1
|
Toriro R, Pallett SJC, Nevin W, Ross TM, Hale I, Routledge M, Bennett C, Knott J, Burns DS, Edwards T, O'Shea MK, Fletcher TE, Beeching NJ, Woolley SD. Prevalence of extended-spectrum β-lactamase-producing Enterobacterales and carbapenemase-resistant Enterobacterales in British military cohorts. BMJ Mil Health 2024:military-2024-002837. [PMID: 39461740 DOI: 10.1136/military-2024-002837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
INTRODUCTION Travel to resource-limited settings is a known risk for acquisition of extended-spectrum β-lactamase-producing Enterobacterales (ESBL-PE) and carbapenem-resistant Enterobacterales (CRE), which are both associated with increased morbidity and mortality. We investigated the ESBL-PE and CRE baseline prevalence in British service personnel (SP). METHODS SP provided faecal samples for research projects in several different settings, between September 2021 and April 2022. Bacterial colonies from faecal isolates were recovered from incubated ChromID ESBL plates (bioMérieux, Marcy-l'Étoile, France) and DNA extracted using Qiagen DNeasy extraction kits (Qiagen, UK). PCR to identify β-lactamase and CRE encoding genes was performed using the Rotor-Gene Q (RGQ) (Qiagen, UK), with positivity detected by RGQ software. Phenotypic assessment of antimicrobial susceptibility was not performed. RESULTS Out of 250 personnel approached, 239 (85.5% men, median (IQR) age 31 (26-37) years) provided faecal samples suitable for analysis. The ESBL prevalence was 40/239 (16.7%), with ESBL-producing Escherichia coli detected in 39 (16.3%) samples and ESBL-producing Klebsiella pneumoniae in 1 (0.4%) sample. Combinations including Temoniera, sulfhydryl reagent variable (SHV), cefotaxime hydrolysing β-lactamase (Munich) (CTX-M) 1 and CTX-M 9 genes were detected in 18 (7.5%), 33 (13.8%) 16 (6.7%) and 8 (3.3%) samples, respectively. E. coli samples had mixtures of all four genotypes with SHV predominating. One (0.4%) sample carried all four gene types and the only K. pneumoniae sample carried a single SHV gene. No CRE were detected. CONCLUSIONS The prevalence of ESBL-PE in cohorts of SP closely matches that of civilian populations in England; however, we noted differences in ESBL genotype distribution. Potential exposure risks for SP from international travel and occupational trauma emphasise the need for repeated surveillance to characterise and detect changes in acquisition epidemiology and carriage of ESBL. Such prospective data have important antimicrobial stewardship implications in optimising clinical outcomes, controlling resistance and guiding empirical antibiotic formulary policy recommendations.
Collapse
Affiliation(s)
- Romeo Toriro
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Research and Clinical Innovation, Royal Centre for Defence Medicine, Queen Elizabeth Hospital, Birmingham, UK
| | | | - W Nevin
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Royal Centre for Defence Medicine, Queen Elizabeth Hospital, Birmingham, UK
| | - T M Ross
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| | - I Hale
- 21 Multi-Role Medical Regiment, Queen Elizabeth Barracks, Strensall, York, UK
| | - M Routledge
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - C Bennett
- Royal Centre for Defence Medicine, Queen Elizabeth Hospital, Birmingham, UK
| | - J Knott
- 12 Armoured Brigade Combat Team, Tidworth, UK
| | - D S Burns
- Royal Centre for Defence Medicine, Queen Elizabeth Hospital, Birmingham, UK
- Department of Infection and Tropical Medicine, Heartlands Hospital, Birmingham, Birmingham, UK
| | - T Edwards
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| | - M K O'Shea
- Royal Centre for Defence Medicine, Queen Elizabeth Hospital, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham College of Medical and Dental Sciences, Birmingham, UK
| | - T E Fletcher
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - N J Beeching
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - S D Woolley
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Royal Centre for Defence Medicine, Queen Elizabeth Hospital, Birmingham, UK
| |
Collapse
|
2
|
Mamona Kilu C, Menvielle C, Cataldi A, Hamon A, Duran C, Mwanba C, Tesmoingt C, Bouabdallah-Perrin L, Touche P, Chanh Hew Wai A, Ourghanlian C, Antignac M, Bildan MA, Bleibtreu A, Michelon H, Diamantis S, Pilmis B, Citerne A, Farfour E, Dinh A. Effectiveness of temocillin in treatment of non-urinary tract infections caused by ESBL-producing Enterobacterales and risk factors for failure. JAC Antimicrob Resist 2024; 6:dlae164. [PMID: 39421154 PMCID: PMC11483619 DOI: 10.1093/jacamr/dlae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Objectives To describe the real-life use of temocillin for non-urinary tract infections, to assess its effectiveness in infections caused by ESBL-producing Enterobacterales, and to identify risk factors for treatment failure. Method Retrospective multicentric study in 14 tertiary care hospitals, including all patients who received at least one dose of temocillin for ESBL infections from 1 January 2016 to 31 December 2021 for non-urinary tract infections. Failure was a composite criterion defined within 28 day follow-up by persistence or reappearance of signs of infection, and/or switch to suppressive antibiotic treatment and/or death from infection. Logistic regression with univariable and multivariable analysis was performed to identify risks associated with failure. Results Data on 163 infection episodes were collected; 133 were due to ESBL-producing Enterobacterales and 128 were included in the effectiveness analysis. Median (IQR) age was 61 (53-70) years and 61.7% of patients were male. Main indications were lower respiratory tract infection (LRTI; 28.9%), intra-abdominal infections (IAI; 28.1%) and cutaneous infections (12.5%). The main bacteria involved were Klebsiella pneumoniae (48.4%), Escherichia coli (25.0%) and Enterobacter cloacae (24.2%). Polymicrobial infections occurred in 45.3% of cases. Temocillin was used as monotherapy in 86/128 (67.2%). Failure was found in 36/128 (28.1%) cases. In multivariable analysis, the only factor associated with failure was initial severity of the episode [adjusted OR 3.0 (95% CI: 1.06-8.69)]. Conclusions During non-urinary tract infections, the main use of temocillin was for LRTIs and IAIs due to ESBL-producing E. coli and K. pneumoniae. The main risk factor for failure was initial severity of the disease.
Collapse
Affiliation(s)
| | - Camille Menvielle
- Infectious Disease Department, Pitié-Salpêtrière Hospital, APHP, Paris, France
| | - Anne Cataldi
- Pharmacy, Henri Mondor Hospital, APHP, Créteil, France
| | - Antoine Hamon
- Internal Medicine, Beaujon Hospital, APHP, Clichy, France
| | - Clara Duran
- Infectious Disease Department, Raymond Poincaré Hospital, APHP, Garches, France
| | | | | | | | | | | | | | | | | | - Alexandre Bleibtreu
- Infectious Disease Department, Pitié-Salpêtrière Hospital, APHP, Paris, France
| | - Hugues Michelon
- Infectious Disease Department, Raymond Poincaré Hospital, APHP, Garches, France
| | | | - Benoit Pilmis
- Infectious Disease Department, Saint-Joseph & Marie-Lannelongue Hospital, Paris, France
| | | | | | - Aurélien Dinh
- Infectious Disease Department, Raymond Poincaré Hospital, APHP, Garches, France
- IHU PROMETHEUS, Raymond Poincaré Hospital, APHP, Garches, France
| |
Collapse
|
3
|
Brauncajs M, Bielec F, Macieja A, Machnicki P, Pastuszak-Lewandoska D. Antimicrobial Susceptibility and Genetic Epidemiology of Extended-Spectrum β-Lactamase-Positive Enterobacterales Clinical Isolates in Central Poland. Int J Mol Sci 2024; 25:8371. [PMID: 39125939 PMCID: PMC11312491 DOI: 10.3390/ijms25158371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The extended-spectrum β-lactamases (ESβLs) are bacterial enzymes capable of hydrolyzing penicillins, cephalosporins, and aztreonam. The prevalence of ESβL is increasing among clinically significant microorganisms worldwide, drastically reducing the therapeutic management of infectious diseases. The study aimed to determine the drug susceptibility of ESβL-positive clinical isolates acquired from patients hospitalized in Lodz, central Poland, and analyze the prevalence of specific genes, determining acquired resistance in these bacteria. The samples of ESβL-positive clinical isolates were gathered in 2022 from medical microbiological laboratories in the city of Lodz, central Poland. The strains were subjected to biochemical identification and antimicrobial susceptibility testing following EUCAST guidelines. The presence of studied genes (blaCTX-M, blaSHV, blaTEM, blaPER, blaVEB) was confirmed by PCR. Over 50% of studied isolates were resistant to gentamicin, cefepime, ceftazidime and ciprofloxacin. The most common ESβL gene was blaCTX-M. In most isolates, the resistance genes occurred simultaneously. The blaPER was not detected in any of the tested strains. ESβL-producing strains are largely susceptible to the currently available antibiotics. The observation of the coexistence of different genes in most clinical isolates is alarming.
Collapse
Affiliation(s)
- Małgorzata Brauncajs
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 90-151 Lodz, Poland; (M.B.); (A.M.); (P.M.); (D.P.-L.)
- Medical Microbiology Laboratory, Central Teaching Hospital of Medical University of Lodz, 92-213 Lodz, Poland
| | - Filip Bielec
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 90-151 Lodz, Poland; (M.B.); (A.M.); (P.M.); (D.P.-L.)
- Medical Microbiology Laboratory, Central Teaching Hospital of Medical University of Lodz, 92-213 Lodz, Poland
| | - Anna Macieja
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 90-151 Lodz, Poland; (M.B.); (A.M.); (P.M.); (D.P.-L.)
| | - Piotr Machnicki
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 90-151 Lodz, Poland; (M.B.); (A.M.); (P.M.); (D.P.-L.)
| | - Dorota Pastuszak-Lewandoska
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, 90-151 Lodz, Poland; (M.B.); (A.M.); (P.M.); (D.P.-L.)
| |
Collapse
|
4
|
Song H, Yoo JS, Unno T. Discerning the dissemination mechanisms of antibiotic resistance genes through whole genome sequencing of extended-spectrum beta-lactamase (ESBL)-producing E. coli isolated from veterinary clinics and farms in South Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172068. [PMID: 38554973 DOI: 10.1016/j.scitotenv.2024.172068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Extended-spectrum beta-lactamase (ESBL)-producing bacteria are resistant to most beta-lactams, including third-generation cephalosporins, limiting the treatment methods against the infections they cause. In this study, we performed whole genome sequencing of ESBL-producing E. coli to determine the mechanisms underlying the dissemination of antibiotic resistance genes. We analyzed 141 ESBL-producing isolates which had been collected from 16 veterinary clinics and 16 farms in South Korea. Long- and short-read sequencing platforms were used to obtain high-quality assemblies. The results showed that blaCTX-M is the dominant ESBL gene type found in South Korea. The spread of blaCTX-M appears to have been facilitated by both clonal spread between different host species and conjugation. Most blaCTX-M genes were found associated with diverse mobile genetic elements that may contribute to the chromosomal integration of the genes. Diverse incompatibility groups of blaCTX-M-harboring plasmids were also observed, which allows their spread among a variety of bacteria. Comprehensive whole genome sequence analysis was useful for the identification of the most prevalent types of ESBL genes and their dissemination mechanisms. The results of this study suggest that the propagation of ESBL genes can occur through clonal spread and plasmid-mediated dissemination, and that suitable action plans should be developed to prevent further propagation of these genes.
Collapse
Affiliation(s)
- Hokyung Song
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Jung Sik Yoo
- Division of Antimicrobial Resistance Research, National Institute of Health, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Republic of Korea
| | - Tatsuya Unno
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Seowon-Gu, Cheongju 28644, Republic of Korea.
| |
Collapse
|
5
|
Huang Z, Zhang G, Zheng Z, Lou X, Cao F, Zeng L, Wang D, Yu K, Li J. Genomic insights into the evolution, pathogenicity, and extensively drug-resistance of emerging pathogens Kluyvera and Phytobacter. Front Cell Infect Microbiol 2024; 14:1376289. [PMID: 38577620 PMCID: PMC10991690 DOI: 10.3389/fcimb.2024.1376289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction Kluyvera is a Gram-negative, flagellated, motile bacillus within the Enterobacteriaceae. The case reports of clinical infections shed light on the importance of this organism as an emerging opportunistic pathogen. The genus Phytobacter, which often be misidentified with Kluyvera, is also an important clinically relevant member of the Enterobacteriaceae. However, the identification of Kluyvera and Phytobacter is problematic, and their phylogenetic relationship remains unclear. Methods Here, 81 strains of Kluyvera and 16 strains of Phytobacter were collected. A series of comparative genomics approaches were applied to the phylogenetic relationship reconstruction, virulence related genes profiles description, and antibiotic resistance genes prediction. Results Using average nucleotide identity (ANI) and in silico DNA-DNA hybridization (isDDH), we offered reliable species designations of 97 strains, in which 40 (41.24%) strains were incorrectly labeled. A new Phytobacter genomospecies-1 were defined. Phytobacter and Kluyvera show great genome plasticity and inclusiveness, which may be related to their diverse ecological niches. An intergenomic distances threshold of 0.15875 was used for taxonomy reassignments at the phylogenomic-group level. Further principal coordinates analysis (PCoA) revealed 11 core genes of Kluyvera (pelX, mdtL, bglC, pcak-1, uhpB, ddpA-2, pdxY, oppD-1, cptA, yidZ, csbX) that could be served as potential identification targets. Meanwhile, the Phytobacter specific virulence genes clbS, csgA-C, fliS, hsiB1_vipA and hsiC1_vipB, were found to differentiate from Kluyvera. We concluded that the evolution rate of Kluyvera was 5.25E-6, approximately three times higher than that of Phytobacter. Additionally, the co-existence of ESBLs and carbapenem resistance genes were present in approximately 40% strains, suggesting the potential development of extensively drug-resistant or even fully drug-resistant strains. Discussion This work provided a better understanding of the differences between closely related species Kluyvera and Phytobacter. Their genomes exhibited great genome plasticity and inclusiveness. They not only possess a potential pathogenicity threat, but also a risk of multi-drug resistance. The emerging pathogens Kluyvera and Phytobacter warrant close attention.
Collapse
Affiliation(s)
- Zhenzhou Huang
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Guozhong Zhang
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Zhibei Zheng
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Xiuqin Lou
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Feifei Cao
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Lingyi Zeng
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Duochun Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Keyi Yu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Li
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Elsayed AGA, Badr DF, El Kheir NYA, Zaki MES, Mossad AEM, Mahmoud EMF. Prevalence of extended-spectrum beta-lactamase and molecular detection of blaTEM, blaSHV, and blaCTX-M genotypes among gram-negative Bacilli isolates from hospital acquired infections in pediatrics, one institutional study. Ital J Pediatr 2024; 50:31. [PMID: 38402215 PMCID: PMC10893665 DOI: 10.1186/s13052-024-01599-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/27/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Gram-negative bacilli represents an important pathogen in hospital-acquired infections (HAIs) worldwide. The emergence of antibiotic resistance in these pathogens warrants attention for the proper management of infections. Extended-spectrum beta-lactamase (ESBL) resistance represents a major therapeutic problem in infections due to Gram-negative bacilli. The present study aimed to study the extended-spectrum beta-lactamase genes blaTEM, blaSHV, and blaCTX-M by multiplex polymerase reaction in isolated Gram-negative bacilli from HAIs in pediatric patients. METHODS The study included one hundred-five isolates of Gram-negative bacilli from pediatric patients with different types of HAIs. The isolates were subjected to full microbiological identification, antibiotics susceptibility by disc diffusion method, the phenotypic study of ESBL, and the genetic study of ESBL genes by multiplex PCR. RESULTS Fifty isolates of Gram-Negative bacilli showed ESBL activity by a phenotypic study by double disc diffusion method (50/105). All ESBL producers' isolates were positive by PCR for ESBL genes. The most frequent gene was blaTEM (64%), followed by blaSHV (30%) and CTX-M (22%). Mixed genes were found in 4 isolates (8%) for blaTEM and blaSHV, blaTEM and CTX-M. There was a significant association between PCR for ESBL genes and phenotypic ESBL detection (P = 0.001). There was significant detection of ESBL genes in E. coli (28%), followed by Enterobacter spp. (26%), Klebsiella spp. (24%), Serratia (14%), Pseudomonas spp. (6%) and Proteus (2%), P = 0.01. There Seventy percent of isolates positive for ESBL production had an insignificant association between MDR and PCR for ESBL genes (P = 0.23). CONCLUSION The present study highlights the prevalence of ESBL activity among clinical isolates of Gram-negative bacilli isolated from hospital-acquired infections in pediatric patients. The most common gene responsible for this activity was blaTEM gee followed by blaSHV and blaCTX-M. There was a high prevalence of multiple antibiotic resistance among isolates with ESBL activity. The finding of the present study denotes the importance of screening extended beta-lactamase among Gram-negative bacilli associated with HAIs in pediatric patients.
Collapse
Affiliation(s)
| | - Dina F Badr
- Medical Microbiology and Immunology, Mansoura Faculty of Medicine, Mansoura, Egypt
| | | | | | | | | |
Collapse
|
7
|
Salinas L, Cárdenas P, Graham JP, Trueba G. IS 26 drives the dissemination of bla CTX-M genes in an Ecuadorian community. Microbiol Spectr 2024; 12:e0250423. [PMID: 38088550 PMCID: PMC10783052 DOI: 10.1128/spectrum.02504-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/06/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE The horizontal gene transfer events are the major contributors to the current spread of CTX-M-encoding genes, the most common extended-spectrum β-lactamase (ESBL), and many clinically crucial antimicrobial resistance (AMR) genes. This study presents evidence of the critical role of IS26 transposable element for the mobility of bla CTX-M gene among Escherichia coli isolates from children and domestic animals in the community. We suggest that the nucleotide sequences of IS26-bla CTX-M could be used to study bla CTX-M transmission between humans, domestic animals, and the environment, because understanding of the dissemination patterns of AMR genes is critical to implement effective measures to slow down the dissemination of these clinically important genes.
Collapse
Affiliation(s)
- Liseth Salinas
- Universidad San Francisco de Quito, Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Quito, Pichincha, Ecuador
| | - Paúl Cárdenas
- Universidad San Francisco de Quito, Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Quito, Pichincha, Ecuador
| | - Jay P. Graham
- Environmental Health Sciences Division, University of California, Berkeley, California, USA
| | - Gabriel Trueba
- Universidad San Francisco de Quito, Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Quito, Pichincha, Ecuador
| |
Collapse
|
8
|
da Silva TF, Glória RDA, de Sousa TJ, Americo MF, Freitas ADS, Viana MVC, de Jesus LCL, da Silva Prado LC, Daniel N, Ménard O, Cochet MF, Dupont D, Jardin J, Borges AD, Fernandes SOA, Cardoso VN, Brenig B, Ferreira E, Profeta R, Aburjaile FF, de Carvalho RDO, Langella P, Le Loir Y, Cherbuy C, Jan G, Azevedo V, Guédon É. Comprehensive probiogenomics analysis of the commensal Escherichia coli CEC15 as a potential probiotic strain. BMC Microbiol 2023; 23:364. [PMID: 38008714 PMCID: PMC10680302 DOI: 10.1186/s12866-023-03112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Probiotics have gained attention for their potential maintaining gut and immune homeostasis. They have been found to confer protection against pathogen colonization, possess immunomodulatory effects, enhance gut barrier functionality, and mitigate inflammation. However, a thorough understanding of the unique mechanisms of effects triggered by individual strains is necessary to optimize their therapeutic efficacy. Probiogenomics, involving high-throughput techniques, can help identify uncharacterized strains and aid in the rational selection of new probiotics. This study evaluates the potential of the Escherichia coli CEC15 strain as a probiotic through in silico, in vitro, and in vivo analyses, comparing it to the well-known probiotic reference E. coli Nissle 1917. Genomic analysis was conducted to identify traits with potential beneficial activity and to assess the safety of each strain (genomic islands, bacteriocin production, antibiotic resistance, production of proteins involved in host homeostasis, and proteins with adhesive properties). In vitro studies assessed survival in gastrointestinal simulated conditions and adhesion to cultured human intestinal cells. Safety was evaluated in BALB/c mice, monitoring the impact of E. coli consumption on clinical signs, intestinal architecture, intestinal permeability, and fecal microbiota. Additionally, the protective effects of both strains were assessed in a murine model of 5-FU-induced mucositis. RESULTS CEC15 mitigates inflammation, reinforces intestinal barrier, and modulates intestinal microbiota. In silico analysis revealed fewer pathogenicity-related traits in CEC15, when compared to Nissle 1917, with fewer toxin-associated genes and no gene suggesting the production of colibactin (a genotoxic agent). Most predicted antibiotic-resistance genes were neither associated with actual resistance, nor with transposable elements. The genome of CEC15 strain encodes proteins related to stress tolerance and to adhesion, in line with its better survival during digestion and higher adhesion to intestinal cells, when compared to Nissle 1917. Moreover, CEC15 exhibited beneficial effects on mice and their intestinal microbiota, both in healthy animals and against 5FU-induced intestinal mucositis. CONCLUSIONS These findings suggest that the CEC15 strain holds promise as a probiotic, as it could modulate the intestinal microbiota, providing immunomodulatory and anti-inflammatory effects, and reinforcing the intestinal barrier. These findings may have implications for the treatment of gastrointestinal disorders, particularly some forms of diarrhea.
Collapse
Affiliation(s)
- Tales Fernando da Silva
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rafael de Assis Glória
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Thiago Jesus de Sousa
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Americo
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria Dos Santos Freitas
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marcus Vinicius Canário Viana
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luís Cláudio Lima de Jesus
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Nathalie Daniel
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Olivia Ménard
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Marie-Françoise Cochet
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Didier Dupont
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Julien Jardin
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Amanda Dias Borges
- Department of clinical and toxicological analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Simone Odília Antunes Fernandes
- Department of clinical and toxicological analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Valbert Nascimento Cardoso
- Department of clinical and toxicological analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Bertram Brenig
- Department of Molecular Biology of Livestock, Institute of Veterinary Medicine, Georg-August Universität Göttingen, Göttingen, Germany
| | - Enio Ferreira
- Department of general pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Profeta
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Flavia Figueira Aburjaile
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Veterinary school, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Philippe Langella
- Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, Jouy-en-Josas, France
| | - Yves Le Loir
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Claire Cherbuy
- Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, Jouy-en-Josas, France
| | - Gwénaël Jan
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Éric Guédon
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France.
| |
Collapse
|
9
|
Khadka C, Shyaula M, Syangtan G, Bista S, Tuladhar R, Singh A, Joshi DR, Pokhrel LR, Dawadi P. Extended-spectrum β-lactamases producing Enterobacteriaceae (ESBL-PE) prevalence in Nepal: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166164. [PMID: 37572913 DOI: 10.1016/j.scitotenv.2023.166164] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/09/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
An alarming increase in the occurrence of extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-PE) has threatened the treatment and management of bacterial infections. This systematic review and meta-analysis aimed to provide a quantitative estimate of the prevalence of ESBL among the members of the Enterobacteriaceae family by analyzing the community-based and clinical studies published between 2011 and 2021 from Nepal and determine if ESBL-PE correlates with multidrug resistance (MDR). The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines were followed for systematic review and meta-analysis and the articles' quality was assessed using the Newcastle-Ottawa scale. Of the 2529 articles screened, 65 articles were systematically reviewed, data extracted, and included in in-depth meta-analysis. The overall pooled prevalence of ESBL-producers in Enterobacteriaceae was 29 % (95 % CI: 26-32 %) with high heterogeneity (I2 = 96 %, p < 0.001). Escherichia coli was the predominant ESBL-producing member of the Enterobacteriaceae family, followed by Citrobacter spp. and Klebsiella spp. The prevalence of ESBL-PE increased from 18.7 % in 2011 to 29.5 % in 2021. A strong positive correlation (r = 0.98) was observed between ESBL production and MDR in Enterobacteriaceae. ESBL-PE isolates showed high resistance to ampicillin, cephalosporins, and amoxicillin-clavulanic acid, and blaCTX-M type was the most reported gene variant among ESBL-PE. In conclusion, this study demonstrated an increased prevalence of ESBL-PE in Nepal over the last decade, and such isolates showed a high level of MDR against the β-lactams and non-β-lactam antibiotics. Tackling the rising antibiotic resistance (AR) and MDR in ESBL-PE would require concerted efforts from all stakeholders to institute effective infection control programs in the community and clinical settings.
Collapse
Affiliation(s)
- Christina Khadka
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Manita Shyaula
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Gopiram Syangtan
- Shi-Gan International College of Science and Technology, Tribhuvan University, Kathmandu, Nepal
| | - Shrijana Bista
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Reshma Tuladhar
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Anjana Singh
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal; Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | - Dev Raj Joshi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Lok R Pokhrel
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | - Prabin Dawadi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
10
|
Ramkisson T, Rip D. Carbapenem resistance in Enterobacterales from agricultural, environmental and clinical origins: South Africa in a global context. AIMS Microbiol 2023; 9:668-691. [PMID: 38173973 PMCID: PMC10758576 DOI: 10.3934/microbiol.2023034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 01/05/2024] Open
Abstract
Carbapenem agents are regarded as last-resort antibiotics, however, bacterial resistance towards carbapenems has been reported in both clinical and agricultural settings worldwide. Carbapenem resistance, defined as the resistance of a bacteria towards one or more carbapenem drugs, can be mediated in either of, or a combination of, three mechanisms-although, the mechanism mediated through the production of carbapenemases (β-lactamases that are able to enzymatically degrade carbapenems) is of most significance. Of particular concern is the occurrence of carbapenemase producing Enterobacterales (CPE), with literature describing a dramatic increase in resistance globally. In South Africa, increases of carbapenemase activity occurring in Enterobacter species, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa have recently been reported. CPE can also be found in agricultural environments, as global studies have documented numerous instances of CPE presence in various animals such as pigs, cattle, seafood, horses and dogs. However, most reports of CPE occurrence in agricultural settings come from Northern America, Europe and some parts of Asia, where more extensive research has been conducted to understand the CPE phenomenon. In comparison to clinical data, there are limited studies investigating the spread of CPE in agricultural settings in Africa, highlighting the importance of monitoring CPE in livestock environments and the food chain. Further research is necessary to uncover the true extent of CPE dissemination in South Africa. This review will discuss the phenomenon of bacterial antibiotic resistance (ABR), the applications of the carbapenem drug and the occurrence of carbapenem resistance globally.
Collapse
Affiliation(s)
- Taish Ramkisson
- Department of Food Science, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Diane Rip
- Department of Food Science, Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
11
|
Shang C, Yang R, Yang Y, Zhang H, Zhang J, Xia Q, Gao Y, Deng Y. Colonization of extended-spectrum β-lactamase-producing Enterobacteriaceae does not affect subsequent infection and liver transplant outcomes: a retrospective observational cohort study. Front Public Health 2023; 11:1207889. [PMID: 37794888 PMCID: PMC10546942 DOI: 10.3389/fpubh.2023.1207889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/29/2023] [Indexed: 10/06/2023] Open
Abstract
Objective To investigate the colonization rate of extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E), subsequent infections by ESBL-E and ESBL-producing gram-negative bacilli (ESBL-GNB), and the effect of ESBL-E colonization on clinical outcomes in liver transplantation (LT) recipients. Methods This is a retrospective cohort study that included patients who underwent LT at Shanghai Renji Hospital between July 2016 and December 2017. Rectal swabs from LT patients at the postoperative ICU enrollment were screened anonymously for ESBL-E carriage. Demographics data, laboratory indexes, operative complications, and clinical course information were also obtained. The extent of ESBL-E colonization, the subsequent infection rates of ESBL-E and ESBL-GNB, and the clinical outcomes were compared between ESBL-E colonized and non-colonized patients. Results In total, 496 liver transplant recipients (387 males) were included in this study. ESBL-E colonization was detected in 240 patients (48.4%). There was no significant difference between the rates of ESBL-E infection (5.8 vs. 3.1%, p = 0.143), Ischemia-reperfusion ≥ 3 (27.9 vs. 24.6%, p = 0.403), acute kidney injury (39.6 vs. 38.7%, p = 0.835), acute rejection (2.1 vs. 1.6%, p = 0.664), graft versus host reaction (1.3 vs. 1.2%, p = 0.937), duration of hospitalization (22 vs. 23 days, p = 0.568), 90-day mortality (7.1 vs. 4.7%, p = 0.262) and 1-year mortality (12.9 vs. 9.3%, p = 0.265) in patients with and without ESBL-E colonization. Though the ESBL-GNB infection rate was higher in ESBL-E colonized patients (12.1 vs. 6.6%, p = 0.037), multivariate analysis showed that ESBL-E colonization did not increase the risk of ESBL-GNB infection (Model 1: aOR 1.755, 95% CI: 0.911-3.380, p = 0.093; Model 2: aOR 1.556, 95% CI: 0.761-3.181, p = 0.226). The ESBL-producing bacteria spectrum of colonization was significantly different from that of infections occurring after LT, with only three colonization events leading to infection by the same pathogen identified. Conclusion ESBL-E colonization in liver transplant patients is not associated with ESBL-E infection, nor is it a risk factor for post-transplant ESBL-GNB infection. Additionally, ESBL-E colonization does not lead to worse prognoses when compared with non-colonized patients. Clinical trial registration Chinese Clinical Trial Registry, Identifier [ChiCTR2100043034].
Collapse
Affiliation(s)
- Chen Shang
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Run Yang
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ya Yang
- Department of Infection Control, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haomin Zhang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Gao
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuxiao Deng
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Martínez-Álvarez S, Châtre P, Cardona-Cabrera T, François P, Sánchez-Cano A, Höfle U, Zarazaga M, Madec JY, Haenni M, Torres C. Detection and genetic characterization of bla ESBL-carrying plasmids of cloacal Escherichia coli isolates from white stork nestlings (Ciconia ciconia) in Spain. J Glob Antimicrob Resist 2023; 34:186-194. [PMID: 37482121 DOI: 10.1016/j.jgar.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023] Open
Abstract
OBJECTIVES This study aimed to characterize Escherichia coli isolates from cloacal samples of white stork nestlings, with a special focus on extended-spectrum β-lactamases (ESBLs)-producing E. coli isolates and their plasmid content. METHODS Cloacal samples of 88 animals were seeded on MacConkey-agar and chromogenic-ESBL plates to recover E. coli and ESBL-producing E. coli. Antimicrobial susceptibility was screened using the disc diffusion method, and the genotypic characterization was performed by polymerase chain reaction (PCR) and subsequent sequencing. S1 nuclease Pulsed-Field-Gel-Electrophoresis (PFGE), Southern blotting, and conjugation essays were performed on ESBL-producing E. coli, as well as whole-genome sequencing by short- and long-reads. The four blaESBL-carrying plasmids were completely sequenced. RESULTS A total of 113 non-ESBL-producing E. coli isolates were collected on antibiotic-free MacConkey-agar, of which 27 (23.9%) showed a multidrug-resistance (MDR) phenotype, mainly associated with β-lactam-phenicol-sulfonamide resistance (blaTEM/cmlA/floR/sul1/sul2/sul3). Moreover, four white stork nestlings carried ESBL-producing E. coli (4.5%) with the following characteristics: blaSHV-12/ST38-D, blaSHV-12/ST58-B1, blaCTX-M-1/ST162-B1, and blaCTX-M-32/ST155-B1. Whole-genome sequencing followed by Southern blot hybridizations on S1-PFGE gels in ESBL-positive isolates proved that the blaCTX-M-1 gene and one of the blaSHV-12 genes were carried by IncI1/pST3 plasmids, while the second blaSHV-12 gene and the blaCTX-M-32 gene were located on IncF plasmids. The two blaSHV-12 genes and the two blaCTX-M genes had similar but non-identical close genetic environments, as all four genes were flanked by a variety of insertion sequences. CONCLUSION The role played by several genetic platforms in the mobility of ESBL genes allows for interchangeability on a remarkably small scale (gene-plasmid-clones), which may support the spread of ESBL genes.
Collapse
Affiliation(s)
- Sandra Martínez-Álvarez
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Pierre Châtre
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Teresa Cardona-Cabrera
- Health and Biotechnology (SaBio) Research Group, Institute for Game and Wildlife Research IREC (CSIC-UCLM), Ciudad Real, Spain
| | - Pauline François
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Alberto Sánchez-Cano
- Health and Biotechnology (SaBio) Research Group, Institute for Game and Wildlife Research IREC (CSIC-UCLM), Ciudad Real, Spain
| | - Ursula Höfle
- Health and Biotechnology (SaBio) Research Group, Institute for Game and Wildlife Research IREC (CSIC-UCLM), Ciudad Real, Spain
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Jean-Yves Madec
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Marisa Haenni
- ANSES - Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain.
| |
Collapse
|
13
|
Ahmed HA, Elsohaby I, Elamin AM, El-Ghafar AEA, Elsaid GA, Elbarbary M, Mohsen RA, El Feky TM, El Bayomi RM. Extended-spectrum β-lactamase-producing E. coli from retail meat and workers: genetic diversity, virulotyping, pathotyping and the antimicrobial effect of silver nanoparticles. BMC Microbiol 2023; 23:212. [PMID: 37550643 PMCID: PMC10405496 DOI: 10.1186/s12866-023-02948-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND The spread of extended-spectrum β-lactamases (ESBL) producing E. coli from food animals and the environment to humans has become a significant public health concern. The objectives of this study were to determine the occurrence, pathotypes, virulotypes, genotypes, and antimicrobial resistance patterns of ESBL-producing E. coli in retail meat samples and workers in retail meat shops in Egypt and to evaluate the bactericidal efficacy of silver nanoparticles (AgNPs-H2O2) against multidrug resistant (MDR) ESBL-producing E. coli. RESULTS A total of 250 retail meat samples and 100 human worker samples (hand swabs and stool) were examined for the presence of ESBL- producing E. coli. Duck meat and workers' hand swabs were the highest proportion of ESBL- producing E. coli isolates (81.1%), followed by camel meat (61.5%). Pathotyping revealed that the isolates belonged to groups A and B1. Virulotyping showed that the most prevalent virulence gene was Shiga toxin 2 (stx2) associated gene (36.9%), while none of the isolates harbored stx1 gene. Genotyping of the identified isolates from human and meat sources by REP-PCR showed 100% similarity within the same cluster between human and meat isolates. All isolates were classified as MDR with an average multiple antibiotic resistance (MAR) index of 0.7. AgNPs-H2O2 at concentrations of 0.625, 1.25, 2.5 and 5 μg/mL showed complete bacterial growth inhibition. CONCLUSIONS Virulent MDR ESBL-producing E. coli were identified in retail meat products in Egypt, posing significant public health threats. Regular monitoring of ESBL-producing E. coli frequency and antimicrobial resistance profile in retail meat products is crucial to enhance their safety. AgNPs-H2O2 is a promising alternative for treating MDR ESBL-producing E. coli infections and reducing antimicrobial resistance risks.
Collapse
Affiliation(s)
- Heba A Ahmed
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig City, 44511, Sharkia Governorate, Egypt.
| | - Ibrahim Elsohaby
- Department of Infectious Diseases and Public Health, Jockey Club of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
- Centre for Applied One Health Research and Policy Advice (OHRP), City University of Hong Kong, Hong Kong SAR, China
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig City, 44511, Sharkia Governorate, Egypt
| | - Amina M Elamin
- Department of Food Hygiene, Zagazig Branch, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig City, Egypt
| | - Abeer E Abd El-Ghafar
- Department of Bacteriology, Mansoura Branch, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Mansoura City, Egypt
| | - Gamilat A Elsaid
- Department of Food Hygiene, Mansoura Branch, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Mansoura City, Egypt
| | - Mervat Elbarbary
- Department of Food Hygiene, Zagazig Branch, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig City, Egypt
| | - Rasha A Mohsen
- Department of Bacteriology, Mansoura Branch, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Mansoura City, Egypt
| | - Tamer M El Feky
- Department of Bacteriology, Mansoura Branch, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Mansoura City, Egypt
| | - Rasha M El Bayomi
- Department of Food Control, Faculty of Veterinary Medicine, Zagazig University, Zagazig City, 44511, Sharkia Governorate, Egypt
| |
Collapse
|
14
|
Quan J, Hu H, Zhang H, Meng Y, Liao W, Zhou J, Han X, Shi Q, Zhao D, Wang Q, Jiang Y, Yu Y. Investigating Possible Interspecies Communication of Plasmids Associated with Transfer of Third-Generation Cephalosporin, Quinolone, and Colistin Resistance Between Simultaneously Isolated Escherichia Coli and Klebsiella Pneumoniae. Microbiol Spectr 2023; 11:e0355422. [PMID: 37125932 PMCID: PMC10269620 DOI: 10.1128/spectrum.03554-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
The coinfection process producing multiple species of pathogens provides a specific ecological niche for the exchange of genetic materials between pathogens, in which plasmids play a vital role in horizontal gene transfer, especially for drug resistance, but the underlying transfer pathway remains unclear. Interspecies communication of the plasmids associated with the transfer of third-generation cephalosporins, quinolones, and colistin resistance has been observed in simultaneously isolated Escherichia coli and Klebsiella pneumoniae from abdominal drainage following surgery. The MICs of antimicrobial agents were determined by the broth microdilution method. The complete chromosome and plasmid sequences were obtained by combining Illumina paired-end short reads and MinION long reads. S1-PFGE, southern blot analysis and conjugation assay confirmed the transferability of the mcr-1-harboring plasmid. Both the E. coli isolate EC15255 and K. pneumoniae isolate KP15255 from the same specimen presented multidrug resistance. Each of them harbored one chromosome and three plasmids, and two plasmids and their mediated resistance could be transferred to the recipient by conjugation. Comparison of their genome sequences suggested that several genetic communication events occurred between species, especially among their plasmids, such as whole-plasmid transfer, insertion, deletion, amplification, or inversion. Exchange of plasmids or the genetic elements they harbor plays a critical role in antimicrobial resistance gene transmission and poses a substantial threat to nosocomial infection control, necessitating the continued surveillance of multidrug resistant pathogens, especially during coinfection. IMPORTANCE The genome sequence of bacterial pathogens commonly provides a detailed clue of genetic communication among clones or even distinct species. The intestinal microecological environment is a representative ecological niche for genetic communication. However, it is still difficult to describe the details of horizontal gene transfer or other genetic events within them because the evidence in the genome sequence is incomplete and limited. In this study, the simultaneously isolated Escherichia coli and Klebsiella pneumoniae from a coinfection process provided an excellent example for observation of interspecies communication between the two genomes and the plasmids they harbor. A complete genome sequence acquired by combining the Illumina and MinION sequencing platforms facilitated the understanding of genetic communication events, such as whole-plasmid transfer, insertion, deletion, amplification, or inversion, which contribute to antimicrobial resistance gene transmission and are a substantial threat to nosocomial infection control.
Collapse
Affiliation(s)
- Jingjing Quan
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huangdu Hu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huichuan Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering
- Department of Infectious Diseases, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Yan Meng
- Department of Clinical Laboratory, Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weichao Liao
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junxin Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinhong Han
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiucheng Shi
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dongdong Zhao
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qian Wang
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Al-Sheboul SA, Al-Madi GS, Brown B, Hayajneh WA. Prevalence of Extended-Spectrum β-Lactamases in Multidrug-Resistant Klebsiella pneumoniae Isolates in Jordanian Hospitals. J Epidemiol Glob Health 2023; 13:180-190. [PMID: 37095370 PMCID: PMC10272028 DOI: 10.1007/s44197-023-00096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/30/2023] [Indexed: 04/26/2023] Open
Abstract
The increase in the prevalence of infections caused by certain bacteria, such as Klebsiella pneumonia (K. pneumoniae), is a global health concern. Bacterial production of an enzyme called extended-spectrum beta-lactamase (ESBL) can generate resistance to antimicrobial therapeutics. Therefore, between 2012 and 2013, we investigated K. pneumoniae that produce ESBLs with the prevalence of individual genes including blaSHV, blaCTX-M, blaTEM, and blaOXA isolated from clinical samples. A total of 99 variable diagnostic samples including blood from hematological malignancies (n = 14) or other clinical sources including sputum, pus, urine, and wound (n = 85) were analyzed. All samples' bacterial type was confirmed and their susceptibility to antimicrobial agents was established. Polymerase chain reaction (PCR) amplification was carried out to ascertain presence of specific genes that included blaSHV, blaCTX-M, blaTEM, and blaOXA. Plasmid DNA profiles were determined to assess significance between resistance to antimicrobial agents and plasmid number. It was found that among non-hematologic malignancy isolates, the highest rate of resistance was 87.9% to imipenem, with lowest rate being 2% to ampicillin. However, in hematologic malignancy isolates, the highest microbial resistance was 92.9% to ampicillin with the lowest rate of resistance at 28.6% to imipenem. Among collected isolates, 45% were ESBL-producers with 50% occurrence in hematologic malignancy individuals that were ESBL-producers. Within ESBL-producing isolates from hematologic malignancy individuals, blaSHV was detected in 100%, blaCTX-M in 85.7%, and blaTEM and blaOXA-1 at 57.1% and 27.1%, respectively. In addition, blaSHV, blaCTX-M, and blaOXA were found in all non-hematological malignancy individuals with blaTEM detected in 55.5% of samples. Our findings indicate that ESBLs expressing blaSHV and blaCTX-M genes are significantly prevalent in K. pneumoniae isolates from hematologic malignancy individuals. Plasmid analysis indicated plasmids in isolates collected from hematological malignancy individuals. Furthermore, there was a correlation between resistance to antimicrobial agents and plasmids within two groups analyzed. This study indicates an increase in incidence of K. pneumoniae infections displaying ESBL phenotypes in Jordan.
Collapse
Affiliation(s)
- Suhaila A. Al-Sheboul
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Sciences and Technology (JUST), Irbid, Jordan
| | - Ghina S. Al-Madi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Sciences and Technology (JUST), Irbid, Jordan
| | | | - Wail A. Hayajneh
- Department of Pediatrics and Neonatology, Faculty of Medicine and King Abdullah University Hospital, Jordan University of Science and Technology (JUST), Irbid, Jordan
- Children’s National Hospital, Saint Louis University, St. Joseph’s University Medical Center, Paterson, USA
| |
Collapse
|
16
|
Ribeiro J, Silva V, Monteiro A, Vieira-Pinto M, Igrejas G, Reis FS, Barros L, Poeta P. Antibiotic Resistance among Gastrointestinal Bacteria in Broilers: A Review Focused on Enterococcus spp. and Escherichia coli. Animals (Basel) 2023; 13:1362. [PMID: 37106925 PMCID: PMC10135345 DOI: 10.3390/ani13081362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Chickens can acquire bacteria at different stages, and bacterial diversity can occur due to production practices, diet, and environment. The changes in consumer trends have led to increased animal production, and chicken meat is one of the most consumed meats. To ensure high levels of production, antimicrobials have been used in livestock for therapeutic purposes, disease prevention, and growth promotion, contributing to the development of antimicrobial resistance across the resident microbiota. Enterococcus spp. and Escherichia coli are normal inhabitants of the gastrointestinal microbiota of chickens that can develop strains capable of causing a wide range of diseases, i.e., opportunistic pathogens. Enterococcus spp. isolated from broilers have shown resistance to at least seven classes of antibiotics, while E. coli have shown resistance to at least four. Furthermore, some clonal lineages, such as ST16, ST194, and ST195 in Enterococcus spp. and ST117 in E. coli, have been identified in humans and animals. These data suggest that consuming contaminated animal-source food, direct contact with animals, or environmental exposure can lead to the transmission of antimicrobial-resistant bacteria. Therefore, this review focused on Enterococcus spp. and E. coli from the broiler industry to better understand how antibiotic-resistant strains have emerged, which antibiotic-resistant genes are most common, what clonal lineages are shared between broilers and humans, and their impact through a One Health perspective.
Collapse
Affiliation(s)
- Jessica Ribeiro
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Andreia Monteiro
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Madalena Vieira-Pinto
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Veterinary Science, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Filipa S. Reis
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
17
|
Perestrelo S, Amaro A, Brouwer MSM, Clemente L, Ribeiro Duarte AS, Kaesbohrer A, Karpíšková R, Lopez-Chavarrias V, Morris D, Prendergast D, Pista A, Silveira L, Skarżyńska M, Slowey R, Veldman KT, Zając M, Burgess C, Alvarez J. Building an International One Health Strain Level Database to Characterise the Epidemiology of AMR Threats: ESBL—AmpC Producing E. coli as An Example—Challenges and Perspectives. Antibiotics (Basel) 2023; 12:antibiotics12030552. [PMID: 36978419 PMCID: PMC10044432 DOI: 10.3390/antibiotics12030552] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the top public health threats nowadays. Among the most important AMR pathogens, Escherichia coli resistant to extended spectrum cephalosporins (ESC-EC) is a perfect example of the One Health problem due to its global distribution in animal, human, and environmental sources and its resistant phenotype, derived from the carriage of plasmid-borne extended-spectrum and AmpC β-lactamases, which limits the choice of effective antimicrobial therapies. The epidemiology of ESC-EC infection is complex as a result of the multiple possible sources involved in its transmission, and its study would require databases ideally comprising information from animal (livestock, companion, wildlife), human, and environmental sources. Here, we present the steps taken to assemble a database with phenotypic and genetic information on 10,763 ESC-EC isolates retrieved from multiple sources provided by 13 partners located in eight European countries, in the frame of the DiSCoVeR Joint Research project funded by the One Health European Joint Programme (OH-EJP), along with its strengths and limitations. This database represents a first step to help in the assessment of different geographical and temporal trends and transmission dynamics in animals and humans. The work performed highlights aspects that should be considered in future international efforts, such as the one presented here.
Collapse
Affiliation(s)
- Sara Perestrelo
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Ana Amaro
- Laboratory of Bacteriology and Micology, National Institute of Agrarian and Veterinary Research, National Reference for Animal Health, 2780-157 Oeiras, Portugal
| | - Michael S. M. Brouwer
- Department of Bacteriology, Host Pathogen Interaction & Diagnostics, Wageningen Bioveterinary Research, Part of Wageningen University & Research, 8221 Lelystad, The Netherlands
| | - Lurdes Clemente
- Laboratory of Bacteriology and Micology, National Institute of Agrarian and Veterinary Research, National Reference for Animal Health, 2780-157 Oeiras, Portugal
| | | | - Annemarie Kaesbohrer
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
- Veterinary Public Health and Epidemiology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Renata Karpíšková
- Department of Public Health, Medical Faculty, Masaryk University, 625 000 Brno, Czech Republic
| | | | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Deirdre Prendergast
- Backweston Laboratory Campus, Department of Agriculture, Food and the Marine, W23 X3PH Celbridge, Ireland
| | - Angela Pista
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Leonor Silveira
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Magdalena Skarżyńska
- Department of Microbiology, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Rosemarie Slowey
- Backweston Laboratory Campus, Department of Agriculture, Food and the Marine, W23 X3PH Celbridge, Ireland
| | - Kees T. Veldman
- Department of Bacteriology, Host Pathogen Interaction & Diagnostics, Wageningen Bioveterinary Research, Part of Wageningen University & Research, 8221 Lelystad, The Netherlands
| | - Magdalena Zając
- Department of Microbiology, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Catherine Burgess
- Food Safety Department, Teagasc Food Research Centre Ashtown, D15 DY05 Dublin, Ireland
| | - Julio Alvarez
- VISAVET Health Surveillance Centre, Universidad Complutense, 28040 Madrid, Spain
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense, Avda. Puerta de Hierro S/N, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
18
|
Martins JCL, Pintor-Cora A, Alegría Á, Santos JA, Herrera-Arias F. Characterization of ESBL-producing Escherichia spp. and report of an mcr-1 colistin-resistance Escherichia fergusonni strain from minced meat in Pamplona, Colombia. Int J Food Microbiol 2023; 394:110168. [PMID: 36931145 DOI: 10.1016/j.ijfoodmicro.2023.110168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023]
Abstract
Foods of animal origin are increasingly considered a source of extended spectrum β-lactamase (ESBL) producing bacteria which can disseminate throughout the food chain and become a health concern for humans. This work aimed to evaluate the occurrence of ESBL-producing Escherichia coli in 100 retail minced meat samples taken in markets in Pamplona, Colombia. A total of 19 ESBL-producing isolates were obtained, 18 identified as E. coli and one as E. fergusonii. Fifteen isolates (78.9 %) carried blaCTX-M and blaTEM genes, one (5.2 %) blaSHV and blaTEM genes, one isolate (5.2 %) carried blaCTX-M and one (5.2 %) blaSHV alone. The majority of CTX-M-positive E. coli isolates carried the blaCTX-M-15 gene (13 isolates), being the blaCTX-M-9, blaCTX-M-2, and blaCTX-M-8 (one isolate each) also detected. Two SHV-positive isolates presented the blaSHV-5 and blaSHV-12 allele. The isolate identified as E. fergusonii was positive for blaCTX-M-65 gene and mcr-1 gene. Sixteen isolates (84.2 %) belonged to phylogroups A and B1 and grouped together in the phylogenetic tree obtained by MLST; phylogroups E and F were also detected. Transfer of ESBL resistance was demonstrated for the E. fergusonii isolate. Whole genome sequencing of this isolate revealed the presence of plasmids carrying additional resistance genes. This investigation showed the high prevalence of ESBL-producing E. coli in retail samples of minced meat. Also, the isolation of a strain of E. fergusonii is an additional concern, as some resistance genes are located in mobile elements, which can be transmitted to other bacteria. These evidences support the increasing public health concern considering the spreading of resistance genes through the food chain.
Collapse
Affiliation(s)
- Joana C L Martins
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, 24071 León, Spain
| | - Alberto Pintor-Cora
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, 24071 León, Spain.
| | - Ángel Alegría
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, 24071 León, Spain.
| | - Jesús A Santos
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, 24071 León, Spain.
| | - Fanny Herrera-Arias
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, 24071 León, Spain; Departamento de Microbiología, Facultad de Ciencias Básicas, Universidad de Pamplona, Pamplona, Colombia.
| |
Collapse
|
19
|
Choi YS, Kim JH, Kim Y, Cho HJ, Sung JH, Choi SJ, Oh SY, Kim YJ, Roh CR. Growing threat of extended-spectrum β-lactamase-producing Enterobacteriaceae colonisation in high-risk pregnancies: A cross-sectional study. BJOG 2023; 130:415-423. [PMID: 35445798 DOI: 10.1111/1471-0528.17194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/10/2022] [Accepted: 03/20/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the epidemiological changes in extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) vaginal colonisation in pregnant women deemed at high risk, and to identify independent risk factors. Further, the differences in perinatal outcomes according to maternal ESBL-E vaginal colonisation were analysed. DESIGN Cross-sectional study. SETTING Republic of Korea. POPULATION A cohort of 1460 women admitted to our high-risk pregnancy unit between 14+0 and 36+6 weeks of gestation. METHODS The trend of changes in the association of ESBL-E vaginal colonisation from January 2010 to December 2020 was analysed. The main outcomes were analysed over the study period and ESBL-E vaginal colonisation. MAIN OUTCOME MEASURES Rate of ESBL-E vaginal colonisation, risk factors for ESBL-E vaginal colonisation and perinatal outcomes. RESULTS The ESBL-E vaginal colonisation rate has tended to increase over the past 11 years, which was attributed to a significantly higher proportion of ESBL-producing Escherichia coli. Cerclage (RR 3.7, 95% CI 2.19-6.40) and prior antibiotic treatment (RR 4.0, 95% CI 2.44-6.54) were found as independent risk factors for ESBL-E vaginal colonisation. Earlier gestational age at delivery and higher proven early-onset neonatal sepsis (EONS) rate were observed in the ESBL-E-positive group. CONCLUSIONS The ESBL-E vaginal colonisation rate in pregnant patients at high risk has increased over the past decade, and the independent risk factors for colonisation are cerclage and prior antibiotic treatment. Additionally, maternal ESBL-E vaginal colonisation is associated with higher rates of proven EONS.
Collapse
Affiliation(s)
- Yun-Sun Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jin-Ha Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yejin Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hye Jung Cho
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ji-Hee Sung
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Suk-Joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Soo-Young Oh
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yae-Jean Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Cheong-Rae Roh
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
20
|
Nakano R, Nakano A, Nishisouzu R, Hikosaka K, Suzuki Y, Kamoshida G, Tansho-Nagakawa S, Endo S, Kasahara K, Ono Y, Yano H. Genetic relatedness of third-generation cephalosporin-resistant Escherichia coli among livestock, farmers, and patients in Japan. One Health 2023. [DOI: 10.1016/j.onehlt.2023.100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
|
21
|
Fate of Horizontal-Gene-Transfer Markers and Beta-Lactamase Genes during Thermophilic Composting of Human Excreta. Microorganisms 2023; 11:microorganisms11020308. [PMID: 36838273 PMCID: PMC9958827 DOI: 10.3390/microorganisms11020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Thermophilic composting is a suitable treatment for the recycling of organic wastes for agriculture. However, using human excreta as feedstock for composting raises concerns about antibiotic resistances. We analyzed samples from the start and end of a thermophilic composting trial of human excreta, together with green cuttings and straw, with and without biochar. Beta-lactamase genes blaCTX-M, blaIMP, and blaTEM conferring resistance to broad-spectrum beta-lactam antibiotics, as well as horizontal gene transfer marker genes, intI1 and korB, were quantified using qPCR. We found low concentrations of the beta-lactamase genes in all samples, with non-significant mean decreases in blaCTX-M and blaTEM copy numbers and a mean increase in blaIMP copy numbers. The decrease in both intI1 and korB genes from start to end of composting indicated that thermophilic composting can decrease the horizontal spread of resistance genes. Thus, thermophilic composting can be a suitable treatment for the recycling of human excreta.
Collapse
|
22
|
Ortiz-Díez G, Mengíbar RL, Turrientes MC, Artigao MRB, Gallifa RL, Tello AM, Pérez CF, Santiago TA. Prevalence, incidence and risk factors for acquisition and colonization of extended-spectrum beta-lactamase- and carbapenemase-producing Enterobacteriaceae from dogs attended at a veterinary hospital in Spain. Comp Immunol Microbiol Infect Dis 2023; 92:101922. [PMID: 36509030 DOI: 10.1016/j.cimid.2022.101922] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
The last 10 years have seen a progressive increase in antibiotic resistance rates in bacteria isolated from companion animals. Exposure of individuals to resistant bacteria from companion animals, such as extended-spectrum beta-lactamase- (ESBL) and carbapenemase- (CPE) producing Enterobacteriaceae, can be propitiated. Few studies evaluate the incidence and risk factors associated with colonization by multidrug-resistant bacteria in dogs. This work aims to estimate the prevalence, incidence and risk factors associated with colonization of ESBL-E and CPE-E in 44 canine patients hospitalized in a veterinary hospital. The antimicrobial susceptibility of Enterobacteriaceae strains was analyzed and the molecular detection of resistant genes was performed. A prevalence of 25.0% and an incidence of ESBL-E of 45.5% were observed in dogs colonized by Enterobacteriaceae at hospital admission and release, respectively. Escherichia coli, Klebsiella pneumoniae, Citrobacter koseri and Morganella morganii were identified as ESBL-producing bacterial species. Resistance genes were detected for ESBL-producing strains. No CPE isolates were obtained on the CPE-selective medium. The administration of corticosteroids prior to hospitalization and the presence of concomitant diseases were associated with colonization by these bacteria in dogs. Considering that one-quarter of the patients evaluated were colonized by ESBL-E, companion animals should be considered as potential transmission vehicles and ESBL-E reservoirs for humans. Special care should be taken in animals attended at veterinary hospitals, as the length of stay in the hospital could increase the risks.
Collapse
Affiliation(s)
- Gustavo Ortiz-Díez
- Hospital Clínico Veterinario, Universidad Alfonso X El Sabio, Madrid, Spain.
| | - Ruth Luque Mengíbar
- Hospital Clínico Veterinario, Universidad Alfonso X El Sabio, Madrid, Spain.
| | - María-Carmen Turrientes
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal -IRYCIS-, Madrid, Spain; Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública -CIBERESP-, Madrid, Spain.
| | | | - Raúl López Gallifa
- Hospital Clínico Veterinario, Universidad Alfonso X El Sabio, Madrid, Spain.
| | | | - Cristina Fernández Pérez
- Fundación Instituto para la Mejora de la Asistencia Sanitaria, Madrid, Spain; Servicio de Medicina Preventiva y Salud Pública, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela, A Coruña, Spain.
| | | |
Collapse
|
23
|
Abdel-Rahman MAA, Hamed EA, Abdelaty MF, Sorour HK, Badr H, Hassan WM, Shalaby AG, Mohamed AAE, Soliman MA, Roshdy H. Distribution pattern of antibiotic resistance genes in Escherichia coli isolated from colibacillosis cases in broiler farms of Egypt. Vet World 2023; 16:1-11. [PMID: 36855348 PMCID: PMC9967716 DOI: 10.14202/vetworld.2023.1-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/02/2022] [Indexed: 01/04/2023] Open
Abstract
Background and Aim Multidrug resistance (MDR) of Escherichia coli has become an increasing concern in poultry farming worldwide. However, E. coli can accumulate resistance genes through gene transfer. The most problematic resistance mechanism in E. coli is the acquisition of genes encoding broad-spectrum β-lactamases, known as extended-spectrum β-lactamases, that confer resistance to broad-spectrum cephalosporins. Plasmid-mediated quinolone resistance genes (conferring resistance to quinolones) and mcr-1 genes (conferring resistance to colistin) also contribute to antimicrobial resistance. This study aimed to investigate the prevalence of antimicrobial susceptibility and to detect β-lactamase and colistin resistance genes of E. coli isolated from broiler farms in Egypt. Materials and Methods Samples from 938 broiler farms were bacteriologically examined for E. coli isolation. The antimicrobial resistance profile was evaluated using disk diffusion, and several resistance genes were investigated through polymerase chain reaction amplification. Results Escherichia coli was isolated and identified from 675/938 farms (72%) from the pooled internal organs (liver, heart, lung, spleen, and yolk) of broilers. Escherichia coli isolates from the most recent 3 years (2018-2020) were serotyped into 13 serotypes; the most prevalent serotype was O125 (n = 8). The highest phenotypic antibiotic resistance profiles during this period were against ampicillin, penicillin, tetracycline, and nalidixic acid. Escherichia coli was sensitive to clinically relevant antibiotics. Twenty-eight selected isolates from the most recent 3 years (2018-2020) were found to have MDR, where the prevalence of the antibiotic resistance genes ctx, tem, and shv was 46% and that of mcr-1 was 64%. Integrons were found in 93% of the isolates. Conclusion The study showed a high prevalence of E. coli infection in broiler farms associated with MDR, which has a high public health significance because of its zoonotic relevance. These results strengthen the application of continuous surveillance programs.
Collapse
Affiliation(s)
- Mona A. A. Abdel-Rahman
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Engy A. Hamed
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - May F. Abdelaty
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Hend K. Sorour
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Heba Badr
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Wafaa M. Hassan
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Azhar G. Shalaby
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Ahmed Abd-Elhalem Mohamed
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Mohamed A. Soliman
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| | - Heba Roshdy
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Nadi El-Seid Street, Dokki P. O. Box 246, Giza 12618, Egypt
| |
Collapse
|
24
|
Neffe L, Forde TL, Oravcova K, Köhler U, Bautsch W, Tomasch J, Häussler S. Genomic epidemiology of clinical ESBL-producing Enterobacteriaceae in a German hospital suggests infections are primarily community- and regionally-acquired. Microb Genom 2022; 8:mgen000901. [PMID: 36748515 PMCID: PMC9837565 DOI: 10.1099/mgen.0.000901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Clinical Enterobacteriaceae isolates that produce extended-spectrum β-lactamases (ESBLs) have been increasingly reported at a global scale. However, comprehensive data on the molecular epidemiology of ESBL-producing strains are limited and few studies have been conducted in non-outbreak situations.We used whole-genome sequencing to describe the population structure of 294 ESBL-producing Escherichia coli and Klebsiella pneumoniae isolates that were recovered from a German community hospital throughout a 1 year sampling period in a non-outbreak situation.We found a high proportion of E. coli isolates (61.5 %) belonged to the globally disseminated extraintestinal pathogenic ST131, whereas a wider diversity of STs was observed among K. pneumoniae isolates. The E. coli ST131 population in this study was shaped by multiple introductions of strains as demonstrated by contextual genomic analysis including ST131 strains from other geographical sources. While no recent common ancestor of the isolates of the current study and other international isolates was found, our clinical isolates clustered with those previously recovered in the region. Furthermore, we found that the isolation of ESBL-producing clinical strains in hospitalized patients could only rarely be associated with likely patient-to-patient transmission, indicating primarily a community and regional acquisition of strains.Further genomic analyses of clinical, carriage and environmental isolates is needed to uncover hidden transmissions and thus discover the most common sources of ESBL-producing pathogen infections in our hospitals.
Collapse
Affiliation(s)
- Lisa Neffe
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany,Institute for Molecular Bacteriology, TWINCORE GmbH, Center of Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover, Germany
| | - Taya L. Forde
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Katarina Oravcova
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Ute Köhler
- Städtisches Klinikum Braunschweig gGmbH, Germany
| | | | - Jürgen Tomasch
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany,Institute for Molecular Bacteriology, TWINCORE GmbH, Center of Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover, Germany,Department of Clinical Microbiology, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany,*Correspondence: Susanne Häussler,
| |
Collapse
|
25
|
Zamudio R, Boerlin P, Beyrouthy R, Madec JY, Schwarz S, Mulvey MR, Zhanel GG, Cormier A, Chalmers G, Bonnet R, Haenni M, Eichhorn I, Kaspar H, Garcia-Fierro R, Wood JLN, Mather AE. Dynamics of extended-spectrum cephalosporin resistance genes in Escherichia coli from Europe and North America. Nat Commun 2022; 13:7490. [PMID: 36509735 PMCID: PMC9744880 DOI: 10.1038/s41467-022-34970-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Abstract
Extended-spectrum cephalosporins (ESCs) are critically important antimicrobial agents for human and veterinary medicine. ESC resistance (ESC-R) genes have spread worldwide through plasmids and clonal expansion, yet the distribution and dynamics of ESC-R genes in different ecological compartments are poorly understood. Here we use whole genome sequence data of Enterobacterales isolates of human and animal origin from Europe and North America and identify contrasting temporal dynamics. AmpC β-lactamases were initially more dominant in North America in humans and farm animals, only later emerging in Europe. In contrast, specific extended-spectrum β-lactamases (ESBLs) were initially common in animals from Europe and later emerged in North America. This study identifies differences in the relative importance of plasmids and clonal expansion across different compartments for the spread of different ESC-R genes. Understanding the mechanisms of transmission will be critical in the design of interventions to reduce the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Roxana Zamudio
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Patrick Boerlin
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada
| | - Racha Beyrouthy
- Microbes Intestin Inflammation et Susceptibilité de l'Hôte (M2ISH), Faculté de Médecine, Université Clermont Auvergne, Clermont-Ferrand, 63001, France.,Centre National de Référence de la résistance aux antibiotiques, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, 63000, France
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, Anses Laboratoire de Lyon, Université de Lyon, Lyon, 69007, France
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, 14163, Germany.,Veterinary Centre for Resistance Research (TZR), Department of Veterinary Medicine, Freie Universität Berlin, Berlin, 14163, Germany
| | - Michael R Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada
| | - George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada
| | - Ashley Cormier
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada
| | - Gabhan Chalmers
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada
| | - Richard Bonnet
- Microbes Intestin Inflammation et Susceptibilité de l'Hôte (M2ISH), Faculté de Médecine, Université Clermont Auvergne, Clermont-Ferrand, 63001, France.,Centre National de Référence de la résistance aux antibiotiques, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, 63000, France
| | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, Anses Laboratoire de Lyon, Université de Lyon, Lyon, 69007, France
| | - Inga Eichhorn
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, 14163, Germany.,Veterinary Centre for Resistance Research (TZR), Department of Veterinary Medicine, Freie Universität Berlin, Berlin, 14163, Germany
| | - Heike Kaspar
- Department Method Standardisation, Resistance to Antibiotics Unit Monitoring of Resistance to Antibiotics, Federal Office of Consumer Protection and Food Safety, Berlin, 12277, Germany
| | - Raquel Garcia-Fierro
- Unité Antibiorésistance et Virulence Bactériennes, Anses Laboratoire de Lyon, Université de Lyon, Lyon, 69007, France
| | - James L N Wood
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Alison E Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK. .,University of East Anglia, Norwich, NR4 7TJ, UK.
| |
Collapse
|
26
|
Mohamed HS, Houmed Aboubaker M, Dumont Y, Didelot MN, Michon AL, Galal L, Jean-Pierre H, Godreuil S. Multidrug-Resistant Enterobacterales in Community-Acquired Urinary Tract Infections in Djibouti, Republic of Djibouti. Antibiotics (Basel) 2022; 11:antibiotics11121740. [PMID: 36551396 PMCID: PMC9774282 DOI: 10.3390/antibiotics11121740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The emergence and spread of multidrug resistant Enterobacterales (MDR-E) are a global public health issue. This problem also concerns urinary tract infections (UTI), which are the second most frequent infections after respiratory infections. The objective of this study was to determine MDR-E frequency and to characterize MDR-E isolates from patients with community-acquired UTIs in Djibouti, Republic of Djibouti. From 800 clinical urinary samples collected at the Mer Rouge Laboratory, Djibouti, from January to July 2019, 142 were identified as Enterobacterales (age range of the 142 patients mean age is 42 years.) Mass spectrometry analysis of these isolates identified 117 Escherichia coli, 14 Klebsiella pneumoniae, 2 Proteus mirabilis, 4 Enterobacter spp., 4 Providencia stuartii and 1 Franconibacter helveticus. Antibiotic susceptibility testing (disk diffusion method) of these 142 isolates detected 68 MDR-E (68/142 = 48%): 65 extended-spectrum bêta lactamase- (ESBL), 2 carbapenemase- (one also ESBL), and 1 cephalosporinase-producer. Multiplex PCR and sequencing showed that the 65 ESBL-producing isolates carried genes encoding CTX-M enzymes (CTX-M-15 in 97% and CTX-M-9 in 3% of isolates). Two isolates harboured a gene encoding the OXA-48-like carbapenemase, and one the gene encoding the AmpC CMY-2 cephalosporinase. Genes implicated in resistance to quinolones (qnrB, aac (6')-Ib-cr, qnrD, oqxA and B) also were detected. Among the E. coli phylogroups, B2 was the most common phylogenetic group (21% of MDR-E isolates and 26% of non-MDR-E isolates), followed by A (14% and 12%), B1 (9% and 7%), D (3% and 3%), F (3% and 3%) and E (2% and 2%). This study highlights the high frequency of ESBL producers and the emergence of carbapenemase-producers among Enterobacterales causing community-acquired UTIs in Djibouti.
Collapse
Affiliation(s)
- Hasna Said Mohamed
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
- MIVEGEC, IRD, CNRS, Université de Montpellier, 34394 Montpellier, France
- Hospital General Peltier de Djibouti, Djibouti City 2123, Djibouti
- Laboratoire de Biologie Médicale de la Mer Rouge, Djibouti City 1119, Djibouti
- Correspondence: ; Tel.: +253-77-818-524
| | - Mohamed Houmed Aboubaker
- Laboratoire de Biologie Médicale de la Mer Rouge, Djibouti City 1119, Djibouti
- Laboratoire de la Caisse Nationale de Sécurité Sociale, Djibouti City 696, Djibouti
| | - Yann Dumont
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
- MIVEGEC, IRD, CNRS, Université de Montpellier, 34394 Montpellier, France
| | - Marie-Noëlle Didelot
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
- MIVEGEC, IRD, CNRS, Université de Montpellier, 34394 Montpellier, France
| | - Anne-Laure Michon
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
- MIVEGEC, IRD, CNRS, Université de Montpellier, 34394 Montpellier, France
| | - Lokman Galal
- MIVEGEC, IRD, CNRS, Université de Montpellier, 34394 Montpellier, France
| | - Hélène Jean-Pierre
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
- MIVEGEC, IRD, CNRS, Université de Montpellier, 34394 Montpellier, France
| | - Sylvain Godreuil
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
- MIVEGEC, IRD, CNRS, Université de Montpellier, 34394 Montpellier, France
- Jeune Equipe Associée à IRD (JEAI), FASORAM, 34394 Montpellier, France
| |
Collapse
|
27
|
Distribution of CTX-M, TEM, SHV Beta-lactamase Gene among the Klebsiella pneumoniae Clinical Isolates from Tertiary Care Centre in Palakkad, Kerala. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.4.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Resistance against the routinely used antibiotics has reached a worrying level globally. Extended spectrum β-lactamases (ESBLs) production is the major mechanism of antimicrobial resistance. These ESBLs bacteria are resistance to penicillin, cephalosporins, monobactams. TEM1&2, CTX-M, SHV are the main ESBLs genes present in Klebsiella pneumoniae, which is produced by the alteration of amino acid in the active site. The aim of this study is to determine the prevalence of ESBL genes such as blaTEM 1&2, blaCTX-M and blaSHV. The present study was carried out from April 2019 to September 2019, a total of 121 K. pneumoniae isolates were collected and subjected to phenotypic study. Among these 19 isolated was ESBL positive, genes (blaSHV, blaTEM, blaCTX-M) were detected by conventional PCR method. blaTEM (100%) was the predominant gene detected flowed by CTX-M (68.42%) and SHV (57.89%). The highest level of antimicrobial resistance towards ampicillin (93.4%) followed by ceftriaxone (28.9%), cefotaxime (24.8%) and ciprofloxacin (22.3%). However, ESBL-producing isolates were showed resistance to ampicillin (100%) followed by ceftazidime (94.74%), cefotaxime (89.47%), amikacin and amoxicillin-clavulanic acid (68%). Antimicrobial resistance of bacteria is due to the genes, especially extended spectrum beta lactamase, which is widely found in members of Enterobacteriaceae. Nevertheless, there is a paucity of studies regarding the distribution of ESBL in K. pneumoniae in Palakkad Dist., Kerala. Hence the aim of the current study determines the distribution of ESBL genes in ESBL producing K. pneumoniae isolated from various clinical samples.
Collapse
|
28
|
Exploring the Antibiotic Resistance Profile of Clinical Klebsiella pneumoniae Isolates in Portugal. Antibiotics (Basel) 2022; 11:antibiotics11111613. [PMID: 36421258 PMCID: PMC9686965 DOI: 10.3390/antibiotics11111613] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
While antibiotic resistance is rising to dangerously high levels, resistance mechanisms are spreading globally among diverse bacterial species. The emergence of antibiotic-resistant Klebsiella pneumoniae, mainly due to the production of antibiotic-inactivating enzymes, is currently responsible for most treatment failures, threatening the effectiveness of classes of antibiotics used for decades. This study assessed the presence of genetic determinants of β-lactam resistance in 102 multi-drug resistant (MDR) K. pneumoniae isolates from patients admitted to two central hospitals in northern Portugal from 2010 to 2020. Antimicrobial susceptibility testing revealed a high rate (>90%) of resistance to most β-lactam antibiotics, except for carbapenems and cephamycins, which showed antimicrobial susceptibility rates in the range of 23.5−34.3% and 40.2−68.6%, respectively. A diverse pool of β-lactam resistance genetic determinants, including carbapenemases- (i.e., blaKPC-like and blaOXA-48-like), extended-spectrum β-lactamases (ESBL; i.e., blaTEM-like, blaCTX-M-like and blaSHV-like), and AmpC β-lactamases-coding genes (i.e., blaCMY-2-like and blaDHA-like) were found in most K. pneumoniae isolates. blaKPC-like (72.5%) and ESBL genes (37.3−74.5%) were the most detected, with approximately 80% of K. pneumoniae isolates presenting two or more resistance genes. As the optimal treatment of β-lactamase-producing K. pneumoniae infections remains problematic, the high co-occurrence of multiple β-lactam resistance genes must be seen as a serious warning of the problem of antimicrobial resistance.
Collapse
|
29
|
Shaaban M, Elshaer SL, Abd El-Rahman OA. Prevalence of extended-spectrum β-lactamases, AmpC, and carbapenemases in Proteus mirabilis clinical isolates. BMC Microbiol 2022; 22:247. [PMID: 36221063 PMCID: PMC9552493 DOI: 10.1186/s12866-022-02662-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background Proteus mirabilis is an opportunistic pathogen, causing a variety of community-acquired and nosocomial illnesses. It poses a potential threat to patients via the production of β-lactamases, which decrease the efficacy of antimicrobial treatment and impair the management of its pathogenicity. Hence, this study was established to determine the prevalence of extended-spectrum β-lactamases (ESBLs), AmpC, and carbapenemases of P. mirabilis isolated from various clinical specimens. Results Proteus mirabilis was identified in 20.7% (58/280) of specimens. ESBL producers were present at a rate of 51.7% (30/58). All AmpC-positive isolates (n = 20) produced ESBLs as well, so 66.7% of ESBL-producing isolates coproduced AmpC enzymes. The modified Hodge test confirmed carbapenemase production in six out of seven imipenem nonsusceptible isolates. Of these, only two (5.7%) isolates were also ESBL-and AmpC-positive. Antibiotic resistance reached the highest level for cotrimoxazole (62.1%, n = 36/58 isolates) and the lowest for imipenem (12.1%, n = 7/58 isolates). The levels of multidrug-resistant (MDR) was 41.4% among the tested isolates. The blaSHV (83.3%), blaAmpC (80%), and blaVIM-1 (50%) were the most detected genes in phenotypically confirmed ESBL-, AmpC-, and carbapenemase-producing isolates, respectively. Besides, more than a half of the tested P. mirabilis strains (53%) coproduced ESBLs and AmpC. Moreover, two isolates coproduced ESBLs and AmpC together with carbapenemases. Furthermore, dendrogram analysis showed great genetic divergence based on the 21 different enterobacterial repetitive intergenic consensus (ERIC) patterns (P1–P21) through the 34 β-lactamase producers. ERIC analysis distinguished clonal similarities between isolates 21 and 22 in P2 and 9 and 10 in P4, which were isolated from the same clinical source and possessed similar patterns of β-lactamase-encoding genes. Conclusion Hence, there is an urgent need to monitor hospitalized patients and improve healthcare in order to reduce the incidence of infection and outbreaks of infection with antibiotic-resistant Proteus. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02662-3.
Collapse
Affiliation(s)
- Mona Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Soha Lotfy Elshaer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Ola A Abd El-Rahman
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11651, Egypt
| |
Collapse
|
30
|
Calarga AP, Gontijo MTP, de Almeida LGP, de Vasconcelos ATR, Nascimento LC, de Moraes Barbosa TMC, de Carvalho Perri TM, Dos Santos SR, Tiba-Casas MR, Marques EGL, Ferreira CM, Brocchi M. Antimicrobial resistance and genetic background of non-typhoidal Salmonella enterica strains isolated from human infections in São Paulo, Brazil (2000-2019). Braz J Microbiol 2022; 53:1249-1262. [PMID: 35446010 PMCID: PMC9433476 DOI: 10.1007/s42770-022-00748-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/30/2022] [Indexed: 11/02/2022] Open
Abstract
Salmonella enterica causes Salmonellosis, an important infection in humans and other animals. The number of multidrug-resistant (MDR) phenotypes associated with Salmonella spp. isolates is increasing worldwide, causing public health concern. Here, we aim to characterize the antimicrobial-resistant phenotype of 789 non-typhoidal S. enterica strains isolated from human infections in the state of São Paulo, Brazil, along 20 years (2000-2019). Among the non-susceptible isolates, 31.55, 14.06, and 13.18% were resistant to aminoglycosides, tetracycline, and β-lactams, respectively. Moreover, 68 and 11 isolates were considered MDR and Extended Spectrum β-Lactamase (ESBL) producers, respectively, whereas one isolate was colistin-resistant. We selected four strains to obtain a draft of the Genome Sequence; one S. Infantis (ST32), one S. Enteritidis (ST11), one S. I 4,[5],12:i:- (ST19), and one S. Typhimurium (ST313). Among them, three presented at least one of the following antimicrobial resistance genes (AMR) linked to mobile DNA: blaTEM-1B, dfrA1, tetA, sul1, floR, aac(6')-laa, and qnrE1. This is the first description of the plasmid-mediated quinolone resistance (PMQR) gene qnrE1 in a clinical isolate of S. I 4,[5],12:i:-. The S. Typhimurium is a colistin-resistant isolate, but did not harbor mcr genes, but it presented mutations within the mgrB, pmrB, and pmrC regions that might be linked to the colistin-resistant phenotype. The virulence pattern of the four isolates resembled the virulence pattern of the highly pathogenic S. Typhimurium UK-1 reference strain in assays involving the in vivo Galleria mellonella model. In conclusion, most isolates studied here are susceptible, but a small percentage present an MDR or ESBL-producer and pathogenic phenotype. Sequence analyses revealed plasmid-encoded AMR genes, such as β-lactam and fluoroquinolone resistance genes, indicating that these characteristics can be potentially disseminated among other bacterial strains.
Collapse
Affiliation(s)
- Aline Parolin Calarga
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), 255 Monteiro Lobato St, Campinas, São Paulo, 13083-650, Brazil.
| | - Marco Tulio Pardini Gontijo
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), 255 Monteiro Lobato St, Campinas, São Paulo, 13083-650, Brazil
| | | | | | - Leandro Costa Nascimento
- Central Laboratory for High Performance Technologies (LaCTAD), University of Campinas (UNICAMP), Campinas, São Paulo, 13083-886, Brazil
| | | | | | - Silvia Regina Dos Santos
- Division of Clinical Laboratory of the University Hospital of São Paulo, University of São Paulo (USP), São Paulo, São Paulo, 05508-000, Brazil
| | | | | | - Cleide Marques Ferreira
- Adolfo Lutz Institute, Regional Laboratory Center Campinas III, Campinas, São Paulo, 13035-420, Brazil
| | - Marcelo Brocchi
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), 255 Monteiro Lobato St, Campinas, São Paulo, 13083-650, Brazil.
| |
Collapse
|
31
|
Kebede AA, Bedada TL, Teklu DS, Beyene D, Tullu KD. Occurrence and anti-microbial susceptibility pattern of extended spectrum beta-lactamase producing Enterobacteriaceae in governmental hospitals wastewater in Addis Ababa, Ethiopia. Trop Med Health 2022; 50:57. [PMID: 35996198 PMCID: PMC9394061 DOI: 10.1186/s41182-022-00437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Worldwide, come out and dissemination of extended-spectrum beta-lactamases (ESBLs) producing Enterobacteriaceae has been warning the efficacy of antibiotics to treat an infection. Hospital wastewaters were a reservoir of such kind of resistant bacteria. Currently, the predominant antibiotics used for the treatment of hospitalized patients infected by Gram-negative bacteria are the β-lactam antibiotics. Therefore, it is an important source to investigate the magnitude of ESBLs producing bacteria and their antimicrobial susceptibility pattern. This study aimed to determine the occurrence of ESBLs producing Enterobacteriaceae (ESBLs-pE) and their antibiotic susceptibility pattern in wastewater released from five governmental hospitals in Addis Ababa, Ethiopia. Methods A cross-sectional study was conducted from April 1 to May 31, 2020. A total of 100 wastewaters were collected from five governmental hospitals in Addis Ababa using a grap-sampling technique. All Enterobacteriaceae were screened for ESBLs production using cefotaxime and ceftazidime as per 29th CLSI guideline. Each screen positive for ESBLs production was confirmed by the combination disk method (CDT) and their antibiotic susceptibility pattern was done using the Kirby–Bauer disk diffusion method on Muller Hinton agar (MHA). Data were entered and summarized using SPSS version 20 software. Results Of all Enterobacteriaceae, 48.3% were confirmed ESBLs-pE. The highest ratio of ESBLs-PE was observed in the adult ward (66.7%) and laundry unit effluent (58.8%). The highest ESBL producers were E. coli (21.8%) and K. pneumoniae (4.8%). The most elevated resistance level of ESBL producers were observed to cefotaxime (95.8%) and amoxicillin/clavunalate (93%). 64% of tested Enterobacteriaceae isolates were multi drug resistant (MDR).
Conclusions Higher magnitude of MDR and ESBLs-pE were present in the hospital wastewater. The majority of them were in the adult ward and laundry unit effluents. The most frequent ESBLs-pE was among E.coli and K. pneumoniae. Hence, Consistent infection prevention and control procedures should be in practice at each ward/unit.
Collapse
Affiliation(s)
- Alehegn Amare Kebede
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Tesfaye Legesse Bedada
- Department of Public Health Microbiology, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Dejenie Shiferaw Teklu
- Department of Bacteriology and Virology, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Degefu Beyene
- Department of Bacteriology and Virology, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Kassu Desta Tullu
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
32
|
Collis RM, Biggs PJ, Burgess SA, Midwinter AC, Brightwell G, Cookson AL. Prevalence and distribution of extended-spectrum β-lactamase and AmpC-producing Escherichia coli in two New Zealand dairy farm environments. Front Microbiol 2022; 13:960748. [PMID: 36033848 PMCID: PMC9403332 DOI: 10.3389/fmicb.2022.960748] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance (AMR) is a global threat to human and animal health, with the misuse and overuse of antimicrobials being suggested as the main driver of resistance. In a global context, New Zealand (NZ) is a relatively low user of antimicrobials in animal production. However, the role antimicrobial usage on pasture-based dairy farms, such as those in NZ, plays in driving the spread of AMR within the dairy farm environment remains equivocal. Culture-based methods were used to determine the prevalence and distribution of extended-spectrum β-lactamase (ESBL)- and AmpC-producing Escherichia coli from farm environmental samples collected over a 15-month period from two NZ dairy farms with contrasting management practices. Whole genome sequencing was utilised to understand the genomic epidemiology and antimicrobial resistance gene repertoire of a subset of third-generation cephalosporin resistant E. coli isolated in this study. There was a low sample level prevalence of ESBL-producing E. coli (faeces 1.7%; farm dairy effluent, 6.7% from Dairy 4 and none from Dairy 1) but AmpC-producing E. coli were more frequently isolated across both farms (faeces 3.3% and 8.3%; farm dairy effluent 38.4%, 6.7% from Dairy 1 and Dairy 4, respectively). ESBL- and AmpC-producing E. coli were isolated from faeces and farm dairy effluent in spring and summer, during months with varying levels of antimicrobial use, but no ESBL- or AmpC-producing E. coli were isolated from bulk tank milk or soil from recently grazed paddocks. Hybrid assemblies using short- and long-read sequence data from a subset of ESBL- and AmpC-producing E. coli enabled the assembly and annotation of nine plasmids from six E. coli, including one plasmid co-harbouring 12 antimicrobial resistance genes. ESBL-producing E. coli were infrequently identified from faeces and farm dairy effluent on the two NZ dairy farms, suggesting they are present at a low prevalence on these farms. Plasmids harbouring several antimicrobial resistance genes were identified, and bacteria carrying such plasmids are a concern for both animal and public health. AMR is a burden for human, animal and environmental health and requires a holistic “One Health” approach to address.
Collapse
Affiliation(s)
- Rose M. Collis
- The Hopkirk Research Institute, AgResearch Ltd., Massey University, Palmerston North, New Zealand
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- Rose M. Collis,
| | - Patrick J. Biggs
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Sara A. Burgess
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Anne C. Midwinter
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Gale Brightwell
- The Hopkirk Research Institute, AgResearch Ltd., Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Adrian L. Cookson
- The Hopkirk Research Institute, AgResearch Ltd., Massey University, Palmerston North, New Zealand
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- *Correspondence: Adrian L. Cookson,
| |
Collapse
|
33
|
Antibiotic Resistance in Bacteria—A Review. Antibiotics (Basel) 2022; 11:antibiotics11081079. [PMID: 36009947 PMCID: PMC9404765 DOI: 10.3390/antibiotics11081079] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 12/03/2022] Open
Abstract
Background: A global problem of multi-drug resistance (MDR) among bacteria is the cause of hundreds of thousands of deaths every year. In response to the significant increase of MDR bacteria, legislative measures have widely been taken to limit or eliminate the use of antibiotics, including in the form of feed additives for livestock, but also in metaphylaxis and its treatment, which was the subject of EU Regulation in 2019/6. Numerous studies have documented that bacteria use both phenotypis and gentic strategies enabling a natural defence against antibiotics and the induction of mechanisms in increasing resistance to the used antibacterial chemicals. The mechanisms presented in this review developed by the bacteria have a significant impact on reducing the ability to combat bacterial infections in humans and animals. Moreover, the high prevalence of multi-resistant strains in the environment and the ease of transmission of drug-resistance genes between the different bacterial species including commensal flora and pathogenic like foodborne pathogens (E. coli, Campylobacter spp., Enterococcus spp., Salmonella spp., Listeria spp., Staphylococcus spp.) favor the rapid spread of multi-resistance among bacteria in humans and animals. Given the global threat posed by the widespread phenomenon of multi-drug resistance among bacteria which are dangerous for humans and animals, the subject of this study is the presentation of the mechanisms of resistance in most frequent bacteria called as “foodborne pathoges” isolated from human and animals. In order to present the significance of the global problem related to multi-drug resistance among selected pathogens, especially those danger to humans, the publication also presents statistical data on the percentage range of occurrence of drug resistance among selected bacteria in various regions of the world. In addition to the phenotypic characteristics of pathogen resistance, this review also presents detailed information on the detection of drug resistance genes for specific groups of antibiotics. It should be emphasized that the manuscript also presents the results of own research i.e., Campylobacter spp., E. coli or Enetrococcus spp. This subject and the presentation of data on the risks of drug resistance among bacteria will contribute to initiating research in implementing the prevention of drug resistance and the development of alternatives for antimicrobials methods of controlling bacteria.
Collapse
|
34
|
Rapid Detection of Beta-Lactamases Genes among Enterobacterales in Urine Samples by Using Real-Time PCR. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8612933. [PMID: 35978630 PMCID: PMC9377892 DOI: 10.1155/2022/8612933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 06/01/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022]
Abstract
The objective of this study was to develop and evaluate newly improved, rapid, and reliable strategies based on real-time PCR to detect the most frequent beta-lactamase genes recorded in clinical Enterobacterales strains, particularly in Tunisia (blaSHV12, blaTEM, blaCTX-M-15, blaCTX-M-9, blaCMY-2, blaOXA-48, blaNDM-1, and blaIMP) directly from the urine. Following the design of primers for a specific gene pool and their validation, a series of real-time PCR reactions were performed to detect these genes in 78 urine samples showing high antibiotic resistance after culture and susceptibility testing. Assays were applied to DNA extracted from cultured bacteria and collected urine. qPCR results were compared for phenotypic sensitivity. qPCR results were similar regardless of whether cultures or urine were collected, with 100% sensitivity and specificity. Out of 78 multiresistant uropathogenic, strains of Enterobacterales (44 E. coli and 34 K. pneumoniae strains) show the presence of the genes of the bla group. In all, 44% E. coli and 36 of K. pneumoniae clinical strains harbored the bla group genes with 36.4%, 52.3%, 70.5%, 68.2%, 18.2%, and 4.5% of E. coli having blaSHV-12, blaTEM, blaCTX-M 15, blaCTX-M-9, blaCMY-2, and blaOXA-48 group genes, respectively, whereas 52.9%, 67.6%, 76.5%, 35.5%, 61.8, 14.7, and 1.28% of K. pneumoniae had blaSHV-12, blaTEM, blaCTX-M 15, blaCTX-M-9, blaCMY-2, blaOXA-48, and blaNDM-1 group genes, respectively. The time required to have a result was 3 hours by real-time PCR and 2 to 3 days by the conventional method. Resistance genes of Gram-negative bacteria in urine, as well as cultured bacteria, were rapidly detected using qPCR techniques. These techniques will be used as rapid and cost-effective methods in the laboratory. Therefore, this test could be a good candidate to create real-time PCR kits for the detection of resistance genes directly from urine in clinical or epidemiological settings.
Collapse
|
35
|
Prevalence and Molecular Characterization of Extended-Spectrum β-Lactamases and AmpC β-lactamase-Producing Enterobacteriaceae among Human, Cattle, and Poultry. Pathogens 2022; 11:pathogens11080852. [PMID: 36014973 PMCID: PMC9414889 DOI: 10.3390/pathogens11080852] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae are a universal public health alarm frequently identified among humans, animals, and poultry. Livestock and poultry production are a possible source of multidrug-resistant microorganisms, including ESBL-producing Enterobacteriaceae, which confer antimicrobial resistance to different β-lactam antimicrobial agents. From January to May 2020, a cross-sectional study was carried out in three dairy cattle farms and four poultry farms in different districts of northern Egypt to assess the prevalence of ESBLs, AmpC beta-lactamase-producing E. coli and Klebsiella in livestock, poultry, and human contacts, and to investigate the genetic relatedness of the recovered isolates. In total, 140 samples were collected, including human fecal samples (n = 20) of workers with intimate livestock contact, cattle rectal swabs (n = 34), milk (n = 14), milking machine swabs (n = 8), rations (n = 2), and water (n = 2) from different cattle farms, as well as cloacal swabs (n = 45), rations (n = 5), water (n = 5) and litter (n = 5) from poultry farms. The specimens were investigated for ESBL-producing E. coli and Klebsiella using HiCrome ESBL media agar. The agar disk diffusion method characterized the isolated strains for their phenotypic antimicrobial susceptibility. The prevalence of ESBL-producing Enterobacteriaceae was 30.0%, 20.0%, and 25.0% in humans, cattle, and poultry, respectively. Further genotypic characterization was performed using conventional and multiplex PCR assays for the molecular identification of ESBL and AmpC genes. The majority of the ESBL-producing Enterobacteriaceae showed a multi-drug resistant phenotype. Additionally, blaSHV was the predominant ESBL genotype (n = 31; 93.94%), and was mainly identified in humans (n = 6), cattle (n = 11), and poultry (14); its existence in various reservoirs is a concern, and highlights the necessity of the development of definite control strategies to limit the abuse of antimicrobial agents.
Collapse
|
36
|
Sultan I, Siddiqui MT, Gogry FA, Haq QMR. Molecular characterization of resistance determinants and mobile genetic elements of ESBL producing multidrug-resistant bacteria from freshwater lakes in Kashmir, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154221. [PMID: 35245551 DOI: 10.1016/j.scitotenv.2022.154221] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Antibiotic resistance conceded as a global concern is a phenomenon that emerged from the bacterial response to the extensive utilization of antimicrobials. The expansion of resistance determinants through horizontal transfer is linked with mobile genetic elements (MGEs) like transposons, insertion sequences, and integrons. Heavy metals also create consequential health hazards. Metal resistance gene in alliance with antibiotic resistance genes (ARGs) and MGEs is assisting bacteria to attain exalted quantity of resistance. METHODOLOGY The present work was carried out to study ARGs blaCTX-M, AmpC, qnrS, MGEs like ISecp1, TN3, TN21, and Int I by performing PCR and sequencing from Wular and Dal lakes of Kashmir; India. The genetic environment analysis of blaCTX-M-15 was carried out using PCR amplification, and sequencing approach followed by in-silico docking and mutational studies. Co-occurrence of ARGs and HMRGs was determined. Plasmid typing was done using PCR-based replicon typing (PBRT) and conjugation assay was also performed. RESULTS Out of 201 isolates attained from 16 locations, 33 were ESBLs producers. 30 ESBL displaying isolates were perceived positive for CTX-M gene, followed by AmpC (17), qnrS (13), ISecp1 (15), TN3 (11), TN21 (11), Int I (18), and SulI (14). The genetic environment of blaCTX-M-15 was observed as (ISEcp1-blaCTX-M-15-orf477), classical promoter-10 TACAAT and -35 TTGAA was found at the 3' region. The 3D structure of CTX-M-15 and ISEcp1 was generated and CTX-M-15-ISEcp1 (R299L) docking and mutation showed a reduction in hydrogen bonds. Co-occurrence of antibiotics and HMRGs (mer, sil, and ars) was found in 18, 14, and 8 isolates. PBRT analysis showed the presence of Inc. groups- B/O, F, I1, HI1, FIA, HI2, N, FIB, L/M. Molecular analysis of transconjugants showed the successful transfer of ARGs, MGEs, and HMRGs in the E. coli J53 AZR strain. CONCLUSION This study highlights the occurrence of ESBL producing bacteria in the aquatic environment of Kashmir India that can serve as a reservoir of ARGs. It also discussed the molecular mechanisms of MGEs which can help in containing the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Insha Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | | | | | | |
Collapse
|
37
|
Keikha M, Kamali H, Ghazvini K, Karbalaei M. Conceptual framework of antibiotic stewardship programs in reducing ESBL-producing Enterobacteriaceae: a systematic review and meta-analysis. J Chemother 2022; 34:483-491. [PMID: 35706130 DOI: 10.1080/1120009x.2022.2085473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Today, the phenomenon of antibiotic resistance has become one of the main concerns of health system around the world. Antimicrobial stewardship programs (ASPs) are considered as the most important strategy in optimizing antibiotic consumption, which in turn reduce the emergence of multidrug/extensively drug-resistant (MDR/XDR) microorganisms, as well as reducing mortality and healthcare costs. However, the effectiveness of APSs in controlling the spread of extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae has not been investigated. The pooled odds ratio for the effectiveness of ASPs in reducing ESBL-producing Enterobacteriaceae was 0.82 (95% CI: 0.70-0.98; P value: 0.03); our results showed that in group with implemented ASPs, the prevalence of infection associated with these bacteria had been reduced by 11.8%. Overall, antimicrobial stewardship strategies are significantly effective in reducing ESBL-producing Enterobacteriaceae infections. The present study concluded that a comprehensive stewardship program will certainly reduce the mortality rate, as well as hospitalization stay and treatment costs. In general, our findings strongly support the performance of ASPs in healthcare centers.
Collapse
Affiliation(s)
- Masoud Keikha
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, Faculty of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
38
|
Stec J, Kosikowska U, Mendrycka M, Stępień-Pyśniak D, Niedźwiedzka-Rystwej P, Bębnowska D, Hrynkiewicz R, Ziętara-Wysocka J, Grywalska E. Opportunistic Pathogens of Recreational Waters with Emphasis on Antimicrobial Resistance-A Possible Subject of Human Health Concern. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127308. [PMID: 35742550 PMCID: PMC9224392 DOI: 10.3390/ijerph19127308] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
Infections caused by exposure to opportunistic pathogens can cause serious health problems during recreational water use. The problem of diseases caused by microbes transmitted by water is a major public health challenge, especially in developing countries with economic problems and poor hygiene conditions. Moreover, the quality of water in natural reservoirs is often at a very low level in terms of microbiological water purity, which means that their use for recreational purposes, but also as a source of drinking water, may have serious health consequences. Recreational waters pose a threat to human health. Therefore, the quality of recreational waters is closely monitored in many jurisdictions. In this review, we summarize key information on the most common pathogens that can be water-based or waterborne. The issue of antimicrobial resistance among opportunistic pathogens remains equally important. It is important not only to fight pathogens, but also to take action to reduce chemical stressors (especially antibiotics) in the aquatic environment, and to understand the various mechanisms of the spread of antibiotic-resistant genes.
Collapse
Affiliation(s)
- Joanna Stec
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland; (J.S.); (U.K.)
| | - Urszula Kosikowska
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland; (J.S.); (U.K.)
| | - Mariola Mendrycka
- Department of Nursing, Kazimierz Pulaski University of Technology and Humanities in Radom, 26-600 Radom, Poland;
| | - Dagmara Stępień-Pyśniak
- Department of Veterinary Prevention and Avian Diseases, Institute of Biological Bases of Animal Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | | | - Dominika Bębnowska
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland; (P.N.-R.); (R.H.)
- Correspondence:
| | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland; (P.N.-R.); (R.H.)
| | | | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
39
|
Dela H, Egyir B, Majekodunmi AO, Behene E, Yeboah C, Ackah D, Bongo RNA, Bonfoh B, Zinsstag J, Bimi L, Addo KK. Diarrhoeagenic E. coli occurrence and antimicrobial resistance of Extended Spectrum Beta-Lactamases isolated from diarrhoea patients attending health facilities in Accra, Ghana. PLoS One 2022; 17:e0268991. [PMID: 35617316 PMCID: PMC9135277 DOI: 10.1371/journal.pone.0268991] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 05/12/2022] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Diarrhoea accounts for high morbidity and mortality in children and adults worldwide. Extended Spectrum Beta-Lactamase-Producing Enterobacteriaceae (ESBL-PE) and Diarrhoeagenic Escherichia coli (DEC) contribute to prolonged hospitalization because of their resistance and virulence properties aiding in the spread of diarrhoeal disease and delayed treatment. AIM To determine DEC and the antimicrobial resistance of ESBL-PE isolated among diarrhoea patients attending two health facilities in Ghana. METHODS Stool samples were collected from 122 diarrhoeal patients who attended Maamobi General Hospital and Kaneshie Polyclinic between January 2019 and March 2020. Identification of bacteria was performed by using the Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Using disk diffusion, antimicrobial susceptibility testing (AST) was conducted and interpreted according to the 2018 CLSI guidelines. Detection of ESBL and DEC genes was performed using Polymerase chain reaction (PCR). RESULTS A total of 80.3% (98/122) Enterobacteriaceae was recovered from the patients in the study with an overall ESBL occurrence of 20.4% (20/98), predominantly among E. coli showed 13.2% (10/76), Klebsiella pneumoniae,35.7%(5/14) and Proteus mirabilis, 57.1%(4/7). Among the ESBL genes detected, blaTEM (n = 14) was common, followed by blaCTX-M (n = 13) and blaSHV (n = 4). Thirty-four E. coli isolates possessed the heat labile (Lt) gene of Enterotoxigenic E. coli (ETEC). CONCLUSION Our findings confirm the existence of DEC and the antimicrobial resistance patterns of ESBL-PE among stool isolates, limiting the options of commonly used drugs for diarrhoeal treatment in Ghana. Routine laboratory testing in health care facilities and strengthened surveillance systems among hospital networks are encouraged for a better understanding of their epidemiology and clinical implications.
Collapse
Affiliation(s)
- Helena Dela
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
- Department of Animal Biology and Conservation Science (DABCS), University of Ghana, Legon, Accra, Ghana
| | - Beverly Egyir
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| | - Ayodele O. Majekodunmi
- Department of Animal Biology and Conservation Science (DABCS), University of Ghana, Legon, Accra, Ghana
| | - Eric Behene
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| | - Clara Yeboah
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| | - Dominic Ackah
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| | - Richard N. A. Bongo
- Institut de Recherche en Elevage pour le Développement (IRED), N’djamena, Chad
| | - Bassirou Bonfoh
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire (CSRS), Abidjan, Côte d’Ivoire
| | - Jakob Zinsstag
- Department of Epidemiology and Public Health (EPH), Swiss TPH, Basel Switzerland
| | - Langbong Bimi
- Department of Animal Biology and Conservation Science (DABCS), University of Ghana, Legon, Accra, Ghana
| | - Kennedy Kwasi Addo
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research (NMIMR), University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
40
|
Lupia T, De Benedetto I, Stroffolini G, Di Bella S, Mornese Pinna S, Zerbato V, Rizzello B, Bosio R, Shbaklo N, Corcione S, De Rosa FG. Temocillin: Applications in Antimicrobial Stewardship as a Potential Carbapenem-Sparing Antibiotic. Antibiotics (Basel) 2022; 11:antibiotics11040493. [PMID: 35453244 PMCID: PMC9032032 DOI: 10.3390/antibiotics11040493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 01/25/2023] Open
Abstract
Temocillin is an old antibiotic, but given its particular characteristics, it may be a suitable alternative to carbapenems for treating infections due to ESBL-producing Enterobacterales and uncomplicated UTI due to KPC-producers. In this narrative review, the main research question was to summarize current evidence on temocillin and its uses in infectious diseases. A search was run on PubMed using the terms (‘Temocillin’ [Mesh]) AND (‘Infection’ [Mesh]). Current knowledge regarding temocillin in urinary tract infection, blood-stream infections, pneumonia, intra-abdominal infections, central nervous system infections, skin and soft tissues infections, surgical sites infections and osteoarticular Infections were summarized. Temocillin retain a favourable profile on microbiota and risk of Clostridioides difficile infections and could be an option for treating outpatients. Temocillin may be a valuable tool to treat susceptible pathogens and for which a carbapenem could be spared. Other advantages in temocillin use are that it is well-tolerated; it is associated with a low rate of C. difficile infections; it is active against ESBL, AmpC, and KPC-producing Enterobacterales; and it can be used in the OPAT clinical setting.
Collapse
Affiliation(s)
- Tommaso Lupia
- Unit of Infectious Diseases, Cardinal Massaia, 14100 Asti, Italy;
- Correspondence:
| | - Ilaria De Benedetto
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy; (I.D.B.); (G.S.); (S.M.P.); (B.R.); (R.B.); (N.S.); (S.C.)
| | - Giacomo Stroffolini
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy; (I.D.B.); (G.S.); (S.M.P.); (B.R.); (R.B.); (N.S.); (S.C.)
| | - Stefano Di Bella
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Simone Mornese Pinna
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy; (I.D.B.); (G.S.); (S.M.P.); (B.R.); (R.B.); (N.S.); (S.C.)
| | - Verena Zerbato
- Infectious Diseases Unit, Trieste University Hospital (ASUGI), 34125 Trieste, Italy;
| | - Barbara Rizzello
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy; (I.D.B.); (G.S.); (S.M.P.); (B.R.); (R.B.); (N.S.); (S.C.)
| | - Roberta Bosio
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy; (I.D.B.); (G.S.); (S.M.P.); (B.R.); (R.B.); (N.S.); (S.C.)
| | - Nour Shbaklo
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy; (I.D.B.); (G.S.); (S.M.P.); (B.R.); (R.B.); (N.S.); (S.C.)
| | - Silvia Corcione
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy; (I.D.B.); (G.S.); (S.M.P.); (B.R.); (R.B.); (N.S.); (S.C.)
- School of Medicine, Tufts University, Boston, MA 02111, USA
| | - Francesco Giuseppe De Rosa
- Unit of Infectious Diseases, Cardinal Massaia, 14100 Asti, Italy;
- Department of Medical Sciences, Infectious Diseases, University of Turin, 10126 Turin, Italy; (I.D.B.); (G.S.); (S.M.P.); (B.R.); (R.B.); (N.S.); (S.C.)
| |
Collapse
|
41
|
Structural basis to repurpose boron-based proteasome inhibitors Bortezomib and Ixazomib as β-lactamase inhibitors. Sci Rep 2022; 12:5510. [PMID: 35365689 PMCID: PMC8976068 DOI: 10.1038/s41598-022-09392-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/21/2022] [Indexed: 12/23/2022] Open
Abstract
β-lactamases are a major cause of rapidly emerging and spreading antibiotic resistance. Currently β-lactamase inhibitors (BLIs) in clinical use act only on Ambler Class A, C and some class D lactamases. The urgent need to identify new BLIs recently lead to FDA approval of boron-based compounds BLIs, e.g. Vaborbactam. The boron-based proteasome inhibitors Bortezomib and Ixazomib are used in cancer therapy as multiple myeloma drugs but they also bind to Ser-/Thr- proteases. In this study we show the crystal structures of the β-lactamase CTX-M-14 with covalently bound Bortezomib and Ixazomib at high resolutions of 1.3 and 1.1 Å, respectively. Ixazomib is well defined in electron density whereas Bortezomib show some disorder which corresponds to weaker inhibition efficiency observed for Ixazomib. Both inhibitors mimic the deacylation transition state of β-lactam hydrolysis, because they replace the deacylating water molecule. We further investigate differences in binding of Bortezomib/Ixazomib to CTX-M-14 and its target proteases as well as known β-lactamase drugs. Our findings can help to use Bortezomib/Ixazomib as lead compounds for development of new BLIs.
Collapse
|
42
|
Ritschard JS, Van Loon H, Amato L, Meile L, Schuppler M. High Prevalence of Enterobacterales in the Smear of Surface-Ripened Cheese with Contribution to Organoleptic Properties. Foods 2022; 11:foods11030361. [PMID: 35159512 PMCID: PMC8834058 DOI: 10.3390/foods11030361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 11/16/2022] Open
Abstract
The smear of surface-ripened cheese harbors complex microbiota mainly composed of typical Gram-positive aerobic bacteria and yeast. Gram-negative bacteria are usually classified as un-wanted contaminants. In order to investigate the abundance and impact of Gram-negative bacte-ria naturally occurring in the smear of surface-ripened cheese, we performed a culture-based analysis of smear samples from 15 semi-hard surface-ripened cheese varieties. The quantity, di-versity and species distribution of Proteobacteria in the surface smear of the analyzed cheese vari-eties were unexpectedly high, and comprised a total of 22 different species. Proteus and Morganella predominated most of the analyzed cheese varieties, while Enterobacter, Citrobacter, Hafnia and Serratia were also found frequently. Further physiological characterization of Proteus isolates re-vealed strong proteolytic activity, and the analysis of volatiles in the smear cheese surface head-space suggested that Enterobacterales produce volatile organic flavor compounds that contribute to the organoleptic properties of surface-ripened cheese. Autochthonous members of Enterobac-terales were found in 12 of the 15 smear samples from surface-ripened cheeses, suggesting that they are part of the typical house microbiota that shape the organoleptic properties of the cheese rather than represent unwanted contaminants. However, further investigation on safety issues of the individual species should be performed in order to manage the health risk for consumers.
Collapse
Affiliation(s)
- Jasmine S. Ritschard
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland; (J.S.R.); (H.V.L.)
| | - Hanne Van Loon
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland; (J.S.R.); (H.V.L.)
| | - Lea Amato
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland; (L.A.); (L.M.)
| | - Leo Meile
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland; (L.A.); (L.M.)
| | - Markus Schuppler
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092 Zurich, Switzerland; (J.S.R.); (H.V.L.)
- Correspondence:
| |
Collapse
|
43
|
Hayat S, Ashraf A, Zubair M, Aslam B, Siddique MH, Khurshid M, Saqalein M, Khan AM, Almatroudi A, Naeem Z, Muzammil S. Biofabrication of ZnO nanoparticles using Acacia arabica leaf extract and their antibiofilm and antioxidant potential against foodborne pathogens. PLoS One 2022; 17:e0259190. [PMID: 34986148 PMCID: PMC8730432 DOI: 10.1371/journal.pone.0259190] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023] Open
Abstract
Emergence of multidrug resistant pathogens is increasing globally at an alarming rate with a need to discover novel and effective methods to cope infections due to these pathogens. Green nanoparticles have gained attention to be used as efficient therapeutic agents because of their safety and reliability. In the present study, we prepared zinc oxide nanoparticles (ZnO NPs) from aqueous leaf extract of Acacia arabica. The nanoparticles produced were characterized through UV-Visible spectroscopy, scanning electron microscopy, and X-ray diffraction. In vitro antibacterial susceptibility testing against foodborne pathogens was done by agar well diffusion, growth kinetics and broth microdilution assays. Effect of ZnO NPs on biofilm formation (both qualitatively and quantitatively) and exopolysaccharide (EPS) production was also determined. Antioxidant potential of green synthesized nanoparticles was detected by DPPH radical scavenging assay. The cytotoxicity studies of nanoparticles were also performed against HeLa cell lines. The results revealed that diameter of zones of inhibition against foodborne pathogens was found to be 16-30 nm, whereas the values of MIC and MBC ranged between 31.25-62.5 μg/ml. Growth kinetics revealed nanoparticles bactericidal potential after 3 hours incubation at 2 × MIC for E. coli while for S. aureus and S. enterica reached after 2 hours of incubation at 2 × MIC, 4 × MIC, and 8 × MIC. 32.5-71.0% inhibition was observed for biofilm formation. Almost 50.6-65.1% (wet weight) and 44.6-57.8% (dry weight) of EPS production was decreased after treatment with sub-inhibitory concentrations of nanoparticles. Radical scavenging potential of nanoparticles increased in a dose dependent manner and value ranged from 19.25 to 73.15%. Whereas cytotoxicity studies revealed non-toxic nature of nanoparticles at the concentrations tested. The present study suggests that green synthesized ZnO NPs can substitute chemical drugs against antibiotic resistant foodborne pathogens.
Collapse
Affiliation(s)
- Sumreen Hayat
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Muhammad Zubair
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Bilal Aslam
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | | | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Muhammad Saqalein
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | | | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Zilursh Naeem
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
44
|
Madi-Moussa D, Belguesmia Y, Charlet A, Drider D, Coucheney F. Lacticaseicin 30 and Colistin as a Promising Antibiotic Formulation against Gram-Negative β-Lactamase-Producing Strains and Colistin-Resistant Strains. Antibiotics (Basel) 2021; 11:20. [PMID: 35052897 PMCID: PMC8772908 DOI: 10.3390/antibiotics11010020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
Antimicrobial resistance is a global health concern across the world and it is foreseen to swell if no actions are taken now. To help curbing this well announced crisis different strategies are announced, and these include the use of antimicrobial peptides (AMP), which are remarkable molecules known for their killing activities towards pathogenic bacteria. Bacteriocins are ribosomally synthesized AMP produced by almost all prokaryotic lineages. Bacteriocins, unlike antibiotics, offer a set of advantages in terms of cytotoxicity towards eukaryotic cells, their mode of action, cross-resistance and impact of microbiota content. Most known bacteriocins are produced by Gram-positive bacteria, and specifically by lactic acid bacteria (LAB). LAB-bacteriocins were steadily reported and characterized for their activity against genetically related Gram-positive bacteria, and seldom against Gram-negative bacteria. The aim of this study is to show that lacticaseicin 30, which is one of the bacteriocins produced by Lacticaseibacillus paracasei CNCM I-5369, is active against Gram-negative clinical strains (Salmonella enterica Enteritidis H10, S. enterica Typhimurium H97, Enterobacter cloacae H51, Escherichia coli H45, E. coli H51, E. coli H66, Klebsiella oxytoca H40, K. pneumoniae H71, K. variicola H77, K. pneumoniae H79, K. pneumoniae H79), whereas antibiotics failed. In addition, lacticaseicin 30 and colistin enabled synergistic interactions towards the aforementioned target Gram-negative clinical strains. Further, the combinations of lacticaseicin 30 and colistin prompted a drastic downregulation of mcr-1 and mcr-9 genes, which are associated with the colistin resistance phenotypes of these clinical strains. This report shows that lacticaseicin 30 is active against Gram-negative clinical strains carrying a rainbow of mcr genes, and the combination of these antimicrobials constitutes a promising therapeutic option that needs to be further exploited.
Collapse
Affiliation(s)
- Désiré Madi-Moussa
- UMR Transfrontalière BioEcoAgro 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59000 Lille, France; (D.M.-M.); (Y.B.); (D.D.)
| | - Yanath Belguesmia
- UMR Transfrontalière BioEcoAgro 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59000 Lille, France; (D.M.-M.); (Y.B.); (D.D.)
| | - Audrey Charlet
- Centre Hospitalier de Lille, Centre de Biologie Pathologie, Laboratoire de Bactériologie, F-59000 Lille, France;
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59000 Lille, France; (D.M.-M.); (Y.B.); (D.D.)
| | - Françoise Coucheney
- UMR Transfrontalière BioEcoAgro 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV—Institut Charles Viollette, F-59000 Lille, France; (D.M.-M.); (Y.B.); (D.D.)
| |
Collapse
|
45
|
Mohd Asri NA, Ahmad S, Mohamud R, Mohd Hanafi N, Mohd Zaidi NF, Irekeola AA, Shueb RH, Yee LC, Mohd Noor N, Mustafa FH, Yean CY, Yusof NY. Global Prevalence of Nosocomial Multidrug-Resistant Klebsiella pneumoniae: A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2021; 10:1508. [PMID: 34943720 PMCID: PMC8698758 DOI: 10.3390/antibiotics10121508] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/27/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022] Open
Abstract
The emergence of nosocomial multidrug-resistant Klebsiella pneumoniae is an escalating public health threat worldwide. The prevalence of nosocomial infections due to K. pneumoniae was recorded up to 10%. In this systematic review and meta-analysis, which were conducted according to the guidelines of Preferred Reporting Items for Systematic Review and Meta-Analysis, 1092 articles were screened from four databases of which 47 studies fulfilled the selected criteria. By performing a random-effect model, the pooled prevalence of nosocomial multidrug-resistant K. pneumoniae was estimated at 32.8% (95% CI, 23.6-43.6), with high heterogeneity (I2 98.29%, p-value < 0.001). The estimated prevalence of this pathogen and a few related studies were discussed, raising awareness of the spread of multidrug-resistant K. pneumoniae in the healthcare setting. The emergence of nosocomial multidrug-resistant K. pneumoniae is expected to increase globally in the future, and the best treatments for treating and preventing this pathogen should be acknowledged by healthcare staff.
Collapse
Affiliation(s)
- Nur Ain Mohd Asri
- Health Campus, Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia; (N.A.M.A.); (N.F.M.Z.); (F.H.M.)
- Department of Plant Sciences, Kuliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Malaysia;
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia; (S.A.); (R.M.)
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia; (S.A.); (R.M.)
| | - Nurmardhiah Mohd Hanafi
- Department of Plant Sciences, Kuliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Malaysia;
| | - Nur Fatihah Mohd Zaidi
- Health Campus, Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia; (N.A.M.A.); (N.F.M.Z.); (F.H.M.)
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia; (A.A.I.); (R.H.S.)
| | - Rafidah Hanim Shueb
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia; (A.A.I.); (R.H.S.)
| | - Leow Chiuan Yee
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Glugor 11800, Malaysia;
| | - Norhayati Mohd Noor
- Department of Family Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia;
| | - Fatin Hamimi Mustafa
- Health Campus, Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia; (N.A.M.A.); (N.F.M.Z.); (F.H.M.)
| | - Chan Yean Yean
- Health Campus, Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia; (N.A.M.A.); (N.F.M.Z.); (F.H.M.)
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia; (A.A.I.); (R.H.S.)
| | - Nik Yusnoraini Yusof
- Health Campus, Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia; (N.A.M.A.); (N.F.M.Z.); (F.H.M.)
| |
Collapse
|
46
|
Onduru OG, Aboud S, Nyirenda TS, Rumisha SF, Mkakosya RS. Antimicrobial susceptibility testing profiles of ESBL-producing Enterobacterales isolated from hospital and community adult patients in Blantyre, Malawi. IJID REGIONS (ONLINE) 2021; 1:47-52. [PMID: 35757822 PMCID: PMC9216276 DOI: 10.1016/j.ijregi.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 11/24/2022]
Abstract
Extended-spectrum β-lactamase (ESBL) strains are an increasingly global health issue ESBL-Enterobacteriaceae isolates affected 64% of inpatients and 36% of outpatients ESBL-E isolates had high antimicrobial resistance; most were multi-drug resistant Surveillance systems are needed to monitor antimicrobial resistance in Malawi
Objective There is a paucity of data on antimicrobial resistance (AMR) in Malawi. Here we present a study of AMR of extended-spectrum β-lactamases-producing Enterobacterales (ESBL-E) isolated from hospital and community settings in Blantyre, Malawi. Design and Methods A cross-sectional study was conducted between March and November 2020, involving 403 adult participants aged ≥18 years. Screening for ESBL-E was performed using CHROMagar ESBL medium. Production of ESBLs was confirmed by a combination disk test method. Antimicrobial susceptibility was tested using the agar disk diffusion method in accordance with the Clinical Laboratory Standards Institute's 2019 guidelines. Results The mean resistance rate of ESBL-E to antimicrobial agents tested was 49.2% (range from 1.4%–92%). The highest resistance rates were observed for trimethoprim-sulfamethoxazole (92%), amoxicillin and ceftriaxone (79%), doxycycline (75%) and gentamicin (72%). Carbapenems (meropenem and imipenem) were highly active against isolates. The overall rate of multi-drug resistant (MDR) ESBL-E was 47%. The highest MDR was found in Yersinia enterocolitica (51%) and the least in Serratia spp. (40%). Conclusions We found a high resistance rate of ESBL-E isolates to antimicrobial agents; the majority were MDR. Surveillance systems are recommended to monitor AMR in Malawi.
Collapse
Affiliation(s)
- Onduru G Onduru
- Department of Pathology, College of Medicine, Kamuzu University of Health Sciences, Private Bag 360, Blantyre, Malawi.,The Africa Center of Excellence in Public Health and Herbal Medicine (ACEPHEM), Private Bag 360, Blantyre, Malawi
| | - Said Aboud
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
| | - Tonney S Nyirenda
- Department of Pathology, College of Medicine, Kamuzu University of Health Sciences, Private Bag 360, Blantyre, Malawi
| | - Susan F Rumisha
- Directorate of Information Technology and Communication, National Institute for Medical Research, P.O. Box 9653, Dar es Salaam, Tanzania.,Malaria Atlas Project, Geospatial Health and Development, Telethon Kids Institute, West Perth, Western Australia 6009
| | - Rajhab S Mkakosya
- Department of Pathology, College of Medicine, Kamuzu University of Health Sciences, Private Bag 360, Blantyre, Malawi
| |
Collapse
|
47
|
Mola I, Onibokun A, Oranusi S. Prevalence of multi-drug resistant bacteria associated with foods and drinks in Nigeria (2015-2020): A systematic review. Ital J Food Saf 2021; 10:9417. [PMID: 35018289 PMCID: PMC8672312 DOI: 10.4081/ijfs.2021.9417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 07/06/2021] [Indexed: 11/29/2022] Open
Abstract
Foods are essential vehicles in human exposure to antibiotic resistant bacteria which serve as reservoirs for resistance genes and a rising food safety concern. Antimicrobial resistance, including multidrug resistance (MDR), is an increasing problem globally and poses a serious concern to human health. This study was designed to synthesize data regarding the prevalence of MDR bacteria associated with foods and drinks sold within Nigeria in order to contribute to the existing findings in this area. A comprehensive literature search on the prevalence of multi-drug resistant bacteria associated with foods and drinks in Nigeria from 2015 to 2020 was conducted using three databases; PubMed, Science Direct and Scopus. After screening and selection, 26 out of 82 articles were used for the qualitative data synthesis. Of the total of one thousand three hundred and twenty-six MDR bacteria reportedly isolated in all twenty-six articles, the highest prevalence (660) was observed in drinks, including water, while the lowest (20) was observed in the article which combined results for both protein and vegetable-based foods. Escherichia sp. had the most frequency of occurrence, appearing as MDR bacteria in ten out of the twenty-six articles. Salmonella sp. appeared as MDR in seven out of the twenty-six articles included in this study, in all seven articles where it was reported, it had the highest percentage (85.4%) prevalence as MDR bacteria. Public health personnel need to ensure critical control during the production and handling of foods and drinks, as well as create more awareness on proper hygienic practices to combat the spread of MDR bacteria becoming a growing food safety issue (Zurfluh et al., 2019; Mesbah et al., 2017; Campos et al., 2019). Foods can be contaminated by different means, including exposure to irrigation water, manure, feces or soil with pathogenic bacteria. Foods can also become contaminated as they are harvested, handled after harvest or during processing if food safety standards are not correctly applied (Meshbah et al., 2017). Food-borne diseases caused by resistant organisms are one of the most important public health problems as they contribute to the risk of development of antibiotic resistance in the food production chain (Hehempour-Baltork et al., 2019). Apart from pathogenic bacteria causing foodborne diseases, foods that are raw or not processed following standard procedures can introduce several antibiotic-resistant bacteria (ARB) to consumers (Gekemidis et al., 2018). Antibiotic resistance, though harbored in non-pathogenic bacteria, can potentially be spread through horizontal gene transfer to other species including opportunistic pathogens that are present in the environment or after consumption of ARB-contaminated foods. When ARB-contaminated foods are consumed, the spread of antibiotic resistant genes may affect the gut microbiome thereby contributing to the pool of antibiotic-resistance genes (ARG) in the human gut (Gekemidis et al, 2018). MDR bacteria have been defined as bacteria that are resistant to at least one antimicrobial agent present in three or more antimicrobial classes (Sweeny et al., 2018). There has been an increase in drug resistance in pathogens isolated from food for human consumption with species of Escherichia coli and Salmonella enterica being considered among the most important pathogens due to their ability to effect zoonotic transfer of resistant genes (Canton et al., 2018; Maneilla-Becerra et al., 2019). However, other pathogens, such as Vibrio spp., some species of Aeromonas, spores of Clostridium botulinum type F, and Campylobacter, have been linked to food-borne diseases in humans who have consumed seafood or other animal foods (Maneilla-Becerra et al., 2019). Some other resistant bacteria associated with foods include Staphylococcus aureus, Listeria spp., and Shigella spp. (Maneilla-Becerra et al., 2019) This study was therefore designed to synthesize data (2015-2020) regarding the prevalence of MDR bacteria associated with foods and drinks sold within Nigeria in order to contribute to the existing findings in this area.
Collapse
Affiliation(s)
- Iyanuoluwa Mola
- Department of Biological Sciences, Covenant University, Ota. Ogun State, Nigeria
| | - Adeola Onibokun
- Department of Biological Sciences, Covenant University, Ota. Ogun State, Nigeria
| | - Solomon Oranusi
- Department of Biological Sciences, Covenant University, Ota. Ogun State, Nigeria
| |
Collapse
|
48
|
Factors Associated with Acute Community-Acquired Pyelonephritis Caused by Extended-Spectrum β-Lactamase-Producing Escherichia coli. J Clin Med 2021; 10:jcm10215192. [PMID: 34768712 PMCID: PMC8584794 DOI: 10.3390/jcm10215192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
This study aimed to identify the factors associated with the presence of extended-spectrum ß-lactamase-(ESBL) in patients with acute community-acquired pyelonephritis (APN) caused by Escherechia coli (E. coli), with a view of optimising empirical antibiotic therapy in this context. We performed a retrospective analysis of patients with community-acquired APN and confirmed E. coli infection, collecting data related to demographic characteristics, comorbidities, and treatment. The associations of these factors with the presence of ESBL were quantified by fitting multivariate logistic models. Goodness-of-fit and predictive performance were measured using the ROC curve. We included 367 patients of which 51 presented with ESBL, of whom 90.1% had uncomplicated APN, 56.1% were women aged ≤55 years, 33.5% had at least one mild comorbidity, and 12% had recently taken antibiotics. The prevalence of ESBL-producing E. coli was 13%. In the multivariate analysis, the factors independently associated with ESBL were male sex (OR 2.296; 95% CI 1.043-5.055), smoking (OR 4.846, 95% CI 2.376-9.882), hypertension (OR 3.342, 95% CI 1.423-7.852), urinary incontinence (OR 2.291, 95% CI 0.689-7.618) and recurrent urinary tract infections (OR 4.673, 95% CI 2.271-9.614). The area under the ROC curve was 0.802 (IC 95% 0.7307-0.8736), meaning our model can correctly classify an individual with ESBL-producing E. coli infection in 80.2% of cases.
Collapse
|
49
|
Pintor-Cora A, Álvaro-Llorente L, Otero A, Rodríguez-Calleja JM, Santos JA. Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae in Fresh Produce. Foods 2021; 10:foods10112609. [PMID: 34828891 PMCID: PMC8619215 DOI: 10.3390/foods10112609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Fresh vegetables are an essential part of a healthy diet, but microbial contamination of fruits and vegetables is a serious concern to human health, not only for the presence of foodborne pathogens but because they can be a vehicle for the transmission of antibiotic-resistant bacteria. This work aimed to investigate the importance of fresh produce in the transmission of extended-spectrum β-lactamases (ESBL)-producing Enterobacteriaceae. A total of 174 samples of vegetables (117) and farm environment (57) were analysed to determine enterobacterial contamination and presence of ESBL-producing Enterobacteriaceae. Enterobacterial counts above the detection limit were found in 82.9% vegetable samples and 36.8% environmental samples. The average count was 4.2 log cfu/g or mL, with a maximum value of 6.2 log cfu/g in a parsley sample. Leafy vegetables showed statistically significant higher mean counts than other vegetables. A total of 15 ESBL-producing isolates were obtained from vegetables (14) and water (1) samples and were identified as Serratia fonticola (11) and Rahnella aquatilis (4). Five isolates of S. fonticola were considered multi-drug resistant. Even though their implication in human infections is rare, they can become an environmental reservoir of antibiotic-resistance genes that can be further disseminated along the food chain.
Collapse
|
50
|
Predisposition of Blood group Non-secretors to Urinary tract infection with Escherichia coli Anti-microbial Resistance and Acute Kidney Injury. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Urinary tract infection (UTI) causes significant renal damage and disease severity is compounded by antimicrobial resistance (AMR) and other comorbidities in the patient. Blood group antigens secreted in body fluids (secretor status) are known to play a role in bacterial adhesion and we studied its influence on AMR in UTI. A total of 2758 patients with UTI were studied with urine culture, qualitative and semiquantitative urine microscopy, serum creatinine and secretor status in saliva samples by adsorption-inhibition method. Of these, AMR from 300 patients with E. coli infection were assessed as per CLSI 2019 guidelines and extended-spectrum beta-lactamase (ESBL) genes (bla TEM, bla CTX-M, bla SHV) and NDM1 genes were studied using TaqMan probes in Real-time polymerase chain reaction. Patients with UTI were followed up for two weeks. Female patients had higher predilection (57%) for E. coli infection while patients with diabetes or non-secretors had none. In our study, ESBL producers were seen in 62% of the E. coli isolates and fosfomycin had 100% susceptibility. Non-secretors were significantly associated with acute kidney injury (AKI), AMR and ESBL genes. Multidrug-resistance (MDR) was noted in 127/160 (79.4%) ESBL and 17/18 (94%) NDM1 gene encoding strains. Quantitative urine microscopy scoring predicted AKI both at presentation and at end of follow up. ESBL producers were common in our study population and non-secretors had a significant association with AMR genes. Urine microscopy scoring system may be a useful tool to predict AKI in patients with UTI.
Collapse
|