1
|
Niu Y, Yu W, Kou X, Wu S, Liu M, Chen C, Ji J, Shao Y, Xue Z. Bioactive compounds regulate appetite through the melanocortin system: a review. Food Funct 2024. [PMID: 39506527 DOI: 10.1039/d4fo04024d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Obesity, a significant health crisis, arises from an imbalance between energy intake and expenditure. Enhancing appetite regulation has garnered substantial attention from researchers as a novel and effective strategy for weight management. The melanocortin system, situated in the hypothalamus, is recognized as a critical node in the regulation of appetite. It integrates long-term and short-term hormone signals from the periphery as well as nutrients, forming a complex network of interacting feedback mechanisms with the gut-brain axis, significantly contributing to the regulation of energy homeostasis. Appetite regulation by bioactive compounds has been a focus of intensive research due to their favorable safety profiles and easy accessibility. These bioactive compounds, derived from a variety of plant and animal sources, modulate the melanocortin system and influence appetite and energy homeostasis through multiple pathways: central nervous system, peripheral hormones, and intestinal microbiota. Here, we review the anatomy, function, and receptors of the melanocortin system, outline the long-term and short-term regulatory hormones that act on the melanocortin system, and discuss the bioactive compounds and their mechanisms of action that exert a regulatory effect on appetite by targeting the melanocortin system. This review contributes to a better understanding of how bioactive compounds regulate appetite via the melanocortin system, thereby providing nutritional references for citizens' dietary preferences.
Collapse
Affiliation(s)
- Yujia Niu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Shuqi Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Mengyi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Chenlong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Jiaxin Ji
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Ying Shao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
2
|
Irani H, Abiri B, Khodami B, Yari Z, Lafzi Ghazi M, Hosseinzadeh N, Saidpour A. Effect of time restricted feeding on anthropometric measures, eating behavior, stress, serum levels of BDNF and LBP in overweight/obese women with food addiction: a randomized clinical trial. Nutr Neurosci 2024; 27:577-589. [PMID: 37436939 DOI: 10.1080/1028415x.2023.2234704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
BACKGROUND & AIM Food addiction (FA) as a specific food-related behavior may play an essential role in the pathogenesis of obesity. Brain-derived neurotrophic factor (BDNF) and gut microbiota (GM) alterations probably through fasting are closely related to brain function, affecting eating behaviors and body weight management. This study aimed to evaluate the effect of time-restricted feeding (TRF) on serum BDNF levels and eating behaviors in overweight and obese women with FA. METHODS AND DESIGN This clinical trial was performed with a 2-month follow-up on 56 obese and overweight women with FA. Participants were randomly divided into two groups receiving a low-calorie diet (n = 27) and a group receiving a low-calorie diet with TRF (n = 29). Anthropometric measurements, biochemical markers, eating behavior, and stress were assessed during the study period. RESULTS The reductions in weight, body mass index (BMI), waist circumference, and body fat mass were significantly higher in the TRF group compared to the control group at week 8 (P = 0.018, P = 0.015. P = 0.03, and P = 0.036, respectively). The cognitive restriction score was higher in the TRF as compared with the control group (P = 0.002). The food addiction criteria score was significantly reduced in both groups (P < 0.001). Serum levels of BDNF were significantly increased in the TRF group (P < 0.001). In addition, BDNF levels had a positive and significant correlation with the cognitive restriction score (r = 0.468 and P < 0.001), While the correlation with FA was not significant (β = 0.588 and P = 0.618). Lipopolysaccharide binding protein decreased significantly in both groups, but this decrease was significantly higher in the TRF group than in the control group (P < 0.001). CONCLUSION The results of this study showed that a low-calorie diet with TRF is more effective in weight management than a low-calorie diet alone, probably through further modulating the GM and improving BDNF levels. More effective weight loss in the TRF is probably related to better management of eating behavior than FA. TRIAL REGISTRATION Iranian Registry of Clinical Trials identifier: IRCT20131228015968N7.
Collapse
Affiliation(s)
- Hanieh Irani
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnaz Abiri
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Banafsheh Khodami
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Yari
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Lafzi Ghazi
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Nima Hosseinzadeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atoosa Saidpour
- Department of Clinical Nutrition & Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Pati B, Sendh S, Sahu B, Pani S, Jena N, Bal NC. Recent advancements in pharmacological strategies to modulate energy balance for combating obesity. RSC Med Chem 2023; 14:1429-1445. [PMID: 37593583 PMCID: PMC10429841 DOI: 10.1039/d3md00107e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/06/2023] [Indexed: 08/19/2023] Open
Abstract
The prevalence of obesity along with its related metabolic diseases has increased globally in recent decades. Obesity originates from a heterogeneous physiological state, which is further complicated by the influence of factors such as genetic, behavioural, and environmental. Lifestyle interventions including exercise and diet have limited success, necessitating the development of pharmacological approaches. Mechanistically, strategies target either reducing energy intake or increasing consumption through metabolism boosting. Current drugs lower energy intake via inducing satiety or inhibiting substrate absorption, while targeting mitochondria or cytosolic energy sensors has shown limited success due to toxicity. Nonshivering thermogenesis (NST) has provided hope for activating these processes selectively without significant side effects. The internet-based marketing of plant-based formulations for enhancing metabolism has surged. This review compiles scientific articles, magazines, newspapers, and online resources on anti-obesity drug development. Combination therapy of metabolic boosters and established anti-obesity compounds appears to be a promising future approach that requires further research.
Collapse
Affiliation(s)
- Benudhara Pati
- School of Biotechnology, KIIT University Bhubaneswar Odisha 751024 India
| | - Satyabrata Sendh
- School of Biotechnology, KIIT University Bhubaneswar Odisha 751024 India
| | - Bijayashree Sahu
- School of Biotechnology, KIIT University Bhubaneswar Odisha 751024 India
| | - Sunil Pani
- School of Biotechnology, KIIT University Bhubaneswar Odisha 751024 India
| | - Nivedita Jena
- Institute of Life Science, DBT ILS Bioincubator Bhubaneswar Odisha 751021-India
| | - Naresh Chandra Bal
- School of Biotechnology, KIIT University Bhubaneswar Odisha 751024 India
| |
Collapse
|
4
|
Hafida S, Apovian C. Physiology of the Weight-Reduced State and Its Impact on Weight Regain. Endocrinol Metab Clin North Am 2022; 51:795-815. [PMID: 36244694 DOI: 10.1016/j.ecl.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Obesity is a chronic disease characterized by long duration, slow progression, and periods of remission and relapses. Despite the development of effective medical and surgical interventions and millions of people conducting tremendous personal efforts to manage their weight every year, recidivism remains a significant barrier to attaining long-term weight maintenance. This review aimed to explain the underlying physiology of the weight-reduced state including changes in energy balance, adipose tissue, genetic, environmental, and behavioral factors that may predispose individuals to weight regain following weight loss.
Collapse
Affiliation(s)
- Samar Hafida
- Division of Endocrinology, Diabetes, Nutrition and Weight Management, 72 East, Concord Street C3 (Room 321 A), Collamore Building, Boston, MA 02118, USA.
| | - Caroline Apovian
- Division of Endocrinology, Diabetes and Hypertension, Center for Weight Management and Wellness, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Suite RFB-2, Brigham and Women's at 221 Longwood, Boston, MA 02115, USA
| |
Collapse
|
5
|
Misiak B, Kowalski K, Stańczykiewicz B, Bartoli F, Carrà G, Samochowiec J, Samochowiec A, Frydecka D. Appetite-regulating hormones in bipolar disorder: A systematic review and meta-analysis. Front Neuroendocrinol 2022; 67:101013. [PMID: 35792198 DOI: 10.1016/j.yfrne.2022.101013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 11/04/2022]
Abstract
Impaired hormonal regulation of appetite may contribute to higher cardiovascular risk in bipolar disorder (BD). We performed a systematic review and meta-analysis of studies investigating peripheral blood levels of appetite-regulating hormones in BD and controls. A total of 32 studies were included. Leptin and insulin levels were significantly elevated in patients with BD during euthymia, but not in other mood states. Greater differences in the number of male participants between patients with BD and healthy controls were associated with higher effect size estimates for the levels of insulin. There were significant positive correlations of effect size estimates for the levels of adiponectin with the percentage of individuals with type I BD and duration of BD. Our findings point to the mechanisms underlying high rates of cardiometabolic comorbidities in BD. Moreover, they suggest that investigating hormonal regulation of appetite might help to understand differences in the neurobiology of BD types.
Collapse
Affiliation(s)
- Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland.
| | - Krzysztof Kowalski
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland
| | - Bartłomiej Stańczykiewicz
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland
| | - Francesco Bartoli
- Department of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48 - 20900, Monza, Italy; Department of Mental Health & Addiction, ASST Nord Milano, Viale Matteotti, 83 - 20099, Sesto SG, Milano, Italy
| | - Giuseppe Carrà
- Department of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48 - 20900, Monza, Italy; Department of Mental Health & Addiction, ASST Nord Milano, Viale Matteotti, 83 - 20099, Sesto SG, Milano, Italy; Division of Psychiatry, University College London, 149 Tottenham Court Road, W1T 7NF London, UK
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Agnieszka Samochowiec
- Department of Clinical Psychology, Institute of Psychology, University of Szczecin, Krakowska 69 Street, 71-017 Szczecin, Poland
| | - Dorota Frydecka
- Department and Clinic of Psychiatry, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland
| |
Collapse
|
6
|
Campos A, Port JD, Acosta A. Integrative Hedonic and Homeostatic Food Intake Regulation by the Central Nervous System: Insights from Neuroimaging. Brain Sci 2022; 12:431. [PMID: 35447963 PMCID: PMC9032173 DOI: 10.3390/brainsci12040431] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Food intake regulation in humans is a complex process controlled by the dynamic interaction of homeostatic and hedonic systems. Homeostatic regulation is controlled by appetitive signals from the gut, adipose tissue, and the vagus nerve, while conscious and unconscious reward processes orchestrate hedonic regulation. On the one hand, sight, smell, taste, and texture perception deliver potent food-related feedback to the central nervous system (CNS) and influence brain areas related to food reward. On the other hand, macronutrient composition stimulates the release of appetite signals from the gut, which are translated in the CNS into unconscious reward processes. This multi-level regulation process of food intake shapes and regulates human ingestive behavior. Identifying the interface between hormones, neurotransmitters, and brain areas is critical to advance our understanding of conditions like obesity and develop better therapeutical interventions. Neuroimaging studies allow us to take a glance into the central nervous system (CNS) while these processes take place. This review focuses on the available neuroimaging evidence to describe this interaction between the homeostatic and hedonic components in human food intake regulation.
Collapse
Affiliation(s)
- Alejandro Campos
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - John D. Port
- Department of Diagnostic Radiology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
7
|
Verma P, Joshi BC, Bairy PS. A Comprehensive Review on Anti-obesity Potential of Medicinal Plants and their Bioactive Compounds. CURRENT TRADITIONAL MEDICINE 2022. [DOI: 10.2174/2215083808666220211162540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Obesity is a complex health and global epidemic issue. It is an increasing global health challenge covering significant social and economic costs. Abnormal accumulation of fat in the body may increase the health risks including diabetes, hypertension, osteoarthritis, sleep apnea, cardiovascular diseases, stroke and cancer. Synthetic drugs available on the market reported to have several side effects. Therefore, the management of obesity got to involve the traditional use of medicinal plants which helps to search the new therapeutic targets and supports the research and development of anti-obesity drugs.
Objective:
This review aim to update the data and provide a comprehensive report of currently available knowledge of medicinal plants and phyto-chemical constituents reported for their anti-obesity activity.
Methodology:
An electronic search of the periodical databases like Web of Science, Scopus, PubMed, Scielo, Niscair, ScienceDirect, Springerlink, Wiley, SciFinder and Google Scholar with information reported the period 1991-2019, was used to retrieve published data.
Results:
A comprehensive report of the present review manuscript is an attempt to list the medicinal plants with anti-obesity activity. The review focused on plant extracts, isolated chemical compounds with their mechanism of action and their preclinical experimental model, clinical studies for further scientific research.
Conclusion:
This review is the compilation of the medicinal plants and their constituents reported for the managements of obesity. The data will fascinate the researcher to initiate further research that may lead to the drug for the management of obesity and their associated secondary complications. Several herbal plants and their respective lead constituents were also screened by preclinical In-vitro and In-vivo, clinical trials and are effective in the treatment of obesity. Therefore, there is a need to develop and screen large number of plant extracts and this approach can surely be a driving force for the discovery of anti-obesity drugs from medicinal plants.
Collapse
Affiliation(s)
- Piyush Verma
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun-248001, Uttarakhand (India)
| | - Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, Uttarakhand (India)
| | - Partha Sarathi Bairy
- School of Pharmacy, Graphic Era Hill University, Clement Town, Dehradun-248001, Uttarakhand (India)
| |
Collapse
|
8
|
Borah AK, Sharma P, Singh A, Kalita KJ, Saha S, Chandra Borah J. Adipose and non-adipose perspectives of plant derived natural compounds for mitigation of obesity. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114410. [PMID: 34273447 DOI: 10.1016/j.jep.2021.114410] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phyto-preparations and phyto-compounds, by their natural origin, easy availability, cost-effectiveness, and fruitful traditional uses based on accumulated experiences, have been extensively explored to mitigate the global burden of obesity. AIM OF THIS REVIEW The review aimed to analyse and critically summarize the prospect of future anti-obesity drug leads from the extant array of phytochemicals for mitigation of obesity, using adipose related targets (adipocyte formation, lipid metabolism, and thermogenesis) and non-adipose targets (hepatic lipid metabolism, appetite, satiety, and pancreatic lipase activity). Phytochemicals as inhibitors of adipocyte differentiation, modulators of lipid metabolism, and thermogenic activators of adipocytes are specifically discussed with their non-adipose anti-obesogenic targets. MATERIALS AND METHODS PubMed, Google Scholar, Scopus, and SciFinder were accessed to collect data on traditional medicinal plants, compounds derived from plants, their reported anti-obesity mechanisms, and therapeutic targets. The taxonomically accepted name of each plant in this review has been vetted from "The Plant List" (www.theplantlist.org) or MPNS (http://mpns.kew.org). RESULTS Available knowledge of a large number of phytochemicals, across a range of adipose and non-adipose targets, has been critically analysed and delineated by graphical and tabular depictions, towards mitigation of obesity. Neuro-endocrinal modulation in non-adipose targets brought into sharp dual focus, both non-adipose and adipose targets as the future of anti-obesity research. Numerous phytochemicals (Berberine, Xanthohumol, Ursolic acid, Guggulsterone, Tannic acid, etc.) have been found to be effectively reducing weight through lowered adipocyte formation, increased lipolysis, decreased lipogenesis, and enhanced thermogenesis. They have been affirmed as potential anti-obesity drugs of future because of their effectiveness yet having no threat to adipose or systemic insulin sensitivity. CONCLUSION Due to high molecular diversity and a greater ratio of benefit to risk, plant derived compounds hold high therapeutic potential to tackle obesity and associated risks. This review has been able to generate fresh perspectives on the anti-diabetic/anti-hyperglycemic/anti-obesity effect of phytochemicals. It has also brought into the focus that many phytochemicals demonstrating in vitro anti-obesogenic effects are yet to undergo in vivo investigation which could lead to potential phyto-molecules for dedicated anti-obesity action.
Collapse
Affiliation(s)
- Anuj Kumar Borah
- Dept. of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Pranamika Sharma
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India
| | - Archana Singh
- Dept. of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Kangkan Jyoti Kalita
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India
| | - Sougata Saha
- Dept. of Biotechnology, NIT Durgapur, West Bengal, 713209, India
| | - Jagat Chandra Borah
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India.
| |
Collapse
|
9
|
Basolo A, Hollstein T, Walter M, Krakoff J, Piaggi P. Urinary Dopamine Excretion Rate Decreases during Acute Dietary Protein Deprivation and Is Associated with Increased Plasma Pancreatic Polypeptide Concentration. Nutrients 2021; 13:nu13041234. [PMID: 33918032 PMCID: PMC8070031 DOI: 10.3390/nu13041234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 02/03/2023] Open
Abstract
Background: Dopamine, a key neurotransmitter in the autonomic nervous system participating in the homeostatic balance between sympathetic and parasympathetic divisions, is involved in food intake regulation. Objective: We investigated whether dopamine is altered by acute fasting or overfeeding diets with varying macronutrient content. Design: Ninety-nine healthy subjects underwent 24-h dietary interventions including eucaloric feeding, fasting, and five different overfeeding diets in a crossover design. Overfeeding diets (200% of eucaloric requirements) included one diet with 3%-protein (low-protein high-fat overfeeding-LPF: 46%-fat), three diets with 20%-protein, and a diet with 30%-protein (44%-fat). Urine was collected for 24 h and urinary dopamine concentration was quantified by high-performance liquid chromatography. Plasma pancreatic polypeptide (PP) concentration, an indirect marker of parasympathetic activity, was measured prior to and after each diet after an overnight fast. Results: During 24-h of fasting, dopamine decreased on average by ~14% compared to eucaloric conditions, whereas PP increased by two-fold (both p < 0.001). Lower dopamine during 24-h fasting correlated with increased PP (r = -0.40, p < 0.001). Similarly, on average urinary dopamine decreased during LPF by 14% (p < 0.001) and lower dopamine correlated with increased PP (r = -0.31, p = 0.01). No changes in dopamine and PP concentrations were observed during other overfeeding diets (all p > 0.05). Conclusions: Dopamine concentrations decrease during short-term fasting and overfeeding with a low-protein diet. As both dietary conditions have in common protein deficit, the correlation between dopamine and PP suggests a compensatory mechanism underlying the shift from sympathetic to parasympathetic drive during dietary protein deprivation.
Collapse
Affiliation(s)
- Alessio Basolo
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85016, USA; (A.B.); (T.H.); (J.K.)
| | - Tim Hollstein
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85016, USA; (A.B.); (T.H.); (J.K.)
| | - Mary Walter
- Clinical Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20814, USA;
| | - Jonathan Krakoff
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85016, USA; (A.B.); (T.H.); (J.K.)
| | - Paolo Piaggi
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85016, USA; (A.B.); (T.H.); (J.K.)
- Department of Information Engineering, University of Pisa, 56126 Pisa, Italy
- Correspondence: or ; Tel.: +1-602-200-5306; Fax: +1-602-200-5335
| |
Collapse
|
10
|
Effect of Supplementation with Hydroethanolic Extract of Campomanesia xanthocarpa (Berg.) Leaves and Two Isolated Substances from the Extract on Metabolic Parameters of Mice Fed a High-Fat Diet. Molecules 2020; 25:molecules25112693. [PMID: 32531999 PMCID: PMC7321075 DOI: 10.3390/molecules25112693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 01/10/2023] Open
Abstract
There are still controversies regarding the correlation between the beneficial effects for health and the administration of isolated compounds or crude extracts in therapeutic applications. Campomanesia xanthocarpa, found in the Brazilian Cerrado, demonstrated beneficial effects in metabolic disorders associated with obesity. We investigated the effects of Campomanesia xanthocarpa hydroethanolic extract and two isolated substances from the extract (S1 and S2) in a diet-induced obesity (DIO) model. Male Swiss mice were divided into five groups: (1) American Institute of Nutrition (AIN-93M) diet, (2) high-fat diet (HF), (3) HF supplemented with C. xanthocarpa hydroethanolic leaf extract at 100 mg/kg (HFE), (4) HF supplemented with S1 at 1 mg/kg (HFS1) and (5) HF supplemented with S2 at 1 mg/kg (HFS2). The HFS1, HFS2 and HFE groups did not present decreasing body weight or visceral adiposity gain. No differences in glycemic and lipid parameters, or in the expression of protein content in two cytokines, interleukin-6 (IL-6) and anti-inflammatory (IL-10), were observed. Only the HFS1 group displayed decreased food intake. Even though substantial effects such as an improvement in obesity features or the metabolic and histological parameters promoted by S1, S2 and the extract were not observed, further investigations are necessary to evaluate the principal genes and protein expressions involved in regulating food behavior promoted by S1.
Collapse
|
11
|
Yuan D, Gao Y, Zhang X, Wang B, Chen H, Wu Y, Chen D, Wang Z, Li Z. NPY and NPY receptors in the central control of feeding and interactions with CART and MC4R in Siberian sturgeon. Gen Comp Endocrinol 2019; 284:113239. [PMID: 31394086 DOI: 10.1016/j.ygcen.2019.113239] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 07/25/2019] [Accepted: 08/04/2019] [Indexed: 01/08/2023]
Abstract
Neuropeptide Y (NPY) is the most powerful central neuropeptide implicated in feeding regulation via its receptors. Understanding the role of NPY system is critical to elucidate animal feeding regulation. Unlike mammal, the possible mechanisms of NPY system in the food intake of teleost fish are mostly unknown. Therefore, we investigated the regulatory mechanism of NPY and NPY receptors in Siberian sturgeon. In this study, we cloned the cDNA encoding NPY, and assessed the effects of different energy status on npy mRNAs abundance. The expression of npy was decreased in the brain after feeding 1 and 3 h. Besides, the expression of npy was increased after fasting within 15 days, while exhibiting significant decrease after refeeding. In order to further characterize the role of NPY receptor in fish, we performed acute intraperitoneal (i.p.) injection of NPY Y1 and Y2 receptor agonists, which is [Leu 31, Pro 34] NPY and NPY13-36 respectively. The results showed that the food intake of Siberian sturgeon was increased within 30 mins after injection of both Y1 and Y2 receptor agonist. To explore the relationship between NPY, NPY receptors and another appetite peptides, we examined the level of npy, cocaine- and amphetamine-regulated transcript (cart) and melanocortin-4 receptor (mc4r) by injected Y1 and Y2 receptor agonist. The results suggested that cart expression was regulated by NPY which acts on Y1 receptor or Y2 receptor. While mc4r expression just was mediated by NPY and Y1 receptor.
Collapse
Affiliation(s)
- Dengyue Yuan
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 610000, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China
| | - Yundi Gao
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 610000, China
| | - Xin Zhang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 610000, China
| | - Bin Wang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 610000, China
| | - Hu Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 610000, China
| | - Yuanbing Wu
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 610000, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 610000, China
| | - Zhijian Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China
| | - Zhiqiong Li
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 610000, China.
| |
Collapse
|
12
|
Garcés-Rimón M, González C, Hernanz R, Herradón E, Martín A, Palacios R, Alonso MJ, Uranga JA, López-Miranda V, Miguel M. Egg white hydrolysates improve vascular damage in obese Zucker rats by its antioxidant properties. J Food Biochem 2019; 43:e13062. [PMID: 31571257 DOI: 10.1111/jfbc.13062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Metabolic Syndrome (MS) is related to increased risk of early death due to cardiovascular complications, among others. Dietary intervention has been suggested as the safest and most cost-effective alternative for treatment of those alterations in patients with MS. The aim of this study was to investigate the effects of different egg white hydrolysates (HEW1 and HEW2) in obese Zucker rats, focus on the development of cardiovascular complications. Blood pressure, heart rate, basal cardiac function and vascular reactivity in aorta and mesenteric resistance arteries were evaluated. Reactive oxygen species production by dihydroethidium-emitted fluorescence, NOX-1 mRNA levels by qRT-PCR, angiotensin-converting enzyme activity by fluorimetry and kidney histopathology were also analysed. Both hydrolysates improve the endothelial dysfunction occurring in resistance arteries. Additionally, HEW2 reduced vascular oxidative stress. PRACTICAL APPLICATIONS: Egg white is a good source of bioactive peptides, some of them with high antioxidant activity. They may be used as functional foods ingredients and could serve as an alternative therapeutic option to decrease some Metabolic Syndrome-related complications. This study suggests that these hydrolysates could be an interesting non-pharmacological tool to control cardiovascular complications related to Metabolic Syndrome.
Collapse
Affiliation(s)
- Marta Garcés-Rimón
- Instituto de Investigación en Ciencias de Alimentación (CIAL, CSIC-UAM), Madrid, Spain.,Grupo de Investigación en Nutrición y Farmacología (URJC), Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación (CSIC), Madrid, Spain
| | - Cristina González
- Grupo de Investigación en Nutrición y Farmacología (URJC), Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación (CSIC), Madrid, Spain.,Dpto, de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Raquel Hernanz
- Dpto, de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Esperanza Herradón
- Grupo de Investigación en Nutrición y Farmacología (URJC), Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación (CSIC), Madrid, Spain.,Dpto, de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Angela Martín
- Dpto, de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Roberto Palacios
- Dpto, de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - María Jesús Alonso
- Dpto, de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - José Antonio Uranga
- Grupo de Investigación en Nutrición y Farmacología (URJC), Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación (CSIC), Madrid, Spain.,Dpto, de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Visitación López-Miranda
- Grupo de Investigación en Nutrición y Farmacología (URJC), Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación (CSIC), Madrid, Spain.,Dpto, de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Marta Miguel
- Instituto de Investigación en Ciencias de Alimentación (CIAL, CSIC-UAM), Madrid, Spain.,Grupo de Investigación en Nutrición y Farmacología (URJC), Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación (CSIC), Madrid, Spain
| |
Collapse
|
13
|
Gheflati A, Mohammadi M, Ramezani-Jolfaie N, Heidari Z, Salehi-Abargouei A, Nadjarzadeh A. Does pomegranate consumption affect weight and body composition? A systematic review and meta-analysis of randomized controlled clinical trials. Phytother Res 2019; 33:1277-1288. [PMID: 30882964 DOI: 10.1002/ptr.6322] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/31/2022]
Abstract
Pomegranate is rich in tannins, polyphenols, flavonoids, and several other types of antioxidant compounds whose role in weight loss has been shown in previous studies. However, the results have been mixed regarding the effects of pomegranate consumption on weight loss. Electronic databases such as PubMed, Scopus, ISI Web of Science, and Google Scholar were systematically searched up to May 2018 for controlled clinical trials assessing the effect of pomegranate consumption on weight loss. A random effects model was used to calculate the weighted mean difference (WMD) and 95% confidence interval (CI) as the difference between the mean for the intervention and control groups. Thirteen randomized controlled trials (including 513 participants) were included in the present meta-analysis. Compared with the control groups, there was no significant reduction in bodyweight, body mass index, waist circumference, and body fat percentage after pomegranate consumption (WMD = -0.23 kg, 95% CI: -0.94, 0.47, P = 0.515; WMD = -0.12 kg/m2 , 95% CI: -0.29, 0.03, P = 0.132; WMD = -0.08 cm, 95% CI: -0.33, 0.17, P = 0.534; WMD = -0.05, 95% CI: -1.66, 1.55, P = 0.947, respectively). According to the results of the present systematic review and meta-analysis, there was no significant effect of pomegranate consumption on weight and body composition indices.
Collapse
Affiliation(s)
- Alireza Gheflati
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Mohammadi
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nahid Ramezani-Jolfaie
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zahra Heidari
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amin Salehi-Abargouei
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Azadeh Nadjarzadeh
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
14
|
Lundqvist A, Sandström H, Bäckström T. The relationship between weight gain during pregnancy and allopregnanolone levels: a longitudinal study. Endocr Connect 2017; 6:253-259. [PMID: 28381564 PMCID: PMC5632720 DOI: 10.1530/ec-17-0046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Large weight gain during pregnancy is a risk factor for complications for mother and fetus. Hunger and satiety are regulated in the hypothalamus, where the gamma-amino-butyric acid system (GABA) has an important role. Allopregnanolone, a progesterone metabolite, increases during pregnancy and is a potent GABA-A receptor modulating steroid. Allopregnanolone has been shown to induce overeating in rodents. The aim was to investigate whether there is a relationship between weight gain and allopregnanolone concentrations during pregnancy in humans. DESIGN A longitudinal, cohort study. METHODS Pregnant women (n = 56) were recruited in primary care in northern Sweden. Allopregnanolone concentrations in plasma were measured using radioimmunoassay and weight was measured in gestational weeks 12 and 35. RESULTS Weight increase correlated significantly to allopregnanolone in late pregnancy increase (rs = 0.320; P = 0.016), indicating a positive relationship between weight increase and allopregnanolone increase. A positive relationship was also noted between allopregnanolone in the 35th gestational week and weight increase. Women who gained ≥11 kg during pregnancy showed higher allopregnanolone concentrations in week 35 and higher increase compared to women who increased <11 kg (P = 0.006 and P = 0.009 resp.). There was no difference in weight or allopregnanolone concentrations at the onset of pregnancy. CONCLUSIONS The results show a relationship between weight gain during pregnancy and increase in allopregnanolone concentrations.
Collapse
Affiliation(s)
- Anette Lundqvist
- Department of Public Health and Clinical MedicineFamily Medicine, Umeå University, Umeå, Sweden
| | - Herbert Sandström
- Department of Public Health and Clinical MedicineFamily Medicine, Umeå University, Umeå, Sweden
| | - Torbjörn Bäckström
- Department of Clinical SciencesObstetrics and Gynecology, Umeå University, Umeå, Sweden
| |
Collapse
|
15
|
Fu C, Jiang Y, Guo J, Su Z. Natural Products with Anti-obesity Effects and Different Mechanisms of Action. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9571-9585. [PMID: 27931098 DOI: 10.1021/acs.jafc.6b04468] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Obesity, a primary influence on health condition, causes numerous comorbidities and complications and, therefore, pharmacotherapy is considered a strategy for its treatment. However, the adverse effects of most chemical drugs targeting weight loss complicate their approval by regulatory authorities. Recently, interest has increased in the development of ingredients from natural sources with fewer adverse effects for preventing and ameliorating obesity. This review provides an overview of current anti-obesity drugs and natural products with anti-obesity properties as well as their mechanisms of action, which include interfering with nutrient absorption, decreasing adipogenesis, increasing energy expenditure (thermogenesis), appetite suppression, modifying intestinal microbiota composition, and increasing fecal fat excretion.
Collapse
Affiliation(s)
- Chuhan Fu
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University , Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yao Jiang
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University , Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jiao Guo
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University , Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University , Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
16
|
Medicinal Plants and Their Inhibitory Activities against Pancreatic Lipase: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:973143. [PMID: 26640503 PMCID: PMC4657100 DOI: 10.1155/2015/973143] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/15/2015] [Indexed: 12/18/2022]
Abstract
Obesity is recognized as a major life style disorder especially in developing countries and it is prevailing at an alarming speed in new world countries due to fast food intake, industrialization, and reduction of physical activity. Furthermore, it is associated with a vast number of chronic diseases and disabilities. To date, relatively effective drugs, from either natural or synthetic sources, are generally associated with serious side effects, often leading to cessation of clinical trials or even withdrawal from the market. In order to find new compounds which are more effective or with less adverse effects compared to orlistat, the drug that has been approved for obesity, new compounds isolated from natural products are being identified and screened for antiobesity effects, in particular, for their pancreatic lipase inhibitory effect. Pancreatic lipase inhibitory activity has been extensively used for the determination of potential efficacy of natural products as antiobesity agents. In attempts to identify natural products for overcoming obesity, more researches have been focused on the identification of newer pancreatic lipase inhibitors with less unpleasant adverse effects. In this review, we consider the potential role of plants that have been investigated for their pancreatic lipase inhibitory activity.
Collapse
|
17
|
Markianos M, Evangelopoulos ME, Koutsis G, Sfagos C. Elevated CSF serotonin and dopamine metabolite levels in overweight subjects. Obesity (Silver Spring) 2013; 21:1139-42. [PMID: 23670875 DOI: 10.1002/oby.20201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 11/14/2012] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Neurotransmitter systems participate in the regulation of food intake, and their activities are expected to influence eating behavior. DESIGN AND METHODS We investigated possible associations between body mass index (BMI) and central noradrenaline, serotonin, and dopamine activities, as reflected by the cerebrospinal fluid levels of their main metabolites methoxyhydroxyphenylglycol (MHPG), 5-hydroxyindoleacetic acid (5-HIAA), and homovanillic acid (HVA), respectively. We studied 192 subjects (111 males, 81 females) admitted to neurologic clinic for diagnostic investigations that included CSF analysis, and were found not to suffer from any major neurological disease. Subjects were categorized in three groups, namely in lower, in the two middle, and in upper BMI quartiles, the limits calculated separately for males and females. RESULTS No differences were found in MHPG levels between groups, while subjects in the upper BMI quartile showed significantly elevated levels of 5-HIAA and HVA compared to the levels of subjects in lower and middle quartiles. CONCLUSIONS The results provide evidence that in overweight subjects there are enhanced demands in serotoninergic and dopaminergic signaling for their reward system that may lead to increased motivation for food consumption. The implication of reward centers in eating behavior supports the hypothesis of common mechanisms in obesity and drug addiction.
Collapse
Affiliation(s)
- M Markianos
- Athens University Medical School, Department of Neurology, Eginition Hospital, Athens 11528, Greece.
| | | | | | | |
Collapse
|
18
|
Tomasi D, Volkow ND. Striatocortical pathway dysfunction in addiction and obesity: differences and similarities. Crit Rev Biochem Mol Biol 2013; 48:1-19. [PMID: 23173916 PMCID: PMC3557663 DOI: 10.3109/10409238.2012.735642] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuroimaging techniques are starting to reveal significant overlap in the brain circuitry underlying addiction and disorders of dyscontrol over rewarding behaviors (such as binge eating disorder and obesity). Positron emission tomography (PET) has demonstrated impaired striatal dopamine (DA) signaling (decreased D2 receptors) in drug addiction and obesity that is associated with reduced baseline glucose metabolism in medial and ventral prefrontal brain regions. Functional magnetic resonance imaging (fMRI) has documented brain activation abnormalities that also implicate DA-modulated striato-cortical pathways. In this review we map findings from recent neuroimaging studies that differentiate brain activation in drug/food addiction from those in controls within brain networks functionally connected with ventral and dorsal striatum. We show that regions found to be abnormal in addiction and obesity frequently emerge at the overlap of the dorsal and the ventral striatal networks. Medial temporal and superior frontal regions functionally connected with dorsal striatum display greater vulnerability in obesity and eating disorders than in drug addictions, indicating more widespread abnormalities for obesity and eating disorders than for addictions. This corroborates involvement of both ventral striatal (predominantly associated with reward and motivation) and dorsal striatal networks (associated with habits or stimulus response learning) in addiction and obesity but also identify distinct patterns between these two disorders.
Collapse
Affiliation(s)
- Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.
| | | |
Collapse
|
19
|
Volkow ND, Wang GJ, Tomasi D, Baler RD. Obesity and addiction: neurobiological overlaps. Obes Rev 2013; 14:2-18. [PMID: 23016694 PMCID: PMC4827343 DOI: 10.1111/j.1467-789x.2012.01031.x] [Citation(s) in RCA: 489] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 08/10/2012] [Accepted: 08/10/2012] [Indexed: 12/14/2022]
Abstract
Drug addiction and obesity appear to share several properties. Both can be defined as disorders in which the saliency of a specific type of reward (food or drug) becomes exaggerated relative to, and at the expense of others rewards. Both drugs and food have powerful reinforcing effects, which are in part mediated by abrupt dopamine increases in the brain reward centres. The abrupt dopamine increases, in vulnerable individuals, can override the brain's homeostatic control mechanisms. These parallels have generated interest in understanding the shared vulnerabilities between addiction and obesity. Predictably, they also engendered a heated debate. Specifically, brain imaging studies are beginning to uncover common features between these two conditions and delineate some of the overlapping brain circuits whose dysfunctions may underlie the observed deficits. The combined results suggest that both obese and drug-addicted individuals suffer from impairments in dopaminergic pathways that regulate neuronal systems associated not only with reward sensitivity and incentive motivation, but also with conditioning, self-control, stress reactivity and interoceptive awareness. In parallel, studies are also delineating differences between them that centre on the key role that peripheral signals involved with homeostatic control exert on food intake. Here, we focus on the shared neurobiological substrates of obesity and addiction.
Collapse
Affiliation(s)
- N D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
20
|
Moore CJ, Lowe J, Michopoulos V, Ulam P, Toufexis D, Wilson ME, Johnson Z. Small changes in meal patterns lead to significant changes in total caloric intake. Effects of diet and social status on food intake in female rhesus monkeys. Appetite 2012. [PMID: 23207191 DOI: 10.1016/j.appet.2012.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Social subordination in macaques is a well-established model to study the adverse effects of psychosocial stress on a number of health outcomes, including stress-induced eating. The present analysis was conducted to empirically define a meal among free-feeding female rhesus monkeys and to examine the roles of meal patterning (e.g., meal size, meal frequency, and snacking patterns) in findings from a previous study demonstrating that psychosocial stress increases overall caloric intake among subordinate animals with access to a highly palatable diet. Results indicate that all animals, regardless of social status, consumed more frequent meals, larger meals, and more calories in the form of snacks when a highly palatable diet was available. Additional findings suggest that subordinate animals consumed significantly larger meals compared to their dominant counterparts regardless of the dietary environment. Additionally, subordinate females with a history of exposure to the palatable diet consumed significantly more snack calories than both dominant and subordinate animals without previous exposure to the palatable diet when these females were returned to a standard laboratory diet. These findings illustrate how small changes in meal patterns can lead to significant increases in total caloric intake, which if prolonged, could promote the emergence of an obese phenotype.
Collapse
Affiliation(s)
- Carla J Moore
- Division of Developmental & Cognitive Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, United States.
| | | | | | | | | | | | | |
Collapse
|
21
|
Page AJ, Symonds E, Peiris M, Blackshaw LA, Young RL. Peripheral neural targets in obesity. Br J Pharmacol 2012; 166:1537-58. [PMID: 22432806 PMCID: PMC3419899 DOI: 10.1111/j.1476-5381.2012.01951.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 02/20/2012] [Accepted: 02/22/2012] [Indexed: 12/15/2022] Open
Abstract
Interest in pharmacological treatments for obesity that act in the brain to reduce appetite has increased exponentially over recent years, but failures of clinical trials and withdrawals due to adverse effects have so far precluded any success. Treatments that do not act within the brain are, in contrast, a neglected area of research and development. This is despite the fact that a vast wealth of molecular mechanisms exists within the gut epithelium and vagal afferent system that could be manipulated to increase satiety. Here we discuss mechano- and chemosensory pathways from the gut involved in appetite suppression, and distinguish between gastric and intestinal vagal afferent pathways in terms of their basic physiology and activation by enteroendocrine factors. Gastric bypass surgery makes use of this system by exposing areas of the intestine to greater nutrient loads resulting in greater satiety hormone release and reduced food intake. A non-surgical approach to this system is preferable for many reasons. This review details where the opportunities may lie for such approaches by describing nutrient-sensing mechanisms throughout the gastrointestinal tract.
Collapse
Affiliation(s)
- Amanda J Page
- Nerve-Gut Research Laboratory, Discipline of Medicine, South Australia, Australia
| | | | | | | | | |
Collapse
|
22
|
Al-Muammar MN, Khan F. Obesity: the preventive role of the pomegranate (Punica granatum). Nutrition 2012; 28:595-604. [PMID: 22342388 DOI: 10.1016/j.nut.2011.11.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 10/16/2011] [Accepted: 11/11/2011] [Indexed: 02/05/2023]
Abstract
Obesity represents a rapidly growing threat to the health of populations in an increasing number of countries. Diet intervention has been proposed as one of the strategies for weight loss and weight maintenance. Traditionally, the pomegranate, including its roots, tree bark, fruit juice, leaves, and flowers, has been used to treat some conditions such as diarrhea, hemorrhage, acidosis, and microbial infections. Pomegranate extracts have been found to have strong anti-inflammatory, antioxidant, and even antitumor properties in vivo and in vitro. More recently, positive effects on fat reduction have been shown using the pomegranate and its extracts. Many of the beneficial effects are related to the presence of anthocyanins, tannins, and very high levels of antioxidants, including polyphenols and flavonoids. Many studies have explored the effects of the pomegranate in obesity, and various mechanisms have been proposed as to how these different extracts help in fat reduction. This article provides an overview of the work done addressing the potential benefits of the pomegranate on obesity and assesses the efficacy of intervention by means of the pomegranate and its extracts. Human studies in this field are still limited and need more attention that would help in understanding the preventive and protective roles pomegranate extracts have on obesity.
Collapse
Affiliation(s)
- May Nasser Al-Muammar
- Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | | |
Collapse
|
23
|
Volkow ND, Wang GJ, Fowler JS, Tomasi D, Baler R. Food and drug reward: overlapping circuits in human obesity and addiction. Curr Top Behav Neurosci 2012; 11:1-24. [PMID: 22016109 DOI: 10.1007/7854_2011_169] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Both drug addiction and obesity can be defined as disorders in which the saliency value of one type of reward (drugs and food, respectively) becomes abnormally enhanced relative to, and at the expense of others. This model is consistent with the fact that both drugs and food have powerful reinforcing effects-partly mediated by dopamine increases in the limbic system-that, under certain circumstances or in vulnerable individuals, could overwhelm the brain's homeostatic control mechanisms. Such parallels have generated significant interest in understanding the shared vulnerabilities and trajectories between addiction and obesity. Now, brain imaging discoveries have started to uncover common features between these two conditions and to delineate some of the overlapping brain circuits whose dysfunctions may explain stereotypic and related behavioral deficits in human subjects. These results suggest that both obese and drug-addicted individuals suffer from impairments in dopaminergic pathways that regulate neuronal systems associated not only with reward sensitivity and incentive motivation, but also with conditioning (memory/learning), impulse control (behavioural inhibition), stress reactivity, and interoceptive awareness. Here, we integrate findings predominantly derived from positron emission tomography that shed light on the role of dopamine in drug addiction and in obesity, and propose an updated working model to help identify treatment strategies that may benefit both of these conditions.
Collapse
Affiliation(s)
- N D Volkow
- National Institute on Drug Abuse, 6001 Executive Boulevard 6001, Room 5274, Bethesda, MD, 20892, USA,
| | | | | | | | | |
Collapse
|
24
|
Yuliana ND, Jahangir M, Korthout H, Choi YH, Kim HK, Verpoorte R. Comprehensive review on herbal medicine for energy intake suppression. Obes Rev 2011; 12:499-514. [PMID: 20659298 DOI: 10.1111/j.1467-789x.2010.00790.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The obesity drug development is present not a bright and successful story. So far, drugs reported to be effective, either from synthetic or natural sources, mostly stimulated controversy because of serious adverse effects, which ended with stopping clinical trials or even withdrawal from the market. However, obesity and its comorbidities have become rapidly a major problem in both developed and developing countries. This has encouraged pharmaceutical companies and academia to keep on struggling on developing novel effective but safe obesity drugs, and on characterizing novel obesity drug targets. From existing scientific work on obesity drug discovery and commercial slimming preparations, compounds originating from nature, especially from plants, seem to be the first choice. Traditional belief that herbal medicine is safer than synthetic ones is one of the classical arguments, although scientifically this is not always true (e.g. ban on Ephedra). But in general, it has been widely acknowledged that a plant compound, with its unique scaffolds and rich diversity is an unlimited source of novel lead compounds. This paper aims to summarize all works focused on screening plant materials by targeting important pathways related to energy intake regulation, either by in vivo or in vitro experiments.
Collapse
Affiliation(s)
- N D Yuliana
- Department of Pharmacognosy, Section of Metabolomics, Leiden University, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
25
|
Targeting thermogenesis and related pathways in anti-obesity drug discovery. Pharmacol Ther 2011; 131:295-308. [PMID: 21514319 DOI: 10.1016/j.pharmthera.2011.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Accepted: 03/29/2011] [Indexed: 01/12/2023]
Abstract
The health consequences of the obesity epidemic are a huge burden on patients and society. Yet it remains an unmet therapeutic need. Lifestyle or behaviour modification, although desirable, seems to benefit only a few and bariatric surgery is not an option for all and not without risks. Nevertheless, bariatric surgery is currently the gold standard in terms of weight loss therapy and any weight loss agent will be in combination with management of lifestyle modification. Sadly, there is a poor history for the pharmacological treatment of obesity and repeated safety concerns have attracted intense regulatory scrutiny. Indeed, recent market withdrawals leave us with just one agent approved for the long term treatment of obesity and that is only mildly efficacious in terms of weight loss, although it is beneficial in terms of metabolic health. There are two broad pharmacological approaches that can be applied in obesity drug discovery: reduce intake (or absorption) or increase expenditure (thermogenesis) of calories. In this review we will look at the latter approach. We will cover regulatory requirements and the rationale for this approach. We believe that post-obese subjects display abnormal metabolic responses to weight loss that almost inevitably leads to weight regain. We will then explore a number of approaches that potentially increase thermogenesis in humans. The challenge we have is in accumulating enough human data to validate this approach using drugs.
Collapse
|
26
|
Volkow ND, Wang GJ, Baler RD. Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci 2011; 15:37-46. [PMID: 21109477 PMCID: PMC3124340 DOI: 10.1016/j.tics.2010.11.001] [Citation(s) in RCA: 818] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 11/03/2010] [Accepted: 11/05/2010] [Indexed: 12/15/2022]
Abstract
The ability to resist the urge to eat requires the proper functioning of neuronal circuits involved in top-down control to oppose the conditioned responses that predict reward from eating the food and the desire to eat the food. Imaging studies show that obese subjects might have impairments in dopaminergic pathways that regulate neuronal systems associated with reward sensitivity, conditioning and control. It is known that the neuropeptides that regulate energy balance (homeostatic processes) through the hypothalamus also modulate the activity of dopamine cells and their projections into regions involved in the rewarding processes underlying food intake. It is postulated that this could also be a mechanism by which overeating and the resultant resistance to homoeostatic signals impairs the function of circuits involved in reward sensitivity, conditioning and cognitive control.
Collapse
Affiliation(s)
- Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
27
|
Paltsev MA, Kvetnoy IM, Polyakova VO, Kvetnaiya TV, Trofimov AV. Neuroimmunoendocrine mechanisms of aging. ADVANCES IN GERONTOLOGY 2011. [DOI: 10.1134/s2079057011010103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Abstract
The metabotropic glutamate receptor 5 (mGluR5) has been suggested to modulate energy balance. For example, mGluR5 antagonists inhibit food intake in rodents and mGluR5 knockout mice resist diet-induced obesity. However, nonspecific effects can reduce food intake. Thus, to further support the role of mGluR5 in feeding behaviour, we evaluated if the mGluR5 agonist (R,S)-2-chloro-5-hydroxyphenylglycine (CHPG) would induce the opposite effect, i.e. increased food intake in rats. Intracerebroventricularly injected CHPG (0.5-1.5 micromol) induced a dose-dependent stimulation of food intake (349% increase at 2 h with 1.5 micromol). The mGluR5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine (10 mg/kg intraperitoneally) reduced 24 h food intake, without altering CHPG-induced feeding. These findings further support a physiologically relevant role of mGluR5 in appetite regulation.
Collapse
|
29
|
van Vliet-Ostaptchouk JV, Hofker MH, van der Schouw YT, Wijmenga C, Onland-Moret NC. Genetic variation in the hypothalamic pathways and its role on obesity. Obes Rev 2009; 10:593-609. [PMID: 19712437 DOI: 10.1111/j.1467-789x.2009.00597.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Over recent decades, the prevalence of obesity has increased dramatically worldwide. Although this epidemic is mainly attributable to modern (western) lifestyle, multiple twin and adoption studies indicate the significant role of genes in the individual's predisposition to becoming obese. As the hypothalamus plays a central role in controlling body weight, its regulatory circuits may represent a crucial system in the pathogenesis of the disorder. Genetic variations in genes in the hypothalamic pathways may therefore contribute to the susceptibility for obesity in humans and animals. We summarize current knowledge on the physiological role of the hypothalamus in body-weight regulation and review genetic studies on the hypothalamic candidate genes in relation to obesity. Together, data from functional and genetic studies as well as the new, common, obesity loci identified in genome-wide association scans support an important role for the hypothalamic genes in predisposing to obesity. However, findings are still inconclusive for many candidate genes. To improve our understanding of the genetic architecture of common obesity, we suggest that specific obesity phenotypes should be considered and different analytical approaches used. Such studies should consider multiple genes from the same physiological pathways, together with environmental risk factors.
Collapse
Affiliation(s)
- J V van Vliet-Ostaptchouk
- Molecular Genetics, Medical Biology Section, Department of Pathology and Medical Biology, University Medical Center and University of Groningen, Groningen, the Netherlands.
| | | | | | | | | |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to present recent data on the effects of substance P on the development of two common pathological conditions, namely obesity and gut inflammation, and elucidate the role of this neuropeptide as a potential regulator between increased adiposity and exacerbated inflammatory responses during inflammatory bowel disease. RECENT FINDINGS We present data that demonstrate a role for substance P in both obesity and inflammatory bowel disease and investigate potential effects on fat tissue that may influence the progression of intestinal inflammation. More specifically, we discuss new evidence for direct effects of substance P on fat tissue that determine fat depot size and overall weight in mice and analyze some of the potential mechanisms. Furthermore, we present data that describe changes in the intestinal sensory innervation, in particular substance P-positive innervation, during gut inflammation and new direct evidence of the effects of preestablished obesity in the outcome of experimental inflammation of the colon in mice. In the end we propose a link between the role of substance P in the promotion of obesity and the potential consequences on inflammatory bowel disease. SUMMARY We propose that substance P may promote fat tissue expansion either centrally or peripherally and thus create a proinflammatory environment (as is the case with obesity) which may in turn affect the progression (exacerbate) of gut inflammation. Further studies are required on the effects of 'creeping fat' in inflammatory bowel disease in order to decipher the role of this type of fat-depot expansion in the development of the disease.
Collapse
Affiliation(s)
- Iordanes Karagiannides
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-7019, USA
| | | |
Collapse
|
31
|
Abstract
The prevalence of obesity is steadily rising and has huge health and financial implications for society. Weight gain is due to an imbalance between dietary intake and energy expenditure and research has focused on trying to understand the complex pathways involved in controlling these aspects. This review highlights the key areas of research in the hypothalamic control of appetite. The hypothalamus consists of several nuclei that integrate peripheral signals, such as adiposity and caloric intake, to regulate important pathways within the CNS controlling food intake. The best characterized pathways are the orexigenic neuropeptide Y/Agouti-related protein and the anorexigenic pro-opiomelanocortin/cocaine- and amphetamine-related transcript neurons in the arcuate nucleus of the hypothalamus. These project from the arcuate nucleus to other key hypothalamic nuclei, such as the paraventricular, dorsomedial, ventromedial and lateral hypothalamic nuclei. There are also projections to and from the brainstem, cortical areas and reward pathways, all of which influence food intake. The challenge at present is to understand the complexity of these pathways and try to find ways of modulating them in order to find potential therapeutic targets.
Collapse
Affiliation(s)
- Katherine A Simpson
- a Department of Investigative Medicine, Imperial College, London W12 ONN, UK
| | - Niamh M Martin
- a Department of Investigative Medicine, Imperial College, London W12 ONN, UK
| | - Steve R Bloom
- b Department of Investigative Medicine, Imperial College, London W12 ONN, UK.
| |
Collapse
|