1
|
Singh A, Verma AK, Kumar S, Bag SK, Roy S. Genome-wide DNA methylation and their transgenerational pattern differ in Arabidopsis thaliana populations originated along the elevation of West Himalaya. BMC PLANT BIOLOGY 2024; 24:936. [PMID: 39385079 PMCID: PMC11463068 DOI: 10.1186/s12870-024-05641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024]
Abstract
Methylation at 5' cytosine of DNA molecule is an important epigenetic mark. It is known to play critical role in adaptation of organisms under different biotic and abiotic stressors via modulating gene expression and/or chromatin architecture. Plant populations evolved under variable climatic conditions may have evolved different epigenetic marks including DNA methylation. Here we, describe the genome-wide DNA methylation pattern under native field, F1 and F6 generation followed by their association with phenotypes, climate and global gene expression in the three Arabidopsis thaliana populations originated at different elevation ranges of Indian West Himalaya. We show that the global methyl cytosine (mC) content is more or less similar in the three populations but differ in their distribution across genome. There was an increase in differential methylation between the populations as elevation increased. The methylation divergence was the highest between the low and the high elevation populations. The high elevation populations were hypo-methylated than the low elevation population. The methylation in the genes was associated with population specific phenotypes and climate of the region. The genes which were differentially methylated as well as differentially expressed between the low and high elevation populations were mostly related to abiotic stresses. When grown under controlled condition, there was gain of differential methylation over native condition and the maximum percent changes was observed in CHH-sequence context. Further ~ 99.8% methylated cytosines were stably passed on from F1 to F6 generation. Overall, our data suggest that high elevation population is epigenetically more plastic under changing environmental condition.Background Arabidopsis thaliana is the model plant species and has been extensively studied to understand plants life processes. There are numerous reports on its origin, demography, evolution, epigenomes and adaptation etc. however, Indian populations of Arabidopsis thaliana evolved along wide elevation ranging from ~ 700 m amsl to ~ 3400 m amsl not explored yet. Here we, describe the genome-wide DNA methylation pattern under native field, F1 and F6 generation followed by their association with phenotypes, climate and global gene expression in the three Arabidopsis thaliana populations originated at different elevation ranges of Indian West Himalaya.Results In our study we found that total mCs percent was more or less similar in the three populations but differ in their distribution across genome. The proportion of CG-mCs was the highest, followed by CHH-mCs and CHG-mCs in all the three populations. Under native field condition the methylation divergence was more prominent between low and high elevation populations and the high elevation populations were hypo-methylated than the low elevation population. The methylation in the genes was linked to population-specific phenotypes and the regional climate. The genes that showed differential methylation and expression between low and high elevation populations were primarily associated with abiotic stress responses. When grown under controlled condition, there was gain of differential methylation compared to the native condition and the maximum percent changes was observed in CHH-sequence context. Further 99.8% methylated cytosines were stably passed on from F1 to F6 generation.Conclusions The populations of A. thaliana adapted at different climatic conditions were significantly differentially methylated both under native and controlled condition. However, the magnitude and extent of gain or loss of methylation were most significant between the low and the high elevation populations. Overall, our data suggest that high elevation population is epigenetically more plastic under changing environmental condition.
Collapse
Affiliation(s)
- Akanksha Singh
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Ashwani Kumar Verma
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sunil Kumar
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumit Kumar Bag
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Computational Biology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Sribash Roy
- Plant Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
- Department of Plant Sciences, Central University of Hyderabad, Hyderabad, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Kim MH, Cho JS, Tran TNA, Nguyen TTT, Park EJ, Im JH, Han KH, Lee H, Ko JH. Comparative functional analysis of PdeNAC2 and AtVND6 in the tracheary element formation. TREE PHYSIOLOGY 2023:tpad042. [PMID: 37014763 DOI: 10.1093/treephys/tpad042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Tracheary elements (i.e., vessel elements and tracheids) are highly specialized, non-living cells present in the water-conducting xylem tissue. In angiosperms, proteins in the VASCULAR-RELATED NAC-DOMAIN (VND) subgroup of the NAC transcription factor family (e.g., AtVND6) are required for the differentiation of vessel elements through transcriptional regulation of genes responsible for secondary cell wall (SCW) formation and programmed cell death (PCD). Gymnosperms, however, produce only tracheids, the mechanism of which remains elusive. Here, we report functional characteristics of PdeNAC2, a VND homolog in Pinus densiflora, as a key regulator of tracheid formation. Interestingly, our molecular genetic analyses show that PdeNAC2 can induce the formation of vessel element-like cells in angiosperm plants, demonstrated by transgenic overexpression of either native or NAC domain-swapped synthetic genes of PdeNAC2 and AtVND6 in both Arabidopsis and hybrid poplar. Subsequently, genome-wide identification of direct target genes of PdeNAC2 and AtVND6 revealed 138 and 174 genes as putative direct targets, respectively, but only 17 genes were identified as common direct targets. Further analyses have found that PdeNAC2 does not control some AtVND6-dependent vessel differentiation genes in angiosperm plants, such as AtVRLK1, LBD15/30, and pit-forming ROP signaling genes. Collectively, our results suggest that different target gene repertoires of PdeNAC2 and AtVND6 may contribute to the evolution of tracheary elements.
Collapse
Affiliation(s)
- Min-Ha Kim
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jin-Seong Cho
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Thi Ngoc Anh Tran
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Thi Thu Tram Nguyen
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eung-Jun Park
- Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Jong-Hee Im
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
| | - Kyung-Hwan Han
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- Department of Forestry, Michigan State University, East Lansing, MI 48824, USA
| | - Hyoshin Lee
- Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
3
|
Liu XD, Zeng YY, Zhang XY, Tian XQ, Hasan MM, Yao GQ, Fang XW. Polyamines inhibit abscisic acid-induced stomatal closure by scavenging hydrogen peroxide. PHYSIOLOGIA PLANTARUM 2023; 175:e13903. [PMID: 37002824 DOI: 10.1111/ppl.13903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Stomatal closure is regulated by plant hormones and some small molecules to reduce water loss under stress conditions. Both abscisic acid (ABA) and polyamines alone induce stomatal closure; however, whether the physiological functions of ABA and polyamines are synergistic or antagonistic with respect to inducing stomatal closure is still unknown. Here, stomatal movement in response to ABA and/or polyamines was tested in Vicia faba and Arabidopsis thaliana, and the change in the signaling components under stomatal closure was analyzed. We found that both polyamines and ABA could induce stomatal closure through similar signaling components, including the synthesis of hydrogen peroxide (H2 O2 ) and nitric oxide (NO) and the accumulation of Ca2+ . However, polyamines partially inhibited ABA-induced stomatal closure both in epidermal peels and in planta by activating antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), to eliminate the ABA-induced increase in H2 O2 . These results strongly indicate that polyamines inhibit abscisic acid-induced stomatal closure, suggesting that polyamines could be used as potential plant growth regulators to increase photosynthesis under mild drought stress.
Collapse
Affiliation(s)
- Xu-Dong Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Yuan-Yuan Zeng
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xia-Yi Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xue-Qian Tian
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Md Mahadi Hasan
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Guang-Qian Yao
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xiang-Wen Fang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Kim MH, Cho JS, Jeon HW, Sangsawang K, Shim D, Choi YI, Park EJ, Lee H, Ko JH. Wood Transcriptome Profiling Identifies Critical Pathway Genes of Secondary Wall Biosynthesis and Novel Regulators for Vascular Cambium Development in Populus. Genes (Basel) 2019; 10:E690. [PMID: 31500311 PMCID: PMC6770981 DOI: 10.3390/genes10090690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/23/2022] Open
Abstract
Wood, the most abundant biomass on Earth, is composed of secondary xylem differentiated from vascular cambium. However, the underlying molecular mechanisms of wood formation remain largely unclear. To gain insight into wood formation, we performed a series of wood-forming tissue-specific transcriptome analyses from a hybrid poplar (Populus alba × P. glandulosa, clone BH) using RNA-seq. Together with shoot apex and leaf tissue, cambium and xylem tissues were isolated from vertical stem segments representing a gradient of secondary growth developmental stages (i.e., immature, intermediate, and mature stem). In a comparative transcriptome analysis of the 'developing xylem' and 'leaf' tissue, we could identify critical players catalyzing each biosynthetic step of secondary wall components (e.g., cellulose, xylan, and lignin). Several candidate genes involved in the initiation of vascular cambium formation were found via a co-expression network analysis using abundantly expressed genes in the 'intermediate stem-derived cambium' tissue. We found that transgenic Arabidopsis plants overexpressing the PtrHAM4-1, a GRAS family transcription factor, resulted in a significant increase of vascular cambium development. This phenotype was successfully reproduced in the transgenic poplars overexpressing the PtrHAM4-1. Taken together, our results may serve as a springboard for further research to unravel the molecular mechanism of wood formation, one of the most important biological processes on this planet.
Collapse
Affiliation(s)
- Min-Ha Kim
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 446-701, Korea.
| | - Jin-Seong Cho
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 446-701, Korea.
| | - Hyung-Woo Jeon
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 446-701, Korea.
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Kanidta Sangsawang
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 446-701, Korea.
| | - Donghwan Shim
- Korea Forest Research Institute, Suwon 16631, Korea.
| | - Young-Im Choi
- Korea Forest Research Institute, Suwon 16631, Korea.
| | - Eung-Jun Park
- Korea Forest Research Institute, Suwon 16631, Korea.
| | - Hyoshin Lee
- Korea Forest Research Institute, Suwon 16631, Korea.
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 446-701, Korea.
| |
Collapse
|
5
|
Integrated physiological and genomic analysis reveals structural variations and expression patterns of candidate genes for colored- and green-leaf poplar. Sci Rep 2019; 9:11150. [PMID: 31371772 PMCID: PMC6673700 DOI: 10.1038/s41598-019-47681-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Colored-leaf plants are increasingly popular and have been attracting more and more attentions. However, the molecular mechanism of leaf coloration in plants has not been fully understood. In this study, a colored-leaf cultivar of Populus deltoides (Caihong poplar, CHP) and green-leaf cultivar of Populus deltoides L2025 were used to explore the mechanism of leaf coloration through physiological and the whole genome resequencing analysis. The content of anthocyanins, total Chl, and carotenoids in the leaves of CHP and L2025 were evaluated. The ratio of anthocyanins to total Chl in CHP was 25.0 times higher than that in L2025; this could be attributed to the red leaf color of CHP. Based on the whole genome resequencing analysis, 951,421 polymorphic SNPs and 221,907 indels were screened between CHP and L2025. Using qRT-PCR analysis, three structural genes (flavonol synthase 1 family protein, UDP-glucose flavonoid 3-O-glucosyltransferase 3′ and flavonoid 3-O-galactosyl transferase family protein) and six transcription factors (MYB-related protein Myb4, transcription factor GAMYB, PtrMYB179, transcription factor bHLH53, transcription factor bHLH3, VARICOSE family protein) may be involved in the anthocyanin synthesis pathway, which could be used as candidate genes to explore the molecular regulation mechanism of leaf coloration in Populus deltoids, and could be used in molecular breeding in the future.
Collapse
|
6
|
Cheng L, Zhang S, Yang L, Wang Y, Yu B, Zhang F. Comparative proteomics illustrates the complexity of Fe, Mn and Zn deficiency-responsive mechanisms of potato (Solanum tuberosum L.) plants in vitro. PLANTA 2019; 250:199-217. [PMID: 30976909 DOI: 10.1007/s00425-019-03163-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/05/2019] [Indexed: 05/05/2023]
Abstract
The present study is the first to integrate physiological and proteomic data providing information on Fe, Mn and Zn deficiency-responsive mechanisms of potato plants in vitro. Micronutrient deficiency is an important limiting factor for potato production that causes substantial tuber yield and quality losses. To under the underlying molecular mechanisms of potato in response to Fe, Mn and Zn deficiency, a comparative proteomic approach was applied. Leaf proteome change of in vitro-propagated potato plantlets subjected to a range of Fe-deficiency treatments (20, 10 and 0 μM Na-Fe-EDTA), Mn-deficiency treatments (1 and 0 μM MnCl2·4H2O) and Zn-deficiency treatment (0 μM ZnCl2) using two-dimensional gel electrophoresis was analyzed. Quantitative image analysis showed a total of 146, 55 and 42 protein spots under Fe, Mn and Zn deficiency with their abundance significantly altered (P < 0.05) more than twofold, respectively. By MALDI-TOF/TOF MS analyses, the differentially abundant proteins were found mainly involved in bioenergy and metabolism, photosynthesis, defence, redox homeostasis and protein biosynthesis/degradation under the metal deficiencies. Signaling, transport, cellular structure and transcription-related proteins were also identified. The hierarchical clustering results revealed that these proteins were involved in a dynamic network in response to Fe, Mn and Zn deficiency. All these metal deficiencies caused cellular metabolic remodeling to improve metal acquisition and distribution in potato plants. The reduced photosynthetic efficiency occurred under each metal deficiency, yet Fe-deficient plants showed a more severe damage of photosynthesis. More defence mechanisms were induced by Fe deficiency than Mn and Zn deficiency, and the antioxidant systems showed different responses to each metal deficiency. Reprogramming of protein biosynthesis/degradation and assembly was more strongly required for acclimation to Fe deficiency. The signaling cascades involving auxin and NDPKs might also play roles in micronutrient stress signaling and pinpoint interesting candidates for future studies. Our results first provide an insight into the complex functional and regulatory networks in potato plants under Fe, Mn and Zn deficiency.
Collapse
Affiliation(s)
- Lixiang Cheng
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shaomei Zhang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lili Yang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yuping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Bin Yu
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, China
| | - Feng Zhang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
7
|
Agliassa C, Narayana R, Christie JM, Maffei ME. Geomagnetic field impacts on cryptochrome and phytochrome signaling. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 185:32-40. [DOI: 10.1016/j.jphotobiol.2018.05.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 11/15/2022]
|
8
|
Zhang J, Movahedi A, Sang M, Wei Z, Xu J, Wang X, Wu X, Wang M, Yin T, Zhuge Q. Functional analyses of NDPK2 in Populus trichocarpa and overexpression of PtNDPK2 enhances growth and tolerance to abiotic stresses in transgenic poplar. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 117:61-74. [PMID: 28587994 DOI: 10.1016/j.plaphy.2017.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/27/2017] [Accepted: 05/29/2017] [Indexed: 05/04/2023]
Abstract
Nucleoside diphosphate kinases (NDPKs) are multifunctional proteins that regulate a variety of eukaryotic cellular activities, including cell proliferation, development, and differentiation. NDPK2 regulates the expression of antioxidant genes in plants. In a previous study, the Arabidopsis thaliana NDPK2 gene (AtNDPK2) was found to be associated with H2O2-mediated mitogen-activated protein kinase signaling in Arabidopsis thaliana. Proteins from transgenic plants overexpressing AtNDPK2 showed higher levels of autophosphorylation and NDPK activity and lower levels of reactive oxygen species (ROS) than those of wild-type (WT) plants. Therefore, constitutive overexpression of AtNDPK2 in Arabidopsis plants conferred enhanced tolerance to multiple environmental stresses that elicit ROS accumulation in situ. In this study, we cloned the Populus trichocarpa NDPK2 gene and analyzed its molecular structure and function. We generated and evaluated transgenic poplar plants expressing the PtNDPK2 gene under the control of the 35S promoter to achieve enhanced tolerance to various abiotic stresses. Transgenic poplar plants showed enhanced tolerance to salt and drought stress at the whole-plant level. The transgenic poplar plants showed significantly greater tolerance to 200 mM NaCl and drought stresses than WT poplar plants. In addition, the transgenic plants exhibited better growth due to increased expression of auxin-related indole acetic acid genes under normal growth conditions compared with WT plants. Our results suggest that induction of PtNDPK2 overexpression in poplars will be useful for increasing biomass production in the presence of various abiotic stresses.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Ming Sang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiheng Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Junjie Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoli Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaolong Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Mengyang Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
9
|
Rao P, Chen Z, Yang X, Gao K, Yang X, Zhao T, Li S, Wu B, An X. Dynamic transcriptomic analysis of the early response of female flowers of Populus alba × P. glandulosa to pollination. Sci Rep 2017; 7:6048. [PMID: 28729698 PMCID: PMC5519698 DOI: 10.1038/s41598-017-06255-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/09/2017] [Indexed: 11/08/2022] Open
Abstract
Pollination is an important event in plant sexual reproduction, and post-pollination response is an essential process for reproduction. Populus alba × P. glandulosa is used widely in scientific research, especially in cross breeding as parents. Adult female P. alba × P. glandulosa flowers are highly compatible with pollen from male P. tomentosa, but the early post-pollination response of flowers at the molecular levels is unclear. In this study, RNA-seq was employed to comprehensively understand the response of female P. alba × P. glandulosa flowers to pollination. Enrichment analysis reveals that the 'plant hormone signal transduction' pathway is enhanced during pollen-pistil interaction. Moreover, genes related to auxin, gibberellin and ethylene biosynthesis were significantly up-regulated. Ca2+ and H+-related genes and cell wall-related genes are interrelated, and all of them are essential for pollen tube elongation in pistil, especially, free Ca2+ providing a concentration gradient for pollen tube guidance and involved in signal transduction. Furthermore, RNA-seq results indicate that genes involved in the adhesion and guidance for pollen germination and pollen tube growth are abundantly present in the extracellular matrix. Our study provides an overview and detailed information for understanding the molecular mechanism of early post-pollination response in this hybrid poplar reproduction.
Collapse
Affiliation(s)
- Pian Rao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Zhong Chen
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoyu Yang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Kai Gao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiong Yang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Tianyun Zhao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Siyan Li
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Bo Wu
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xinmin An
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
10
|
Biotechnology for bioenergy dedicated trees: meeting future energy demands. ACTA ACUST UNITED AC 2017; 73:15-32. [DOI: 10.1515/znc-2016-0185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/26/2017] [Indexed: 11/15/2022]
Abstract
Abstract
With the increase in human demands for energy, purpose-grown woody crops could be part of the global renewable energy solution, especially in geographical regions where plantation forestry is feasible and economically important. In addition, efficient utilization of woody feedstocks would engage in mitigating greenhouse gas emissions, decreasing the challenge of food and energy security, and resolving the conflict between land use for food or biofuel production. This review compiles existing knowledge on biotechnological and genomics-aided improvements of biomass performance of purpose-grown poplar, willow, eucalyptus and pine species, and their relative hybrids, for efficient and sustainable bioenergy applications. This includes advancements in tree in vitro regeneration, and stable expression or modification of selected genes encoding desirable traits, which enhanced growth and yield, wood properties, site adaptability, and biotic and abiotic stress tolerance. Genetic modifications used to alter lignin/cellulose/hemicelluloses ratio and lignin composition, towards effective lignocellulosic feedstock conversion into cellulosic ethanol, are also examined. Biotech-trees still need to pass challengeable regulatory authorities’ processes, including biosafety and risk assessment analyses prior to their commercialization release. Hence, strategies developed to contain transgenes, or to mitigate potential transgene flow risks, are discussed.
Collapse
|
11
|
Kasajima I. Difference in oxidative stress tolerance between rice cultivars estimated with chlorophyll fluorescence analysis. BMC Res Notes 2017; 10:168. [PMID: 28446247 PMCID: PMC5406975 DOI: 10.1186/s13104-017-2489-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 04/20/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Oxidative stress is considered to be involved in growth retardation of plants when they are exposed to a variety of biotic and abiotic stresses. Despite its potential importance in improving crop production, comparative studies on oxidative stress tolerance between rice (Oryza sativa L.) cultivars are limited. This work describes the difference in term of oxidative stress tolerance between 72 rice cultivars. METHODS 72 rice cultivars grown under naturally lit greenhouse were used in this study. Excised leaf discs were subjected to a low concentration of methyl viologen (paraquat), a chemical reagent known to generate reactive oxygen species in chloroplast. Chlorophyll fluorescence analysis using a two-dimensional fluorescence meter, ion leakage analysis as well as the measurement of chlorophyll contents were used to evaluate the oxidative stress tolerance of leaf discs. Furthermore, fluorescence intensities were finely analyzed based on new fluorescence theories that we have optimized. RESULTS Treatment of leaf discs with methyl viologen caused differential decrease of maximum quantum yield of photosystem II (Fv/Fm) between cultivars. Decrease of Fv/Fm was also closely correlated with increase of ion leakage and decrease of chlorophyll a/b ratio. Fv/Fm was factorized into photochemical and non-photochemical parameters to classify rice cultivars into sensitive and tolerant ones. Among the 72 compared rice cultivars, the traditional cultivar Co13 was identified as the most tolerant to oxidative stress. Koshihikari, a dominant modern Japonica cultivar in Japan as well as IR58, one of the modern Indica breeding lines exhibited a strong tolerance to oxidative stress. CONCLUSIONS Close correlation between Fv/Fm and chlorophyll a/b ratio provides a simple method to estimate oxidative stress tolerance, without measurement of chlorophyll fluorescence with special equipment. The fact that modern cultivars, especially major cultivars possessed tolerance to oxidative stress suggests that oxidative stress tolerance is one of the agricultural traits prerequisite for improvement of modern rice cultivars. Data presented in this study would enable breeding of rice cultivars having strong tolerance to oxidative stress.
Collapse
Affiliation(s)
- Ichiro Kasajima
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, Japan. .,Department of Agriculture, Iwate University, Ueda 3-18-8, Morioka, Iwate, Japan.
| |
Collapse
|
12
|
Ke Q, Kim HS, Wang Z, Ji CY, Jeong JC, Lee H, Choi Y, Xu B, Deng X, Yun D, Kwak S. Down-regulation of GIGANTEA-like genes increases plant growth and salt stress tolerance in poplar. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:331-343. [PMID: 27565626 PMCID: PMC5316923 DOI: 10.1111/pbi.12628] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 08/21/2016] [Indexed: 05/02/2023]
Abstract
The flowering time regulator GIGANTEA (GI) connects networks involved in developmental stage transitions and environmental stress responses in Arabidopsis. However, little is known about the role of GI in growth, development and responses to environmental challenges in the perennial plant poplar. Here, we identified and functionally characterized three GI-like genes (PagGIa, PagGIb and PagGIc) from poplar (Populus alba × Populus glandulosa). PagGIs are predominantly nuclear localized and their transcripts are rhythmically expressed, with a peak around zeitgeber time 12 under long-day conditions. Overexpressing PagGIs in wild-type (WT) Arabidopsis induced early flowering and salt sensitivity, while overexpressing PagGIs in the gi-2 mutant completely or partially rescued its delayed flowering and enhanced salt tolerance phenotypes. Furthermore, the PagGIs-PagSOS2 complexes inhibited PagSOS2-regulated phosphorylation of PagSOS1 in the absence of stress, whereas these inhibitions were eliminated due to the degradation of PagGIs under salt stress. Down-regulation of PagGIs by RNA interference led to vigorous growth, higher biomass and enhanced salt stress tolerance in transgenic poplar plants. Taken together, these results indicate that several functions of Arabidopsis GI are conserved in its poplar orthologues, and they lay the foundation for developing new approaches to producing salt-tolerant trees for sustainable development on marginal lands worldwide.
Collapse
Affiliation(s)
- Qingbo Ke
- Plant Systems Engineering Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)DaejeonKorea
- Department of Green Chemistry and Environmental BiotechnologyKorea University of Science and Technology (UST)DaejeonKorea
| | - Ho Soo Kim
- Plant Systems Engineering Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)DaejeonKorea
| | - Zhi Wang
- Institute of Soil and Water ConservationChinese Academy of Science and Ministry of Water ResourcesNorthwest A & F UniversityShaanxiChina
| | - Chang Yoon Ji
- Plant Systems Engineering Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)DaejeonKorea
- Department of Green Chemistry and Environmental BiotechnologyKorea University of Science and Technology (UST)DaejeonKorea
| | - Jae Cheol Jeong
- Plant Systems Engineering Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)DaejeonKorea
- Department of Green Chemistry and Environmental BiotechnologyKorea University of Science and Technology (UST)DaejeonKorea
| | - Haeng‐Soon Lee
- Plant Systems Engineering Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)DaejeonKorea
- Department of Green Chemistry and Environmental BiotechnologyKorea University of Science and Technology (UST)DaejeonKorea
| | - Young‐Im Choi
- Division of Forest BiotechnologyKorea Forest Research InstituteSuwonKorea
| | - Bingcheng Xu
- Institute of Soil and Water ConservationChinese Academy of Science and Ministry of Water ResourcesNorthwest A & F UniversityShaanxiChina
| | - Xiping Deng
- Institute of Soil and Water ConservationChinese Academy of Science and Ministry of Water ResourcesNorthwest A & F UniversityShaanxiChina
| | - Dae‐Jin Yun
- Division of Applied Life Science (BK21plus Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuKorea
| | - Sang‐Soo Kwak
- Plant Systems Engineering Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)DaejeonKorea
- Department of Green Chemistry and Environmental BiotechnologyKorea University of Science and Technology (UST)DaejeonKorea
| |
Collapse
|
13
|
Expressing the sweet potato orange gene in transgenic potato improves drought tolerance and marketable tuber production. C R Biol 2017; 339:207-213. [PMID: 27212605 DOI: 10.1016/j.crvi.2016.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/16/2016] [Accepted: 04/22/2016] [Indexed: 01/11/2023]
Abstract
Potato (Solanum tuberosum L.) is generally considered to be sensitive to drought stress. Even short periods of water shortage can result in reduced tuber production and quality. We previously reported that transgenic potato plants expressing the sweet potato orange gene (IbOr) under the control of the stress-inducible SWPA2 promoter (referred to as SOR plants) showed increased tolerance to methyl viologen-mediated oxidative stress and high salinity, along with increased carotenoid contents. In this study, in an effort to improve the productivity and environmental stress tolerance of potato, we subjected transgenic potato plants expressing IbOr to water-deficient conditions in the greenhouse. The SOR plants exhibited increased tolerance to drought stress under greenhouse conditions. IbOr expression was associated with slightly negative phenotypes, including reduced tuber production. Controlling IbOr expression imparted the same degree of drought tolerance while ameliorating these negative phenotypic effects, leading to levels of tuber production similar to or better than those of wild-type plants under drought stress conditions. In particular, under drought stress, drought tolerance and the production of marketable tubers (over 80g) were improved in transgenic plants compared with non-transgenic plants. These results suggest that expressing the IbOr transgene can lead to significant gains in drought tolerance and tuber production in potato, thereby improving these agronomically important traits.
Collapse
|
14
|
Hetmann A, Wujak M, Kowalczyk S. Protein Transphosphorylation During the Mutual Interaction between Phytochrome A and a Nuclear Isoform of Nucleoside Diphosphate Kinase Is Regulated by Red Light. BIOCHEMISTRY (MOSCOW) 2017; 81:1153-1162. [PMID: 27908239 DOI: 10.1134/s0006297916100126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The nuclear isoform of nucleoside diphosphate kinase isoenzyme NDPK-In undergoes strong catalytic activation upon its interaction with the active form of phytochrome A (Pfr) in red light. The autophosphorylation or intermolecular transphosphorylation of NDPK-In leads to the formation of phosphoester bonds stable in acidic solution. The phosphate residue of the phosphamide bond in the active center of NDPK-In can also be transferred to serine and threonine residues localized in other proteins, including phytochrome A. Phytochrome A, similarly to NDPK-In, undergoes autophosphorylation on serine and threonine residues and can phosphorylate some potential substrate proteins. The physical interaction between phytochrome A in the Pfr form and NDPK-In results in a significant increase in the kinase activity of NDPK-In. The results presented in this work indicate that NDPK-In may function as a protein kinase regulated by light.
Collapse
Affiliation(s)
- A Hetmann
- Nicolaus Copernicus University, Faculty of Biology and Environment Protection, Department of Biochemistry, Toruń 87-100, Poland.
| | | | | |
Collapse
|
15
|
Landscape Genomics of Angiosperm Trees: From Historic Roots to Discovering New Branches of Adaptive Evolution. COMPARATIVE AND EVOLUTIONARY GENOMICS OF ANGIOSPERM TREES 2017. [DOI: 10.1007/7397_2016_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Wang Z, Su G, Li M, Ke Q, Kim SY, Li H, Huang J, Xu B, Deng XP, Kwak SS. Overexpressing Arabidopsis ABF3 increases tolerance to multiple abiotic stresses and reduces leaf size in alfalfa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:199-208. [PMID: 27721135 DOI: 10.1016/j.plaphy.2016.09.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 05/19/2023]
Abstract
Arabidopsis ABSCISIC ACID-RESPONSIVE ELEMENT-BINDING FACTOR 3 (ABF3), a bZIP transcription factor, plays an important role in regulating multiple stress responses in plants. Overexpressing AtABF3 increases tolerance to various stresses in several plant species. Alfalfa (Medicago sativa L.), one of the most important perennial forage crops worldwide, has high yields, high nutritional value, and good palatability and is widely distributed in irrigated and semi-arid regions throughout the world. However, drought and salt stress pose major constraints to alfalfa production. In this study, we developed transgenic alfalfa plants (cv. Xinjiang Daye) expressing AtABF3 under the control of the sweetpotato oxidative stress-inducible SWPA2 promoter (referred to as SAF plants) via Agrobacterium tumefaciens-mediated transformation. After drought stress treatment, we selected two transgenic lines with high expression of AtABF3, SAF5 and SAF6, for further characterization. Under normal conditions, SAF plants showed smaller leaf size compared to non-transgenic (NT) plants, while no other morphological changes were observed. Moreover, SAF plants exhibited enhanced drought stress tolerance and better growth under drought stress treatment, which was accompanied by a reduced transpiration rate and lower reactive oxygen species contents. In addition, SAF plants showed an increased tolerance to salt and oxidative stress. Therefore, these transgenic AtABF3 alfalfa plants might be useful for breeding forage crops with enhanced tolerance to environmental stress for use in sustainable agriculture on marginal lands.
Collapse
Affiliation(s)
- Zhi Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, PR China
| | - Guoxia Su
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, PR China
| | - Min Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, PR China
| | - Qingbo Ke
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Soo Young Kim
- Department of Biotechnology, Chonnam National University, Gwangju, Republic of Korea
| | - Hongbing Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, PR China
| | - Jin Huang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, PR China
| | - Bingcheng Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, PR China
| | - Xi-Ping Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, PR China
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
| |
Collapse
|
17
|
Cho JS, Nguyen VP, Jeon HW, Kim MH, Eom SH, Lim YJ, Kim WC, Park EJ, Choi YI, Ko JH. Overexpression of PtrMYB119, a R2R3-MYB transcription factor from Populus trichocarpa, promotes anthocyanin production in hybrid poplar. TREE PHYSIOLOGY 2016; 36:1162-76. [PMID: 27259636 DOI: 10.1093/treephys/tpw046] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 04/26/2016] [Indexed: 05/12/2023]
Abstract
Anthocyanins are a group of colorful and bioactive natural pigments with important physiological and ecological functions in plants. We found an MYB transcription factor (PtrMYB119) from Populus trichocarpa that positively regulates anthocyanin production when expressed under the control of the CaMV 35S promoter in transgenic Arabidopsis Amino acid sequence analysis revealed that PtrMYB119 is highly homologous to Arabidopsis PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT1), a well-known transcriptional activator of anthocyanin biosynthesis. Independently produced transgenic poplars overexpressing PtrMYB119 or PtrMYB120 (a paralogous gene to PtrMYB119) (i.e., 35S::PtrMYB119 and 35S::PtrMYB120, respectively) showed elevated accumulation of anthocyanins in the whole plants, including leaf, stem and even root tissues. Using a reverse-phase high-performance liquid chromatography, we confirmed that the majority of the accumulated anthocyanin in our transgenic poplar is cyanidin-3-O-glucoside. Gene expression analyses revealed that most of the genes involved in the anthocyanin biosynthetic pathway were highly upregulated in 35S::PtrMYB119 poplars compared with the nontransformed control poplar. Among these genes, expression of PtrCHS1 (Chalcone Synthase1) and PtrANS2 (Anthocyanin Synthase2), which catalyze the initial and last steps of anthocyanin biosynthesis, respectively, was upregulated by up to 350-fold. Subsequent transient activation assays confirmed that PtrMYB119 activated the transcription of both PtrCHS1 and PtrANS2 Interestingly, expression of MYB182, a repressor of both anthocyanin and proanthocyanidin (PA) biosynthesis, was largely suppressed in 35S::PtrMYB119 poplars, while expression of MYB134, an activator of PA biosynthesis, was not changed significantly. More interestingly, high-level accumulation of anthocyanins in 35S::PtrMYB119 poplars did not have an adverse effect on plant growth. Taken together, our results demonstrate that PtrMYB119 and PtrMYB120 function as transcriptional activators of anthocyanin accumulation in both Arabidopsis and poplar.
Collapse
Affiliation(s)
- Jin-Seong Cho
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 446-701, Yongin 17104, Republic of Korea Division of Forest Biotechnology, Korea Forest Research Institute, Suwon 16631, Republic of Korea
| | - Van Phap Nguyen
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 446-701, Yongin 17104, Republic of Korea
| | - Hyung-Woo Jeon
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 446-701, Yongin 17104, Republic of Korea
| | - Min-Ha Kim
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 446-701, Yongin 17104, Republic of Korea
| | - Seok Hyun Eom
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - You Jin Lim
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Won-Chan Kim
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eung-Jun Park
- Division of Forest Biotechnology, Korea Forest Research Institute, Suwon 16631, Republic of Korea
| | - Young-Im Choi
- Division of Forest Biotechnology, Korea Forest Research Institute, Suwon 16631, Republic of Korea
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 446-701, Yongin 17104, Republic of Korea
| |
Collapse
|
18
|
Ke Q, Wang Z, Ji CY, Jeong JC, Lee HS, Li H, Xu B, Deng X, Kwak SS. Transgenic poplar expressing codA exhibits enhanced growth and abiotic stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 100:75-84. [PMID: 26795732 DOI: 10.1016/j.plaphy.2016.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 05/20/2023]
Abstract
Glycine betaine (GB), a compatible solute, effectively stabilizes the structure and function of macromolecules and enhances abiotic stress tolerance in plants. We generated transgenic poplar plants (Populus alba × Populus glandulosa) expressing a bacterial choline oxidase (codA) gene under the control of the oxidative stress-inducible SWPA2 promoter (referred to as SC plants). Among the 13 SC plants generated, three lines (SC4, SC14 and SC21) were established based on codA transcript levels, tolerance to methyl viologen-mediated oxidative stress and Southern blot analysis. Growth was better in SC plants than in non-transgenic (NT) plants, which was related to elevated transcript levels of auxin-response genes. SC plants accumulated higher levels of GB under oxidative stress compared to the NT plants. In addition, SC plants exhibited increased tolerance to drought and salt stress, which was associated with increased efficiency of photosystem II activity. Finally, SC plants maintained lower levels of ion leakage and reactive oxygen species under cold stress compared to the NT plants. These observations suggest that SC plants might be useful for reforestation on global marginal lands, including desertification and reclaimed areas.
Collapse
Affiliation(s)
- Qingbo Ke
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305-806, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon, 305-350, South Korea
| | - Zhi Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A & F University, Yangling, Shaanxi, 712100, PR China
| | - Chang Yoon Ji
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305-806, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon, 305-350, South Korea
| | - Jae Cheol Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305-806, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon, 305-350, South Korea
| | - Haeng-Soon Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305-806, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon, 305-350, South Korea
| | - Hongbing Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A & F University, Yangling, Shaanxi, 712100, PR China
| | - Bingcheng Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A & F University, Yangling, Shaanxi, 712100, PR China
| | - Xiping Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A & F University, Yangling, Shaanxi, 712100, PR China
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305-806, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon, 305-350, South Korea.
| |
Collapse
|
19
|
Allwright MR, Taylor G. Molecular Breeding for Improved Second Generation Bioenergy Crops. TRENDS IN PLANT SCIENCE 2016; 21:43-54. [PMID: 26541073 DOI: 10.1016/j.tplants.2015.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/18/2015] [Accepted: 10/02/2015] [Indexed: 05/24/2023]
Abstract
There is increasing urgency to develop and deploy sustainable sources of energy to reduce our global dependency on finite, high-carbon fossil fuels. Lignocellulosic feedstocks, used in power and liquid fuel generation, are valuable sources of non-food plant biomass. They are cultivated with minimal inputs on marginal or degraded lands to prevent competition with arable agriculture and offer significant potential for sustainable intensification (the improvement of yield without the necessity for additional inputs) through advanced molecular breeding. This article explores progress made in next generation sequencing, advanced genotyping, association genetics, and genetic modification in second generation bioenergy production. Using poplar as an exemplar where most progress has been made, a suite of target traits is also identified giving insight into possible routes for crop improvement and deployment in the immediate future.
Collapse
Affiliation(s)
- Mike R Allwright
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, SO17 1BJ Southampton, UK
| | - Gail Taylor
- Centre for Biological Sciences, Life Sciences Building, University of Southampton, SO17 1BJ Southampton, UK.
| |
Collapse
|
20
|
Park EJ, Kim HT, Choi YI, Lee C, Nguyen VP, Jeon HW, Cho JS, Funada R, Pharis RP, Kurepin LV, Ko JH. Overexpression of gibberellin 20-oxidase1 from Pinus densiflora results in enhanced wood formation with gelatinous fiber development in a transgenic hybrid poplar. TREE PHYSIOLOGY 2015; 35:1264-77. [PMID: 26433020 DOI: 10.1093/treephys/tpv099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/22/2015] [Indexed: 05/21/2023]
Abstract
Gibberellins (GAs) are important regulators of plant shoot biomass growth, and GA 20-oxidase (GA20ox) is one of the major regulatory enzymes in the GA biosynthetic pathway. Previously, we showed that the expression levels of a putative GA20ox1 (i.e., PdGA20ox1) in stem tissue of 3-month-old seedlings of 12 families of Pinus densiflora were positively correlated with stem diameter growth across those same families growing in an even-aged 32-year-old pine forest (Park EJ, Lee WY, Kurepin LV, Zhang R, Janzen L, Pharis RP (2015) Plant hormone-assisted early family selection in Pinus densiflora via a retrospective approach. Tree Physiol 35:86-94). To further investigate the molecular function of this gene in the stem wood growth of forest trees, we produced transgenic poplar lines expressing PdGA20ox1 under the control of the 35S promoter (designated as 35S::PdGA20ox1). By age 3 months, most of the 35S::PdGA20ox1 poplar trees were showing an exceptional enhancement of stem wood growth, i.e., up to fourfold increases in stem dry weight, compared with the nontransformed control poplar plants. Significant increases in endogenous GA1, its immediate precursor (GA20) and its catabolite (GA8) in elongating internode tissue accompanied the increased stem growth in the transgenic lines. Additionally, the development of gelatinous fibers occurred in vertically grown stems of the 35S::PdGA20ox1 poplars. An analysis of the cell wall monosaccharide composition of the 35S::PdGA20ox1 poplars showed significant increases in xylose and glucose contents, indicating a qualitative increase in secondary wall depositions. Microarray analyses led us to find a total of 276 probe sets that were upregulated (using threefold as a threshold) in the stem tissues of 35S::PdGA20ox1 poplars relative to the controls. 'Cell organization or biogenesis'- and 'cell wall'-related genes were overrepresented, including many of genes that are involved in cell wall modification. Several transcriptional regulators, which positively regulate cell elongation through GA signaling, were also upregulated. In contrast, genes involved in defense signaling were appreciably downregulated in the 35S::PdGA20ox1 stem tissues, suggesting a growth versus defense trade-off. Taken together, our results suggest that PdGA20ox1 functions to promote stem growth and wood formation in poplar, probably by activating GA signaling while coincidentally depressing defense signaling.
Collapse
Affiliation(s)
- Eung-Jun Park
- Division of Forest Biotechnology, Korea Forest Research Institute, Suwon 441-847, Republic of Korea
| | - Hyun-Tae Kim
- Division of Forest Biotechnology, Korea Forest Research Institute, Suwon 441-847, Republic of Korea
| | - Young-Im Choi
- Division of Forest Biotechnology, Korea Forest Research Institute, Suwon 441-847, Republic of Korea
| | - Chanhui Lee
- Department of Plant and Environmental New Resources, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Van Phap Nguyen
- Department of Plant and Environmental New Resources, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Hyung-Woo Jeon
- Department of Plant and Environmental New Resources, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Jin-Seong Cho
- Division of Forest Biotechnology, Korea Forest Research Institute, Suwon 441-847, Republic of Korea Department of Plant and Environmental New Resources, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Ryo Funada
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-Tokyo 183-8509, Japan
| | - Richard P Pharis
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Leonid V Kurepin
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4 Present address: Department of Biology, Western University, London, ON, Canada N6A 5B7
| | - Jae-Heung Ko
- Department of Plant and Environmental New Resources, Kyung Hee University, Yongin 446-701, Republic of Korea
| |
Collapse
|
21
|
Ke Q, Wang Z, Ji CY, Jeong JC, Lee HS, Li H, Xu B, Deng X, Kwak SS. Transgenic poplar expressing Arabidopsis YUCCA6 exhibits auxin-overproduction phenotypes and increased tolerance to abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 94:19-27. [PMID: 25980973 DOI: 10.1016/j.plaphy.2015.05.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/04/2015] [Accepted: 05/08/2015] [Indexed: 05/04/2023]
Abstract
YUCCA6, a member of the YUCCA family of flavin monooxygenase-like proteins, is involved in the tryptophan-dependent IAA biosynthesis pathway and responses to environmental cues in Arabidopsis. However, little is known about the role of the YUCCA pathway in auxin biosynthesis in poplar. Here, we generated transgenic poplar (Populus alba × P. glandulosa) expressing the Arabidopsis YUCCA6 gene under the control of the oxidative stress-inducible SWPA2 promoter (referred to as SY plants). Three SY lines (SY7, SY12 and SY20) were selected based on the levels of AtYUCCA6 transcript. SY plants displayed auxin-overproduction morphological phenotypes, such as rapid shoot growth and retarded main root development with increased root hair formation. In addition, SY plants had higher levels of free IAA and early auxin-response gene transcripts. SY plants exhibited tolerance to drought stress, which was associated with reduced levels of reactive oxygen species. Furthermore, SY plants showed delayed hormone- and dark-induced senescence in detached leaves due to higher photosystem II efficiency and less membrane permeability. These results suggest that the conserved IAA biosynthesis pathway mediated by YUCCA family members exists in poplar.
Collapse
Affiliation(s)
- Qingbo Ke
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon 305-350, South Korea
| | - Zhi Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chang Yoon Ji
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon 305-350, South Korea
| | - Jae Cheol Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon 305-350, South Korea
| | - Haeng-Soon Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon 305-350, South Korea
| | - Hongbing Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Bingcheng Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiping Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, South Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon 305-350, South Korea.
| |
Collapse
|
22
|
Wang Z, Ke Q, Kim MD, Kim SH, Ji CY, Jeong JC, Lee HS, Park WS, Ahn MJ, Li H, Xu B, Deng X, Lee SH, Lim YP, Kwak SS. Transgenic alfalfa plants expressing the sweetpotato Orange gene exhibit enhanced abiotic stress tolerance. PLoS One 2015; 10:e0126050. [PMID: 25946429 PMCID: PMC4422619 DOI: 10.1371/journal.pone.0126050] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/28/2015] [Indexed: 11/30/2022] Open
Abstract
Alfalfa (Medicago sativa L.), a perennial forage crop with high nutritional content, is widely distributed in various environments worldwide. We recently demonstrated that the sweetpotato Orange gene (IbOr) is involved in increasing carotenoid accumulation and enhancing resistance to multiple abiotic stresses. In this study, in an effort to improve the nutritional quality and environmental stress tolerance of alfalfa, we transferred the IbOr gene into alfalfa (cv. Xinjiang Daye) under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter through Agrobacterium tumefaciens-mediated transformation. Among the 11 transgenic alfalfa lines (referred to as SOR plants), three lines (SOR2, SOR3, and SOR8) selected based on their IbOr transcript levels were examined for their tolerance to methyl viologen (MV)-induced oxidative stress in a leaf disc assay. The SOR plants exhibited less damage in response to MV-mediated oxidative stress and salt stress than non-transgenic plants. The SOR plants also exhibited enhanced tolerance to drought stress, along with higher total carotenoid levels. The results suggest that SOR alfalfa plants would be useful as forage crops with improved nutritional value and increased tolerance to multiple abiotic stresses, which would enhance the development of sustainable agriculture on marginal lands.
Collapse
Affiliation(s)
- Zhi Wang
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305–4432, Korea
- Department of Horticulture, Chungnam National University, Daejeon, Korea
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A & F University, Yangling, Shaanxi, P.R. China
| | - Qingbo Ke
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305–4432, Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science & Technology, Daejeon, Korea
| | - Myoung Duck Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305–4432, Korea
| | - Sun Ha Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305–4432, Korea
| | - Chang Yoon Ji
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305–4432, Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science & Technology, Daejeon, Korea
| | - Jae Cheol Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305–4432, Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science & Technology, Daejeon, Korea
| | - Haeng-Soon Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305–4432, Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science & Technology, Daejeon, Korea
| | - Woo Sung Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Korea
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Korea
| | - Hongbing Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A & F University, Yangling, Shaanxi, P.R. China
| | - Bingcheng Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A & F University, Yangling, Shaanxi, P.R. China
| | - Xiping Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A & F University, Yangling, Shaanxi, P.R. China
| | - Sang-Hoon Lee
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan, Korea
| | - Yong Pyo Lim
- Department of Horticulture, Chungnam National University, Daejeon, Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 305–4432, Korea
- Department of Green Chemistry and Environmental Biotechnology, Korea University of Science & Technology, Daejeon, Korea
| |
Collapse
|
23
|
Oliveira TM, da Silva FR, Bonatto D, Neves DM, Morillon R, Maserti BE, Filho MAC, Costa MGC, Pirovani CP, Gesteira AS. Comparative study of the protein profiles of Sunki mandarin and Rangpur lime plants in response to water deficit. BMC PLANT BIOLOGY 2015; 15:69. [PMID: 25849288 PMCID: PMC4355367 DOI: 10.1186/s12870-015-0416-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/06/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND Rootstocks play a major role in the tolerance of citrus plants to water deficit by controlling and adjusting the water supply to meet the transpiration demand of the shoots. Alterations in protein abundance in citrus roots are crucial for plant adaptation to water deficit. We performed two-dimensional electrophoresis (2-DE) separation followed by LC/MS/MS to assess the proteome responses of the roots of two citrus rootstocks, Rangpur lime (Citrus limonia Osbeck) and 'Sunki Maravilha' (Citrus sunki) mandarin, which show contrasting tolerances to water deficits at the physiological and molecular levels. RESULTS Changes in the abundance of 36 and 38 proteins in Rangpur lime and 'Sunki Maravilha' mandarin, respectively, were observed via LC/MS/MS in response to water deficit. Multivariate principal component analysis (PCA) of the data revealed major changes in the protein profile of 'Sunki Maravilha' in response to water deficit. Additionally, proteomics and systems biology analyses allowed for the general elucidation of the major mechanisms associated with the differential responses to water deficit of both varieties. The defense mechanisms of Rangpur lime included changes in the metabolism of carbohydrates and amino acids as well as in the activation of reactive oxygen species (ROS) detoxification and in the levels of proteins involved in water stress defense. In contrast, the adaptation of 'Sunki Maravilha' to stress was aided by the activation of DNA repair and processing proteins. CONCLUSIONS Our study reveals that the levels of a number of proteins involved in various cellular pathways are affected during water deficit in the roots of citrus plants. The results show that acclimatization to water deficit involves specific responses in Rangpur lime and 'Sunki Maravilha' mandarin. This study provides insights into the effects of drought on the abundance of proteins in the roots of two varieties of citrus rootstocks. In addition, this work allows for a better understanding of the molecular basis of the response to water deficit in citrus. Further analysis is needed to elucidate the behaviors of the key target proteins involved in this response.
Collapse
Affiliation(s)
- Tahise M Oliveira
- />Universidade Estadual de Santa Cruz-UESC, Rodovia Ilhéus-Itabuna, Km 16, Salobrinho, Bahia Brazil
| | - Fernanda R da Silva
- />Centro de Biotecnologia, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul-UFGRS, Avenida Bento Goncalves, 9500 Porto Alegre, Rio Grande do Sul Brazil
| | - Diego Bonatto
- />Centro de Biotecnologia, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul-UFGRS, Avenida Bento Goncalves, 9500 Porto Alegre, Rio Grande do Sul Brazil
| | - Diana M Neves
- />Universidade Estadual de Santa Cruz-UESC, Rodovia Ilhéus-Itabuna, Km 16, Salobrinho, Bahia Brazil
| | - Raphael Morillon
- />IVIA; Centro de Genomica, Ctra. Moncada-Náquera Km 5, 46113 Moncada, Valencia Spain
- />CIRAD, UMR AGAP, Avenue Agropolis - TA A-75/02 – 34398, Montpellier Cedex 5, France
| | - Bianca E Maserti
- />Dipartimento di Scienze BioAgroAlimentari, CNR-IPSP, Istituto per la Protezione Sostenibile delle Piante, Area della Ricerca CNR, Via Madonna del Piano 10, Via Madonna del Piano n 10, 50019 Sesto Fiorentino, FI Italy
| | | | - Marcio GC Costa
- />Universidade Estadual de Santa Cruz-UESC, Rodovia Ilhéus-Itabuna, Km 16, Salobrinho, Bahia Brazil
| | - Carlos P Pirovani
- />Universidade Estadual de Santa Cruz-UESC, Rodovia Ilhéus-Itabuna, Km 16, Salobrinho, Bahia Brazil
| | - Abelmon S Gesteira
- />Embrapa Mandioca e Fruticultura, Rua Embrapa, s/n, Cruz das Almas, 44380-000 Bahia Brazil
| |
Collapse
|
24
|
Kopylov M, Bass HW, Stroupe ME. The Maize (Zea mays L.) Nucleoside Diphosphate Kinase1 (ZmNDPK1) Gene Encodes a Human NM23-H2 Homologue That Binds and Stabilizes G-Quadruplex DNA. Biochemistry 2015; 54:1743-57. [DOI: 10.1021/bi501284g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Mykhailo Kopylov
- Department of Biological Science and ‡Institute of
Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, Florida 32306-4380, United States
| | - Hank W. Bass
- Department of Biological Science and ‡Institute of
Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, Florida 32306-4380, United States
| | - M. Elizabeth Stroupe
- Department of Biological Science and ‡Institute of
Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, Florida 32306-4380, United States
| |
Collapse
|
25
|
Yin Y, Yang R, Han Y, Gu Z. Comparative proteomic and physiological analyses reveal the protective effect of exogenous calcium on the germinating soybean response to salt stress. J Proteomics 2015; 113:110-26. [PMID: 25284050 DOI: 10.1016/j.jprot.2014.09.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 09/22/2014] [Accepted: 09/26/2014] [Indexed: 01/16/2023]
Abstract
Calcium enhances salt stress tolerance of soybeans. Nevertheless, the molecular mechanism of calcium's involvement in resistance to salt stress is unclear. A comparative proteomic approach was used to investigate protein profiles in germinating soybeans under NaCl-CaCl2 and NaCl-LaCl3 treatments. A total of 80 proteins affected by calcium in 4-day-old germinating soybean cotyledons and 71 in embryos were confidently identified. The clustering analysis showed proteins were subdivided into 5 and 6 clusters in cotyledon and embryo, respectively. Among them, proteins involved in signal transduction and energy pathways, in transportation, and in protein biosynthesis were largely enriched while those involved in proteolysis were decreased. Abundance of nucleoside diphosphate kinase and three antioxidant enzymes were visibly increased by calcium. Accumulation of gamma-aminobutyric acid and polyamines was also detected after application of exogenous calcium. This was consistent with proteomic results, which showed that proteins involved in the glutamate and methionine metabolism were mediated by calcium. Calcium could increase the salt stress tolerance of germinating soybeans via enriching signal transduction, energy pathway and transportation, promoting protein biosynthesis, inhibiting proteolysis, redistributing storage proteins, regulating protein processing in endoplasmic reticulum, enriching antioxidant enzymes and activating their activities, accumulating secondary metabolites and osmolytes, and other adaptive responses. Biological significance Soybean (Glycine max L.), as a traditional edible legume, is being targeted for designing functional foods. During soybean germination under stressful conditions especially salt stress, newly discovered functional components such as gamma-aminobutyric acid (GABA) are rapidly accumulated. However, soybean plants are relatively salt-sensitive and the growth, development and biomass of germinating soybeans are significantly suppressed under salt stress condition. According to previous studies, exogenous calcium counters the harmful effect of salt stress and increases the biomass and GABA content of germinating soybeans. Nevertheless, the precise molecular mechanism underlying the role of calcium in resistance to salt stress is still unknown. This paper is the first study employing comparative proteomic and physiological analyses to reveal the protective effect of exogenous calcium in the germinating soybean response to salt stress. Our study links the biological events with proteomic information and provides detailed peptide information on all identified proteins. The functions of those significantly changed proteins are also analyzed. The physiological and comparative proteomic analyses revealed the putative molecular mechanism of exogenous calcium treatment induced salt stress responses. The findings from this paper are beneficial to high GABA-rich germinating soybean biomass. Additionally, these findings also might be applicable to the genetic engineering of soybean plants to improve stress tolerance.
Collapse
Affiliation(s)
- Yongqi Yin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China; College of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yongbin Han
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
26
|
Liu H, Weisman D, Tang L, Tan L, Zhang WK, Wang ZH, Huang YH, Lin WX, Liu XM, Colón-Carmona A. Stress signaling in response to polycyclic aromatic hydrocarbon exposure in Arabidopsis thaliana involves a nucleoside diphosphate kinase, NDPK-3. PLANTA 2015; 241:95-107. [PMID: 25224398 DOI: 10.1007/s00425-014-2161-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 08/22/2014] [Indexed: 05/18/2023]
Abstract
The study is the first to reveal the proteomic response in plants to a single PAH stress, and indicates that NDPK3 is a positive regulator in the Arabidopsis response to phenanthrene stress. Polycyclic aromatic hydrocarbons (PAHs) are highly carcinogenic pollutants that are byproducts of carbon-based fuel combustion, and tend to persist in the environment for long periods of time. PAHs elicit complex, damaging responses in plants, and prior research at the physiological, biochemical, and transcriptional levels has indicated that reactive oxygen species (ROS) and oxidative stress play major roles in the PAH response. However, the proteomic response has remained largely unexplored. This study hypothesized that the proteomic response in Arabidopsis thaliana to phenanthrene, a model PAH, would include a strong oxidative stress signature, and would provide leads to potential signaling molecules involved. To explore that proteomic signature, we performed 2D-PAGE experiments and identified 30 proteins levels that were significantly altered including catalases (CAT), ascorbate peroxidase (APX), peroxiredoxins (POD), glutathione-S-transferase, and glutathione reductase. Also upregulated was nucleoside diphosphate kinase 3 (NDPK-3), a protein known to have metabolic and stress signaling functions. To address whether NDPK-3 functions upstream of the oxidative stress response, we measured levels of stress-responsive enzymes in NDPK-3 overexpressor, loss-of-function knockout, and wild-type plant lines. In the NDPK-3 overexpressor, the enzyme activities of APX, CAT, POD, as well as superoxide dismutase were all increased compared to wild type; in the NDPK-3 knockout line, these enzymes had reduced activity. This pattern occurred in untreated as well as phenanthrene-treated plants. These data support a model in which NDPK-3 is a positive regulator of the Arabidopsis stress response to PAHs.
Collapse
Affiliation(s)
- Hong Liu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Li H, Wang Z, Ke Q, Ji CY, Jeong JC, Lee HS, Lim YP, Xu B, Deng XP, Kwak SS. Overexpression of codA gene confers enhanced tolerance to abiotic stresses in alfalfa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 85:31-40. [PMID: 25394798 DOI: 10.1016/j.plaphy.2014.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/16/2014] [Indexed: 05/21/2023]
Abstract
We generated transgenic alfalfa plants (Medicago sativa L. cv. Xinjiang Daye) expressing a bacterial codA gene in chloroplasts under the control of the SWPA2 promoter (referred to as SC plants) and evaluated the plants under various abiotic stress conditions. Three transgenic plants (SC7, SC8, and SC9) were selected for further characterization based on the strong expression levels of codA in response to methylviologen (MV)-mediated oxidative stress. SC plants showed enhanced tolerance to NaCl and drought stress on the whole plant level due to induced expression of codA. When plants were subjected to 250 mM NaCl treatment for 2 weeks, SC7 and SC8 plants maintained higher chlorophyll contents and lower malondialdehyde levels than non-transgenic (NT) plants. Under drought stress conditions, all SC plants showed enhanced tolerance to drought stress through maintaining high relative water contents and increased levels of glycinebetaine and proline compared to NT plants. Under normal conditions, SC plants exhibited increased growth due to increased expression of auxin-related IAA genes compared to NT plants. These results suggest that the SC plants generated in this study will be useful for enhanced biomass production on global marginal lands, such as high salinity and arid lands, yielding a sustainable agricultural product.
Collapse
|
28
|
Yoon SK, Park EJ, Choi YI, Bae EK, Kim JH, Park SY, Kang KS, Lee H. Response to drought and salt stress in leaves of poplar (Populus alba × Populus glandulosa): expression profiling by oligonucleotide microarray analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 84:158-168. [PMID: 25285889 DOI: 10.1016/j.plaphy.2014.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/21/2014] [Indexed: 05/24/2023]
Abstract
Drought and salt stresses are major environmental constraints on forest productivity. To identify genes responsible for stress tolerance, we conducted a genome-wide analysis in poplar (Populus alba × Populus glandulosa) leaves exposed to drought and salt (NaCl) stresses. We investigated gene expression at the mRNA level using oligonucleotide microarrays containing 44,718 genes from Populus trichocarpa. A total of 1604 and 1042 genes were up-regulated (≥2-fold; P value < 0.05) by drought and salt stresses, respectively, and 765 genes were up-regulated by both stresses. In addition, 2742 and 1685 genes were down-regulated by drought and salt stresses, respectively, and 1564 genes were down-regulated by both stresses. The large number of genes regulated by both stresses suggests that crosstalk occurs between the drought and salt stress responses. Most up-regulated genes were involved in functions such as subcellular localization, signal transduction, metabolism, and transcription. Among the up-regulated genes, we identified 47 signaling proteins, 65 transcription factors, and 43 abiotic stress-related genes. Several genes were modulated by only one of the two stresses. About 25% of the genes significantly regulated by these stresses are of unknown function, suggesting that poplar may provide an opportunity to discover novel stress-related genes.
Collapse
Affiliation(s)
- Seo-Kyung Yoon
- Department of Forest Genetic Resources, Korea Forest Research Institute, 39 Onjeong-ro, Suwon 441-847, Republic of Korea; Department of Forest Sciences, Seoul National University, 1 Gwanak-ro, Seoul 151-742, Republic of Korea
| | - Eung-Jun Park
- Department of Forest Genetic Resources, Korea Forest Research Institute, 39 Onjeong-ro, Suwon 441-847, Republic of Korea
| | - Young-Im Choi
- Department of Forest Genetic Resources, Korea Forest Research Institute, 39 Onjeong-ro, Suwon 441-847, Republic of Korea
| | - Eun-Kyung Bae
- Department of Forest Genetic Resources, Korea Forest Research Institute, 39 Onjeong-ro, Suwon 441-847, Republic of Korea
| | - Joon-Hyeok Kim
- Department of Forest Genetic Resources, Korea Forest Research Institute, 39 Onjeong-ro, Suwon 441-847, Republic of Korea
| | - So-Young Park
- Department of Horticultural Science, Chungbuk National University, 52 Naesudong-ro, Cheongju 361-763, Republic of Korea
| | - Kyu-Suk Kang
- Department of Forest Sciences, Seoul National University, 1 Gwanak-ro, Seoul 151-742, Republic of Korea
| | - Hyoshin Lee
- Department of Forest Genetic Resources, Korea Forest Research Institute, 39 Onjeong-ro, Suwon 441-847, Republic of Korea.
| |
Collapse
|
29
|
Wang Z, Li H, Ke Q, Jeong JC, Lee HS, Xu B, Deng XP, Lim YP, Kwak SS. Transgenic alfalfa plants expressing AtNDPK2 exhibit increased growth and tolerance to abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 84:67-77. [PMID: 25240265 DOI: 10.1016/j.plaphy.2014.08.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/29/2014] [Indexed: 05/18/2023]
Abstract
In this study, we generated and evaluated transgenic alfalfa plants (Medicago sativa L. cv. Xinjiang Daye) expressing the Arabidopsis nucleoside diphosphate kinase 2 (AtNDPK2) gene under the control of the oxidative stress-inducible SWPA2 promoter (referred to as SN plants) to develop plants with enhanced tolerance to various abiotic stresses. We selected two SN plants (SN4 and SN7) according to the expression levels of AtNDPK2 and the enzyme activity of NDPK in response to methyl viologen (MV)-mediated oxidative stress treatment using leaf discs for further characterization. SN plants showed enhanced tolerance to high temperature, NaCl, and drought stress on the whole-plant level. When the plants were subjected to high temperature treatment (42 °C for 24 h), the non-transgenic (NT) plants were severely wilted, whereas the SN plants were not affected because they maintained high relative water and chlorophyll contents. The SN plants also showed significantly higher tolerance to 250 mM NaCl and water stress treatment than the NT plants. In addition, the SN plants exhibited better plant growth through increased expression of auxin-related indole acetic acid (IAA) genes (MsIAA3, MsIAA5, MsIAA6, MsIAA7, and MsIAA16) under normal growth conditions compared to NT plants. The results suggest that induced overexpression of AtNDPK2 in alfalfa will be useful for increasing biomass production under various abiotic stress conditions.
Collapse
Affiliation(s)
- Zhi Wang
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea; Department of Horticulture, Chungnam National University, Daejeon, Republic of Korea
| | - Hongbing Li
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Qingbo Ke
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Jae Cheol Jeong
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Haeng-Soon Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Bingcheng Xu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Xi-Ping Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources, Northwest A & F University, Yangling, Shaanxi 712100, PR China
| | - Yong Pyo Lim
- Department of Horticulture, Chungnam National University, Daejeon, Republic of Korea
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea; Department of Green Chemistry and Environmental Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
30
|
Harfouche A, Meilan R, Altman A. Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. TREE PHYSIOLOGY 2014; 34:1181-98. [PMID: 24695726 DOI: 10.1093/treephys/tpu012] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Abiotic stresses, such as drought, salinity and cold, are the major environmental stresses that adversely affect tree growth and, thus, forest productivity, and play a major role in determining the geographic distribution of tree species. Tree responses and tolerance to abiotic stress are complex biological processes that are best analyzed at a systems level using genetic, genomic, metabolomic and phenomic approaches. This will expedite the dissection of stress-sensing and signaling networks to further support efficient genetic improvement programs. Enormous genetic diversity for stress tolerance exists within some forest-tree species, and due to advances in sequencing technologies the molecular genetic basis for this diversity has been rapidly unfolding in recent years. In addition, the use of emerging phenotyping technologies extends the suite of traits that can be measured and will provide us with a better understanding of stress tolerance. The elucidation of abiotic stress-tolerance mechanisms will allow for effective pyramiding of multiple tolerances in a single tree through genetic engineering. Here we review recent progress in the dissection of the molecular basis of abiotic stress tolerance in forest trees, with special emphasis on Populus, Pinus, Picea, Eucalyptus and Quercus spp. We also outline practices that will enable the deployment of trees engineered for abiotic stress tolerance to land owners. Finally, recommendations for future work are discussed.
Collapse
Affiliation(s)
- Antoine Harfouche
- Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia, Via S. Camillo de Lellis, Viterbo 01100, Italy
| | - Richard Meilan
- Department of Forestry and Natural Resources, Purdue University, 715 West State Street, West Lafayette, IN 47907-2061, USA
| | - Arie Altman
- Faculty of Agricultural, Food and Environmental Quality Sciences, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| |
Collapse
|
31
|
Dorion S, Rivoal J. Clues to the functions of plant NDPK isoforms. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:119-32. [PMID: 24964975 DOI: 10.1007/s00210-014-1009-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 06/15/2014] [Indexed: 12/20/2022]
Abstract
This review describes the five nucleoside diphosphate kinase (NDPK) genes found in both model plants Arabidopsis thaliana (thale cress) and Oryza sativa L. (rice). Phylogenetic and sequence analyses of these genes allow the definition of four types of NDPK isoforms with different predicted subcellular localization. These predictions are supported by experimental evidence for most NDPK types. Data mining also provides evidence for the existence of a novel NDPK type putatively localized in the endoplasmic reticulum. Phylogenic analyses indicate that plant types I, II, and III belong to the previously identified Nme group I whereas type IV belongs to Nme group II. Additional analysis of the literature offers clues supporting the idea that the various plant NDPK types have different functions. Hence, cytosolic type I NDPKs are involved in metabolism, growth, and stress responses. Type II NDPKs are localized in the chloroplast and mainly involved in photosynthetic development and oxidative stress management. Type III NDPKs have dual targeting to the mitochondria and the chloroplast and are principally involved in energy metabolism. The subcellular localization and precise function of the novel type IV NDPKs, however, will require further investigations.
Collapse
Affiliation(s)
- Sonia Dorion
- IRBV, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC, H1X 2B2, Canada
| | | |
Collapse
|
32
|
Shi H, Chan Z. Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:114-21. [PMID: 24401132 DOI: 10.1111/jipb.12128] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 11/01/2013] [Indexed: 05/02/2023]
Abstract
Polyamines (mainly putrescine (Put), spermidine (Spd), and spermine (Spm)) have been widely found in a range of physiological processes and in almost all diverse environmental stresses. In various plant species, abiotic stresses modulated the accumulation of polyamines and related gene expression. Studies using loss-of-function mutants and transgenic overexpression plants modulating polyamine metabolic pathways confirmed protective roles of polyamines during plant abiotic stress responses, and indicated the possibility to improve plant tolerance through genetic manipulation of the polyamine pathway. Additionally, putative mechanisms of polyamines involved in plant abiotic stress tolerance were thoroughly discussed and crosstalks among polyamine, abscisic acid, and nitric oxide in plant responses to abiotic stress were emphasized. Special attention was paid to the interaction between polyamine and reactive oxygen species, ion channels, amino acid and carbon metabolism, and other adaptive responses. Further studies are needed to elucidate the polyamine signaling pathway, especially polyamine-regulated downstream targets and the connections between polyamines and other stress responsive molecules.
Collapse
Affiliation(s)
- Haitao Shi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan, 430074, China
| | | |
Collapse
|
33
|
Dubouzet JG, Strabala TJ, Wagner A. Potential transgenic routes to increase tree biomass. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 212:72-101. [PMID: 24094056 DOI: 10.1016/j.plantsci.2013.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 05/05/2023]
Abstract
Biomass is a prime target for genetic engineering in forestry because increased biomass yield will benefit most downstream applications such as timber, fiber, pulp, paper, and bioenergy production. Transgenesis can increase biomass by improving resource acquisition and product utilization and by enhancing competitive ability for solar energy, water, and mineral nutrients. Transgenes that affect juvenility, winter dormancy, and flowering have been shown to influence biomass as well. Transgenic approaches have increased yield potential by mitigating the adverse effects of prevailing stress factors in the environment. Simultaneous introduction of multiple genes for resistance to various stress factors into trees may help forest trees cope with multiple or changing environments. We propose multi-trait engineering for tree crops, simultaneously deploying multiple independent genes to address a set of genetically uncorrelated traits that are important for crop improvement. This strategy increases the probability of unpredictable (synergistic or detrimental) interactions that may substantially affect the overall phenotype and its long-term performance. The very limited ability to predict the physiological processes that may be impacted by such a strategy requires vigilance and care during implementation. Hence, we recommend close monitoring of the resultant transgenic genotypes in multi-year, multi-location field trials.
Collapse
|
34
|
Nilo-Poyanco R, Olivares D, Orellana A, Hinrichsen P, Pinto M. Proteomic analysis of grapevine (Vitis vinifera L.) leaf changes induced by transition to autotrophy and exposure to high light irradiance. J Proteomics 2013; 91:309-30. [PMID: 23933133 DOI: 10.1016/j.jprot.2013.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 06/25/2013] [Accepted: 07/02/2013] [Indexed: 01/08/2023]
Abstract
UNLABELLED Using a proteomics approach, we evaluated the response of heterotrophic and autotrophic leaves of grapevine when exposed to high light irradiation. From a total of 572 protein spots detected on two-dimensional gels, 143 spots showed significant variation caused by changes in the trophic state. High light treatment caused variation in 90 spots, and 51 spots showed variation caused by the interaction between both factors. Regarding the trophic state of the leaf, most of the proteins detected in the heterotrophic stage decreased in abundance when the leaf reached the autotrophic stage. Major differences induced by high light were detected in autotrophic leaves. In the high-light-treated autotrophic leaves several proteins involved in the oxidative stress response were up-regulated. This pattern was not observed in the high-light-treated heterotrophic leaves. This indicates that in these types of leaves other mechanisms different to the protein antioxidant system are acting to protect young leaves against the excess of light. This also suggests that these protective mechanisms rely on other sets of proteins or non-enzymatic molecules, or that differences in protein dynamics between the heterotrophic and autotrophic stages makes the autotrophic leaves more prone to the accumulation of oxidative stress response proteins. BIOLOGICAL SIGNIFICANCE Transition from a heterotrophic to an autotrophic state is a key period during which the anatomical, physiological and molecular characteristics of a leaf are defined. In many aspects the right functioning of a leaf at its mature stage depends on the conditions under what this transition occurs. This because apart of the genetic control, environmental factors like mineral nutrition, temperature, water supply, light etc. are also important in its control. Many anatomical and physiological changes have been described in several plant species, however in grapevine molecular data regarding changes triggered by this transition or by light stress are still scarce. In this study, we identify that the transition from heterotrophic to autotrophic state in grapevine triggers major changes in the leaf proteome, which are mainly related to processes such as protein synthesis, protein folding and degradation, photosynthesis and chloroplast development. With the exception of proteins involved in carbon fixation, that increased in abundance, most of the proteins detected during the heterotrophic stage decreased in abundance when the leaf reached its autotrophic stage. This is most likely because leaves have reached their full size and from now they have to work as a carbon source for sink organs located in other parts of the plant. Despite the potential control of this transition by light, to date, no studies using a proteomics approach have been conducted to gain a broader view of the effects of short-term high light stress. Our results indicate that short-term high light exposure has a major impact on the proteome of the autotrophic leaves, and trigger a differential accumulation of several proteins involved in the oxidative stress response. Surprisingly, heterotrophic leaves do not display this pattern which can be attributed to a lower sensitivity of these leaves to high light stimulus. In fact we discovered that heterotrophic leaves are more tolerant to light stress than autotrophic leaves. This finding is of high biological significance because it helps to understand how young leaves are able to evolve to autotrophy in areas where high light intensities are predominant. This also reveals in this type of leaves the existence of alternative mechanisms to address this stressful condition. These observations provide new insights into the molecular changes occurring during transition of leaves to autotrophy particularly when this transition occurs under high light intensities. This for example occurs during the springtime when the grapevine buds burst and the young leaves are suddenly exposed to high light intensities.
Collapse
Affiliation(s)
- R Nilo-Poyanco
- FONDAP Centre for Genome Regulation, Núcleo Milenio en Biotecnología Celular Vegetal, Universidad Andrés Bello, Santiago, Chile
| | | | | | | | | |
Collapse
|
35
|
Shi H, Ye T, Chan Z. Comparative proteomic and physiological analyses reveal the protective effect of exogenous polyamines in the bermudagrass (Cynodon dactylon) response to salt and drought stresses. J Proteome Res 2013; 12:4951-64. [PMID: 23944872 DOI: 10.1021/pr400479k] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polyamines conferred enhanced abiotic stress tolerance in multiple plant species. However, the effect of polyamines on abiotic stress and physiological change in bermudagrass, the most widely used warm-season turfgrasses, are unknown. In this study, pretreatment of exogenous polyamine conferred increased salt and drought tolerances in bermudagrass. Comparative proteomic analysis was performed to further investigate polyamines mediated responses, and 36 commonly regulated proteins by at least two types of polyamines in bermudagrass were successfully identified, including 12 proteins with increased level, 20 proteins with decreased level and other 4 specifically expressed proteins. Among them, proteins involved in electron transport and energy pathways were largely enriched, and nucleoside diphosphate kinase (NDPK) and three antioxidant enzymes were extensively regulated by polyamines. Dissection of reactive oxygen species (ROS) levels indicated that polyamine-derived H2O2 production might play dual roles under abiotic stress conditions. Moreover, accumulation of osmolytes was also observed after application of exogenous polyamines, which is consistent with proteomics results that several proteins involved in carbon fixation pathway were mediated commonly by polyamines pretreatment. Taken together, we proposed that polyamines could activate multiple pathways that enhance bermudagrass adaption to salt and drought stresses. These findings might be applicable for genetically engineering of grasses and crops to improve stress tolerance.
Collapse
Affiliation(s)
- Haitao Shi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences , Wuhan 430074, Hubei, China
| | | | | |
Collapse
|
36
|
Kim BH, Kim SY, Nam KH. Genes encoding plant-specific class III peroxidases are responsible for increased cold tolerance of the brassinosteroid-insensitive 1 mutant. Mol Cells 2012; 34:539-48. [PMID: 23180292 PMCID: PMC3887832 DOI: 10.1007/s10059-012-0230-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/17/2012] [Accepted: 10/26/2012] [Indexed: 11/26/2022] Open
Abstract
We previously reported that one of the brassinosteroidinsensitive mutants, bri1-9, showed increased cold tolerance compared with both wild type and BRI1-overexpressing transgenic plants, despite its severe growth retardation. This increased tolerance in bri1-9 resulted from the constitutively high expression of stress-inducible genes under normal conditions. In this report, we focused on the genes encoding class III plant peroxidases (AtPrxs) because we found that, compared with wild type, bri1-9 plants contain higher levels of reactive oxygen species (ROS) that are not involved with the activation of NADPH oxidase and show an increased level of expression of a subset of genes encoding class III plant peroxidases. Treatment with a peroxidase inhibitor, salicylhydroxamic acid (SHAM), led to the reduction of cold resistance in bri1-9. Among 73 genes that encode AtPrxs in Arabidopsis, we selected four (AtPrx1, AtPrx22, AtPrx39, and AtPrx69) for further functional analyses in response to cold temperatures. T-DNA insertional knockout mutants showed increased sensitivity to cold stress as measured by leaf damage and ion leakage. In contrast, the overexpression of AtPrx22, AtPrx39, and AtPrx69 increased cold tolerance in the BRI1-GFP plants. Taken together, these results indicate that the appropriate expression of a particular subset of AtPrx genes and the resulting higher levels of ROS production are required for the cold tolerance.
Collapse
Affiliation(s)
- Beg Hab Kim
- Department of Biological Science, Sookmyung Women’s University, Seoul 140-742,
Korea
| | - Sun Young Kim
- Department of Biological Science, Sookmyung Women’s University, Seoul 140-742,
Korea
| | - Kyoung Hee Nam
- Department of Biological Science, Sookmyung Women’s University, Seoul 140-742,
Korea
| |
Collapse
|
37
|
Pasrija R, Thakur JK. Analysis of differential expression of Mediator subunit genes in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2012; 7:1676-86. [PMID: 23072992 PMCID: PMC3578909 DOI: 10.4161/psb.22438] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Mediator is a conserved eukaryotic multiprotein complex required by RNA polymerase II for transcription of its target genes. Till date, there is no report explaining the signals that affect the overall concentration of individual Med subunits. In this report, we have analyzed the effect of different phytohormones and stresses on the transcript level of Med genes in Arabidopsis. Hormones like auxin and JA, and cold stress did not show significant effect. ABA moderately increased the transcript abundance of more than 70% of AtMed genes analyzed in this study. However, there was noticeable change in the transcript level of several AtMed genes in response to BR. Stresses like high light, dark and salt also caused significant change in the transcript abundance of many AtMed genes. These data reveal that different environmental cues can affect stoichiometric concentration of Med subunits by affecting the transcription of their respective genes. This may, in turn, affect the overall arrangement of functional Mediator complex. This also suggests that some subunits may have some specific functions to play in response different signals.
Collapse
|
38
|
Munger A, Coenen K, Cantin L, Goulet C, Vaillancourt LP, Goulet MC, Tweddell R, Sainsbury F, Michaud D. Beneficial 'unintended effects' of a cereal cystatin in transgenic lines of potato, Solanum tuberosum. BMC PLANT BIOLOGY 2012; 12:198. [PMID: 23116303 PMCID: PMC3534561 DOI: 10.1186/1471-2229-12-198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/29/2012] [Indexed: 05/08/2023]
Abstract
BACKGROUND Studies reported unintended pleiotropic effects for a number of pesticidal proteins ectopically expressed in transgenic crops, but the nature and significance of such effects in planta remain poorly understood. Here we assessed the effects of corn cystatin II (CCII), a potent inhibitor of C1A cysteine (Cys) proteases considered for insect and pathogen control, on the leaf proteome and pathogen resistance status of potato lines constitutively expressing this protein. RESULTS The leaf proteome of lines accumulating CCII at different levels was resolved by 2-dimensional gel electrophoresis and compared with the leaf proteome of a control (parental) line. Out of ca. 700 proteins monitored on 2-D gels, 23 were significantly up- or downregulated in CCII-expressing leaves, including 14 proteins detected de novo or up-regulated by more than five-fold compared to the control. Most up-regulated proteins were abiotic or biotic stress-responsive proteins, including different secretory peroxidases, wound inducible protease inhibitors and pathogenesis-related proteins. Accordingly, infection of leaf tissues by the fungal necrotroph Botryris cinerea was prevented in CCII-expressing plants, despite a null impact of CCII on growth of this pathogen and the absence of extracellular Cys protease targets for the inhibitor. CONCLUSIONS These data point to the onset of pleiotropic effects altering the leaf proteome in transgenic plants expressing recombinant protease inhibitors. They also show the potential of these proteins as ectopic modulators of stress responses in planta, useful to engineer biotic or abiotic stress tolerance in crop plants of economic significance.
Collapse
Affiliation(s)
- Aurélie Munger
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Karine Coenen
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Line Cantin
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Charles Goulet
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
- Current address: Horticulture Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Louis-Philippe Vaillancourt
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Marie-Claire Goulet
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Russell Tweddell
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Frank Sainsbury
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| | - Dominique Michaud
- Centre de recherche en horticulture, Département de phytologie, Université Laval, Pavillon des Services, 2440 boul. Hochelaga, Québec, QC,, G1V 0A6, Canada
| |
Collapse
|
39
|
Bae EK, Lee H, Lee JS, Noh EW, Choi YI, Lee BH, Choi DW. Microarray and suppression subtractive hybridization analyses of gene expression in hybrid poplar (Populus alba × Populus tremula var. glandulosa) cell suspension cultures after exposure to NaCl. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 58:151-158. [PMID: 22813944 DOI: 10.1016/j.plaphy.2012.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 04/25/2012] [Indexed: 06/01/2023]
Abstract
The gene expression profiles of hybrid poplar (Populus alba × Populus tremula var. glandulosa) cells in suspension culture after exposure to salinity (NaCl) induced stress were examined by constructing two suppression subtractive hybridization (SSH) libraries. cDNA from non-treated cells was used as a driver and cDNA samples from cell suspension cultures exposed to 150 mM NaCl for 2 or 10 h were used as testers. Randomly selected clones from each SSH library were sequenced and 727 high-quality expressed sequence tags (ESTs) were obtained and analyzed. Four novel ESTs were identified. Between the two libraries, 542 unique SSH clones were selected for placement on a cDNA microarray. In total, 18 differentially expressed genes were identified with 4 and 12 genes being significantly differentially expressed 2 and 10 h after the treatment, respectively. Genes related to metabolism and protein synthesis and several genes whose protein products are implicated in salt or other abiotic stress-related responses were expressed in the salt-stressed cells.
Collapse
Affiliation(s)
- Eun-Kyung Bae
- Division of Forest Biotechnology, Korea Forest Research Institute, 39 Onjeong-ro, Suwon 441-847, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
40
|
Checker VG, Chhibbar AK, Khurana P. Stress-inducible expression of barley Hva1 gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress. Transgenic Res 2011; 21:939-57. [PMID: 22160463 DOI: 10.1007/s11248-011-9577-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/25/2011] [Indexed: 11/26/2022]
Abstract
Coping with different kinds of biotic and abiotic stresses is the foundation of sustainable agriculture. Although conventional breeding and marker-assisted selection are being employed in mulberry (Morus indica L.) to develop better varieties, nonetheless the longer time periods required for these approaches necessitates the use of precise biotechnological approaches for sustainable agriculture. In an attempt to improve stress tolerance of mulberry, an important plant of the sericulture industry, an encoding late embryogenesis abundant gene from barley (HVA1) was introduced into mulberry plants by Agrobacterium-mediated transformation. Transgenic mulberry with barley Hva1 under a constitutive promoter actin1 was shown to enhance drought and salinity tolerance. Here, we report that overexpression of barley Hva1 also confers cold tolerance in transgenic mulberry. Further, barley Hva1 gene under control of a stress-inducible promoter rd29A can effectively negate growth retardation under non-stress conditions and confer stress tolerance in transgenic mulberry. Transgenic lines display normal morphology to enhanced growth and an increased tolerance against drought, salt and cold conditions as measured by free proline, membrane stability index and PSII activity. Protein accumulation was detected under stress conditions confirming inductive expression of HVA1 in transgenics. Investigations to assess stress tolerance of these plants under field conditions revealed an overall better performance than the non-transgenic plants. Enhanced expression of stress responsive genes such as Mi dnaJ and Mi 2-cysperoxidin suggests that Hva1 can regulate downstream genes associated with providing abiotic stress tolerance. The investigation of transgenic lines presented here demonstrates the acquisition of tolerance against drought, salt and cold stress in plants overexpressing barley Hva1, indicating that Arabidopsis rd29A promoter can function in mulberry.
Collapse
Affiliation(s)
- Vibha G Checker
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, 110021, India
| | | | | |
Collapse
|
41
|
Kwon SI, Cho HJ, Lee JS, Jin H, Shin SJ, Kwon M, Noh EW, Park OK. Overexpression of constitutively active Arabidopsis RabG3b promotes xylem development in transgenic poplars. PLANT, CELL & ENVIRONMENT 2011; 34:2212-24. [PMID: 21895694 DOI: 10.1111/j.1365-3040.2011.02416.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
An Arabidopsis small GTPase, RabG3b, was previously characterized as a component of autophagy and as a positive regulator for xylem development in Arabidopsis. In this work, we assessed whether RabG3b modulates xylem-associated traits in poplar in a similar way as in Arabidopsis. We generated transgenic poplars (Populus alba × Populus tremula var. glandulosa) overexpressing a constitutively active form of RabG3b (RabG3bCA) and performed a range of morphological, histochemical and molecular analyses to examine xylogenesis. RabG3bCA transgenic poplars showed increased stem growth due to enhanced xylem development. Autophagic structures were observed in differentiating xyelm cells undergoing programmed cell death (PCD) in wild-type poplar, and were more abundant in RabG3bCA transgenic poplar plants and cultured cells. Xylogenic activation was also accompanied by the expression of secondary wall-, PCD- and autophagy-related genes. Collectively, our results suggest that Arabidopsis RabG3b functions to regulate xylem growth through the activation of autophagy during wood formation in Populus, as does the same in Arabidopsis.
Collapse
Affiliation(s)
- Soon Il Kwon
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|