1
|
Goughenour K, Creech A, Xu J, He X, Hissong R, Giamberardino C, Tenor J, Toffaletti D, Perfect J, Olszewski M. Cryptococcus neoformans trehalose-6-phosphate synthase (tps1) promotes organ-specific virulence and fungal protection against multiple lines of host defenses. Front Cell Infect Microbiol 2024; 14:1392015. [PMID: 38841113 PMCID: PMC11150607 DOI: 10.3389/fcimb.2024.1392015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/04/2024] [Indexed: 06/07/2024] Open
Abstract
Trehalose-6-phosphate synthase (TPS1) was identified as a virulence factor for Cryptococcus neoformans and a promising therapeutic target. This study reveals previously unknown roles of TPS1 in evasion of host defenses during pulmonary and disseminated phases of infection. In the pulmonary infection model, TPS1-deleted (tps1Δ) Cryptococci are rapidly cleared by mouse lungs whereas TPS1-sufficent WT (H99) and revertant (tps1Δ:TPS1) strains expand in the lungs and disseminate, causing 100% mortality. Rapid pulmonary clearance of tps1Δ mutant is T-cell independent and relies on its susceptibility to lung resident factors and innate immune factors, exemplified by tps1Δ but not H99 inhibition in a coculture with dispersed lung cells and its rapid clearance coinciding with innate leukocyte infiltration. In the disseminated model of infection, which bypasses initial lung-fungus interactions, tps1Δ strain remains highly attenuated. Specifically, tps1Δ mutant is unable to colonize the lungs from the bloodstream or expand in spleens but is capable of crossing into the brain, where it remains controlled even in the absence of T cells. In contrast, strains H99 and tps1Δ:TPS1 rapidly expand in all studied organs, leading to rapid death of the infected mice. Since the rapid pulmonary clearance of tps1Δ mutant resembles a response to acapsular strains, the effect of tps1 deletion on capsule formation in vitro and in vivo was examined. Tps1Δ cryptococci form capsules but with a substantially reduced size. In conclusion, TPS1 is an important virulence factor, allowing C. neoformans evasion of resident pulmonary and innate defense mechanisms, most likely via its role in cryptococcal capsule formation.
Collapse
Affiliation(s)
- Kristie Goughenour
- Research Service, Lieutenant Colonel Charles S. Kettles VA Medical Center, Ann Arbor, MI, United States
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Arianna Creech
- Research Service, Lieutenant Colonel Charles S. Kettles VA Medical Center, Ann Arbor, MI, United States
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Jintao Xu
- Research Service, Lieutenant Colonel Charles S. Kettles VA Medical Center, Ann Arbor, MI, United States
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Xiumiao He
- Research Service, Lieutenant Colonel Charles S. Kettles VA Medical Center, Ann Arbor, MI, United States
| | - Rylan Hissong
- Research Service, Lieutenant Colonel Charles S. Kettles VA Medical Center, Ann Arbor, MI, United States
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Charles Giamberardino
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, NC, United States
| | - Jennifer Tenor
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, NC, United States
| | - Dena Toffaletti
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, NC, United States
| | - John Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, NC, United States
| | - Michal Olszewski
- Research Service, Lieutenant Colonel Charles S. Kettles VA Medical Center, Ann Arbor, MI, United States
| |
Collapse
|
2
|
Kuczyńska-Wiśnik D, Stojowska-Swędrzyńska K, Laskowska E. Intracellular Protective Functions and Therapeutical Potential of Trehalose. Molecules 2024; 29:2088. [PMID: 38731579 PMCID: PMC11085779 DOI: 10.3390/molecules29092088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Trehalose is a naturally occurring, non-reducing saccharide widely distributed in nature. Over the years, research on trehalose has revealed that this initially thought simple storage molecule is a multifunctional and multitasking compound protecting cells against various stress factors. This review presents data on the role of trehalose in maintaining cellular homeostasis under stress conditions and in the virulence of bacteria and fungi. Numerous studies have demonstrated that trehalose acts in the cell as an osmoprotectant, chemical chaperone, free radical scavenger, carbon source, virulence factor, and metabolic regulator. The increasingly researched medical and therapeutic applications of trehalose are also discussed.
Collapse
Affiliation(s)
| | | | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (D.K.-W.); (K.S.-S.)
| |
Collapse
|
3
|
Hefny ZA, Ji B, Elsemman IE, Nielsen J, Van Dijck P. Transcriptomic meta-analysis to identify potential antifungal targets in Candida albicans. BMC Microbiol 2024; 24:66. [PMID: 38413885 PMCID: PMC10898158 DOI: 10.1186/s12866-024-03213-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Candida albicans is a fungal pathogen causing human infections. Here we investigated differential gene expression patterns and functional enrichment in C. albicans strains grown under different conditions. METHODS A systematic GEO database search identified 239 "Candida albicans" datasets, of which 14 were selected after rigorous criteria application. Retrieval of raw sequencing data from the ENA database was accompanied by essential metadata extraction from dataset descriptions and original articles. Pre-processing via the tailored nf-core pipeline for C. albicans involved alignment, gene/transcript quantification, and diverse quality control measures. Quality assessment via PCA and DESeq2 identified significant genes (FDR < = 0.05, log2-fold change > = 1 or <= -1), while topGO conducted GO term enrichment analysis. Exclusions were made based on data quality and strain relevance, resulting in the selection of seven datasets from the SC5314 strain background for in-depth investigation. RESULTS The meta-analysis of seven selected studies unveiled a substantial number of genes exhibiting significant up-regulation (24,689) and down-regulation (18,074). These differentially expressed genes were further categorized into 2,497 significantly up-regulated and 2,573 significantly down-regulated Gene Ontology (GO) IDs. GO term enrichment analysis clustered these terms into distinct groups, providing insights into the functional implications. Three target gene lists were compiled based on previous studies, focusing on central metabolism, ion homeostasis, and pathogenicity. Frequency analysis revealed genes with higher occurrence within the identified GO clusters, suggesting their potential as antifungal targets. Notably, the genes TPS2, TPS1, RIM21, PRA1, SAP4, and SAP6 exhibited higher frequencies within the clusters. Through frequency analysis within the GO clusters, several key genes emerged as potential targets for antifungal therapies. These include RSP5, GLC7, SOD2, SOD5, SOD1, SOD6, SOD4, SOD3, and RIM101 which exhibited higher occurrence within the identified clusters. CONCLUSION This comprehensive study significantly advances our understanding of the dynamic nature of gene expression in C. albicans. The identification of genes with enhanced potential as antifungal drug targets underpins their value for future interventions. The highlighted genes, including TPS2, TPS1, RIM21, PRA1, SAP4, SAP6, RSP5, GLC7, SOD2, SOD5, SOD1, SOD6, SOD4, SOD3, and RIM101, hold promise for the development of targeted antifungal therapies.
Collapse
Affiliation(s)
- Zeinab Abdelmoghis Hefny
- Laboratory of Molecular Cell Biology, Department of Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, Leuven, B-3001, Belgium
| | - Boyang Ji
- BioInnovation Institute, Ole Maaløes Vej 3, Copenhagen, DK2200, Denmark
| | - Ibrahim E Elsemman
- Department of Information Systems, Faculty of Computers and Information, Assiut University, Assiut, 2071515, Egypt
| | - Jens Nielsen
- BioInnovation Institute, Ole Maaløes Vej 3, Copenhagen, DK2200, Denmark.
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE41296, Gothenburg, SE41296, Sweden.
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, Leuven, B-3001, Belgium.
| |
Collapse
|
4
|
Larcombe DE, Bohovych IM, Pradhan A, Ma Q, Hickey E, Leaves I, Cameron G, Avelar GM, de Assis LJ, Childers DS, Bain JM, Lagree K, Mitchell AP, Netea MG, Erwig LP, Gow NAR, Brown AJP. Glucose-enhanced oxidative stress resistance-A protective anticipatory response that enhances the fitness of Candida albicans during systemic infection. PLoS Pathog 2023; 19:e1011505. [PMID: 37428810 PMCID: PMC10358912 DOI: 10.1371/journal.ppat.1011505] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/20/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023] Open
Abstract
Most microbes have developed responses that protect them against stresses relevant to their niches. Some that inhabit reasonably predictable environments have evolved anticipatory responses that protect against impending stresses that are likely to be encountered in their niches-termed "adaptive prediction". Unlike yeasts such as Saccharomyces cerevisiae, Kluyveromyces lactis and Yarrowia lipolytica and other pathogenic Candida species we examined, the major fungal pathogen of humans, Candida albicans, activates an oxidative stress response following exposure to physiological glucose levels before an oxidative stress is even encountered. Why? Using competition assays with isogenic barcoded strains, we show that "glucose-enhanced oxidative stress resistance" phenotype enhances the fitness of C. albicans during neutrophil attack and during systemic infection in mice. This anticipatory response is dependent on glucose signalling rather than glucose metabolism. Our analysis of C. albicans signalling mutants reveals that the phenotype is not dependent on the sugar receptor repressor pathway, but is modulated by the glucose repression pathway and down-regulated by the cyclic AMP-protein kinase A pathway. Changes in catalase or glutathione levels do not correlate with the phenotype, but resistance to hydrogen peroxide is dependent on glucose-enhanced trehalose accumulation. The data suggest that the evolution of this anticipatory response has involved the recruitment of conserved signalling pathways and downstream cellular responses, and that this phenotype protects C. albicans from innate immune killing, thereby promoting the fitness of C. albicans in host niches.
Collapse
Affiliation(s)
- Daniel E. Larcombe
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| | - Iryna M. Bohovych
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Arnab Pradhan
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| | - Qinxi Ma
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| | - Emer Hickey
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| | - Ian Leaves
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| | - Gary Cameron
- Rowett Institute, School of Medicine Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Gabriela M. Avelar
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Leandro J. de Assis
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| | - Delma S. Childers
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Judith M. Bain
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Katherine Lagree
- Department of Microbiology, Biosciences Building, University of Georgia, Athens, Georgia, United States of America
| | - Aaron P. Mitchell
- Department of Microbiology, Biosciences Building, University of Georgia, Athens, Georgia, United States of America
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Immunology & Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Lars P. Erwig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Johnson-Johnson Innovation, EMEA Innovation Centre, One Chapel Place, London, United Kingdom
| | - Neil A. R. Gow
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| | - Alistair J. P. Brown
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, School of Biosciences, Geoffrey Pope Building, Exeter, United Kingdom
| |
Collapse
|
5
|
Gupta H, Gupta P, Kairamkonda M, Poluri KM. Molecular investigations on Candida glabrata clinical isolates for pharmacological targeting. RSC Adv 2022; 12:17570-17584. [PMID: 35765448 PMCID: PMC9194923 DOI: 10.1039/d2ra02092k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/03/2022] [Indexed: 12/12/2022] Open
Abstract
Prevalence of drug resistant C. glabrata strains in hospitalized immune-compromised patients with invasive fungal infections has increased at an unexpected pace. This has greatly pushed researchers in identification of mutations/variations in clinical isolates for better assessment of the prevailing drug resistance trends and also for updating of antifungal therapy regime. In the present investigation, the clinical isolates of C. glabrata were comprehensively characterized at a molecular level using metabolic profiling and transcriptional expression analysis approaches in combination with biochemical, morphological and chemical profiling methods. Biochemically, significant variations in azole susceptibility, surface hydrophobicity, and oxidative stress generation were observed among the isolates as compared to wild-type. The 1H NMR profiling identified 18 differential metabolites in clinical strains compared to wild-type and were classified into five categories, that include: sugars (7), amino acids and their derivatives (7), nitrogen bases (3) and coenzymes (1). Transcriptional analysis of selective metabolic and regulatory enzymes established that the major differences were found in cell membrane stress, carbohydrate metabolism, amino acid biosynthesis, ergosterol pathway and turnover of nitrogen bases. This detailed molecular level/metabolic fingerprint study is a useful approach for differentiating pathogenic/clinical isolates to that of wild-type. This study comprehensively delineated the differential cellular pathways at a molecular level that have been re-wired by the pathogenic clinical isolates for enhanced pathogenicity and virulence traits.
Collapse
Affiliation(s)
- Hrishikesh Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee (IIT-Roorkee) Roorkee-247667 Uttarakhand India
| | - Payal Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee (IIT-Roorkee) Roorkee-247667 Uttarakhand India
| | - Manikyaprabhu Kairamkonda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee (IIT-Roorkee) Roorkee-247667 Uttarakhand India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee (IIT-Roorkee) Roorkee-247667 Uttarakhand India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee Roorkee-247667 Uttarakhand India
| |
Collapse
|
6
|
Lack of Functional Trehalase Activity in Candida parapsilosis Increases Susceptibility to Itraconazole. J Fungi (Basel) 2022; 8:jof8040371. [PMID: 35448602 PMCID: PMC9028276 DOI: 10.3390/jof8040371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 12/04/2022] Open
Abstract
Central metabolic pathways may play a major role in the virulence of pathogenic fungi. Here, we have investigated the susceptibility of a Candida parapsilosis mutant deficient in trehalase activity (atc1Δ/ntc1Δ strain) to the azolic compounds fluconazole and itraconazole. A time-course exposure to itraconazole but not fluconazole induced a significant degree of cell killing in mutant cells compared to the parental strain. Flow cytometry determinations indicated that itraconazole was able to induce a marked production of endogenous ROS together with a simultaneous increase in membrane potential, these effects being irrelevant after fluconazole addition. Furthermore, only itraconazole induced a significant synthesis of endogenous trehalose. The recorded impaired capacity of mutant cells to produce structured biofilms was further increased in the presence of both azoles, with itraconazole being more effective than fluconazole. Our results in the opportunistic pathogen yeast C. parapsilosis reinforce the study of trehalose metabolism as an attractive therapeutic target and allow extending the hypothesis that the generation of internal oxidative stress may be a component of the antifungal action exerted by the compounds currently available in medical practice.
Collapse
|
7
|
Mery A, Jawhara S, François N, Cornu M, Poissy J, Martinez-Esparza M, Poulain D, Sendid B, Guerardel Y. Identification of fungal trehalose for the diagnosis of invasive candidiasis by mass spectrometry. Biochim Biophys Acta Gen Subj 2022; 1866:130083. [PMID: 35033574 DOI: 10.1016/j.bbagen.2022.130083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
The rapidity of the diagnosis of invasive candidiasis (IC) is crucial to allow the early introduction of antifungal therapy that dramatically increases the survival rate of patients. Early diagnosis is unfortunately often delayed because Candida blood culture, the gold standard diagnostic test, is positive in only 50% of cases of IC and takes several days to obtain this result. Complementary non-culture-based methods relying on the detection of Candida cell wall polysaccharides in the serum, β-glucans and mannans, by enzymatic and immunological reagents have been successfully developed to allow a more efficient patients care. We have previously demonstrated that detection of circulating glycans by mass spectrometry could provide a reliable and cost-effective early diagnosis method called MS-DS for Mass Spectrometry of Di-Saccharide. Here, by comparing patient's sera and Candida albicans strains deficient in carbohydrates synthesis, we demonstrate that trehalose derived from fungal metabolism can be specifically targeted by MS-DS to allow early diagnosis. In particular, the use of C. albicans strains deficient in the synthesis of trehalose synthesizing enzymes Tps1 and Tps2 show that MS-DS results were correlated to the metabolism of trehalose. Finally, we demonstrate that the performance of the IC diagnosis can be significantly improved by using high resolution mass spectrometry, which opens new perspectives in the management of the disease.
Collapse
Affiliation(s)
- Alexandre Mery
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Samir Jawhara
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France; Univ. Lille, Inserm U1285, CHU Lille, Laboratoire de Parasitologie-Mycologie, Lille, France
| | - Nadine François
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France; Univ. Lille, Inserm U1285, CHU Lille, Laboratoire de Parasitologie-Mycologie, Lille, France
| | - Marjorie Cornu
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France; Univ. Lille, Inserm U1285, CHU Lille, Laboratoire de Parasitologie-Mycologie, Lille, France
| | - Julien Poissy
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France; Univ. Lille, Inserm U1285, CHU Lille, Pôle de réanimation, Lille, France
| | - Maria Martinez-Esparza
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB-Arrixaca and Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, Murcia, Spain
| | - Daniel Poulain
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France; Univ. Lille, Inserm U1285, CHU Lille, Laboratoire de Parasitologie-Mycologie, Lille, France
| | - Boualem Sendid
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France; Univ. Lille, Inserm U1285, CHU Lille, Laboratoire de Parasitologie-Mycologie, Lille, France
| | - Yann Guerardel
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan.
| |
Collapse
|
8
|
Murphy SE, Bicanic T. Drug Resistance and Novel Therapeutic Approaches in Invasive Candidiasis. Front Cell Infect Microbiol 2022; 11:759408. [PMID: 34970504 PMCID: PMC8713075 DOI: 10.3389/fcimb.2021.759408] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Candida species are the leading cause of invasive fungal infections worldwide and are associated with acute mortality rates of ~50%. Mortality rates are further augmented in the context of host immunosuppression and infection with drug-resistant Candida species. In this review, we outline antifungal drugs already in clinical use for invasive candidiasis and candidaemia, their targets and mechanisms of resistance in clinically relevant Candida species, encompassing not only classical resistance, but also heteroresistance and tolerance. We describe novel antifungal agents and targets in pre-clinical and clinical development, including their spectrum of activity, antifungal target, clinical trial data and potential in treatment of drug-resistant Candida. Lastly, we discuss the use of combination therapy between conventional and repurposed agents as a potential strategy to combat the threat of emerging resistance in Candida.
Collapse
Affiliation(s)
- Sarah E Murphy
- Institute of Infection & Immunity, St George's University of London, London, United Kingdom
| | - Tihana Bicanic
- Institute of Infection & Immunity, St George's University of London, London, United Kingdom.,Clinical Academic Group in Infection and Immunity, St. George's University Hospital National Health Service (NHS) Foundation Trust, London, United Kingdom
| |
Collapse
|
9
|
Wijnants S, Vreys J, Van Dijck P. Interesting antifungal drug targets in the central metabolism of Candida albicans. Trends Pharmacol Sci 2021; 43:69-79. [PMID: 34756759 DOI: 10.1016/j.tips.2021.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 01/04/2023]
Abstract
To treat infections caused by Candida albicans, azoles, polyenes, and echinocandins are used. However, resistance occurs against all three, so there is an urgent need for new antifungal drugs with a novel mode of action. Recently, it became clear that central metabolism plays an important role in the virulence of C. albicans. Glycolysis is, for example, upregulated during virulence conditions, whereas the glyoxylate cycle is important upon phagocytosis by host immune cells. These findings indicate that C. albicans adapts its metabolism to the environment for maximal virulence. In this review, we provide an overview of the potency of different central metabolic pathways and their key enzymes as potential antifungal drug targets.
Collapse
Affiliation(s)
- Stefanie Wijnants
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium; VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Jolien Vreys
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium; VIB-KU Leuven Center for Microbiology, Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Leuven, Belgium; VIB-KU Leuven Center for Microbiology, Leuven, Belgium.
| |
Collapse
|
10
|
Silva LP, Horta MAC, Goldman GH. Genetic Interactions Between Aspergillus fumigatus Basic Leucine Zipper (bZIP) Transcription Factors AtfA, AtfB, AtfC, and AtfD. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:632048. [PMID: 37744135 PMCID: PMC10512269 DOI: 10.3389/ffunb.2021.632048] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/08/2021] [Indexed: 09/26/2023]
Abstract
Aspergillus fumigatus is an opportunistic fungus, capable of causing Invasive Aspergillosis in immunocompromised patients, recently transplanted or undergoing chemotherapy. In the present work, we continued the investigation on A. fumigatus AtfA-D transcription factors (TFs) characterizing possible genetic and physical interactions between them after normal growth and stressing conditions. We constructed double null mutants for all the possible combinations of ΔatfA-, -B, -C, and -D, and look into their susceptibility to different stressing conditions. Our results indicate complex genetic interactions among these TFs that could impact the response to different kinds of stressful conditions. AtfA-D interactions also affect the A. fumigatus virulence in Galleria mellonella. AtfA:GFP is ~97% located in the nucleus while about 20-30% of AtfB, -C, and -D:GFP locate into the nucleus in the absence of any stress. Under stressing conditions, AtfB, -C, and -D:GFP translocate to the nucleus about 60-80% upon the addition of sorbitol or H2O2. These four TFs are also interacting physically forming all the possible combinations of heterodimers. We also identified that AtfA-D physically interact with the MAPK SakA in the absence of any stress and upon osmotic and cell wall stresses. They are involved in the accumulation of trehalose, glycogen and metabolic assimilation of different carbon sources.
Collapse
Affiliation(s)
| | | | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
LeBlanc EV, Polvi EJ, Veri AO, Privé GG, Cowen LE. Structure-guided approaches to targeting stress responses in human fungal pathogens. J Biol Chem 2020; 295:14458-14472. [PMID: 32796038 DOI: 10.1074/jbc.rev120.013731] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/11/2020] [Indexed: 11/06/2022] Open
Abstract
Fungi inhabit extraordinarily diverse ecological niches, including the human body. Invasive fungal infections have a devastating impact on human health worldwide, killing ∼1.5 million individuals annually. The majority of these deaths are attributable to species of Candida, Cryptococcus, and Aspergillus Treating fungal infections is challenging, in part due to the emergence of resistance to our limited arsenal of antifungal agents, necessitating the development of novel therapeutic options. Whereas conventional antifungal strategies target proteins or cellular components essential for fungal growth, an attractive alternative strategy involves targeting proteins that regulate fungal virulence or antifungal drug resistance, such as regulators of fungal stress responses. Stress response networks enable fungi to adapt, grow, and cause disease in humans and include regulators that are highly conserved across eukaryotes as well as those that are fungal-specific. This review highlights recent developments in elucidating crystal structures of fungal stress response regulators and emphasizes how this knowledge can guide the design of fungal-selective inhibitors. We focus on the progress that has been made with highly conserved regulators, including the molecular chaperone Hsp90, the protein phosphatase calcineurin, and the small GTPase Ras1, as well as with divergent stress response regulators, including the cell wall kinase Yck2 and trehalose synthases. Exploring structures of these important fungal stress regulators will accelerate the design of selective antifungals that can be deployed to combat life-threatening fungal diseases.
Collapse
Affiliation(s)
- Emmanuelle V LeBlanc
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth J Polvi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Amanda O Veri
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Gilbert G Privé
- Departments of Medical Biophysics and Biochemistry, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Abstract
Opportunistic commensal and environmental fungi can cause superficial to systemic diseases in humans. But how did these pathogens adapt to infect us and how does host-pathogen co-evolution shape their virulence potential? During evolution toward pathogenicity, not only do microorganisms gain virulence genes, but they also tend to lose non-adaptive genes in the host niche. Additionally, virulence factors can become detrimental during infection when they trigger host recognition. The loss of non-adaptive genes as well as the loss of the virulence potential of genes by adaptations to the host has been investigated in pathogenic bacteria and phytopathogenic fungi, where they are known as antivirulence and avirulence genes, respectively. However, these concepts are nearly unknown in the field of pathogenic fungi of humans. We think that this unnecessarily limits our view of human-fungal interplay, and that much could be learned if we applied a similar framework to aspects of these interactions. In this review, we, therefore, define and adapt the concepts of antivirulence and avirulence genes for human pathogenic fungi. We provide examples for analogies to antivirulence genes of bacterial pathogens and to avirulence genes of phytopathogenic fungi. Introducing these terms to the field of pathogenic fungi of humans can help to better comprehend the emergence and evolution of fungal virulence and disease.
Collapse
Affiliation(s)
- Sofía Siscar-Lewin
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| |
Collapse
|
13
|
Chen X, Zhang Z, Chen Z, Li Y, Su S, Sun S. Potential Antifungal Targets Based on Glucose Metabolism Pathways of Candida albicans. Front Microbiol 2020; 11:296. [PMID: 32256459 PMCID: PMC7093590 DOI: 10.3389/fmicb.2020.00296] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/10/2020] [Indexed: 01/04/2023] Open
Abstract
In recent years, fungal infections have become a serious health problem. Candida albicans are considered as the fourth most common isolates associated with approximately 40% mortality in bloodstream infections among hospitalized patients. Due to various limitations of classical antifungals used currently, such as limited kinds of drugs, inevitable toxicities, and high price, there is an urgent need to explore new antifungal agents based on novel targets. Generally, nutrient metabolism is involved with fungal virulence, and glucose is one of the important nutrients in C. albicans. C. albicans can obtain and metabolize glucose through a variety of pathways; in theory, many enzymes in these pathways can be potential targets for developing new antifungal agents, and several studies have confirmed that compounds which interfere with alpha-glucosidase, acid trehalase, trehalose-6-phosphate synthase, class II fructose bisphosphate aldolases, and glucosamine-6-phosphate synthase in these pathways do have antifungal activities. In this review, the glucose metabolism pathways in C. albicans, the potential antifungal targets based on these pathways, and some compounds which have antifungal activities by inhibiting several enzymes in these pathways are summarized. We believe that our review will be helpful to the exploration of new antifungal drugs with novel antifungal targets.
Collapse
Affiliation(s)
- Xueqi Chen
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zewen Zhang
- Department of Imaging Medicine and Nuclear Medicine, Qilu Medical College, Shandong University, Jinan, China
| | - Zuozhong Chen
- Department of Pharmacy, Zibo Central Hospital, Zibo, China
| | - Yiman Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shan Su
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shujuan Sun
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
14
|
Guirao-Abad JP, Pujante V, Sánchez-Fresneda R, Yagüe G, Argüelles JC. Sensitivity of the Candida albicans trehalose-deficient mutants tps1Δ and tps2Δ to amphotericin B and micafungin. J Med Microbiol 2019; 68:1479-1488. [DOI: 10.1099/jmm.0.001053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - Vanessa Pujante
- Área de Microbiología, Facultad de Biología, Universidad de Murcia, E-30100, Spain
| | | | - Genoveva Yagüe
- Servicio de Microbiología Clínica, Hospital Universitario Virgen de la Arrixaca, IMIB, Murcia, Spain
| | | |
Collapse
|
15
|
Micafungin Enhances the Human Macrophage Response to Candida albicans through β-Glucan Exposure. Antimicrob Agents Chemother 2018; 62:AAC.02161-17. [PMID: 29483123 DOI: 10.1128/aac.02161-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/18/2018] [Indexed: 12/31/2022] Open
Abstract
Micafungin belongs to the antifungal family of echinocandins, which act as noncompetitive inhibitors of the fungal cell wall β-1,3-d-glucan synthase. Since Candida albicans is the most prevalent pathogenic fungus in humans, we study the involvement of micafungin in the modulation of the inflammatory response developed by human tissue macrophages against C. albicans The MIC for micafungin was 0.016 μg/ml on the C. albicans SC5314 standard strain. Micafungin induced a drastic reduction in the number of exponential SC5314 viable cells, with the fungicidal effect being dependent on the cellular metabolic activity. Notably, micafungin also caused a structural remodelling of the cell wall, leading to exposure of the β-glucan and chitin content on the external surface. At the higher doses used (0.05 μg/ml), the antifungal also induced the blowing up of budding yeasts. In addition, preincubation with micafungin before exposure to human tissue macrophages enhanced the secretion of tumor necrosis factor alpha (TNF-α), interleukin-17A (IL-17A), and IL-10 cytokines. Our results strongly suggest that in C. albicans treatment with micafungin, in addition to having the expected toxic antifungal effect, it potentiates the immune response, improving the interaction and activation of human macrophages, probably through the unmasking of β-glucans on the cell wall surface.
Collapse
|
16
|
Targeting Candida spp. to develop antifungal agents. Drug Discov Today 2018; 23:802-814. [PMID: 29353694 DOI: 10.1016/j.drudis.2018.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/09/2017] [Accepted: 01/04/2018] [Indexed: 01/15/2023]
Abstract
Invasive fungal infections are a complex challenge throughout the world because of their high incidence, mainly in critically ill patients, and high mortality rates. The antifungal agents currently available are limited; thus, there is a need for the rapid development of new drugs. In silico methods are a modern strategy to explore interactions between new compounds and specific fungal targets, but they depend on precise genetic information. Here, we discuss the main Candida spp. target genes, including information about null mutants, virulence, cytolocalization, co-regulatory genes, and compounds that are related to protein expression. These data will provide a basis for the future in silico development of antifungal drugs.
Collapse
|
17
|
Central Role of the Trehalose Biosynthesis Pathway in the Pathogenesis of Human Fungal Infections: Opportunities and Challenges for Therapeutic Development. Microbiol Mol Biol Rev 2017; 81:81/2/e00053-16. [PMID: 28298477 DOI: 10.1128/mmbr.00053-16] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Invasive fungal infections cause significant morbidity and mortality in part due to a limited antifungal drug arsenal. One therapeutic challenge faced by clinicians is the significant host toxicity associated with antifungal drugs. Another challenge is the fungistatic mechanism of action of some drugs. Consequently, the identification of fungus-specific drug targets essential for fitness in vivo remains a significant goal of medical mycology research. The trehalose biosynthetic pathway is found in a wide variety of organisms, including human-pathogenic fungi, but not in humans. Genes encoding proteins involved in trehalose biosynthesis are mechanistically linked to the metabolism, cell wall homeostasis, stress responses, and virulence of Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. While there are a number of pathways for trehalose production across the tree of life, the TPS/TPP (trehalose-6-phosphate synthase/trehalose-6-phosphate phosphatase) pathway is the canonical pathway found in human-pathogenic fungi. Importantly, data suggest that proteins involved in trehalose biosynthesis play other critical roles in fungal metabolism and in vivo fitness that remain to be fully elucidated. By further defining the biology and functions of trehalose and its biosynthetic pathway components in pathogenic fungi, an opportunity exists to leverage this pathway as a potent antifungal drug target. The goal of this review is to cover the known roles of this important molecule and its associated biosynthesis-encoding genes in the human-pathogenic fungi studied to date and to employ these data to critically assess the opportunities and challenges facing development of this pathway as a therapeutic target.
Collapse
|
18
|
Perfect JR, Tenor JL, Miao Y, Brennan RG. Trehalose pathway as an antifungal target. Virulence 2017; 8:143-149. [PMID: 27248439 PMCID: PMC5383216 DOI: 10.1080/21505594.2016.1195529] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 01/23/2023] Open
Abstract
With an increasing immunocompromised population which is linked to invasive fungal infections, it is clear that our present 3 classes of antifungal agents may not be sufficient to provide optimal management to these fragile patients. Furthermore, with widespread use of antifungal agents, drug-resistant fungal infections are on the rise. Therefore, there is some urgency to develop the antifungal pipeline with the goal of new antifungal agent discovery. In this review, a simple metabolic pathway, which forms the disaccharide, trehalose, will be characterized and its potential as a focus for antifungal target(s) explained. It possesses several important features for development of antifungal agents. First, it appears to have fungicidal characteristics and second, it is broad spectrum with importance across both ascomycete and basidiomycete species. Finally, this pathway is not found in mammals so theoretically specific inhibitors of the trehalose pathway and its enzymes in fungi should be relatively non-toxic for mammals. The trehalose pathway and its critical enzymes are now in a position to have directed antifungal discovery initiated in order to find a new class of antifungal drugs.
Collapse
Affiliation(s)
- John R. Perfect
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Jennifer L. Tenor
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Yi Miao
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Richard G. Brennan
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
19
|
Additive roles of two TPS genes in trehalose synthesis, conidiation, multiple stress responses and host infection of a fungal insect pathogen. Appl Microbiol Biotechnol 2017; 101:3637-3651. [DOI: 10.1007/s00253-017-8155-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/29/2016] [Accepted: 01/22/2017] [Indexed: 10/20/2022]
|
20
|
Affiliation(s)
- Juan-Carlos Argüelles
- a Área de Microbiología, Facultad de Biología, Universidad de Murcia , Murcia , Spain
| |
Collapse
|
21
|
Abstract
Only few Candida species, e.g., Candida albicans, Candida glabrata, Candida dubliniensis, and Candida parapsilosis, are successful colonizers of a human host. Under certain circumstances these species can cause infections ranging from superficial to life-threatening disseminated candidiasis. The success of C. albicans, the most prevalent and best studied Candida species, as both commensal and human pathogen depends on its genetic, biochemical, and morphological flexibility which facilitates adaptation to a wide range of host niches. In addition, formation of biofilms provides additional protection from adverse environmental conditions. Furthermore, in many host niches Candida cells coexist with members of the human microbiome. The resulting fungal-bacterial interactions have a major influence on the success of C. albicans as commensal and also influence disease development and outcome. In this chapter, we review the current knowledge of important survival strategies of Candida spp., focusing on fundamental fitness and virulence traits of C. albicans.
Collapse
Affiliation(s)
- Melanie Polke
- Research Group Microbial Immunology, Hans-Knoell-Institute, Jena, Germany; Department Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany; Friedrich-Schiller-University, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Hans-Knoell-Institute, Jena, Germany; Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
22
|
Sánchez-Fresneda R, Martínez-Esparza M, Maicas S, Argüelles JC, Valentín E. In Candida parapsilosis the ATC1 gene encodes for an acid trehalase involved in trehalose hydrolysis, stress resistance and virulence. PLoS One 2014; 9:e99113. [PMID: 24922533 PMCID: PMC4055668 DOI: 10.1371/journal.pone.0099113] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/09/2014] [Indexed: 11/19/2022] Open
Abstract
An ORF named CPAR2-208980 on contig 005809 was identified by screening a Candida parapsilosis genome data base. Its 67% identity with the acid trehalase sequence from C. albicans (ATC1) led us to designate it CpATC1. Homozygous mutants that lack acid trehalase activity were constructed by gene disruption at the two CpATC1 chromosomal alleles. Phenotypic characterization showed that atc1Δ null cells were unable to grow on exogenous trehalose as carbon source, and also displayed higher resistance to environmental challenges, such as saline exposure (1.2 M NaCl), heat shock (42°C) and both mild and severe oxidative stress (5 and 50 mM H2O2). Significant amounts of intracellular trehalose were specifically stored in response to the thermal upshift in both wild type and mutant strains. Analysis of their antioxidant activities revealed that catalase was only triggered in response to heat shock in atc1Δ cells, whereas glutathione reductase was activated upon mild oxidative stress in wild type and reintegrant strains, and in response to the whole set of stress treatments in the homozygous mutant. Furthermore, yeast cells with double CpATC1 deletion were significantly attenuated in non-mammalian infection models, suggesting that CpATC1 is required for the pathobiology of the fungus. Our results demonstrate the involvement of CpAtc1 protein in the physiological hydrolysis of external trehalose in C. parapsilosis, where it also plays a major role in stress resistance and virulence.
Collapse
Affiliation(s)
- Ruth Sánchez-Fresneda
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, Murcia, Spain
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, and Regional Campus of International Excellence “Campus Mare Nostrum", Universidad de Murcia, Campus de Espinardo, Murcia, Spain
- Departamento de Microbiología y Ecología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - María Martínez-Esparza
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, and Regional Campus of International Excellence “Campus Mare Nostrum", Universidad de Murcia, Campus de Espinardo, Murcia, Spain
| | - Sergi Maicas
- Departamento de Microbiología y Ecología, Facultad de Biología, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Juan-Carlos Argüelles
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, Murcia, Spain
| | - Eulogio Valentín
- Departamento de Microbiología y Ecología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| |
Collapse
|
23
|
Krumova E, Pashova S, Dolashka-Angelova P, Angelova M. Adaptive Response ofHumicola Luteato Copper Exposure. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2011.0114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
24
|
Redundant catalases detoxify phagocyte reactive oxygen and facilitate Histoplasma capsulatum pathogenesis. Infect Immun 2013; 81:2334-46. [PMID: 23589579 DOI: 10.1128/iai.00173-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Histoplasma capsulatum is a respiratory pathogen that infects phagocytic cells. The mechanisms allowing Histoplasma to overcome toxic reactive oxygen molecules produced by the innate immune system are an integral part of Histoplasma's ability to survive during infection. To probe the contribution of Histoplasma catalases in oxidative stress defense, we created and analyzed the virulence defects of mutants lacking CatB and CatP, which are responsible for extracellular and intracellular catalase activities, respectively. Both CatB and CatP protected Histoplasma from peroxide challenge in vitro and from antimicrobial reactive oxygen produced by human neutrophils and activated macrophages. Optimal protection required both catalases, as the survival of a double mutant lacking both CatB and CatP was lower than that of single-catalase-deficient cells. Although CatB contributed to reactive oxygen species defenses in vitro, CatB was dispensable for lung infection and extrapulmonary dissemination in vivo. Loss of CatB from a strain also lacking superoxide dismutase (Sod3) did not further reduce the survival of Histoplasma yeasts. Nevertheless, some catalase function was required for pathogenesis since simultaneous loss of both CatB and CatP attenuated Histoplasma virulence in vivo. These results demonstrate that Histoplasma's dual catalases comprise a system that enables Histoplasma to efficiently overcome the reactive oxygen produced by the innate immune system.
Collapse
|
25
|
Thriving within the host: Candida spp. interactions with phagocytic cells. Med Microbiol Immunol 2013; 202:183-95. [DOI: 10.1007/s00430-013-0288-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 01/04/2023]
|
26
|
Park HS, Bayram O, Braus GH, Kim SC, Yu JH. Characterization of the velvet regulators in Aspergillus fumigatus. Mol Microbiol 2012; 86:937-53. [PMID: 22970834 DOI: 10.1111/mmi.12032] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2012] [Indexed: 01/19/2023]
Abstract
Fungal development and secondary metabolism is intimately associated via activities of the fungi-specific velvet family proteins. Here we characterize the four velvet regulators in the opportunistic human pathogen Aspergillus fumigatus. The deletion of AfuvosA, AfuveA and AfuvelB causes hyperactive asexual development (conidiation) and precocious and elevated accumulation of AfubrlA during developmental progression. Moreover, the absence of AfuvosA, AfuveA or AfuvelB results in the abundant formation of conidiophores and highly increased AfubrlA mRNA accumulation in liquid submerged culture, suggesting that they act as repressors of conidiation. The deletion of AfuvosA or AfuvelB causes a reduction in conidial trehalose amount, long-term spore viability, conidial tolerance to oxidative and UV stresses, and accelerated and elevated conidial germination regardless of the presence or absence of an external carbon source, suggesting an interdependent role of them in many aspects of fungal biology. Genetic studies suggest that AfuAbaA activates AfuvosA and AfuvelB expression during the mid to late phase of conidiation. Finally, the AfuveA null mutation can be fully complemented by Aspergillus nidulans VeA, which can physically interact with AfuVelB and AfuLaeA in vivo. A model depicting the similar yet different roles of the velvet regulators governing conidiation and sporogenesis in A. fumigatus is presented.
Collapse
Affiliation(s)
- Hee-Soo Park
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | | | | | | | | |
Collapse
|
27
|
Dementhon K, El-Kirat-Chatel S, Noël T. Development of an in vitro model for the multi-parametric quantification of the cellular interactions between Candida yeasts and phagocytes. PLoS One 2012; 7:e32621. [PMID: 22479332 PMCID: PMC3316538 DOI: 10.1371/journal.pone.0032621] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 02/02/2012] [Indexed: 11/18/2022] Open
Abstract
We developed a new in vitro model for a multi-parameter characterization of the time course interaction of Candida fungal cells with J774 murine macrophages and human neutrophils, based on the use of combined microscopy, fluorometry, flow cytometry and viability assays. Using fluorochromes specific to phagocytes and yeasts, we could accurately quantify various parameters simultaneously in a single infection experiment: at the individual cell level, we measured the association of phagocytes to fungal cells and phagocyte survival, and monitored in parallel the overall phagocytosis process by measuring the part of ingested fungal cells among the total fungal biomass that changed over time. Candida albicans, C. glabrata, and C. lusitaniae were used as a proof of concept: they exhibited species-specific differences in their association rate with phagocytes. The fungal biomass uptaken by the phagocytes differed significantly according to the Candida species. The measure of the survival of fungal and immune cells during the interaction showed that C. albicans was the more aggressive yeast in vitro, destroying the vast majority of the phagocytes within five hours. All three species of Candida were able to survive and to escape macrophage phagocytosis either by the intraphagocytic yeast-to-hyphae transition (C. albicans) and the fungal cell multiplication until phagocytes burst (C. glabrata, C. lusitaniae), or by the avoidance of phagocytosis (C. lusitaniae). We demonstrated that our model was sensitive enough to quantify small variations of the parameters of the interaction. The method has been conceived to be amenable to the high-throughput screening of mutants in order to unravel the molecular mechanisms involved in the interaction between yeasts and host phagocytes.
Collapse
Affiliation(s)
- Karine Dementhon
- Univ. Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Sofiane El-Kirat-Chatel
- Univ. Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Thierry Noël
- Univ. Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- * E-mail:
| |
Collapse
|
28
|
Pilonieta MC, Nagy TA, Jorgensen DR, Detweiler CS. A glycine betaine importer limits Salmonella stress resistance and tissue colonization by reducing trehalose production. Mol Microbiol 2012; 84:296-309. [PMID: 22375627 DOI: 10.1111/j.1365-2958.2012.08022.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mechanisms by which Salmonella establish chronic infections are not well understood. Microbes respond to stress by importing or producing compatible solutes, small molecules that stabilize proteins and lipids. The Salmonella locus opuABCD (also called OpuC) encodes a predicted importer of the compatible solute glycine betaine. Under stress conditions, if glycine betaine cannot be imported, Salmonella enterica produce the disaccharide trehalose, a highly effective compatible solute. We demonstrate that strains lacking opuABCD accumulate more trehalose under stress conditions than wild-type strains. ΔopuABCD mutant strains are more resistant to high-salt, low-pH and -hydrogen peroxide, conditions that mimic aspects of innate immunity, in a trehalose-dependent manner. In addition, ΔopuABCD mutant strains require the trehalose production genes to out-compete wild-type strains in mice and macrophages. These data suggest that in the absence of opuABCD, trehalose accumulation increases bacterial resistance to stress in broth and mice. Thus, opuABCD reduces bacterial colonization via a mechanism that limits trehalose production. Mechanisms by which microbes limit disease may reveal novel pathways as therapeutic targets.
Collapse
Affiliation(s)
- M Carolina Pilonieta
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| | | | | | | |
Collapse
|
29
|
Martinez-Esparza M, Tapia-Abellan A, Vitse-Standaert A, Garcia-Penarrubia P, Arguelles JC, Poulain D, Jouault T. Glycoconjugate expression on the cell wall of tps1/tps1 trehalose-deficient Candida albicans strain and implications for its interaction with macrophages. Glycobiology 2011; 21:796-805. [DOI: 10.1093/glycob/cwr007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
30
|
Goulart L, Rosa e Silva LK, Chiapello L, Silveira C, Crestani J, Masih D, Vainstein MH. Cryptococcus neoformans and Cryptococcus gattii genes preferentially expressed during rat macrophage infection. Med Mycol 2011; 48:932-41. [PMID: 20302549 DOI: 10.3109/13693781003677494] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cryptococcus neoformans and Cryptococcus gattii are encapsulated yeast agents of cryptococcosis and facultative intracellular pathogens. The interaction of these yeasts with macrophages is essential for containing the infection. However, Cryptococcus spp. overcome this initial host defense barrier using a unique pathogenic strategy involving intracellular replication and cytoplasmic accumulation of polysaccharide-containing vesicles. Here, we employed representational difference analysis (RDA) to identify C. neoformans and C. gattii genes differentially expressed during intracellular growth in rat peritoneal macrophages. The upregulated transcripts of C. neoformans during macrophage interaction were related to ATP-binding cassette (ABC) transporters, intra-golgi transport, chaperone activity, ribosomal maintenance, NAD metabolism, histone methylation, stress response, and monosaccharide metabolism. In contrast, with C. gattii, upregulated genes were associated with cell growth, aerobic respiration, protein binding, microtubule nucleation, monosaccharides and nitrogen metabolism, inositol or phosphatidylinositol phosphatase activity, cellular signaling, and stress response. Our findings reveal new genes that may be necessary for the intracellular parasitism of C. neoformans and C. gattii.
Collapse
Affiliation(s)
- Letícia Goulart
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
31
|
Lack of trehalose accelerates H2O2-induced Candida albicans apoptosis through regulating Ca2+ signaling pathway and caspase activity. PLoS One 2011; 6:e15808. [PMID: 21246042 PMCID: PMC3016397 DOI: 10.1371/journal.pone.0015808] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 11/23/2010] [Indexed: 11/19/2022] Open
Abstract
Trehalose is a non-reducing disaccharide and can be accumulated in response to heat or oxidative stresses in Candida albicans. Here we showed that a C. albicans tps1Δ mutant, which is deficient in trehalose synthesis, exhibited increased apoptosis rate upon H(2)O(2) treatment together with an increase of intracellular Ca(2+) level and caspase activity. When the intracellular Ca(2+) level was stimulated by adding CaCl(2) or A23187, both the apoptosis rate and caspase activity were increased. In contrast, the presence of two calcium chelators, EGTA and BAPTA, could attenuate these effects. Moreover, we investigated the role of Ca(2+) pathway in C. albicans apoptosis and found that both calcineurin and the calcineurin-dependent transcription factor, Crz1p, mutants showed decreased apoptosis and caspase activity upon H(2)O(2) treatment compared to the wild-type cells. Expression of CaMCA1, the only gene found encoding a C. albicans metacaspase, in calcineurin-deleted or Crz1p-deleted cells restored the cell sensitivity to H(2)O(2). Our results suggest that Ca(2+) and its downstream calcineurin/Crz1p/CaMCA1 pathway are involved in H(2)O(2)-induced C. albicans apoptosis. Inhibition of this pathway might be the mechanism for the protective role of trehalose in C. albicans.
Collapse
|
32
|
Seider K, Heyken A, Lüttich A, Miramón P, Hube B. Interaction of pathogenic yeasts with phagocytes: survival, persistence and escape. Curr Opin Microbiol 2010; 13:392-400. [PMID: 20627672 DOI: 10.1016/j.mib.2010.05.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 05/05/2010] [Accepted: 05/06/2010] [Indexed: 10/19/2022]
Abstract
Pathogenic yeasts, either from the environment or the normal flora, have to face phagocytic cells that constitute the first line of defence during infection. In order to evade or counteract attack by phagocytes, pathogenic yeasts have acquired a repertoire of strategies to survive, colonize and infect the host. In this review we focus on the interaction of yeasts, such as Candida, Histoplasma or Cryptococcus species, with macrophages or neutrophils. We discuss strategies used by these fungi to prevent phagocytosis or to counteract phagocytic activities. We go on to describe the strategies that permit intracellular survival within phagocytes and that may eventually lead to damage of and escape from the phagocyte.
Collapse
Affiliation(s)
- Katja Seider
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute Jena (HKI), Jena, Germany
| | | | | | | | | |
Collapse
|
33
|
Role of trehalose biosynthesis in Aspergillus fumigatus development, stress response, and virulence. Infect Immun 2010; 78:3007-18. [PMID: 20439478 DOI: 10.1128/iai.00813-09] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus is a pathogenic mold which causes invasive, often fatal, pulmonary disease in immunocompromised individuals. Recently, proteins involved in the biosynthesis of trehalose have been linked with virulence in other pathogenic fungi. We found that the trehalose content increased during the developmental life cycle of A. fumigatus, throughout which putative trehalose synthase genes tpsA and tpsB were significantly expressed. The trehalose content of A. fumigatus hyphae also increased after heat shock but not in response to other stressors. This increase in trehalose directly correlated with an increase in expression of tpsB but not tpsA. However, deletion of both tpsA and tpsB was required to block trehalose accumulation during development and heat shock. The DeltatpsAB double mutant had delayed germination at 37 degrees C, suggesting a developmental defect. At 50 degrees C, the majority of DeltatpsAB spores were found to be nonviable, and those that were viable had severely delayed germination, growth, and subsequent sporulation. DeltatpsAB spores were also susceptible to oxidative stress. Surprisingly, the DeltatpsAB double mutant was hypervirulent in a murine model of invasive aspergillosis, and this increased virulence was associated with alterations in the cell wall and resistance to macrophage phagocytosis. Thus, while trehalose biosynthesis is required for a number of biological processes that both promote and inhibit virulence, in A. fumigatus the predominant effect is a reduction in pathogenicity. This finding contrasts sharply with those for other fungi, in which trehalose biosynthesis acts to enhance virulence.
Collapse
|
34
|
Bambach A, Fernandes MP, Ghosh A, Kruppa M, Alex D, Li D, Fonzi WA, Chauhan N, Sun N, Agrellos OA, Vercesi AE, Rolfes RJ, Calderone R. Goa1p of Candida albicans localizes to the mitochondria during stress and is required for mitochondrial function and virulence. EUKARYOTIC CELL 2009; 8:1706-20. [PMID: 19717740 PMCID: PMC2772395 DOI: 10.1128/ec.00066-09] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 08/18/2009] [Indexed: 11/20/2022]
Abstract
Using a Tn7 transposon library of Candida albicans, we have identified a mutant that exhibited sensitivity in drop plate assays to oxidants such as menadione and hydrogen peroxide. To verify the role of the mutated gene in stress adaptation, null mutants were constructed and phenotypically characterized. Because of its apparent functions in growth and oxidant adaptation, we have named the gene GOA1. Goa1p appears to be unique to the CTG subclade of the Saccharomycotina, including C. albicans. Mutants of C. albicans lacking goa1 (strain GOA31) were more sensitive to 6 mM H(2)O(2) and 0.125 mM menadione than the wild type (wt) or a gene-reconstituted (GOA32) strain. The sensitivity to oxidants correlated with reduced survival of the GOA31 mutant in human neutrophils and avirulence compared to control strains. Other phenotypes of GOA31 include reduced growth and filamentation in 10% serum, Spider, and SLAD agar media and an inability to form chlamydospores. Since Goa1p has an N-terminal mitochondrion localization site, we also show that green fluorescent protein-tagged Goa1p shows a mitochondrionlike distribution during oxidant or osmotic stress. Further, the inability of GOA31 to grow in medium containing lactate, ethanol, or glycerol as the sole carbon source indicates that the mitochondria are defective in the mutant. To determine how Goa1p contributes to mitochondrial function, we compared the wt, GOA32, and GOA31 strains for mitochondrial electrical membrane potential, respiration, and oxidative phosphorylation. We now show that GOA31, but not the wt or GOA32, had decreased respiration and mitochondrial membrane potential such that mutant cells are unable to drive oxidative phosphorylation. This is the first report in C. albicans of a respiratory defect caused by a loss of mitochondrial membrane potential.
Collapse
Affiliation(s)
- Adrienne Bambach
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, Departamento de Patologia Clínica, Universidade Estadual de Campinas, Campinas, Brazil, Department of Biology, Georgetown University, Washington, DC, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana P. Fernandes
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, Departamento de Patologia Clínica, Universidade Estadual de Campinas, Campinas, Brazil, Department of Biology, Georgetown University, Washington, DC, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anup Ghosh
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, Departamento de Patologia Clínica, Universidade Estadual de Campinas, Campinas, Brazil, Department of Biology, Georgetown University, Washington, DC, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michael Kruppa
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, Departamento de Patologia Clínica, Universidade Estadual de Campinas, Campinas, Brazil, Department of Biology, Georgetown University, Washington, DC, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Deepu Alex
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, Departamento de Patologia Clínica, Universidade Estadual de Campinas, Campinas, Brazil, Department of Biology, Georgetown University, Washington, DC, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, Departamento de Patologia Clínica, Universidade Estadual de Campinas, Campinas, Brazil, Department of Biology, Georgetown University, Washington, DC, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - William A. Fonzi
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, Departamento de Patologia Clínica, Universidade Estadual de Campinas, Campinas, Brazil, Department of Biology, Georgetown University, Washington, DC, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Neeraj Chauhan
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, Departamento de Patologia Clínica, Universidade Estadual de Campinas, Campinas, Brazil, Department of Biology, Georgetown University, Washington, DC, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nuo Sun
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, Departamento de Patologia Clínica, Universidade Estadual de Campinas, Campinas, Brazil, Department of Biology, Georgetown University, Washington, DC, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Orlando A. Agrellos
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, Departamento de Patologia Clínica, Universidade Estadual de Campinas, Campinas, Brazil, Department of Biology, Georgetown University, Washington, DC, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anibal E. Vercesi
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, Departamento de Patologia Clínica, Universidade Estadual de Campinas, Campinas, Brazil, Department of Biology, Georgetown University, Washington, DC, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ronda J. Rolfes
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, Departamento de Patologia Clínica, Universidade Estadual de Campinas, Campinas, Brazil, Department of Biology, Georgetown University, Washington, DC, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Richard Calderone
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC, Departamento de Patologia Clínica, Universidade Estadual de Campinas, Campinas, Brazil, Department of Biology, Georgetown University, Washington, DC, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Martínez-Esparza M, Martínez-Vicente E, González-Párraga P, Ros JM, García-Peñarrubia P, Argüelles JC. Role of trehalose-6P phosphatase (TPS2) in stress tolerance and resistance to macrophage killing in Candida albicans. Int J Med Microbiol 2009; 299:453-64. [PMID: 19231283 DOI: 10.1016/j.ijmm.2008.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 11/21/2008] [Accepted: 12/14/2008] [Indexed: 11/16/2022] Open
Abstract
Disruption of the TPS2 gene encoding the only trehalose-6P phosphatase activity in Candida albicans caused a pleiotropic defective phenotype, maintaining the cell wall integrity and the ability to form chlamydospores. A homozygous tps2Delta/tps2Delta showed reduced growth at high temperatures and a marked sensitivity to heat shock (42 degrees C) and severe oxidative exposure (50mM H(2)O(2)). Reintroduction of the TPS2 gene reversed these alterations. A more detailed study of the antioxidant response showed that exponential tps2Delta null cells displayed an adaptive response to oxidative stress as well as cross-tolerance between temperature and oxidative stress. Differential measurement of trehalose and trehalose-6P, using reliable new HPLC methodology, revealed a significant accumulation of trehalose-6P in tps2Delta cells, which was enhanced after oxidative exposure. In contrast, the level of trehalose-6P in parental cells was virtually undetectable, and oxidative treatment only induced the synthesis of free trehalose. A transitory increase in the expression of TPS2 and TPS1 genes was promoted in wild-type cells in response to acute (50mM) but not gentle (5mM) oxidative exposure. TPS1 and TPS2 oxidative-induced transcriptions were completely absent from the tps2Delta mutant. Exponential blastoconidia from both parental and tps2Delta/tps2Delta strains were completely phagocytosed by murine and human macrophages, triggering a subsequent proinflammatory response manifested by the release of TNF-alpha. Reflecting the lower resistance to oxidative stress displayed by the tps2Delta mutant, intracellular survival in resting and IFN-gamma and LPS-stimulated macrophages was also diminished. Taken together, our results confirm the mainly protective role played by the trehalose biosynthetic pathway in the cellular response to oxidative stress and subsequently in the resistance to phagocytosis in C. albicans, a defensive mechanism in which TPS2 would be involved.
Collapse
Affiliation(s)
- María Martínez-Esparza
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Medicina, Universidad de Murcia, E-30100 Murcia, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Bilitewski U. Determination of immunomodulatory effects: focus on functional analysis of phagocytes as representatives of the innate immune system. Anal Bioanal Chem 2008; 391:1545-54. [PMID: 18427788 DOI: 10.1007/s00216-008-2089-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 03/03/2008] [Accepted: 03/24/2008] [Indexed: 12/31/2022]
Abstract
The evaluation of the effects of drugs or chemicals on the functions of the immune system is an increasingly important task. Due to the accessibility of primary cells and cell lines, in vitro cellular functional tests are frequently being performed with cells representing the innate immune system, in particular those with phagocytotic activities, such as neutrophils and macrophages. Suitable functional parameters are the efficiency of phagocytosis, the efficiency with which viable pathogens are killed, the production of reactive oxygen and nitrogen species (ROS and RNS) and that of cytokines. Corresponding analytical procedures are available, but standardization is required, as varying the procedure may influence the outcomes of the assays.
Collapse
Affiliation(s)
- Ursula Bilitewski
- Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124, Braunschweig, Germany.
| |
Collapse
|
37
|
. BB, . AA. Effect of Mutation on Trehalose-Catabolic-Enzyme Synthesized by a Tropical Rhizobium Species F1. ACTA ACUST UNITED AC 2008. [DOI: 10.3923/jm.2008.269.275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
38
|
Combined inactivation of the Candida albicans GPR1 and TPS2 genes results in avirulence in a mouse model for systemic infection. Infect Immun 2008; 76:1686-94. [PMID: 18268028 DOI: 10.1128/iai.01497-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inhibition of the biosynthesis of trehalose, a well-known stress protectant in pathogens, is an interesting approach for antifungal or antibacterial therapy. Deletion of TPS2, encoding trehalose-6-phosphate (T6P) phosphatase, results in strongly reduced virulence of Candida albicans due to accumulation of T6P instead of trehalose in response to stress. To further aggravate the deregulation in the pathogen, we have additionally deleted the GPR1 gene, encoding the nutrient receptor that activates the cyclic AMP-protein kinase A signaling pathway, which negatively regulates trehalose accumulation in yeasts. A gpr1 mutant is strongly affected in morphogenesis on solid media as well as in vivo in a mouse model but has only a slightly decreased virulence. The gpr1 tps2 double mutant, on the other hand, is completely avirulent in a mouse model for systemic infection. This strain accumulates very high T6P levels under stress conditions and has a growth defect at higher temperatures. We also show that a tps2 mutant is more sensitive to being killed by macrophages than the wild type or the gpr1 mutant. A double mutant has susceptibility similar to that of the single tps2 mutant. For morphogenesis on solid media, on the other hand, the gpr1 tps2 mutant shows a phenotype similar to that of the single gpr1 mutant. Taken together these results show that there is synergism between Gpr1 and Tps2 and that their combined inactivation results in complete avirulence. Combination therapy targeting both proteins may prove highly effective against pathogenic fungi with increased resistance to the currently used antifungal drugs.
Collapse
|
39
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|