13/2018] [Indexed: 01/30/2023]
Abstract
AIMS We aimed to evaluate which parameters of improvement in glucose metabolism reduce oxidative stress for patients with Type 2 diabetes mellitus (T2DM). METHODS Sixty-seven outpatients with T2DM underwent 72 h of continuous glucose monitoring (CGM) and were measured for oxidative stress before and after a 24-week intervention with the following targets: fasting plasma glucose (FPG), <130 mg/dl; postprandial plasma glucose (PPG), <180 mg/dl; and glycated hemoglobin (HbA1c), <7% (53 mmol/mol). The mean glucose level (MGL), mean amplitude of glycemic excursions (MAGE), mean of daily differences (MODD), percentage coefficient of variation for glucose (%CV) and area under the postprandial plasma glucose curve (AUCPP) were calculated from the CGM data. Oxidative stress was estimated using the diacron-reactive oxygen metabolites (d-ROMs) test. Finally, the association between the improvements in glucose metabolism and oxidative stress was evaluated. RESULTS FPG, MGL, HbA1c, MAGE, MODD, %CV, AUCPP, and d-ROMs significantly improved after 24 weeks of intervention. The change in d-ROMs was significantly correlated with that in FPG (r = 0.414), MGL (r = 0.402), HbA1c (r = 0.271), MAGE (r = 0.457), MODD (r = 0.371), and AUCPP (r = 0.352). The correlation of the change in d-ROMs with that in FPG, MAGE, and MODD and the use of glucose-like peptide 1 receptor agonists and statins remained significant after adjustment for other markers of diabetes control (multiple R2 = 0.406). CONCLUSIONS Improvements in glucose metabolism, including FPG and daily and day-to-day glucose variability, were all correlated with reduced oxidative stress for patients with T2DM.
Collapse
Affiliation(s)
- Makoto Ohara
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan.
| | - Hiroe Nagaike
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Satoshi Goto
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Ayako Fukase
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Yuki Tanabe
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Masako Tomoyasu
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Takeshi Yamamoto
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Toshiyuki Hayashi
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Tomoyasu Fukui
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Tsutomu Hirano
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Laubertová L, Koňariková K, Gbelcová H, Ďuračková Z, Muchová J, Garaiova I, Žitňanová I. Fish oil emulsion supplementation might improve quality of life of diabetic patients due to its antioxidant and anti-inflammatory properties. Nutr Res 2017; 46:49-58. [PMID: 28893413 DOI: 10.1016/j.nutres.2017.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
Abstract
Diabetes-related complications, including cardiovascular disease, retinopathy, nephropathy, and neuropathy, are a significant cause of increased morbidity and mortality among people with diabetes. Previous studies have confirmed that hyperglycemia has pro-oxidative and proinflammatory properties which cause diabetic complications. We hypothesized that supplementation of fish oil emulsion (FOE), rich in omega-3 polyunsaturated fatty acids, to diabetic patients might reduce hyperglycemia-induced pathological changes due to specific properties of FOE. Omega-3 polyunsaturated fatty acids have a wide range of biological effects. In this project, we have examined the potential protective effect of the FOE on hyperglycemia-induced oxidative stress and cytokine generation in monocytes/macrophages U937 system in vitro. The monocytes/macrophages U937 were cultivated under normal or hyperglycemic (35 mmol/L glucose) conditions with/without FOE for 72 hours. We have focused on specific markers of oxidative stress (antioxidant capacity; superoxide dismutase activity; oxidative damage to DNA, proteins, and lipids) and inflammation (tumor necrosis factor, interleukin-6, interleukin-8, monocytic chemotactic protein-1). Hyperglycemia caused reduction of antioxidant capacity, induction of DNA damage, and proinflammatory cytokine secretion. FOE significantly increased antioxidant capacity of cells as well as superoxide dismutase activity and significantly reduced tumor necrosis factor, interleukin-6, interleukin-8, and monocytic chemotactic protein-1 release. No effect was observed on oxidative damage to DNA, proteins, and lipids. Our results indicate that FOE can reduce hyperglycemia-induced pathological mechanisms by its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Lucia Laubertová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia.
| | - Katarína Koňariková
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia.
| | - Helena Gbelcová
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 813 72 Bratislava, Slovakia.
| | - Zdeňka Ďuračková
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia.
| | - Jana Muchová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia.
| | - Iveta Garaiova
- Research and Development Department, Cultech Ltd, Port Talbot, SA12 7BZ, United Kingdom.
| | - Ingrid Žitňanová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Faculty of Medicine, Comenius University, Sasinkova 2, 813 72 Bratislava, Slovakia.
| |
Collapse
|
9
|
DNA damage-dependent mechanisms of ageing and disease in the macro- and microvasculature. Eur J Pharmacol 2017; 816:116-128. [PMID: 28347738 DOI: 10.1016/j.ejphar.2017.03.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/07/2017] [Accepted: 03/23/2017] [Indexed: 12/15/2022]
Abstract
A decline in the function of the macro- and micro-vasculature occurs with ageing. DNA damage also accumulates with ageing, and thus DNA damage and repair have important roles in physiological ageing. Considerable evidence also supports a crucial role for DNA damage in the development and progression of macrovascular disease such as atherosclerosis. These findings support the concept that prolonged exposure to risk factors is a major stimulus for DNA damage within the vasculature, in part via the generation of reactive oxygen species. Genomic instability can directly affect vascular cellular function, leading to cell cycle arrest, apoptosis and premature vascular cell senescence. In contrast, the study of age-related impaired function and DNA damage mechanisms in the microvasculature is limited, although ageing is associated with microvessel endothelial dysfunction. This review examines current knowledge on the role of DNA damage and DNA repair systems in macrovascular disease such as atherosclerosis and microvascular disease. We also discuss the cellular responses to DNA damage to identify possible strategies for prevention and treatment.
Collapse
|
10
|
Ohara M, Fukui T, Ouchi M, Watanabe K, Suzuki T, Yamamoto S, Yamamoto T, Hayashi T, Oba K, Hirano T. Relationship between daily and day-to-day glycemic variability and increased oxidative stress in type 2 diabetes. Diabetes Res Clin Pract 2016; 122:62-70. [PMID: 27810687 DOI: 10.1016/j.diabres.2016.09.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/12/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
Abstract
AIMS To determine the association of daily and day-to-day glucose variability with oxidative stress. METHODS This was a cross-sectional analysis of 68 patients with type 2 diabetes mellitus (T2DM) over 72h of continuous glucose monitoring. Fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) were measured before breakfast on day 1. Glucose variability, mean glucose level (MGL), mean amplitude of glycemic excursions (MAGE), mean of daily differences (MODD) in glucose levels and area under the postprandial plasma glucose curve (AUCPP) were measured on days 2 and 3. Plasma oxidant capacity against N,N-diethylparaphenylenediamine was measured with the diacron-reactive oxygen metabolites (d-ROMs) test on day 1. RESULTS Overall, 66.2% males with the mean age of 63.2±12.6years, diabetes duration of 12.9±10.4years, and HbA1c level of 8.1±1.6% (65±17mmol/mol) were included. MGL (r=0.330), HbA1c (r=0.326), MAGE (r=0.565), MODD (r=0.488), and AUCPP (r=0.254) exhibited significant correlations with d-ROMs and not FPG; these correlations remained significant after adjustment for clinical factors (sex, age, duration of diabetes, smoking habit, insulin use, statin use, angiotensin II receptor blocker use, BMI, LDL-C, HDL-C, TG, eGFR, and systolic blood pressure) (R2=0.268, R2=0.268, R2=0.417, R2=0.314, and R2=0.347, respectively). MAGE was significantly correlated with MODD (r=0.708) and MAGE and MODD were independently correlated with d-ROMs by multivariate analysis. CONCLUSIONS Therefore, oxidative stress is associated with daily and day-to-day glucose variability in patients with T2DM.
Collapse
Affiliation(s)
- Makoto Ohara
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Japan.
| | - Tomoyasu Fukui
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Japan
| | - Motoshi Ouchi
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Japan
| | - Kentaro Watanabe
- Department of Neurology, Hematology, Metabolism, Endocrinology and Diabetology (DNHMED), Yamagata University Faculty of Medicine, Japan
| | - Tatsuya Suzuki
- Division of Geriatric Medicine, Nippon Medical School, Japan
| | - Saki Yamamoto
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Japan
| | - Takeshi Yamamoto
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Japan
| | - Toshiyuki Hayashi
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Japan
| | - Kenzo Oba
- Department of Internal Medicine, Oarai Coast Core Clinic, Japan
| | - Tsutomu Hirano
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Japan
| |
Collapse
|
11
|
Grindel A, Guggenberger B, Eichberger L, Pöppelmeyer C, Gschaider M, Tosevska A, Mare G, Briskey D, Brath H, Wagner KH. Oxidative Stress, DNA Damage and DNA Repair in Female Patients with Diabetes Mellitus Type 2. PLoS One 2016; 11:e0162082. [PMID: 27598300 PMCID: PMC5012603 DOI: 10.1371/journal.pone.0162082] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 08/17/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Diabetes mellitus type 2 (T2DM) is associated with oxidative stress which in turn can lead to DNA damage. The aim of the present study was to analyze oxidative stress, DNA damage and DNA repair in regard to hyperglycemic state and diabetes duration. METHODS Female T2DM patients (n = 146) were enrolled in the MIKRODIAB study and allocated in two groups regarding their glycated hemoglobin (HbA1c) level (HbA1c≤7.5%, n = 74; HbA1c>7.5%, n = 72). In addition, tertiles according to diabetes duration (DD) were created (DDI = 6.94±3.1 y, n = 49; DDII = 13.35±1.1 y, n = 48; DDIII = 22.90±7.3 y, n = 49). Oxidative stress parameters, including ferric reducing ability potential, malondialdehyde, oxidized and reduced glutathione, reduced thiols, oxidized LDL and F2-Isoprostane as well as the activity of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase were measured. Damage to DNA was analyzed in peripheral blood mononuclear cells and whole blood with single cell gel electrophoresis. DNA base excision repair capacity was tested with the modified comet repair assay. Additionally, mRNA expressions of nine genes related to base excision repair were analyzed in a subset of 46 matched individuals. RESULTS No significant differences in oxidative stress parameters, antioxidant enzyme activities, damage to DNA and base excision repair capacity, neither between a HbA1c cut off />7.5%, nor between diabetes duration was found. A significant up-regulation in mRNA expression was found for APEX1, LIG3 and XRCC1 in patients with >7.5% HbA1c. Additionally, we observed higher total cholesterol, LDL-cholesterol, LDL/HDL-cholesterol, triglycerides, Framingham risk score, systolic blood pressure, BMI and lower HDL-cholesterol in the hyperglycemic group. CONCLUSION BMI, blood pressure and blood lipid status were worse in hyperglycemic individuals. However, no major disparities regarding oxidative stress, damage to DNA and DNA repair were present which might be due to good medical treatment with regular health checks in T2DM patients in Austria.
Collapse
Affiliation(s)
- Annemarie Grindel
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
| | - Bianca Guggenberger
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
| | - Lukas Eichberger
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
| | - Christina Pöppelmeyer
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
| | - Michaela Gschaider
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
| | - Anela Tosevska
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
| | - George Mare
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
| | - David Briskey
- School of Human Movement and Nutrition Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Helmut Brath
- Diabetes Outpatient Clinic, Health Centre South, Vienna, Austria
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, Emerging Field Oxidative Stress and DNA Stability, University of Vienna, Vienna, Austria
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Ye X, Jiang R, Zhang Q, Wang R, Yang C, Ma J, Du H. Increased 8-hydroxy-2'-deoxyguanosine in leukocyte DNA from patients with type 2 diabetes and microangiopathy. J Int Med Res 2016; 44:472-82. [PMID: 27009027 PMCID: PMC5536714 DOI: 10.1177/0300060515621530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/13/2015] [Indexed: 01/10/2023] Open
Abstract
Objective To evaluate oxidative damage in leukocytes from patients with type 2 diabetes by examining 8-hydroxy-2’-deoxyguanosine (8-OHdG) levels. Methods Patients with type 2 diabetes and healthy controls were assessed for demographic, clinical and biochemical characteristics. Levels of 8-OHdG in extracted leukocyte DNA were determined by enzyme linked immunosorbent assay. Results Of 108 patients with type 2 diabetes (56 with microangiopathy, 52 without) and 65 healthy controls, leukocyte 8-OHdG levels were higher in patients with type 2 diabetes versus controls (median ± interquartile range [IQR], 3.19 ± 2.17 versus 0.38 ± 1.00 ng/ml), and higher in patients with type 2 diabetes and microangiopathy versus those without microangiopathy (median ± IQR, 3.34 ± 1.87 versus 2.71 ± 2.26 ng/ml). Patients with type 2 diabetes and microangiopathy had higher serum creatinine and urinary albumin levels versus those without microangiopathy. Leukocyte 8-OHdG levels, duration of type 2 diabetes, albuminuria, use of insulin and use of angiotensin-converting enzyme (ACE) inhibitors/angiotensin receptor blockers (ARBs) were independently associated with microangiopathy in patients with type 2 diabetes after adjustment for smoking. Conclusions Leukocyte oxidative DNA damage was high in patients with type 2 diabetes and microangiopathy. Presence of microangiopathy was associated with leukocyte 8-OHdG levels, duration of type 2 diabetes, albuminuria and use of ACE inhibitors/ARBs or insulin.
Collapse
Affiliation(s)
- Xiaozhen Ye
- Department of Endocrinology, Jinling Hospital, Southern Medical School, Nanjing, Jiangsu Province, China
| | - Rong Jiang
- Department of Endocrinology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu Province, China
| | - Qianqian Zhang
- Department of Endocrinology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu Province, China
| | - Ruifeng Wang
- Department of Endocrinology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu Province, China
| | - Cuihua Yang
- Department of Endocrinology, Jinling Hospital, Nanjing, Jiangsu Province, China
| | - Jian Ma
- Department of Endocrinology, Jinling Hospital, Nanjing, Jiangsu Province, China
| | - Hong Du
- Department of Endocrinology, Jinling Hospital, Nanjing, Jiangsu Province, China
| |
Collapse
|
13
|
Xavier DJ, Takahashi P, Evangelista AF, Foss-Freitas MC, Foss MC, Donadi EA, Passos GA, Sakamoto-Hojo ET. Assessment of DNA damage and mRNA/miRNA transcriptional expression profiles in hyperglycemic versus non-hyperglycemic patients with type 2 diabetes mellitus. Mutat Res 2015; 776:98-110. [PMID: 26364207 DOI: 10.1016/j.mrfmmm.2015.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 06/05/2023]
Abstract
The development of type 2 diabetes mellitus (T2D) is associated with a number of genetic and environmental factors. Hyperglycemia, a T2D hallmark, is related to several metabolic complications, comorbidities and increased DNA damage. However, the molecular alterations of a proper glucose control are still unclarified. In this study, we aimed to evaluate DNA damage (comet assay), as well as to compare the transcriptional expression (mRNA and miRNA analyzed by the microarray technique) displayed by peripheral blood mononuclear cells (PBMCs) from three distinct groups: hyperglycemic T2D patients (T2D-H, n=14), non-hyperglycemic T2D patients (T2D-N, n=15), and healthy non-diabetic individuals (n=16). The comet assay revealed significantly (p<0.05) higher levels of DNA damage in T2D-H group compared to both T2D-N and control groups, while a significant difference was not observed between the control and T2D-N groups. After bioinformatics analysis, the differentially expressed mRNAs were subjected to functional enrichment analysis (DAVID) and inflammatory response was among the enriched terms found when comparing T2D-N with controls and T2D-H with T2D-N. Concerning the gene set enrichment and gene set analyses, among the differentially expressed gene sets, three were of interest: regulation of DNA repair (T2D-H versus T2D-N), superoxide response (T2D-H versus control group), and response to endoplasmic reticulum stress (T2D-H versus control group). We also identified miRNAs related with T2D and hyperglycemia not yet associated with these conditions in the literature. Some of the differentially expressed mRNAs were among the predicted targets of the differentially expressed miRNAs. Our results showed the association of hyperglycemia with increased DNA damage and aberrant expression of miRNAs and genes related to several biological processes, such as inflammation, DNA repair, ROS production and antioxidant defense, highlighting the importance of proper glycemic control. Moreover, the transcriptional expression of miRNAs provided novel information for understanding the regulatory mechanisms involved in the T2D progression.
Collapse
Affiliation(s)
- Danilo J Xavier
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Av. Bandeirantes, 3900 - Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | - Paula Takahashi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Av. Bandeirantes, 3900 - Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | - Adriane F Evangelista
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Av. Bandeirantes, 3900 - Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil
| | - Maria C Foss-Freitas
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo - USP, Av. Bandeirantes, 3900 - Monte Alegre, 14048-900 Ribeirão Preto, SP, Brazil
| | - Milton C Foss
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo - USP, Av. Bandeirantes, 3900 - Monte Alegre, 14048-900 Ribeirão Preto, SP, Brazil
| | - Eduardo A Donadi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Av. Bandeirantes, 3900 - Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil; Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo - USP, Av. Bandeirantes, 3900 - Monte Alegre, 14048-900 Ribeirão Preto, SP, Brazil
| | - Geraldo A Passos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Av. Bandeirantes, 3900 - Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil; Disciplines of Genetics and Molecular Biology, Department of Morphology, Faculty of Dentistry of Ribeirão Preto, University of São Paulo - USP, Av. Do Café, s/n, Monte Alegre, 14040-904 Ribeirão Preto, SP, Brazil
| | - Elza T Sakamoto-Hojo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo - USP, Av. Bandeirantes, 3900 - Monte Alegre, 14049-900 Ribeirão Preto, SP, Brazil; Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo - USP, Av. Bandeirantes, 3900 - Monte Alegre, 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
14
|
Choi SW, Yeung VTF, Collins AR, Benzie IFF. Redox-linked effects of green tea on DNA damage and repair, and influence of microsatellite polymorphism in HMOX-1: results of a human intervention trial. Mutagenesis 2014; 30:129-37. [DOI: 10.1093/mutage/geu022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
15
|
Ohara M, Watanabe K, Suzuki T, Sekimizu KI, Motoyama M, Ishii K, Sawai K, Nakano H, Oba K, Mizuno K. Improving in the fasting, but not the postprandial, glucose level is associated with reduction of plasma d-ROMs level in patients with type 2 diabetes. J NIPPON MED SCH 2013; 80:200-10. [PMID: 23832404 DOI: 10.1272/jnms.80.200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
AIMS This study aimed to evaluate the relationship between improvement of glucose metabolism and plasma levels of diacron-reactive oxygen metabolites (d-ROMs) in patients with type 2 diabetes. METHODS As the first daily profile, the plasma levels of glucose and d-ROMs were determined on admission. Then, after treatment to lower plasma glucose levels, the second daily profile of these levels was evaluated. Fasting plasma glucose (FPG), the total area under the curve (AUC) of the daily plasma glucose profile (AUCDP), the AUC of the postprandial plasma glucose levels (AUCPP), the AUC of the daily plasma d-ROMs profile (AUCd-ROMs), the coefficient of variation (CV) of plasma glucose (CVPG), and the mean amplitude of glycemic excursions (MAGE) were calculated. The relationship between the improvement of glucose metabolism and that of oxidative stress in patients with type 2 diabetes was evaluated. RESULTS The second determinations of FPG, AUCDP, AUCPP, MAGE, and AUCd-ROMs were significantly lower than those of the first determinations, but no significant difference was observed in CVPG. Linear regression analysis demonstrated significant associations between the changes in AUCd-ROMs and the changes in both FPG and AUCDP, whereas no significant association was observed between the change in AUCd-ROMs and the change in AUCPP, CVPG, or MAGE. CONCLUSIONS This study has demonstrated that improvement of the FPG level, but not of the postprandial glucose level, is associated with a reduction of the plasma level of d-ROMs in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Makoto Ohara
- Divisions of Cardiology, Hepatology, Geriatrics, and Integrated Medicine, Department of Internal Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Vitamin C intake reduces the cytotoxicity associated with hyperglycemia in prediabetes and type 2 diabetes. BIOMED RESEARCH INTERNATIONAL 2013; 2013:896536. [PMID: 23984417 PMCID: PMC3741954 DOI: 10.1155/2013/896536] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/18/2013] [Accepted: 06/23/2013] [Indexed: 12/04/2022]
Abstract
Hyperglycemia leads to the formation of free radicals and advanced glycation end-products (AGEs). Antioxidants can reduce the level of protein glycation and DNA damage. In this study, we compared the levels of vitamin C intake, which is among the most abundant antioxidants obtained from diet, with the levels of fasting plasma glucose (FPG), glycated hemoglobin (A1C), DNA damage, and cytotoxicity in prediabetic subjects and type 2 diabetic subjects. Our results indicated that there was no significant correlation between FPG or A1C and DNA damage parameters (micronuclei, nucleoplasmic bridges, and nuclear buds). FPG and A1C correlated with necrosis (r = 0.294; P = 0.013 and r = 0.401; P = 0.001, resp.). Vitamin C intake correlated negatively with necrosis and apoptosis (r = −0.246; P = 0.040, and r = −0.276; P = 0.021, resp.). The lack of a correlation between the FPG and A1C and DNA damage could be explained, at least in part, by the elimination of cells with DNA damage by either necrosis or apoptosis (cytotoxicity). Vitamin C appeared to improve cell survival by reducing cytotoxicity. Therefore, the present results indicate the need for clinical studies to evaluate the effect of low-dose vitamin C supplementation in type 2 diabetes.
Collapse
|
17
|
Choi SW, Yeung VTF, Benzie IFF. Heme oxygenase microsatellite polymorphism, oxidative stress, glycemic control, and complication development in type 2 diabetes patients. Free Radic Biol Med 2012; 53:60-3. [PMID: 22583702 DOI: 10.1016/j.freeradbiomed.2012.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/11/2012] [Accepted: 04/13/2012] [Indexed: 11/15/2022]
Abstract
Heme oxygenase-1 (HMOX-1) is activated by oxidative stress, and gene responsiveness is reportedly determined by the number of dinucleotide (GT(n)) repeats in its highly polymorphic promoter region. "Short" (S; GT(n)<25) alleles reportedly associate with higher response, lower oxidative stress, lower risk of type 2 diabetes mellitus (type 2DM), and better glycemic control and outcome, but data are conflicting. We investigated GT(n) in type 2DM subjects (all ethnic Chinese) in relation to basal glycemic control, oxidative stress, and outcome during up to 9 years' follow-up. Fasting blood from 418 type 2 DM subjects was collected at entry for GT(n) genotyping, glycated hemoglobin, glucose, lipids, and biomarkers of oxidative stress and antioxidants. A subset (n=368) was followed for up to 9 years for incident complications or death. GT(n) genotype distribution was 128, 182, and 108 for, respectively, S/S, S/L, and L/L. No significant differences in glycemic control, lipids, or oxidative stress were seen across genotypes. During follow-up, 168/368 subjects developed complications. No association was seen with GT(n). No difference in plasma HO-1 was seen between genotypes in a small substudy (S/S n=21 vs L/L n=23). Glycated hemoglobin and lymphocytic DNA damage was higher (p<0.05) at entry in the incident complications group. No other significant differences were seen in oxidative stress or antioxidants. Data do not support the postulated link between HMOX-1 microsatellite polymorphism and type 2 DM or the putative beneficial effect of the S allele on glycemic control, oxidative stress, or outcome in type 2 DM patients, at least in this particular population.
Collapse
Affiliation(s)
- Siu-Wai Choi
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | | | | |
Collapse
|
18
|
Ibarra-Costilla E, Cerda-Flores RM, Dávila-Rodríguez MI, Samayo-Reyes A, Calzado-Flores C, Cortés-Gutiérrez EI. DNA damage evaluated by comet assay in Mexican patients with type 2 diabetes mellitus. Acta Diabetol 2010; 47 Suppl 1:111-6. [PMID: 19787291 DOI: 10.1007/s00592-009-0149-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 09/14/2009] [Indexed: 12/13/2022]
Abstract
We conducted a case-control study to assess whether general DNA damage levels evaluated by comet assay (length of tail comet, tail extent moment, and olive tail moment) differ in Mexican patients with type 2 diabetes mellitus (DM2). The sample included 71 Mexican patients with DM2 who had developed the disease >5 years previously and had been treated with oral hypoglycemic drugs (sulfonylurea and/or metformin), with no microvascular or macrovascular complications. These patients were classified into three groups according to age: (I) 40-50 years, (II) 51-60 years, and (III) 61-70 years. A control group of 14 individuals (40-50 years) without DM2 was included. Our results showed there was a slight but not significant increase in DNA damage in the two groups of patients with DM2 aged between 40 and 60 years compared with the 61-70-year-old patient group and controls. In conclusion, given that general DNA damage was similar in the three groups of patients with DM2 and the control group, it is possible that these cells showed similar oxidative damage, as has been proposed previously.
Collapse
Affiliation(s)
- Emma Ibarra-Costilla
- Unidad de Medicina Familiar No 46, Instituto Mexicano del Seguro Social, Monterrey, Mexico
| | | | | | | | | | | |
Collapse
|
19
|
DNA damage and plasma antioxidant indices in Bangladeshi type 2 diabetic patients. DIABETES & METABOLISM 2009; 36:51-7. [PMID: 20036596 DOI: 10.1016/j.diabet.2009.05.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 05/21/2009] [Accepted: 05/26/2009] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND AIM Diabetes mellitus is a complex metabolic disorder characterized by a disturbance in glucose metabolism. Recent evidence suggests that increased oxidative stress as well as alteration of antioxidant capacity may be related to the complications seen in patients with type 2 diabetes. The aim of this study was to measure serum antioxidant status in type 2 diabetic patients and to assess its relationship with oxidative DNA damage. METHODS A total of 57 subjects were included in this study. Of these, 32 were type 2 diabetic patients and 25 were non-diabetic subjects. Comet assay was used to quantify the level of DNA damage in lymphocytes. Spectrophotometric methods were used to assess serum levels of malondialdehyde (MDA) and protein carbonyl, and serum activity of superoxide dismutase (SOD) and the protein thiol (P-SH) group. RESULTS A significant increase in mean comet tail DNA, indicating DNA damage, was observed in diabetic patients compared with controls. Diabetic patients had significantly higher levels of MDA and protein carbonyl in parallel with significant decreases in levels of SOD and the P-SH group compared with controls. Serum SOD was also inversely correlated with the increase in comet tail DNA. CONCLUSION These results indicate the presence of significant lipid peroxidation, protein oxidation and oxidative DNA damage in patients with diabetes. Perturbation of glucose homoeostasis was associated with an increase in oxidants and a concomitant decrease of antioxidant enzymes in the type 2 diabetic patients' blood. The present study suggests that the status of oxidant-antioxidant imbalance may be one of the mechanisms leading to the DNA damage detected in the lymphocytes of type 2 diabetic patients.
Collapse
|
20
|
Lodovici M, Bigagli E, Bardini G, Rotella CM. Lipoperoxidation and antioxidant capacity in patients with poorly controlled type 2 diabetes. Toxicol Ind Health 2009; 25:337-41. [DOI: 10.1177/0748233709106464] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes is a heterogeneous disease resulting from insulin resistance and/or from a β-cell secretory defect. Hyperglycemia, which occurs during type 2 diabetes, causes disorders of oxidative–antioxidative balance in the cells, leading to increased free-radical formation. Reduced antioxidant capacity is supposed to be one of the causes of the occurrence of complications in type 2 diabetes. The aim of this study was to evaluate lipoperoxidation and plasma antioxidant status in patients with poorly controlled type 2 diabetes with or without complications. In this study, 15 patients with type 2 diabetes without complications and 11 patients with type 2 diabetes with complications were enrolled. The ‘ferric-reducing ability of plasma’ showed no differences between the two experimental groups. A small, nonsignificant, Superoxide dismutase (SOD) activity reduction was observed in patients with diabetes with complications when compared to those patients with diabetes without complications; on the contrary, we found increased lipoperoxidation in patients with diabetes with complications compared with those patients with diabetes without complications. We also observed a positive correlation between malondialdehyde levels and high density lipoprotein or vitamin E in all analyzed patients with type 2 diabetes. Data obtained from our study show that patients with poorly controlled type 2 diabetes with complications have higher lipoperoxidation than patients with complication-free diabetes, although a residual compensatory response to hyperglycemia-induced oxidative stress occurs.
Collapse
Affiliation(s)
- M Lodovici
- Department of Pharmacology, University of Florence, Florence, Italy
| | - E Bigagli
- Department of Pharmacology, University of Florence, Florence, Italy
| | - G Bardini
- Department of Clinical Physiopathology, Unit of Endocrinology, University of Florence, Florence, Italy
| | - CM Rotella
- Department of Clinical Physiopathology, Unit of Endocrinology, University of Florence, Florence, Italy
| |
Collapse
|
21
|
Tessier DM, Khalil A, Trottier L, Fülöp T. Effects of vitamin C supplementation on antioxidants and lipid peroxidation markers in elderly subjects with type 2 diabetes. Arch Gerontol Geriatr 2009; 48:67-72. [DOI: 10.1016/j.archger.2007.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 10/21/2007] [Accepted: 10/26/2007] [Indexed: 10/22/2022]
|
22
|
Choi SW, Benzie IFF, Ma SW, Strain JJ, Hannigan BM. Acute hyperglycemia and oxidative stress: direct cause and effect? Free Radic Biol Med 2008; 44:1217-31. [PMID: 18226604 DOI: 10.1016/j.freeradbiomed.2007.12.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Revised: 11/15/2007] [Accepted: 12/07/2007] [Indexed: 11/22/2022]
Abstract
Oxidative stress is increased in Type 2 diabetes and this appears to underlie the development of diabetic complications. Increased oxidative stress is claimed to be triggered directly by acute (sudden-onset) hyperglycemia, but published data do not clearly support a direct cause and effect relationship. In this article, published evidence of a direct prooxidant effect of acute hyperglycemia is presented and discussed in some detail, and conflicts, controversies, and problems are highlighted. Evidence for glucose variability as a possible important trigger of oxidative stress in diabetes is reviewed, with some speculation as to how the field would be advanced if there were more widespread recognition about the role that wide fluctuations in glucose concentration play in diabetic complications. Possible direct or indirect antioxidative effects of various drugs used in the treatment of diabetic subjects are discussed because these may have influenced current understanding of the link between hyperglycemia and oxidative stress. The aims are to reveal the divergence between the available evidence and the accepted view that acute hyperglycemia is a direct trigger of oxidative stress and to suggest areas of research that will help resolve current controversies in this important and challenging area.
Collapse
Affiliation(s)
- Siu-Wai Choi
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | | | | | | | | |
Collapse
|
23
|
Lodovici M, Giovannelli L, Pitozzi V, Bigagli E, Bardini G, Rotella CM. Oxidative DNA damage and plasma antioxidant capacity in type 2 diabetic patients with good and poor glycaemic control. Mutat Res 2008; 638:98-102. [DOI: 10.1016/j.mrfmmm.2007.09.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 08/31/2007] [Accepted: 09/07/2007] [Indexed: 04/09/2023]
|
24
|
Berstein LM. Role of Endocrine-Genotoxic Switchings in Cancer and Other Human Diseases:. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 630:35-51. [DOI: 10.1007/978-0-387-78818-0_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Song F, Jia W, Yao Y, Hu Y, Lei L, Lin J, Sun X, Liu L. Oxidative stress, antioxidant status and DNA damage in patients with impaired glucose regulation and newly diagnosed Type 2 diabetes. Clin Sci (Lond) 2007; 112:599-606. [PMID: 17209802 DOI: 10.1042/cs20060323] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Previous studies have postulated the association between oxidative stress and Type 2 diabetes. Considering the long pre-diabetic period with IGR (impaired glucose regulation) and its high risk of developing diabetes, to test this hypothesis, we have investigated oxidative stress pathways and DNA damage in patients with IGR and newly diagnosed Type 2 diabetes. The study population consisted of 92 subjects with NGT (normal glucose tolerance), 78 patients with IGR and 113 patients with newly diagnosed diabetes. Plasma MDA (malondialdehyde) and TAC (total antioxidative capacity) status, erythrocyte GSH content and SOD (superoxide dismutase) activity were determined. A comet assay was employed to evaluate DNA damage. Compared with subjects with NGT, patients with IGR had reduced erythrocyte SOD activity. Patients with diabetes had a higher plasma MDA concentration, but a lower plasma TAC level and erythrocyte SOD activity, than the NGT group. Correlation analysis revealed a strong positive association between IR (insulin resistance) and MDA concentration, but negative correlations with TAC status and SOD activity. With respect to beta-cell function, a positive association with TAC status and an inverse correlation with GSH respectively, were observed. The comet assay revealed slight DNA damage in patients with IGR, which was increased in patients with diabetes. Significant correlations were observed between DNA damage and hyperglycaemia, IR and beta-cell dysfunction. In conclusion, the results of the present study suggest that hyperglycaemia in an IGR state caused the predominance of oxidative stress over antioxidative defence systems, leading to oxidative DNA damage, which possibly contributed to pancreatic beta-cell dysfunction, IR and more pronounced hyperglycaemia. This vicious circle finally induced the deterioration to diabetes.
Collapse
Affiliation(s)
- Fangfang Song
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Adaikalakoteswari A, Rema M, Mohan V, Balasubramanyam M. Oxidative DNA damage and augmentation of poly(ADP-ribose) polymerase/nuclear factor-kappa B signaling in patients with Type 2 diabetes and microangiopathy. Int J Biochem Cell Biol 2007; 39:1673-84. [PMID: 17540609 DOI: 10.1016/j.biocel.2007.04.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Revised: 04/12/2007] [Accepted: 04/19/2007] [Indexed: 11/22/2022]
Abstract
Although oxidative stress and the subsequent DNA damage is one of the obligatory signals for poly(ADP-ribose) polymerase (PARP) activation and nuclear factor-kappa B (NFkappaB) alterations, these molecular aspects have not been collectively examined in epidemiological and clinical settings. Therefore, this study attempts to assess the oxidative DNA damage and its downstream effector signals in peripheral blood lymphocytes from Type 2 diabetes subjects without and with microangiopathy along with age-matched non-diabetic subjects. The basal DNA damage, lipid peroxidation and protein carbonyl content were significantly (p<0.05) higher in patients with and without microangiopathy compared to control subjects. Formamido Pyrimidine Glycosylase (FPG)-sensitive DNA strand breaks which represents reliable indicator of oxidative DNA damage were also significantly (p<0.001) higher in diabetic patients with (19.41+/-2.5) and without microangiopathy (16.53+/-2.0) compared to control subjects (1.38+/-0.85). Oxidative DNA damage was significantly correlated to poor glycemic control. PARP mRNA expression and PARP activity were significantly (p<0.05) increased in cells from diabetic patients with (0.31+/-0.03 densitometry units; 0.22+/-0.02PARPunits/mgprotein, respectively) and without (0.35+/-0.02; 0.42+/-0.05) microangiopathy compared to control (0.19+/-0.02; 0.11+/-0.02) subjects. Diabetic subjects with and without microangiopathy exhibited a significantly (p<0.05) higher (80%) NFkappaB binding activity compared to control subjects. In diabetic patients, FPG-sensitive DNA strand breaks correlated positively with PARP gene expression, PARP activity and NFkappaB binding activity. This study provides a comprehensive molecular evidence for increased oxidative stress and genomic instability in Type 2 diabetic subjects even prior to vascular pathology and hence reveals a window of opportunity for early therapeutic intervention.
Collapse
Affiliation(s)
- Antonysunil Adaikalakoteswari
- Department of Cell and Molecular Biology, Madras Diabetes Research Foundation & Dr.Mohan's Diabetes Specialities Centre, 4 Conran Smith Road, Gopalapuram, Chennai 600086, India
| | | | | | | |
Collapse
|