1
|
Faria NA, Touret T, Simões AS, Palos C, Bispo S, Cristino JM, Ramirez M, Carriço J, Pinto M, Toscano C, Gonçalves E, Gonçalves ML, Costa A, Araújo M, Duarte A, de Lencastre H, Serrano M, Sá-Leão R, Miragaia M. Genomic insights into the expansion of carbapenem-resistant Klebsiella pneumoniae within Portuguese hospitals. J Hosp Infect 2024; 148:62-76. [PMID: 38554808 DOI: 10.1016/j.jhin.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 04/02/2024]
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CR-KP) are a public health concern, causing infections with a high mortality rate, limited therapeutic options and challenging infection control strategies. In Portugal, the CR-KP rate has increased sharply, but the factors associated with this increase are poorly explored. In order to address this question, phylogenetic and resistome analysis were used to compare the draft genomes of 200 CR-KP isolates collected in 2017-2019 from five hospitals in the Lisbon region, Portugal. Most CR-KP belonged to sequence type (ST) 13 (29%), ST17 (15%), ST348 (13%), ST231 (12%) and ST147 (7%). Carbapenem resistance was conferred mostly by the presence of KPC-3 (74%) or OXA-181 (18%), which were associated with IncF/IncN and IncX plasmids, respectively. Almost all isolates were multi-drug resistant, harbouring resistance determinants to aminoglycosides, beta-lactams, trimethoprim, fosfomycin, quinolones and sulphonamides. In addition, 11% of isolates were resistant to colistin. Colonizing and infecting isolates were highly related, and most colonized patients (89%) reported a previous hospitalization. Moreover, among the 171 events of cross-dissemination identified by core genome multi-locus sequence typing data analysis (fewer than five allelic differences), 41 occurred between different hospitals and 130 occurred within the same hospital. The results suggest that CR-KP dissemination in the Lisbon region results from acquisition of carbapenemases in mobile genetic elements, influx of CR-KP into the hospitals by colonized ambulatory patients, and transmission of CR-KP within and between hospitals. Prudent use of carbapenems, patient screening at hospital entry, and improvement of infection control are needed to decrease the burden of CR-KP infection in Portugal.
Collapse
Affiliation(s)
- N A Faria
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Lisbon, Portugal; Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Lisbon, Portugal
| | - T Touret
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Lisbon, Portugal
| | - A S Simões
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Lisbon, Portugal
| | - C Palos
- Hospital Beatriz Ângelo, Lisbon, Portugal
| | - S Bispo
- Hospital Beatriz Ângelo, Lisbon, Portugal
| | - J M Cristino
- Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - M Ramirez
- Centro Hospitalar Lisboa Norte, Lisbon, Portugal; Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - J Carriço
- Centro Hospitalar Lisboa Norte, Lisbon, Portugal; Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - M Pinto
- Centro Hospitalar Lisboa Central, Lisbon, Portugal
| | - C Toscano
- Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - E Gonçalves
- Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | | | - A Costa
- Hospital dos SAMS, Lisbon, Portugal
| | - M Araújo
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Lisbon, Portugal
| | - A Duarte
- Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal; Centro de investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Almada, Portugal
| | - H de Lencastre
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Lisbon, Portugal; Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, USA
| | - M Serrano
- Laboratory of Microbial Development, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Lisbon, Portugal
| | - R Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Lisbon, Portugal
| | - M Miragaia
- Laboratory of Bacterial Evolution and Molecular Epidemiology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Lisbon, Portugal.
| |
Collapse
|
2
|
Nicoloff H, Hjort K, Andersson DI, Wang H. Three concurrent mechanisms generate gene copy number variation and transient antibiotic heteroresistance. Nat Commun 2024; 15:3981. [PMID: 38730266 PMCID: PMC11087502 DOI: 10.1038/s41467-024-48233-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Heteroresistance is a medically relevant phenotype where small antibiotic-resistant subpopulations coexist within predominantly susceptible bacterial populations. Heteroresistance reduces treatment efficacy across diverse bacterial species and antibiotic classes, yet its genetic and physiological mechanisms remain poorly understood. Here, we investigated a multi-resistant Klebsiella pneumoniae isolate and identified three primary drivers of gene dosage-dependent heteroresistance for several antibiotic classes: tandem amplification, increased plasmid copy number, and transposition of resistance genes onto cryptic plasmids. All three mechanisms imposed fitness costs and were genetically unstable, leading to fast reversion to susceptibility in the absence of antibiotics. We used a mouse gut colonization model to show that heteroresistance due to elevated resistance-gene dosage can result in antibiotic treatment failures. Importantly, we observed that the three mechanisms are prevalent among Escherichia coli bloodstream isolates. Our findings underscore the necessity for treatment strategies that address the complex interplay between plasmids, resistance cassettes, and transposons in bacterial populations.
Collapse
Affiliation(s)
- Hervé Nicoloff
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Karin Hjort
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Helen Wang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Singh R, Ryu J, Park SS, Kim S, Kim K. Monitoring viruses and beta-lactam resistance genes through wastewater surveillance during a COVID-19 surge in Suwon, South Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171223. [PMID: 38417514 DOI: 10.1016/j.scitotenv.2024.171223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
The present study reports data on a long-term campaign for monitoring SARS-CoV-2, norovirus, hepatitis A virus, and beta-lactam resistance genes in wastewater samples from a wastewater treatment plant during COVID-19 surge in Suwon, South Korea. Real-time digital PCR (RT-dPCR) assays indicated 100 % occurrence of all but hepatitis A virus and blaNDM gene in influent wastewater samples. CDC-N1 assay detected SARS-CoV-2 in all influent samples with an average log-transformed concentration of 5.1 ± 0.39 and the highest level at 6.02 gene copies/L. All samples were also positive for norovirus throughout the study with a mean concentration 5.67 ± 0.65 log10 gene copies/L. On the contrary, all treated wastewater (effluent) tested negative for both viruses' genetic materials. Furthermore, plasmid-mediated AmpC β-lactamases (PABLs) genes blaDHA, blaACC, and blaFOX, extended-spectrum β-lactamases (ESBLs) genes blaTEM and blaCTX, and Klebsiella pneumoniae carbapenemase (blaKPC) gene were measured at average concentrations of 7.05 ± 0.26, 5.60 ± 0.35, 7.82 ± 0.43, 8.38 ± 0.20, 7.64 ± 0.29, and 7.62 ± 0.41 log10 gene copies/L wastewater, respectively. Beta-lactam resistance genes showed strong correlations (r), the highest being 0.86 for blaKPC - blaFOX, followed by 0.82 for blaTEM - blaCTX and 0.79 for blaTEM - blaDHA. SARS-CoV-2 RNA occurrence in the wastewater was strongly associated (r = 0.796) with COVID-19 cases in the catchment during the initial study period of six months. A positive association of the SARS-CoV-2 RNA with the prevalence of COVID-19 cases showed a promising role of community-scale monitoring of pathogens to provide considerable early signals of infection dynamics. High concentrations of beta-lactam resistance genes in wastewater indicated a high concern for one of the biggest global health threats in South Korea and the need to find control measures. Moreover, antibiotic-resistance genes in treated wastewater flowing through water bodies and agricultural environments indicate further dissemination of antibiotic resistance traits and increasing microbial antibiotic resistance.
Collapse
Affiliation(s)
- Rajendra Singh
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, South Korea
| | - Jaewon Ryu
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, South Korea
| | - Sung Soo Park
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, South Korea
| | - Sungpyo Kim
- Department of Environmental Systems Engineering, Korea University, 2511 Sejong-ro, Sejong City 30019, Republic of Korea
| | - Keugtae Kim
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, South Korea.
| |
Collapse
|
4
|
Wu LT, Nguyen HTV, Ke SC, Lin YP, Pang YC, Guo MK, Chen CM. High Prevalence of Carbapenem-Resistant Enterobacterales Producing OXA-48 among Carbapenem-Resistant Isolates in a Regional Hospital in Central Taiwan. Jpn J Infect Dis 2024; 77:83-90. [PMID: 38030272 DOI: 10.7883/yoken.jjid.2023.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
In response to the increasing number of carbapenem-resistant Enterobacterales (CRE), we investigated carbapenemase-producing Klebsiella pneumoniae and non-K. pneumoniae epidemiology and genetics. We collected 76 clinical Enterobacterales and 4 stool surveillance Escherichia coli isolates resistant to ertapenem or imipenem. Using polymerase chain reaction (PCR) and DNA sequencing, we assessed carbapenemases, extended-spectrum β-lactamases, and AmpC β-lactamases. Molecular typing via pulsed-field gel electrophoresis (PFGE) and conjugation experiments were conducted to examine resistance gene transfer. Among the 80 isolates, 96.2% harbored at least one carbapenemase gene, with blaOXA-48 in 87.5%. KPC-2 and IMP-8 carbapenemases were found in 15.0 and 22.5% of the isolates, respectively, with 27.5% having 2 or more carbapenemase genes. The PFGE analysis revealed the presence of diverse genotypes. PCR-based plasmid replicon typing identified IncA/C as the most prevalent type among K. pneumoniae isolates (26/29), and IncF and IncFIB among E. coli isolates (22/28). Conjugal transfer was successful for plasmids encoding OXA-48, CTX-M-3, CTX-M-14, CMY-2, and other β-lactamases, except the KPC-2 gene. In conclusion, our study highlights high carbapenemase prevalence in CRE, primarily OXA-48. Multiple carbapenemases within strains were common, and PFGE showed diverse patterns in these carbapenem-resistant isolates.
Collapse
Affiliation(s)
- Lii-Tzu Wu
- The Institute of Medical Science and Department of Microbiology, China Medical University Hospital, Taiwan
| | - Hong-Thuy Vy Nguyen
- The Institute of Biomedical Sciences College of Medicine, China Medical University, Taiwan
| | - Se-Chin Ke
- Infection Control Office, Tungs' Taichung MetroHarbor Hospital, Taiwan
- Department of Medical Technology, Jen-The Junior College of Medicine, Nursing and Management, Taiwan
| | - Yi-Pei Lin
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taiwan
| | - Yi-Chun Pang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, China Medical University, Taiwan
| | - Ming-Kai Guo
- The Institute of Medical Science and Department of Microbiology, China Medical University Hospital, Taiwan
| | - Chih-Ming Chen
- Division of Infectious Diseases, Department of Internal Medicine, Tungs' Taichung MetroHarbor Hospital, Taiwan
| |
Collapse
|
5
|
Puljko A, Barišić I, Dekić Rozman S, Križanović S, Babić I, Jelić M, Maravić A, Udiković-Kolić N. Molecular epidemiology and mechanisms of carbapenem and colistin resistance in Klebsiella and other Enterobacterales from treated wastewater in Croatia. ENVIRONMENT INTERNATIONAL 2024; 185:108554. [PMID: 38479059 DOI: 10.1016/j.envint.2024.108554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 03/02/2024] [Indexed: 03/26/2024]
Abstract
Among the most problematic bacteria with clinical relevance are the carbapenem-resistant Enterobacterales (CRE), as there are very limited options for their treatment. Treated wastewater can be a route for the release of these bacteria into the environment and the population. The aim of this study was to isolate CRE from treated wastewater from the Zagreb wastewater treatment plant and to determine their phenotypic and genomic characteristics. A total of 200 suspected CRE were isolated, 148 of which were confirmed as Enterobacterales by MALDI-TOF MS. The predominant species was Klebsiella spp. (n = 47), followed by Citrobacter spp. (n = 40) and Enterobacter cloacae complex (cplx.) (n = 35). All 148 isolates were carbapenemase producers with a multidrug-resistant phenotype. Using multi-locus sequence typing and whole-genome sequencing (WGS), 18 different sequence types were identified among these isolates, 14 of which were associated with human-associated clones. The virulence gene analysis of the sequenced Klebsiella isolates (n = 7) revealed their potential pathogenicity. PCR and WGS showed that the most frequent carbapenemase genes in K. pneumoniae were blaOXA-48 and blaNDM-1, which frequently occurred together, while blaKPC-2 together with blaNDM-1 was mainly detected in K. oxytoca, E. cloacae cplx. and Citrobacter spp. Colistin resistance was observed in 40% of Klebsiella and 57% of Enterobacter isolates. Underlying mechanisms identified by WGS include known and potentially novel intrinsic mechanisms (point mutations in the pmrA/B, phoP/Q, mgrB and crrB genes) and acquired mechanisms (mcr-4.3 gene). The mcr-4.3 gene was identified for the first time in K. pneumoniae and is probably located on the conjugative IncHI1B plasmid. In addition, WGS analysis of 13 isolates revealed various virulence genes and resistance genes to other clinically relevant antibiotics as well as different plasmids possibly associated with carbapenemase genes. Our study demonstrates the important role that treated municipal wastewater plays in harboring and spreading enterobacterial pathogens that are resistant to last-resort antibiotics.
Collapse
Affiliation(s)
- Ana Puljko
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Ivan Barišić
- Molecular Diagnostics, Austrian Institute of Technology, Giefinggasse 4, 1210 Vienna, Austria
| | - Svjetlana Dekić Rozman
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Stela Križanović
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Ivana Babić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia
| | - Marko Jelić
- Department of Clinical Microbiology, University Hospital for Infectious Diseases, Mirogojska 8, 10 000 Zagreb, Croatia
| | - Ana Maravić
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21 000 Split, Croatia
| | - Nikolina Udiković-Kolić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, P.O. Box 180, 10 002 Zagreb, Croatia.
| |
Collapse
|
6
|
Kyung SM, Lee JH, Lee ES, Hwang CY, Yoo HS. Whole genome structure and resistance genes in carbapenemase-producing multidrug resistant ST378 Klebsiella pneumoniae. BMC Microbiol 2023; 23:323. [PMID: 37924028 PMCID: PMC10623767 DOI: 10.1186/s12866-023-03074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Carbapenemase-producing Klebsiella pneumoniae (CPKP) is one of the most dangerous multidrug-resistant (MDR) pathogens in human health due to its widespread circulation in the nosocomial environment. CPKP carried by companion dogs, which are close to human beings, should be considered a common threat to public health. However, CPKP dissemination through companion animals is still under consideration of major diagnosis and surveillance systems. METHODS Two CPKP isolates which were genotyped to harbor bla NDM-5-encoding IncX3 plasmids, were subjected to the whole-genome study. Whole bacterial DNA was isolated, sequenced, and assembled with Oxford Nanopore long reads and corrected with short reads from the Illumina NovaSeq 6000 platform. The whole-genome structure and positions of antimicrobial resistance (AMR) genes were identified and visualized using CGView. Worldwide datasets were downloaded from the NCBI GenBank database for whole-genome comparative analysis. The whole-genome phylogenetic analysis was constructed using the identified whole-chromosome SNP sites from K. pneumoniae HS11286. RESULTS As a result of the whole-genome identification, 4 heterogenous plasmids and a single chromosome were identified, each carrying various AMR genes. Multiple novel structures were identified from the AMR genes, coupled with mobile gene elements (MGE). The comparative whole-genome epidemiology revealed that ST378 K. pneumoniae is a novel type of CPKP, carrying a higher prevalence of AMR genes. CONCLUSIONS The characterized whole-genome analysis of this study shows the emergence of a novel type of CPKP strain carrying various AMR genes with variated genomic structures. The presented data in this study show the necessity to develop additional surveillance programs and control measures for a novel type of CPKP strain.
Collapse
Affiliation(s)
- Su Min Kyung
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jun Ho Lee
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eun-Seo Lee
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Cheol-Yong Hwang
- Department of Veterinary Dermatology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Han Sang Yoo
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Fonseca ÉL, Morgado SM, Freitas FS, Bighi NS, Cipriano R, Vicente ACP. Unveiling the genome of a high-risk pandrug-resistant Klebsiella pneumoniae emerging in the Brazilian Amazon Region, 2022. Mem Inst Oswaldo Cruz 2023; 118:e230081. [PMID: 37909500 PMCID: PMC10626633 DOI: 10.1590/0074-02760230081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Pandrug-resistant (PDR) Klebsiella pneumoniae has been reported sporadically in many countries and remains rare in Brazil. OBJECTIVES This study unravelled the genetic determinants involved with the PDR background of a clinical ST11 K. pneumoniae recovered in the Brazilian Amazon Region, where K. pneumoniae genomic and epidemiological information is scarce. METHODS Kp196 was submitted to the antimicrobial susceptibility test by the disk-diffusion method and minimum inhibitory concentration (MIC) determination. The whole genome sequencing was obtained and the sequence type was determined by core genome multilocus sequence typing (cgMLST). Its intrinsic and acquired resistome was assessed by Comprehensive Antibiotic Resistance Database (CARD) and comparison with wild-type genes. FINDINGS The analyses revealed that Kp196 belonged to the pandemic ST11 and presented the PDR phenotype. Its acquired resistome was composed of a huge set of clinically relevant resistance determinants, including bla CTX-M-15 and bla NDM-1, all found in the vicinity of mobile platforms. Considering its intrinsic resistome, the multidrug resistance, especially to colistin, tigecycline and fluoroquinolones, was multifactorial and attributed to modifications (indels, missense mutations, and gene disruption) in several housekeeping genes (arnT/phoQ/mgrB/ramR/acrB/gyrA/parC/ompK35-36-37). The Kp196 intrinsic resistome was also observed in a ST11 environmental strain, although harbouring distinct acquired resistomes. CONCLUSIONS An accumulation of different resistance mechanisms regarding the intrinsic resistome accounts for a more stable resistome, strongly contributing to the Kp196 PDR phenotype.
Collapse
Affiliation(s)
- Érica Lourenço Fonseca
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, Rio de Janeiro, RJ, Brasil
| | - Sérgio M Morgado
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, Rio de Janeiro, RJ, Brasil
| | - Fernanda S Freitas
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, Rio de Janeiro, RJ, Brasil
| | - Nathalia S Bighi
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, Rio de Janeiro, RJ, Brasil
| | | | - Ana Carolina Paulo Vicente
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
8
|
Gracia-Ahufinger I, López-González L, Vasallo FJ, Galar A, Siller M, Pitart C, Bloise I, Torrecillas M, Gijón-Cordero D, Viñado B, Castillo-García J, Campo R, Mulet X, Madueño-Alonso A, Chamizo-López FJ, Arrastia-Erviti M, Galán-Sánchez F, Fernández-Quejo M, Rodríguez-Díaz JC, Gutiérrez-Zufiaurre MN, Rodríguez-Maresca MA, Ortega-Lafont MDP, Yagüe-Guirao G, Chaves-Blanco L, Colomina-Rodríguez J, Vidal-Acuña MR, Portillo ME, Franco-Álvarez de Luna F, Centelles-Serrano MJ, Azcona-Gutiérrez JM, Delgado-Iribarren García Campero A, Rey-Cao S, Muñoz P, Calvo-Montes J, Zboromyrska Y, Grandioso D, Càmara J, Cantón R, Larrosa-Escartín N, Díaz-Regañón J, Martínez-Martínez L. The CARBA-MAP study: national mapping of carbapenemases in Spain (2014-2018). Front Microbiol 2023; 14:1247804. [PMID: 37744921 PMCID: PMC10516297 DOI: 10.3389/fmicb.2023.1247804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Infections caused by carbapenem-resistant Enterobacterales (CRE) and carbapenem-resistant Pseudomonas aeruginosa, including isolates producing acquired carbapenemases, constitute a prevalent health problem worldwide. The primary objective of this study was to determine the distribution of the different carbapenemases among carbapenemase-producing Enterobacterales (CPE, specifically Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae complex, and Klebsiella aerogenes) and carbapenemase-producing P. aeruginosa (CPPA) in Spain from January 2014 to December 2018. Methods A national, retrospective, cross-sectional multicenter study was performed. The study included the first isolate per patient and year obtained from clinical samples and obtained for diagnosis of infection in hospitalized patients. A structured questionnaire was completed by the participating centers using the REDCap platform, and results were analyzed using IBM SPSS Statistics 29.0.0. Results A total of 2,704 carbapenemase-producing microorganisms were included, for which the type of carbapenemase was determined in 2692 cases: 2280 CPE (84.7%) and 412 CPPA (15.3%), most often using molecular methods and immunochromatographic assays. Globally, the most frequent types of carbapenemase in Enterobacterales and P. aeruginosa were OXA-48-like, alone or in combination with other enzymes (1,523 cases, 66.8%) and VIM (365 cases, 88.6%), respectively. Among Enterobacterales, carbapenemase-producing K. pneumoniae was reported in 1821 cases (79.9%), followed by E. cloacae complex in 334 cases (14.6%). In Enterobacterales, KPC is mainly present in the South and South-East regions of Spain and OXA-48-like in the rest of the country. Regarding P. aeruginosa, VIM is widely distributed all over the country. Globally, an increasing percentage of OXA-48-like enzymes was observed from 2014 to 2017. KPC enzymes were more frequent in 2017-2018 compared to 2014-2016. Discussion Data from this study help to understand the situation and evolution of the main species of CPE and CPPA in Spain, with practical implications for control and optimal treatment of infections caused by these multi-drug resistant organisms.
Collapse
Affiliation(s)
- Irene Gracia-Ahufinger
- Unit of Microbiology, Reina Sofia University Hospital, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- Center for Biomedical Research in Infectious Diseases (CIBERINFEC), Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Laura López-González
- Clinical Microbiology Service, IML, San Carlos Clinical University Hospital, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Francisco José Vasallo
- Microbiology Service, Vigo University Hospital Complex (CHUVI), Vigo, Spain
- Health Research Institute Galicia Sur (IISGS), Vigo, Spain
| | - Alicia Galar
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Hospital Gregorio Marañón, Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERes), Instituto de Salud Carlos III, Madrid, Spain
| | - María Siller
- Microbiology Service, Marqués de Valdecilla University Hospital, Santander, Spain
- Marqués de Valdecilla Health Research Institute (IDIVAL), Santander, Spain
| | - Cristina Pitart
- Microbiology Service, Hospital Clinic, Barcelona, Spain
- Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain
- Institute of Global Health of Barcelona, Barcelona, Spain
| | - Iván Bloise
- Clinical Microbiology Department, La Paz University Hospital, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPaz), Madrid, Spain
| | - Miriam Torrecillas
- Clinical Microbiology Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
| | - Desirée Gijón-Cordero
- Microbiology Service, Ramón y Cajal University Hospital, Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Belén Viñado
- Microbiology Service, Vall d'Hebron University Hospital, Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Javier Castillo-García
- Microbiology Service, Lozano Blesa Clinical University Hospital, Zaragoza, Spain
- Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- School of Medicine, University of Zaragoza, Zaragoza, Spain
| | - Rainer Campo
- Microbiology Service, Asturias Central University Hospital, Oviedo, Spain
| | - Xavier Mulet
- Center for Biomedical Research in Infectious Diseases (CIBERINFEC), Carlos III Health Institute (ISCIII), Madrid, Spain
- Microbiology Service, Son Espases University Hospital, Palma de Mallorca, Spain
- Institute for Health Research Illes Balears (IdISBa), Palma, Spain
| | - Ana Madueño-Alonso
- Microbiology Service, University Hospital of the Canary Islands, Tenerife, Spain
| | | | | | | | | | - Juan Carlos Rodríguez-Díaz
- Microbiology Service, General University Hospital Dr. Balmis, Alicante, Spain
- Health and Biomedical Research Institute of Alicante (ISABIAL), Alicante, Spain
| | | | | | | | - Genoveva Yagüe-Guirao
- Virgen de la Arrixaca University Hospital, Murcia, Spain
- Department of Genetics and Microbiology, University of Murcia, Murcia, Spain
- Murcian Institute for Biomedical Research (IMIB), Murcia, Spain
| | - Lucía Chaves-Blanco
- Microbiology Service, San Cecilio Clinical University Hospital, Granada, Spain
| | | | | | - María Eugenia Portillo
- Clinical Microbiology Service, University Hospital of Navarra, Pamplona, Spain
- Health Research Institute of Navarra (IdiSNA), Pamplona, Spain
| | | | - María José Centelles-Serrano
- Microbiology Area, Clinical Laboratory, Hospital of Tortosa Virgen de la Cinta, Tortosa, Spain
- Institute for Health Research Pere Virgili, Tortosa, Spain
| | | | | | - Sonia Rey-Cao
- Microbiology Service, Vigo University Hospital Complex (CHUVI), Vigo, Spain
- Health Research Institute Galicia Sur (IISGS), Vigo, Spain
| | - Patricia Muñoz
- Center for Biomedical Research in Infectious Diseases (CIBERINFEC), Carlos III Health Institute (ISCIII), Madrid, Spain
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Hospital Gregorio Marañón, Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERes), Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Calvo-Montes
- Center for Biomedical Research in Infectious Diseases (CIBERINFEC), Carlos III Health Institute (ISCIII), Madrid, Spain
- Microbiology Service, Marqués de Valdecilla University Hospital, Santander, Spain
- Marqués de Valdecilla Health Research Institute (IDIVAL), Santander, Spain
| | - Yuliya Zboromyrska
- Microbiology Service, Hospital Clinic, Barcelona, Spain
- Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain
| | - David Grandioso
- Clinical Microbiology Department, La Paz University Hospital, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPaz), Madrid, Spain
| | - Jordi Càmara
- CIBER de Enfermedades Respiratorias (CIBERes), Instituto de Salud Carlos III, Madrid, Spain
- Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain
- Clinical Microbiology Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Spain
- Institut Investigacio Biomedica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Rafael Cantón
- Center for Biomedical Research in Infectious Diseases (CIBERINFEC), Carlos III Health Institute (ISCIII), Madrid, Spain
- Microbiology Service, Ramón y Cajal University Hospital, Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Nieves Larrosa-Escartín
- Center for Biomedical Research in Infectious Diseases (CIBERINFEC), Carlos III Health Institute (ISCIII), Madrid, Spain
- Microbiology Service, Vall d'Hebron University Hospital, Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | | | - Luis Martínez-Martínez
- Unit of Microbiology, Reina Sofia University Hospital, Cordoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- Center for Biomedical Research in Infectious Diseases (CIBERINFEC), Carlos III Health Institute (ISCIII), Madrid, Spain
- Department of Agricultural Chemistry, Soil Science and Microbiology, University of Cordoba, Cordoba, Spain
| |
Collapse
|
9
|
Lin MH, Shen YC, Cheng HY, Teng CK, Chen WC, Lin YC, Hung CC. Comparative efficacy and safety of non-polymyxin antibiotics against nosocomial pneumonia, complicated intra-abdominal infection, or complicated urinary tract infection: A network meta-analysis of randomised clinical trials. J Glob Antimicrob Resist 2023; 34:46-58. [PMID: 37328062 DOI: 10.1016/j.jgar.2023.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/12/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023] Open
Abstract
OBJECTIVES The increasing epidemic of infections caused by drug-resistant Gram-negative bacteria has led to the development of several antibiotic therapies. Owing to the scarcity of head-to-head comparisons of current and emerging antibiotics, the present network meta-analysis aimed to compare the efficacy and safety of antibiotics in patients with nosocomial pneumonia, complicated intra-abdominal infection, or complicated urinary tract infection. METHODS Two independent researchers systematically searched databases up to August 2022 and included 26 randomised controlled trials that fulfilled the inclusion criteria. The protocol was registered in the Prospective Register of Systematic Reviews, PROSPERO (CRD42021237798). The frequentist random effects model (R version 3.5.1, netmeta package) was utilized. The DerSimonian-Laird random effects model was used to estimate heterogeneity. The calculated P-score was applied to rank the interventions. Additionally, inconsistencies, publication bias, and subgroup effects were assessed in the present study to avoid bias. RESULTS There was no significant difference among included antibiotics in terms of clinical response and mortality, probably because most antibiotic trials were designed to be non-inferior. In terms of P-score ranking, carbapenems may be the recommended choice considering both adverse events and clinical responses. On the other hand, for carbapenem-sparing options, ceftolozane-tazobactam was the preferred antibiotic for nosocomial pneumonia; eravacycline, for complicated intra-abdominal infection; and cefiderocol, for complicated urinary tract infection. CONCLUSION Carbapenems may be preferable options in terms of safety and efficacy for the treatment of Gram-negative bacterial complicated infections. However, to preserve the effectiveness of carbapenems, it is important to consider carbapenem-sparing regimens.
Collapse
Affiliation(s)
- Meng-Hsuan Lin
- Department of Pharmacy, China Medical University, Taichung, Taiwan
| | - Yi-Cheng Shen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Han-Yun Cheng
- Department of Pharmacy, China Medical University, Taichung, Taiwan
| | - Chi-Kang Teng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Cheng Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yu-Chao Lin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan.
| | - Chin-Chuan Hung
- Department of Pharmacy, China Medical University, Taichung, Taiwan; Department of Pharmacy, China Medical University Hospital, Taichung, Taiwan; Department of Healthcare Administration, Asia University, Taichung, Taiwan.
| |
Collapse
|
10
|
Antibiotic-Loaded Gold Nanoparticles: A Nano-Arsenal against ESBL Producer-Resistant Pathogens. Pharmaceutics 2023; 15:pharmaceutics15020430. [PMID: 36839753 PMCID: PMC9967522 DOI: 10.3390/pharmaceutics15020430] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The advent of new antibiotics has helped clinicians to control severe bacterial infections. Despite this, inappropriate and redundant use of antibiotics, inadequate diagnosis, and smart resistant mechanisms developed by pathogens sometimes lead to the failure of treatment strategies. The genotypic analysis of clinical samples revealed that the rapid spread of extended-spectrum β-lactamases (ESBLs) genes is one of the most common approaches acquired by bacterial pathogens to become resistant. The scenario compelled the researchers to prioritize the design and development of novel and effective therapeutic options. Nanotechnology has emerged as a plausible groundbreaking tool against resistant infectious pathogens. Numerous reports suggested that inorganic nanomaterials, specifically gold nanoparticles (AuNPs), have converted unresponsive antibiotics into potent ones against multi-drug resistant pathogenic strains. Interestingly, after almost two decades of exhaustive preclinical evaluations, AuNPs are gradually progressively moving ahead toward clinical evaluations. However, the mechanistic aspects of the antibacterial action of AuNPs remain an unsolved puzzle for the scientific fraternity. Thus, the review covers state-of-the-art investigations pertaining to the efficacy of AuNPs as a tool to overcome ESBLs acquired resistance, their applicability and toxicity perspectives, and the revelation of the most appropriate proposed mechanism of action. Conclusively, the trend suggested that antibiotic-loaded AuNPs could be developed into a promising interventional strategy to limit and overcome the concerns of antibiotic-resistance.
Collapse
|
11
|
Rizvi SMD, Hussain T, Alshammari F, Sonbol H, Ahmad N, Faiyaz SSM, Kamal MA, Khafagy ES, Moin A, Abu Lila AS. Nano-Conversion of Ineffective Cephalosporins into Potent One against Resistant Clinical Uro-Pathogens via Gold Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:475. [PMID: 36770436 PMCID: PMC9919271 DOI: 10.3390/nano13030475] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Infections caused by resistant bacterial pathogens have increased the complications of clinicians worldwide. The quest for effective antibacterial agents against resistant pathogens has prompted researchers to develop new classes of antibiotics. Unfortunately, pathogens have acted more smartly by developing resistance to even the newest class of antibiotics with time. The culture sensitivity analysis of the clinical samples revealed that pathogens are gaining resistance toward the new generations of cephalosporins at a very fast rate globally. The current study developed gold nanoparticles (AuNPs) that could efficiently deliver the 2nd (cefotetan-CT) and 3rd (cefixime-CX) generation cephalosporins to resistant clinical pathogens. In fact, both CT and CX were used to reduce and stabilize AuNPs by applying a one-pot synthesis approach, and their characterization was performed via spectrophotometry, dynamic light scattering and electron microscopy. Moreover, the synthesized AuNPs were tested against uro-pathogenic resistant clinical strains of Escherichia coli and Klebsiella pneumoniae. CT-AuNPs characteristic SPR peak was observed at 542 nm, and CX-AuNPs showed the same at 522 nm. The stability measurement showed ζ potential as -24.9 mV and -25.2 mV for CT-AuNPs and CX-AuNPs, respectively. Scanning electron microscopy revealed the spherical shape of both the AuNPs, whereas, the size by transmission electron microscopy for CT-AuNPs and CX-AuNPs were estimated to be 45 ± 19 nm and 35 ± 17 nm, respectively. Importantly, once loaded onto AuNPs, both the cephalosporin antibiotics become extremely potent against the resistant strains of E. coli and K. pneumoniae with MIC50 in the range of 0.5 to 0.8 μg/mL. The findings propose that old-generation unresponsive antibiotics could be revived into potent nano-antibiotics via AuNPs. Thus, investing efforts, intellect, time and funds for a nano-antibiotic strategy might be a better approach to overcome resistance than investing the same in the development of newer antibiotic molecule(s).
Collapse
Affiliation(s)
- Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostic & Personalized Therapeutic Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Talib Hussain
- Molecular Diagnostic & Personalized Therapeutic Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Farhan Alshammari
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Hana Sonbol
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Nabeel Ahmad
- Department of Biotechnology, School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun 248007, India
| | | | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610065, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostic & Personalized Therapeutic Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| | - Amr Selim Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia
- Molecular Diagnostic & Personalized Therapeutic Unit, University of Ha’il, Ha’il 81442, Saudi Arabia
| |
Collapse
|
12
|
Haddad N, Carr M, Balian S, Lannin J, Kim Y, Toth C, Jarvis J. The Blood-Brain Barrier and Pharmacokinetic/Pharmacodynamic Optimization of Antibiotics for the Treatment of Central Nervous System Infections in Adults. Antibiotics (Basel) 2022; 11:antibiotics11121843. [PMID: 36551500 PMCID: PMC9774927 DOI: 10.3390/antibiotics11121843] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Bacterial central nervous system (CNS) infections are serious and carry significant morbidity and mortality. They encompass many syndromes, the most common being meningitis, which may occur spontaneously or as a consequence of neurosurgical procedures. Many classes of antimicrobials are in clinical use for therapy of CNS infections, some with established roles and indications, others with experimental reporting based on case studies or small series. This review delves into the specifics of the commonly utilized antibacterial agents, updating their therapeutic use in CNS infections from the pharmacokinetic and pharmacodynamic perspectives, with a focus on the optimization of dosing and route of administration that have been described to achieve good clinical outcomes. We also provide a concise synopsis regarding the most focused, clinically relevant information as pertains to each class and subclass of antimicrobial therapeutics. CNS infection morbidity and mortality remain high, and aggressive management is critical in ensuring favorable patient outcomes while averting toxicity and upholding patient safety.
Collapse
Affiliation(s)
- Nicholas Haddad
- College of Medicine, Central Michigan University (CMU), Mt Pleasant, MI 48859, USA
- Correspondence: ; Tel.: +1-(989)-746-7860
| | | | - Steve Balian
- CMU Medical Education Partners, Saginaw, MI 48602, USA
| | | | - Yuri Kim
- CMU Medical Education Partners, Saginaw, MI 48602, USA
| | - Courtney Toth
- Ascension St. Mary’s Hospital, Saginaw, MI 48601, USA
| | | |
Collapse
|
13
|
Cephalosporins as key lead generation beta-lactam antibiotics. Appl Microbiol Biotechnol 2022; 106:8007-8020. [DOI: 10.1007/s00253-022-12272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Antibiotics are antibacterial compounds that interfere with bacterial growth, without harming the infected eukaryotic host. Among the clinical agents, beta-lactams play a major role in treating infected humans and animals. However, the ever-increasing antibiotic resistance crisis is forcing the pharmaceutical industry to search for new antibacterial drugs to combat a range of current and potential multi-resistant bacterial pathogens. In this review, we provide an overview of the development, innovation, and current status of therapeutic applications for beta-lactams with a focus on semi-synthetic cephalosporins. Cephalosporin C (CPC), which is a natural secondary metabolite from the filamentous fungus Acremonium chrysogenum, plays a major and demanding role in both producing modern antibiotics and developing new ones. CPC serves as a core compound for producing semi-synthetic cephalosporins that can control infections with different resistance mechanisms. We therefore summarize our latest knowledge about the CPC biosynthetic pathway and its regulation in the fungal host. Finally, we describe how CPC serves as a key lead generation source for the in vitro and better, in vivo synthesis of 7-aminocephalosporanic acid (7-ACA), the major core compound for the pharmaceutical synthesis of current and future semi-synthetic cephalosporins.
Key points
•Latest literature on cephalosporin generations
•Biotechnical production of cephalosporins
•In vivo production of 7-ACA
Collapse
|
14
|
Pei N, Sun W, He J, Li Y, Chen X, Liang T, Kristiansen K, Liu W, Li J. Genome-wide association study of Klebsiella pneumoniae identifies variations linked to carbapenems resistance. Front Microbiol 2022; 13:997769. [PMID: 36386631 PMCID: PMC9664935 DOI: 10.3389/fmicb.2022.997769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/10/2022] [Indexed: 01/25/2023] Open
Abstract
Klebsiella pneumoniae (KP) is one of the microorganisms that can acquire carbapenem-resistance (CR), and few antimicrobial therapy options exist for infections caused by Carbapenem-Resistant KP (CRKP). In recent years, with the increase of carbapenem resistance rates, treating CRKP has become a serious public health threat in clinical practice. We have collected 2,035 clinical KP isolates from a tertiary hospital in China. Whole genome sequencing data coupled with their binary antimicrobial susceptibility testing data were obtained to conduct the genome-wide association study using a bayesian-based method, including single nucleotide polymorphisms (SNPs) and genes. We identified 28 and 37 potential maker genes associated with imipenem and meropenem resistance, respectively. Among which 19 of them were selected in both drugs by genome-wide association study (GWAS), 11 genes among them were simultaneously validated in independent datasets. These genes were likely related to biofilm formation, efflux pump, and DNA repairing. Moreover, we identified 13 significant CR related SNPs in imipenem or meropenem, with one SNP located in the non-coding region and validated in the independent datasets. Our study indicates complex mechanisms of carbapenems resistance and further investigation of CRKP-related factors are warranted to better understand their contributions to carbapenems resistance. These identified biomarkers may provide targets for future drug interventions or treatments.
Collapse
Affiliation(s)
- Na Pei
- BGI-Shenzhen, Shenzhen, China,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Jingxuan He
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Yanming Li
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Xia Chen
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Tianzhu Liang
- BGI-Shenzhen, Shenzhen, China,Shenzhen Key Laboratory of Unknown Pathogen Identification, Shenzhen, China
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen, China,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Wenen Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Junhua Li, ; Wenen Liu,
| | - Junhua Li
- BGI-Shenzhen, Shenzhen, China,Shenzhen Key Laboratory of Unknown Pathogen Identification, Shenzhen, China,*Correspondence: Junhua Li, ; Wenen Liu,
| |
Collapse
|
15
|
Cephalosporin translocation across enterobacterial OmpF and OmpC channels, a filter across the outer membrane. Commun Biol 2022; 5:1059. [PMID: 36198902 PMCID: PMC9534850 DOI: 10.1038/s42003-022-04035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
Gram-negative porins are the main entry for small hydrophilic molecules. We studied translocation of structurally related cephalosporins, ceftazidime (CAZ), cefotaxime (CTX) and cefepime (FEP). CAZ is highly active on E. coli producing OmpF (Outer membrane protein F) but less efficient on cells expressing OmpC (Outer membrane protein C), whereas FEP and CTX kill bacteria regardless of the porin expressed. This matches with the different capacity of CAZ and FEP to accumulate into bacterial cells as quantified by LC-MS/MS (Liquid Chromatography Tandem Mass Spectrometry). Furthermore, porin reconstitution into planar lipid bilayer and zero current assays suggest permeation of ≈1,000 molecules of CAZ per sec and per channel through OmpF versus ≈500 through OmpC. Here, the instant killing is directly correlated to internal drug concentration. We propose that the net negative charge of CAZ represents a key advantage for permeation through OmpF porins that are less cation-selective than OmpC. These data could explain the decreased susceptibility to some cephalosporins of enterobacteria that exclusively express OmpC porins. The translocation of cephalosporins across enterobacterial OmpF and OmpC channels is monitored in real-time, demonstrating differential permeation of some cephalosporins through OmpF and OmpC.
Collapse
|
16
|
Chabert P, Provoost J, Cohen S, Dupieux-Chabert C, Bitker L, Ferry T, Goutelle S, Richard JC. Pharmacokinetics, efficacy and tolerance of cefoxitin in the treatment of cefoxitin-susceptible extended-spectrum beta-lactamase producing Enterobacterales infections in critically ill patients: a retrospective single-center study. Ann Intensive Care 2022; 12:90. [PMID: 36175707 PMCID: PMC9522958 DOI: 10.1186/s13613-022-01059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/01/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cefoxitin is active against some extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-PE), but has not been evaluated so far in the intensive care unit (ICU) settings. Data upon its pharmacokinetics (PK), tolerance and efficacy in critical conditions are scanty. We performed a retrospective single-center study in a university hospital medical ICU, in subjects presenting with cefoxitin-susceptible ESBL-PE infection and treated with cefoxitin. The primary aim was to determine cefoxitin PK. Secondary endpoints were efficacy, tolerance, and emergence of cephamycin-resistance. RESULTS Forty-one patients were included in this study, mainly with ESBL-PE pneumonia (35 patients, 85%). Cefoxitin was administered during a median [interquartile range (IQR)] duration of 5 [4-7] days. Cefoxitin serum concentrations strongly depended on renal function. Target serum concentration (> 5 × minimum inhibitory concentration (MIC) 24 h after cefoxitin onset was obtained in 34 patients (83%), using a median [IQR] daily dose of 6 [6-6] g with continuous administration. The standard dosage of 6 g/24 h was not sufficient to achieve the PK/PD target serum concentration for MIC up to 4-8 mg/L, except in patients with severe renal impairment and those treated with renal replacement therapy. Treatment failure occurred in 26 cases (63%), among whom 12 patients (29%) died, 13 patients (32%) were switched to alternative antibiotic therapy and 11 patients (27%) presented with relapse of infection with the same ESBL-PE. Serious adverse events attributed to cefoxitin occurred in 7 patients (17%). Acquisition of cephamycin-resistance with the same Enterobacterales was identified in 13 patients (32%), and was associated with underdosage. CONCLUSION Continuous administration of large doses of cefoxitin appears necessary to achieve the PK/PD target in patients with normal renal function. Renal status, MIC determination and therapeutic drug monitoring may be useful for treatment individualization in this setting. The treatment failure rate was 63%. The cefoxitin safety profile was favorable, but we observed a high rate of cephamycin-resistance emergence.
Collapse
Affiliation(s)
- Paul Chabert
- Hospices Civils de Lyon, Médecine Intensive - Réanimation, Hôpital de La Croix Rousse, 103 Grande rue de la Croix Rousse, 69004, Lyon, France. .,Hospices Civils de Lyon, Maladies Infectieuses et Tropicales, Hôpital de La Croix Rousse, 103 Grande rue de la Croix Rousse, 69004, Lyon, France.
| | - Judith Provoost
- Hospices Civils de Lyon, Médecine Intensive - Réanimation, Hôpital de La Croix Rousse, 103 Grande rue de la Croix Rousse, 69004, Lyon, France
| | - Sabine Cohen
- Unité Fonctionnelle de Pharmacologie Spécialisée, Hospices Civils de Lyon, UM de Pharmaco-Toxicologie, Centre Hospitalier Lyon Sud, 165 Chemin du Grand Revoyet, 69495, Pierre-Bénite Cedex, France
| | - Céline Dupieux-Chabert
- Hospices Civils de Lyon, Institut Des Agents Infectieux, Hôpital de La Croix Rousse, 103 Grande rue de la Croix Rousse, 69004, Lyon, France
| | - Laurent Bitker
- Hospices Civils de Lyon, Médecine Intensive - Réanimation, Hôpital de La Croix Rousse, 103 Grande rue de la Croix Rousse, 69004, Lyon, France.,Université de Lyon, 92 rue Pasteur, CS 30122, 69361, Lyon Cedex 07, France.,Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69100, Villeurbanne, France.,CREATIS UMR 5220, INSA-Lyon, CNRS, INSERM, U1294, Université de Lyon, Université Claude Bernard Lyon 1, 69621, Lyon, France
| | - Tristan Ferry
- Hospices Civils de Lyon, Maladies Infectieuses et Tropicales, Hôpital de La Croix Rousse, 103 Grande rue de la Croix Rousse, 69004, Lyon, France.,Université de Lyon, 92 rue Pasteur, CS 30122, 69361, Lyon Cedex 07, France.,Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69100, Villeurbanne, France
| | - Sylvain Goutelle
- Université de Lyon, 92 rue Pasteur, CS 30122, 69361, Lyon Cedex 07, France.,Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69100, Villeurbanne, France.,Service de Pharmacie, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France.,UMR CNRS 5558, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Jean-Christophe Richard
- Hospices Civils de Lyon, Médecine Intensive - Réanimation, Hôpital de La Croix Rousse, 103 Grande rue de la Croix Rousse, 69004, Lyon, France.,Université de Lyon, 92 rue Pasteur, CS 30122, 69361, Lyon Cedex 07, France.,Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69100, Villeurbanne, France.,CREATIS UMR 5220, INSA-Lyon, CNRS, INSERM, U1294, Université de Lyon, Université Claude Bernard Lyon 1, 69621, Lyon, France
| |
Collapse
|
17
|
Li X, Zhang J, Yang C, Li J, Wang J, Huang W, Zeng L, Liang X, Long W, Zhang X. Increased Expression and Amplification of blaKPC-2 Contributes to Resistance to Ceftazidime/Avibactam in a Sequence Type 11 Carbapenem-Resistant Klebsiella pneumoniae Strain. Microbiol Spectr 2022; 10:e0095522. [PMID: 35900090 PMCID: PMC9430841 DOI: 10.1128/spectrum.00955-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
Ceftazidime/avibactam (CAZ/AVI) is regarded as an effective alternative antibiotic for the clinical treatment of Klebsiella pneumoniae carbapenemase (KPC)-producing isolates. As resistance has been reported in some strains, it is critical to understand the key mechanisms contributing to the acquired resistance to CAZ/AVI. From January 2018 to April 2020, 127 KPC-producing carbapenem-resistant Klebsiella pneumoniae strains (CRKPs) were isolated at a university hospital in Chongqing, China, and 25 strains showed reduced susceptibility to CAZ/AVI. All reduced-susceptibility CRKPs were deficient in Ompk35 and Ompk36 porins, and 24 strains had a premature termination at amino acid position 63 in Ompk35 and 134 to 135 glycine and aspartic acid (GD) insertion in OmpK36, while the blaKPC-2 expression level showed no significant difference compared to that of strain BAA-1705. Four reduced-susceptibility strains evolved resistance under selective pressure of CAZ/AVI with the blaKPC-2 expression level increased, and two of these strains had mutations in the Ω-loop. The study found a strain of CRKP55 with changes in the resistance phenotype during conjugation, evolving from reduced sensitivity to high-level resistance to CAZ/AVI. Through plasmid sequencing and reverse transcription-quantitative PCR, it was speculated that insertion sequence (IS)26-mediated blaKPC-2 gene amplification caused the MIC value change in the conjugant JKP55. Our findings illustrated the potential of CAZ/AVI resistance under antibiotic stress and demonstrated that IS26 may mediate blaKPC-2 replication transposition, leading to high-level resistance during horizontal gene transfer. Investigation of CAZ/AVI resistance mechanisms may offer a unique opportunity to study the horizontal evolutionary trajectories of K. pneumoniae high-risk clones. IMPORTANCE Klebsiella pneumoniae carbapenemase (KPC) production is the most common mechanism of K. pneumoniae resistance to carbapenems in China. Currently, CAZ/AVI is considered a potential alternative therapeutic option for infections caused by these isolates. However, there have been increasing reports of resistant or reduced-sensitivity strains since the approval of this agent. In this study, resistance to CAZ/AVI was induced under drug-selective pressure and was caused by blaKPC-2 overexpression and/or substitutions in the Ω-loop of KPC. Additionally, it was demonstrated that a conjugative plasmid carrying blaKPC-2 could transfer horizontally between species, and perhaps, IS26-derived tandem amplification of blaKPC-2 during this period led to high-level resistance to CAZ/AVI. Our research suggests that IS26-mediated resistance evolution may have important implications in guiding clinical antibiotic use.
Collapse
Affiliation(s)
- Xinhui Li
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jisheng Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Chengru Yang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Department of Microbiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Jie Li
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Jianmin Wang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Wan Huang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Lingyi Zeng
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Department of Microbiology, Jiaxing Maternity and Child Health Care Hospital, Jiaxing, China
| | - Xushan Liang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Wenzhang Long
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoli Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Resistance mechanisms in Gram-negative bacteria. Med Intensiva 2022; 46:392-402. [PMID: 35660283 DOI: 10.1016/j.medine.2022.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/13/2022] [Indexed: 12/24/2022]
Abstract
Enterobacterales resistant to carbapenems or producing extended-spectrum β-lactamases (ESBL) and non-fermenters resistant to carbapenems present resistance to many of the antimicrobials commonly used in clinical practice, and have been recognized by the World Health Organization as a critical priority for the development of new antimicrobials. In this review, the main mechanisms of resistance of Enterobacterales, Pseudomonas aeruginosa, Acinetobacter baumannii and Stenotrophomonas maltophilia to β-lactams, quinolones, aminoglycosides and polymyxins will be addressed. Updated information will be presented on the importance in resistance of antimicrobial modification mechanisms (including class C or extended-spectrum β-lactamases, carbapenemases and aminoglycoside-modifying enzymes), permeability alterations due to porin or lipopolysaccharide expression disorders, production of active efflux pumps, target alterations or protection, and expression of two-component systems.
Collapse
|
19
|
Yang F, Zhao Q, Wang L, Wu J, Jiang L, Sheng L, Zhang L, Xue Z, Yi M. Diminished Susceptibility to Cefoperazone/Sulbactam and Piperacillin/Tazobactam in Enterobacteriaceae Due to Narrow-Spectrum β-Lactamases as Well as Omp Mutation. Pol J Microbiol 2022; 71:251-256. [PMID: 35716168 PMCID: PMC9252146 DOI: 10.33073/pjm-2022-023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/30/2022] [Indexed: 11/05/2022] Open
Abstract
Cefoperazone/sulbactam (CSL) and piperacillin/tazobactam (TZP) are commonly used in clinical practice in China because of their excellent antimicrobial activity. CSL and TZP-nonsusceptible Enterobacteriaceae are typically resistant to extended-spectrum cephalosporins such as ceftriaxone (CRO). However, 11 nonrepetitive Enterobacteriaceae strains, which were resistant to CSL and TZP yet susceptible to CRO, were collected from January to December 2020. Antibiotic susceptibility tests and whole-genome sequencing were conducted to elucidate the mechanism for this rare phenotype. Antibiotic susceptibility tests showed that all isolates were amoxicillin/clavulanic-acid resistant and sensitive to ceftazidime, cefepime, cefepime/tazobactam, cefepime/zidebactam, ceftazidime/avibactam, and ceftolozane/tazobactam. Whole-genome sequencing revealed three of seven Klebsiella pneumoniae strains harbored bla SHV-1 only, and four harbored bla SHV-1 and bla TEM-1B. Two Escherichia coli strains carried bla TEM-1B only, while two Klebsiella oxytoca isolates harbored bla OXY-1-3 and bla OXY-1-1, respectively. No mutation in the β-lactamase gene and promoter sequence was found. Outer membrane protein (Omp) gene detection revealed that numerous missense mutations of OmpK36 and OmpK37 were found in all strains of K. pneumoniae. Numerous missense mutations of OmpK36 and OmpK35 and OmpK37 deficiency were found in one K. oxytoca strain, and no OmpK gene was found in the other. No Omp mutations were found in E. coli isolates. These results indicated that narrow spectrum β-lactamases, TEM-1, SHV-1, and OXY-1, alone or in combination with Omp mutation, contributed to the resistance to CSL and TZP in CRO-susceptible Enterobacteriaceae. Antibiotic susceptibility tests Antibiotics Breakpoint, (μg/ml) Klebsiella pneumoniae Escherichia cou Klebriehd axyoca E1 E3 E4 E7 E9 E10 E11 E6 E8 E2 E5 CRO ≤1≥4 ≤0.5 ≤0.5 ≤0.5 ≤0.5 1 ≤0.5 1 ≤0.5 ≤0.5 1 1 CAZ 4 ≥16 1 2 1 4 4 4 4 2 4 1 1 FEP ≤2 216 1 1 0.25 1 2 2 2 0.5 2 1 1 AMC ≤8 ≥32 ≥128 ≥128 ≥128 ≥128 ≥128 ≥128 ≥128 ≥128 ≥128 ≥128 ≥128 CSL ≤16 ≥64 64 64 64 64 ≥128 128 ≥128 64 128 128 ≥128 TZP ≤16 ≥128 ≥256 ≥256 ≥256 ≥256 2256 2256 ≥256 ≥256 ≥256 ≥256 ≥256 FPT ≤2 ≥16 1 0.5 0.06 0.125 2 1 2 0.25 1 0.125 0.25 FPZ ≤2 216 0.25 0.25 0.06 0.125 0.25 0.25 1 0.125 0.25 0.125 0.125 CZA ≤8 216 1 0.5 0.25 0.25 1 0.25 1 0.5 0.5 0.5 0.25 CZT ≤2 28 2 1 0.5 1 2 2 2 1 1 2 2 CROceftriaxone, CAZceftazidime, FEPcefepime, AMC:amoxicillin clavulanic-acid, CSLcefoperazone/sulbactam, TZP:piperadllin/tazobactam, FPT:cefepime tazobactam, FPZ:cefepime/zidebactam, CZA:ceftazidime/avibactam, CZTceftolozane/tazobactam Gene sequencing results Number Strain ST p-Lactamase gene Promoter sequence mutation Omp mutation El Kpn 45 blaSHV-1, blaTEM-lB none OmpK36, OmpK3 7 E3 Kpn 45 blaSHV-1, blaTEM-lB none OmpK36. OmpK3 7 E4 Kpn 2854 blaSHV-1 none OmpK36, OmpK3 7 E7 Kpn 2358 blaSHV-1 - blaTEM-lB none OmpK36, OmpK3 7 E9 Kpn 2358 blaSHV-1. blaTEM-lB none OmpK36. OmpK3 7 E10 Kpn 18 9 blaSHV-1 none OmpK36. OmpK3 7 Ell Kpn 45 blaSHV-1 none OmpK36, OmpK3 7 E6 Eco 88 blaTEM-lB none none ES Eco 409 blaTEM-1B none none E2 Kox 194 blaOXY-1-3 none OmpK36 mutations. OmpK35 and OmpK 37 deficiency E5 Kox 11 blaOXY-1-1 none no OmpK (OmpK3 5, OmpK36 and OmpK37) gene found.
Collapse
Affiliation(s)
- Fengzhen Yang
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Qi Zhao
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Lipeng Wang
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Jinying Wu
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Lihua Jiang
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Li Sheng
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Leyan Zhang
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Zhaoping Xue
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Maoli Yi
- Department of Laboratory Medicine, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
20
|
Bonardi S, Cabassi CS, Manfreda G, Parisi A, Fiaccadori E, Sabatino A, Cavirani S, Bacci C, Rega M, Spadini C, Iannarelli M, Crippa C, Ruocco F, Pasquali F. Survey on Carbapenem-Resistant Bacteria in Pigs at Slaughter and Comparison with Human Clinical Isolates in Italy. Antibiotics (Basel) 2022; 11:777. [PMID: 35740183 PMCID: PMC9219774 DOI: 10.3390/antibiotics11060777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
This study is focused on resistance to carbapenems and third-generation cephalosporins in Gram-negative microorganisms isolated from swine, whose transmission to humans via pork consumption cannot be excluded. In addition, the common carriage of carbapenem-resistant (CR) bacteria between humans and pigs was evaluated. Sampling involved 300 faecal samples collected from slaughtered pigs and 300 urine samples collected from 187 hospitalised patients in Parma Province (Italy). In swine, MIC testing confirmed resistance to meropenem for isolates of Pseudomonas aeruginosa and Pseudomonas oryzihabitans and resistance to cefotaxime and ceftazidime for Escherichia coli, Ewingella americana, Enterobacter agglomerans, and Citrobacter freundii. For Acinetobacter lwoffii, Aeromonas hydrofila, Burkolderia cepacia, Corynebacterium indologenes, Flavobacterium odoratum, and Stenotrophomonas maltophilia, no EUCAST MIC breakpoints were available. However, ESBL genes (blaCTXM-1, blaCTX-M-2, blaTEM-1, and blaSHV) and AmpC genes (blaCIT, blaACC, and blaEBC) were found in 38 and 16 isolates, respectively. P. aeruginosa was the only CR species shared by pigs (4/300 pigs; 1.3%) and patients (2/187; 1.1%). P. aeruginosa ST938 carrying blaPAO and blaOXA396 was detected in one pig as well as an 83-year-old patient. Although no direct epidemiological link was demonstrable, SNP calling and cgMLST showed a genetic relationship of the isolates (86 SNPs and 661 allele difference), thus suggesting possible circulation of CR bacteria between swine and humans.
Collapse
Affiliation(s)
- Silvia Bonardi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.C.); (S.C.); (C.B.); (M.R.); (C.S.); (M.I.)
| | - Clotilde Silvia Cabassi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.C.); (S.C.); (C.B.); (M.R.); (C.S.); (M.I.)
| | - Gerardo Manfreda
- Food Safety Unit, Department of Agricultural and Food Sciences Alma Mater Studiorum, University of Bologna, 40064 Ozzano dell’Emilia, Italy; (G.M.); (C.C.); (F.P.)
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 70017 Putignano, Italy;
| | - Enrico Fiaccadori
- Nephrology Unit, Parma University-Hospital, Department of Medicine and Surgery, Parma University, 43126 Parma, Italy; (E.F.); (A.S.)
| | - Alice Sabatino
- Nephrology Unit, Parma University-Hospital, Department of Medicine and Surgery, Parma University, 43126 Parma, Italy; (E.F.); (A.S.)
| | - Sandro Cavirani
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.C.); (S.C.); (C.B.); (M.R.); (C.S.); (M.I.)
| | - Cristina Bacci
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.C.); (S.C.); (C.B.); (M.R.); (C.S.); (M.I.)
| | - Martina Rega
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.C.); (S.C.); (C.B.); (M.R.); (C.S.); (M.I.)
| | - Costanza Spadini
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.C.); (S.C.); (C.B.); (M.R.); (C.S.); (M.I.)
| | - Mattia Iannarelli
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (C.S.C.); (S.C.); (C.B.); (M.R.); (C.S.); (M.I.)
| | - Cecilia Crippa
- Food Safety Unit, Department of Agricultural and Food Sciences Alma Mater Studiorum, University of Bologna, 40064 Ozzano dell’Emilia, Italy; (G.M.); (C.C.); (F.P.)
| | | | - Frédérique Pasquali
- Food Safety Unit, Department of Agricultural and Food Sciences Alma Mater Studiorum, University of Bologna, 40064 Ozzano dell’Emilia, Italy; (G.M.); (C.C.); (F.P.)
| |
Collapse
|
21
|
Phage resistance mutation triggered by OmpC deficiency in Klebsiella pneumoniae induced limited fitness costs. Microb Pathog 2022; 167:105556. [PMID: 35489635 DOI: 10.1016/j.micpath.2022.105556] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/16/2022] [Accepted: 04/24/2022] [Indexed: 01/21/2023]
Abstract
Outer membrane proteins (OMPs) play an important role in bacterial fitness costs. Derived from the interaction between Klebsiella pneumoniae K7 and phage GH-K3, K7RB is an outer membrane porin-deficient phage-resistant mutant strain triggered by ompC712 deletion, exhibits expression inhibition of OmpC, OmpN, KPN_02430 and OmpF, but its fitness costs and regulatory mechanism remains unknown. In this study, compared with K7, K7RB showed almost unaffected growth rate, slightly decreased virulence, and increased resistance to some antibiotics. Transcriptome analysis showed that the pathways of glycerolipid metabolism and nitrogen metabolism in K7RB were significantly inhibited, while the transcription of permeases belonging to ABC transporters tended to be active, nutrient uptakes such as citrate and phenylalanine were also enhanced. However, transcriptional up-regulation in K7RB was inhibited by overexpression of OmpC, OmpN, KPN_02430 and OmpF in general. Overexpression of OmpN, KPN_02430 and OmpF, respectively, restoring the sensitivity of strains to antibiotics to varying degrees, while OmpC overexpression aggravated the bacterial drug-resistance especially to β-lactam antibiotics. Besides, unlike OmpC and OmpF, overexpression of OmpN and KPN_02430 reduced bacterial virulence. In brief, by revealing the limited fitness costs of phage-resistant mutant K. pneumoniae with porin-deficiency, our study providing a reference for the design and development of drugs to inhibit the ways of bacterial metabolic rewiring and to increase fitness costs.
Collapse
|
22
|
Abstract
Relebactam is a novel β-lactamase inhibitor of Ambler class A and C β-lactamases that has been developed in combination with imipenem/cilastatin for the treatment of carbapenem-resistant bacterial infections. In this study, we evaluated the in vitro antibacterial activity of imipenem/relebactam (IMR) against imipenem-nonsusceptible Enterobacterales and Pseudomonas aeruginosa isolates from Japan. Two sets of antibacterial susceptibility tests were conducted according to the susceptibility testing standard of the Clinical and Laboratory Standards Institute. In the first set, antibacterial susceptibility as measured by the MIC50/90 (MIC range) of IMR was assessed for the following 61 imipenem-nonsusceptible strains: 2 Enterobacter cloacae complex (not determined [0.25 μg/mL]), 33 Klebsiella aerogenes (0.5/1 μg/mL [0.5 to 1 μg/mL]), 2 Serratia marcescens (not determined [1 to 2 μg/mL]), and 24 P. aeruginosa (2/128 μg/mL [0.25 to >128 μg/mL]). In the second set, antibacterial susceptibility was assessed for the following 8 imipenem-nonsusceptible strains: 4 Escherichia coli, 1 E. cloacae complex and 3 Klebsiella pneumoniae. The MIC ranges of IMR for these strains were 0.25 to 0.5 μg/mL, 0.5 μg/mL, and 0.5 to 16 μg/mL, respectively. The antibacterial activity of IMR was similar to or lower than that of amikacin and comparable to or greater than those of other reference drugs. In conclusion, IMR has shown antibacterial activity against clinical isolates from Japan and, therefore, is expected to become a new therapeutic option for carbapenem-resistant infections in Japan. IMPORTANCE Carbapenem-resistant Enterobacterales and carbapenem-resistant Pseudomonas aeruginosa strains pose a global threat. Antibacterial activity of imipenem/relebactam (IMR) against clinical isolates of these bacteria from several global regions has been shown; however, as yet there are no reports on Japanese isolates. In this study, we evaluated the in vitro antibacterial activity of IMR against imipenem-nonsusceptible Enterobacterales and Pseudomonas aeruginosa isolates from Japan. The antibacterial activity of IMR against imipenem-nonsusceptible Enterobacterales was generally comparable to that of amikacin (AMK) and comparable to or higher than those of other reference drugs tested. The antibacterial activity of IMR against imipenem-nonsusceptible P. aeruginosa isolates was lower than that of AMK but comparable to or higher than those of other drugs. These results support the use of IMR as a new treatment option for infections due to Enterobacterales and P. aeruginosa strains that are resistant to existing β-lactams and other antibacterial agents.
Collapse
|
23
|
Lepe J, Martínez-Martínez L. Mecanismos de resistencia en bacterias gramnegativas. Med Intensiva 2022. [DOI: 10.1016/j.medin.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Singkham-in U, Muhummudaree N, Chatsuwan T. In Vitro Synergism of Azithromycin Combination with Antibiotics against OXA-48-Producing Klebsiella pneumoniae Clinical Isolates. Antibiotics (Basel) 2021; 10:1551. [PMID: 34943763 PMCID: PMC8698995 DOI: 10.3390/antibiotics10121551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae has globally emerged as an urgent threat leading to the limitation for treatment. K. pneumoniae carrying blaOXA-48, which plays a broad magnitude of carbapenem susceptibility, is widely concerned. This study aimed to characterize related carbapenem resistance mechanisms and forage for new antibiotic combinations to combat blaOXA-48-carrying K. pneumoniae. Among nine isolates, there were two major clones and a singleton identified by ERIC-PCR. Most isolates were resistant to ertapenem (MIC range: 2->256 mg/L), but two isolates were susceptible to imipenem and meropenem (MIC range: 0.5-1 mg/L). All blaOXA-48-carrying plasmids conferred carbapenem resistance in Escherichia coli transformants. Two ertapenem-susceptible isolates carried both outer membrane proteins (OMPs), OmpK35 and OmpK36. Lack of at least an OMP was present in imipenem-resistant isolates. We evaluated the in vitro activity of an overlooked antibiotic, azithromycin, in combination with other antibiotics. Remarkably, azithromycin exhibited synergism with colistin and fosfomycin by 88.89% and 77.78%, respectively. Bacterial regrowth occurred after exposure to colistin or azithromycin alone. Interestingly, most isolates were killed, reaching synergism by this combination. In conclusion, the combination of azithromycin and colistin may be an alternative strategy in dealing with blaOXA-48-carrying K. pneumoniae infection during a recent shortage of newly effective antibiotic development.
Collapse
Affiliation(s)
- Uthaibhorn Singkham-in
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Netchanok Muhummudaree
- Interdisciplinary Program of Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand;
- Antimicrobial Resistance and Stewardship Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Antimicrobial Resistance and Stewardship Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
25
|
Exploring antimicrobial resistance to beta-lactams, aminoglycosides and fluoroquinolones in E. coli and K. pneumoniae using proteogenomics. Sci Rep 2021; 11:12472. [PMID: 34127720 PMCID: PMC8203672 DOI: 10.1038/s41598-021-91905-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/02/2021] [Indexed: 02/05/2023] Open
Abstract
Antimicrobial resistance is mostly studied by means of phenotypic growth inhibition determinations, in combination with PCR confirmations or further characterization by means of whole genome sequencing (WGS). However, the actual proteins that cause resistance such as enzymes and a lack of porins cannot be detected by these methods. Improvements in liquid chromatography (LC) and mass spectrometry (MS) enabled easier and more comprehensive proteome analysis. In the current study, susceptibility testing, WGS and MS are combined into a multi-omics approach to analyze resistance against frequently used antibiotics within the beta-lactam, aminoglycoside and fluoroquinolone group in E. coli and K. pneumoniae. Our aim was to study which currently known mechanisms of resistance can be detected at the protein level using liquid chromatography-mass spectrometry (LC-MS/MS) and to assess whether these could explain beta-lactam, aminoglycoside, and fluoroquinolone resistance in the studied isolates. Furthermore, we aimed to identify significant protein to resistance correlations which have not yet been described before and to correlate the abundance of different porins in relation to resistance to different classes of antibiotics. Whole genome sequencing, high-resolution LC-MS/MS and antimicrobial susceptibility testing by broth microdilution were performed for 187 clinical E. coli and K. pneumoniae isolates. Resistance genes and proteins were identified using the Comprehensive Antibiotic Resistance Database (CARD). All proteins were annotated using the NCBI RefSeq database and Prokka. Proteins of small spectrum beta-lactamases, extended spectrum beta-lactamases, AmpC beta-lactamases, carbapenemases, and proteins of 16S ribosomal RNA methyltransferases and aminoglycoside acetyltransferases can be detected in E. coli and K. pneumoniae by LC-MS/MS. The detected mechanisms matched with the phenotype in the majority of isolates. Differences in the abundance and the primary structure of other proteins such as porins also correlated with resistance. LC-MS/MS is a different and complementary method which can be used to characterize antimicrobial resistance in detail as not only the primary resistance causing mechanisms are detected, but also secondary enhancing resistance mechanisms.
Collapse
|
26
|
Akeda Y. Current situation of carbapenem-resistant Enterobacteriaceae and Acinetobacter in Japan and Southeast Asia. Microbiol Immunol 2021; 65:229-237. [PMID: 33913535 DOI: 10.1111/1348-0421.12887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/18/2021] [Accepted: 04/21/2021] [Indexed: 11/30/2022]
Abstract
In the recent years, issues related to drug-resistant bacteria have evolved worldwide, and various countermeasures have been taken to control their spread. Among a wide variety of drug-resistant bacterial species, carbapenem-resistant Gram-negative bacteria, including carbapenem-resistant Enterobacteriaceae (CRE) and carbapenem-resistant Acinetobacter baumannii (CRAb), are those for which countermeasures are particularly important. Carbapenems are the last resort antibiotics for any bacterial infection; therefore, infectious diseases caused by these drug-resistant bacteria are difficult to treat. In the case of CRE, since carbapenemases responsible for carbapenem resistance are mostly encoded on transmissible plasmids, it is known that susceptible bacteria can easily become carbapenem-resistant by transfer of plasmids between Enterobacteriaceae. In addition, Enterobacteriaceae are common bacterial species found in the guts of animals, including humans. Acinetobacter is ubiquitously isolated in the environment. Due to these characteristics, it is quite difficult to prevent the intrusion of multi-drug resistant pathogens in hospitals. Therefore, effective countermeasures should be developed and utilized against such dangerous pathogens based on molecular epidemiological analyses. In this review, there are also some examples presented on how to manage to monitor and control those troublesome drug-resistant bacteria conducted in Japan and Southeast Asia.
Collapse
Affiliation(s)
- Yukihiro Akeda
- Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Osaka, Japan.,Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Osaka, Japan.,Japan-Thailand Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
27
|
Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chem Rev 2021; 121:5193-5239. [PMID: 33724814 PMCID: PMC8687107 DOI: 10.1021/acs.chemrev.0c01005] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is an indispensable metabolic cofactor in both pro- and eukaryotes, which engenders a natural competition for the metal between bacterial pathogens and their human or animal hosts. Bacteria secrete siderophores that extract Fe3+ from tissues, fluids, cells, and proteins; the ligand gated porins of the Gram-negative bacterial outer membrane actively acquire the resulting ferric siderophores, as well as other iron-containing molecules like heme. Conversely, eukaryotic hosts combat bacterial iron scavenging by sequestering Fe3+ in binding proteins and ferritin. The variety of iron uptake systems in Gram-negative bacterial pathogens illustrates a range of chemical and biochemical mechanisms that facilitate microbial pathogenesis. This document attempts to summarize and understand these processes, to guide discovery of immunological or chemical interventions that may thwart infectious disease.
Collapse
Affiliation(s)
- Phillip E Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Salete M C Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - David A Six
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Ashish Kumar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, 3900 Bethel Drive, St. Paul, Minnesota 55112, United States
| | - Colton Munger
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Somnath Chakravorty
- Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
28
|
Prajapati JD, Kleinekathöfer U, Winterhalter M. How to Enter a Bacterium: Bacterial Porins and the Permeation of Antibiotics. Chem Rev 2021; 121:5158-5192. [PMID: 33724823 DOI: 10.1021/acs.chemrev.0c01213] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite tremendous successes in the field of antibiotic discovery seen in the previous century, infectious diseases have remained a leading cause of death. More specifically, pathogenic Gram-negative bacteria have become a global threat due to their extraordinary ability to acquire resistance against any clinically available antibiotic, thus urging for the discovery of novel antibacterial agents. One major challenge is to design new antibiotics molecules able to rapidly penetrate Gram-negative bacteria in order to achieve a lethal intracellular drug accumulation. Protein channels in the outer membrane are known to form an entry route for many antibiotics into bacterial cells. Up until today, there has been a lack of simple experimental techniques to measure the antibiotic uptake and the local concentration in subcellular compartments. Hence, rules for translocation directly into the various Gram-negative bacteria via the outer membrane or via channels have remained elusive, hindering the design of new or the improvement of existing antibiotics. In this review, we will discuss the recent progress, both experimentally as well as computationally, in understanding the structure-function relationship of outer-membrane channels of Gram-negative pathogens, mainly focusing on the transport of antibiotics.
Collapse
Affiliation(s)
| | | | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen 28759, Germany
| |
Collapse
|
29
|
Guzmán-Puche J, Jenayeh R, Pérez-Vázquez M, Asma F, Jalel B, Oteo-Iglesias J, Martínez-Martínez L. Characterization of OXA-48-producing Klebsiella oxytoca isolates from a hospital outbreak in Tunisia. J Glob Antimicrob Resist 2021; 24:306-310. [PMID: 33545421 DOI: 10.1016/j.jgar.2021.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/04/2021] [Accepted: 01/16/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE There is very limited information about OXA-48-producing Klebsiella oxytoca. The aim of this study was to describe the phenotypic and molecular characterization of OXA-48-producing K. oxytoca isolates that caused an outbreak in a hospital in Tunisia. METHODS Nineteen OXA-48-producing K. oxytoca were isolated from 2013 to 2016 in the University Hospital Farhat Hached, Sousse, Tunisia. Antibiotic susceptibility testing was performed by broth microdilution. Carbapenemase activity was investigated using the modified carbapenem inactivation method (mCIM). Phenotypic tests were also carried out to detect extended-spectrum β-lactamases. PCR was used to test for the presence of carbapenemase genes (blaIMP, blaVIM, blaNDM, blaSPM, blaAIM, blaDIM, blaGIM, blaSIM, blaKPC, blaBIC and blaOXA-48). Genetic relatedness among isolates was investigated using rep-PCR. Whole genome sequencing (WGS) was performed in three representative isolates. RESULTS mCIM was positive in all isolates. None of the isolates presented an ESBL phenotype. All strains were susceptible to cefoxitin, ceftazidime, cefepime, aztreonam, imipenem, meropenem, fluoroquinolones, aminoglycosides and colistin, and resistant to piperacillin-tazobactam, ertapenem, ticarcillin and ampicillin-sulbactam. All isolates presented the blaOXA-48 gene located in a ca. 63 kb IncL plasmid, which carried no additional resistance genes. They belonged to the new ST220. CONCLUSION Isolates from this study did not co-express an ESBL, which could complicate their detection in clinical laboratories. As OXA-48 has been mostly reported in K. pneumoniae there is a risk that the production of this enzyme is not suspected in the less common species K. oxytoca. These difficulties could play an important role in the hidden spread of this enzyme.
Collapse
Affiliation(s)
- Julia Guzmán-Puche
- Unit of Microbiology, Hospital Universitario Reina Sofía, Córdoba, Spain; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain.
| | - Rim Jenayeh
- University Hospital Farhat Hached, Sousse, Tunisia
| | - María Pérez-Vázquez
- Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Ferjani Asma
- University Hospital Farhat Hached, Sousse, Tunisia
| | | | - Jesús Oteo-Iglesias
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Luis Martínez-Martínez
- Unit of Microbiology, Hospital Universitario Reina Sofía, Córdoba, Spain; Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain; Departamento de Química Agrícola, Edafología y Microbiología, University of Córdoba, Córdoba, Spain
| |
Collapse
|
30
|
Estabrook M, Kazmierczak KM, Wise M, Arhin FF, Stone GG, Sahm DF. Molecular characterization of clinical isolates of Enterobacterales with elevated MIC values for aztreonam-avibactam from the INFORM global surveillance study, 2012-2017. J Glob Antimicrob Resist 2021; 24:316-320. [PMID: 33524556 DOI: 10.1016/j.jgar.2021.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/23/2021] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES While aztreonam-avibactam is a potent β-lactam-β-lactamase-inhibitor combination, reduced in vitro activity against some Enterobacterales isolates has been reported. In this study, globally collected clinical isolates of Enterobacterales with elevated minimum inhibitory concentrations (MICs) for aztreonam-avibactam were examined for potential resistance mechanisms. METHODS Isolates with aztreonam-avibactam MICs ≥8 μg/mL (n = 55: Escherichia coli, n = 38; Enterobacter cloacae, n = 10; Klebsiella pneumoniae, n = 3; others, n = 4) and <8 μg/mL (n = 18) collected for the INFORM global surveillance programme were characterized by short read whole-genome sequencing. Sequences were inspected for the presence of β-lactamase genes, penicillin-binding protein (PBP) mutations, and disruptions in the coding sequences of porin genes. RESULTS All isolates of E. coli testing with aztreonam-avibactam MIC values ≥8 μg/mL carried a previously documented four-amino-acid insertion in PBP3 at position 333 of YRI(K/N/P). Such mutations were absent in isolates with MICs <2 μg/mL (n = 6). Among other species, carriage of PER- or VEB-type β-lactamases was identified in 10/17 (58.8%) of isolates testing with aztreonam-avibactam MICs ≥8 μg/mL, but no isolates with lower MIC values (n = 11). CONCLUSIONS PBP3 mutations are known to confer resistance to aztreonam in E. coli, providing a rationale for the elevated MIC values for aztreonam-avibactam in these isolates. Elevated MICs in other isolates were associated with the carriage of PER-type β-lactamases, which have been previously shown to be inhibited less effectively by avibactam than other Class A β-lactamases and may contribute to this phenotype. Other resistance mechanisms contributing to poor in vitro activity for aztreonam-avibactam in some of these isolates are not yet elucidated.
Collapse
Affiliation(s)
- Mark Estabrook
- International Health Management Associates, Inc., Schaumburg, IL, USA.
| | | | - Mark Wise
- International Health Management Associates, Inc., Schaumburg, IL, USA
| | | | | | - Daniel F Sahm
- International Health Management Associates, Inc., Schaumburg, IL, USA
| |
Collapse
|
31
|
Indrajith S, Mukhopadhyay AK, Chowdhury G, Farraj DAA, Alkufeidy RM, Natesan S, Meghanathan V, Gopal S, Muthupandian S. Molecular insights of Carbapenem resistance Klebsiella pneumoniae isolates with focus on multidrug resistance from clinical samples. J Infect Public Health 2020; 14:131-138. [PMID: 33234410 DOI: 10.1016/j.jiph.2020.09.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/19/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Carbapenem are the last-line antibiotic, defence against Gram-negative extended spectrum ß-lactamases producers (ESBLs). Carbapenem resistance Enterobacteriaceae especially Carbapenem resistant-Klebsiella pneumoniae (CR-KP) is recognized as one of the well-known public health problem, which is increasingly being reported around the world. The present study was focused to analyse the prevalence and characterization of antibiotic resistance K. pneumoniae in centre region of Tamil Nadu, India. METHODOLOGY Totally 145 suspected K. pneumoniae isolates [Urine, Pus, Sputum, Blood and Biopsy] obtained from hospitals of Central South India. The isolates were subjected to biochemical and molecular identification technique, following with antibiotic resistance pattern by standard antibiotic sensitivity test. Multidrug resistance (MDR) with β-lactamase producing Carbapenem resistant K. pneumoniae (CR-KP) strains were screened by classical sensitivity method and also drug resistance encoded gene. Also, molecular typing of the MDR strains were characterized by Pulsed-Field Gel Electrophoresis (PFGE). Further, the outer membrane protein (OmpK35 and 36) related Carbapenem resistance were characterized. RESULTS Totally, 61% of isolates were confirmed as K. pneumoniae, 75 % of isolates were MDR including 58% carbapenem and 97% ESBL antibiotics and grouped into 17 distinct resistant patterns. The MDR KP isolates shows positive for blaCTXM-1 (92 %) gene followed by blaSHV (43 %), blaTEM (36 %), blaNDM-1 (26 %), blaGES (20 %) and blaIMP-1 (8 %). Moreover, 62 % CR-KP isolates loses OmpK36 and 33% isolates loses OmpK35. CONCLUSIONS Loss of OmpK36 were highly an influence the cefoxitin and carbapenem resistance. Sixteen different PFGE patterns have been observed among the 18 MDR isolates. Eventually, ESBL as well as CR-KP were diverse in genetic makeup and often associated with hyper virulence hvKP should be of serious concern.
Collapse
Affiliation(s)
- Sureka Indrajith
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Asish Kumar Mukhopadhyay
- Department of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Goutam Chowdhury
- Department of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Dunia A Al Farraj
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Roua M Alkufeidy
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Sivakumar Natesan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India.
| | - Velmurugan Meghanathan
- Department of Cellular and Molecular Biology Lab, University of Texas Health Science Center at Tyler, United States
| | - Selvakumar Gopal
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - Saravanan Muthupandian
- Department of Microbiology and Immunology, Division of Biomedical Science, School of Medicine, College of Health Science, Mekelle University, PO. Box: 1871, Mekelle, Ethiopia
| |
Collapse
|
32
|
Makharita RR, El-Kholy I, Hetta HF, Abdelaziz MH, Hagagy FI, Ahmed AA, Algammal AM. Antibiogram and Genetic Characterization of Carbapenem-Resistant Gram-Negative Pathogens Incriminated in Healthcare-Associated Infections. Infect Drug Resist 2020; 13:3991-4002. [PMID: 33177849 PMCID: PMC7649219 DOI: 10.2147/idr.s276975] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/07/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose Carbapenems are considered the most efficient antibiotic used in the treatment of nosocomial infections. Carbapenem-resistant Gram-negative rods are becoming a serious hazard in hospitals threatening public health. The aim of the current study was to investigate the prevalence of carbapenem-resistant Gram-negative pathogens incriminated in healthcare-associated infections, along with antimicrobial resistance profiles, carbapenemase and metallo-β-lactamase production, and their molecular characterization. Methods A total of 186 clinical specimens were collected from 133 patients at various hospitals in Cairo, Egypt. The obtained specimens were subjected to bacteriological examination, antimicrobial susceptibility testing, detection of carbapenemase production using the modified Hodge test (MHT), the metallo-β-lactamase production using the EDTA combined disc test (CDT), and PCR-based detection of the bla KPC and bla GES resistance genes. The identification of the highly resistant retrieved isolates was then confirmed by 16S rRNA gene sequencing. Results The most common isolated Gram-negative species was Klebsiella pneumoniae (40.9%), followed by Acinetobacter baumannii (18.8%), Pseudomonas aeruginosa (17.3%), Escherichia coli (15.4%), Enterobacter aerogenes (5.3%), and Proteus mirabilis (2.4%). The prevalence of carbapenem-resistant isolates was 36.1% (n=75). However, 86.5% of the recovered clinical isolates were susceptible to colistin. The MHT revealed that 33.6% (n=70) of the tested strains were positive for carbapenemase production, while the CDT showed that 33.17% (n=69) of the examined strains were metallo-β-lactamase producers. The PCR revealed that 98.6% (74/75) of the tested strains possessed the bla KPC gene; moreover, 97.3% (73/75) of the examined strains harbored the bla GES gene. Conclusion This study displayed the emergence of carbapenem-resistant Gram-negative pathogens incriminated in healthcare-associated infections. The accurate identification of carbapenem-resistant bacterial pathogens is pivotal for the treatment of patients, in addition to propelling appropriate contamination control measures to restrain the fast spread of such pathogens. Colistin showed a potent in vitro antimicrobial activity against the carbapenem-resistant strains.
Collapse
Affiliation(s)
- Rabab R Makharita
- Biology Department, Faculty of Science and Arts, University of Jeddah, Khulais, Jeddah, Saudi Arabia.,Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Iman El-Kholy
- Ain Shams Specialized Hospital, Faculty of Medicine, Ain Shams University, Cairo 11556, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assuit University, Assuit 71515, Egypt.,Department of Internal Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0595, USA
| | - Moahmed H Abdelaziz
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Fatma I Hagagy
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Amera A Ahmed
- Botany Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt.,Ministry of National Guard, Health Affairs, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| | - Abdelazeem M Algammal
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
33
|
Detecting Carbapenemase Production amongst Gram Negative Isolates and its Role in Appropriate Antibiotic Selection. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.3.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multidrug resistance has been increasing world wide amongst most microrganisms, and adding to increased rate of both hospital and community acquired infections. Of all resistance mechanisms the alarming spread of carbapenemase producers is most worrisome and needs to be tackled head on. The present study was undertaken with the objective of determining the prevalence of carbapenemase producers and its significance in selecting the appropiate antibiotic for clinical use.The study was undertaken by the department of Microbiology and Immunology of SGRRIM&HS, Dehradun over a period of six months. A total of 1918 varied clinical specimens were subjected to Bacterial identification and antibiotic sensitivity determination. Further carbapenemase production was detected phenotypically using modified carbapenemase inactivation method (mCIM) for randomly selected 152 carbapenem resistant gram negative isolates. Total of 58.55% isolates tested mCIM test positive of which the highest percentage (71.4%) were Pseudomonas spp, while 17.2% isolates were not found to be carbapenemase producers i.e mCIM negative. These results substantiate the importance of differentiating the carbapenemase producers from non producers to aid in rational use of antibiotics.
Collapse
|
34
|
Abstract
Antimicrobial susceptibility testing (AST) is now, more than ever, a critical role of the microbiology laboratory. Several factors limit its application for patient care and antimicrobial resistance epidemiology, including time to results, requirements for pure cultures, and high starting concentration of bacteria. This review discusses the global status of AST and new phenotypic and genotypic methods in late-stage development or that are new to market.
Collapse
Affiliation(s)
- Romney M Humphries
- Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South C-3322 MCN, Nashville, TN 37232-2561, USA.
| |
Collapse
|
35
|
Coolen JPM, den Drijver EPM, Kluytmans JAJW, Verweij JJ, Lamberts BA, Soer JACJ, Verhulst C, Wertheim HFL, Kolwijck E. Development of an algorithm to discriminate between plasmid- and chromosomal-mediated AmpC β-lactamase production in Escherichia coli by elaborate phenotypic and genotypic characterization. J Antimicrob Chemother 2020; 74:3481-3488. [PMID: 31504559 PMCID: PMC7183348 DOI: 10.1093/jac/dkz362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVES AmpC-β-lactamase production is an under-recognized antibiotic resistance mechanism that renders Gram-negative bacteria resistant to common β-lactam antibiotics, similar to the well-known ESBLs. For infection control purposes, it is important to be able to discriminate between plasmid-mediated AmpC (pAmpC) production and chromosomal-mediated AmpC (cAmpC) hyperproduction in Gram-negative bacteria as pAmpC requires isolation precautions to minimize the risk of horizontal gene transmission. Detecting pAmpC in Escherichia coli is challenging, as both pAmpC production and cAmpC hyperproduction may lead to third-generation cephalosporin resistance. METHODS We tested a collection of E. coli strains suspected to produce AmpC. Elaborate susceptibility testing for third-generation cephalosporins, WGS and machine learning were used to develop an algorithm to determine ampC genotypes in E. coli. WGS was applied to detect pampC genes, cAmpC hyperproducers and STs. RESULTS In total, 172 E. coli strains (n=75 ST) were divided into a training set and two validation sets. Ninety strains were pampC positive, the predominant gene being blaCMY-2 (86.7%), followed by blaDHA-1 (7.8%), and 59 strains were cAmpC hyperproducers. The algorithm used a cefotaxime MIC value above 6 mg/L to identify pampC-positive E. coli and an MIC value of 0.5 mg/L to discriminate between cAmpC-hyperproducing and non-cAmpC-hyperproducing E. coli strains. Accuracy was 0.88 (95% CI=0.79-0.94) on the training set, 0.79 (95% CI=0.64-0.89) on validation set 1 and 0.85 (95% CI=0.71-0.94) on validation set 2. CONCLUSIONS This approach resulted in a pragmatic algorithm for differentiating ampC genotypes in E. coli based on phenotypic susceptibility testing.
Collapse
Affiliation(s)
- Jordy P M Coolen
- Department of Medical Microbiology and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Evert P M den Drijver
- Department of Infection Control, Amphia Ziekenhuis, Breda, The Netherlands.,Laboratory for Medical Microbiology and Immunology, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
| | - Jan A J W Kluytmans
- Department of Infection Control, Amphia Ziekenhuis, Breda, The Netherlands.,Laboratory for Microbiology, Microvida, Location Breda, The Netherlands.,Julius Center for Health Sciences and Primary Care, UMCU, Utrecht, The Netherlands
| | - Jaco J Verweij
- Laboratory for Medical Microbiology and Immunology, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
| | - Bram A Lamberts
- Department of Medical Microbiology and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joke A C J Soer
- Department of Medical Microbiology and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carlo Verhulst
- Department of Infection Control, Amphia Ziekenhuis, Breda, The Netherlands.,Laboratory for Microbiology, Microvida, Location Breda, The Netherlands
| | - Heiman F L Wertheim
- Department of Medical Microbiology and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva Kolwijck
- Department of Medical Microbiology and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
36
|
Jama-Kmiecik A, Sarowska J, Frej-Mądrzak M, Choroszy-Król I. Extraintestinal pathogenic E. coli infections: The spread of antibiotic resistance through the food products. POSTEP HIG MED DOSW 2020. [DOI: 10.5604/01.3001.0014.4137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
With the increasing demand for poultry meat and poultry products and the growing poultry industry around the world, food safety is an important challenge for public health. To assess the dissemination of extraintestinal pathogenic E. coli (ExPEC) strains, one should examine the level of genetic similarity between isolates from different hosts. In the proposed review paper, multiple levels of genotyping are proposed, in which typing of strains, plasmids, and genes are compared in order to obtain the more complete picture of this complex issue. The ExPEC group includes uropathogenic E. coli (UPEC), neonatal meningitis E. coli (NMEC), and sepsis-associated E. coli (SEPEC). ExPEC presents an elaborated phylogenetic structure, a wide range of virulence factors (VF), and considerable plasticity of the genome. These strains cause not only uncomplicated UTIs, but also other dangerous illnesses such as bacteremia or sepsis. Mechanisms underlying ExPEC transmission dynamics and the selection of resistant to drugs clones are still poorly understood and require further investigations. Overuse and inappropriate use of antibiotics and chemotherapeutics has led to a global threat, which is the emergence and spread of microbial resistance. Food, depending on certain products and processing technology, provides an excellent substrate for the growth of microorganisms. Intensive trade and wide use of antibiotics in contemporary food production favor the emergence and spread of resistant bacteria. Currently, antibiotic use in vegetable and animal food production is significantly higher compared to the number of antibiotics used in medicine to treat infections, which is a huge threat. We need new strategies to prevent, quickly diagnose, and treat ExPEC infections, especially in the context of the recently observed clonal expansion of strains with increased antibiotic resistance.
Collapse
Affiliation(s)
| | - Jolanta Sarowska
- Department of Basic Sciences, Wroclaw Medical University, Wrocław, Poland
| | | | | |
Collapse
|
37
|
Wu LT, Guo MK, Ke SC, Lin YP, Pang YC, Nguyen HTV, Chen CM. Characterization of the Genetic Background of KPC-2-Producing Klebsiella pneumoniae with Insertion Elements Disrupting the ompK36 Porin Gene. Microb Drug Resist 2020; 26:1050-1057. [PMID: 32283046 DOI: 10.1089/mdr.2019.0410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Lii-Tzu Wu
- The Institute of Medical Science and Department of Microbiology, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Kai Guo
- The Institute of Medical Science and Department of Microbiology, China Medical University Hospital, Taichung, Taiwan
| | - Se-Chin Ke
- Infection Control Office, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
- Department of Medical Technology, Jen-The Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Yi-Pei Lin
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Yi-Chun Pang
- The Institute of Medical Science and Department of Microbiology, China Medical University Hospital, Taichung, Taiwan
| | - Hong-Thuy Vy Nguyen
- The Institute of Biomedical Sciences College of Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Ming Chen
- Department of Internal Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| |
Collapse
|
38
|
Spread of Klebsiella pneumoniae ST45 Producing GES-5 Carbapenemase or GES-1 Extended-Spectrum β-Lactamase in Newborns and Infants. Antimicrob Agents Chemother 2020; 64:AAC.00595-20. [PMID: 32631822 DOI: 10.1128/aac.00595-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
39
|
Götz T, Dahms M, Kirchhoff J, Beleites C, Glaser U, Bohnert JA, Pletz MW, Popp J, Schlattmann P, Neugebauer U. Automated and rapid identification of multidrug resistant Escherichia coli against the lead drugs of acylureidopenicillins, cephalosporins, and fluoroquinolones using specific Raman marker bands. JOURNAL OF BIOPHOTONICS 2020; 13:e202000149. [PMID: 32410283 DOI: 10.1002/jbio.202000149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
A Raman-based, strain-independent, semi-automated method is presented that allows the rapid (<3 hours) determination of antibiotic susceptibility of bacterial pathogens isolated from clinical samples. Applying a priori knowledge about the mode of action of the respective antibiotic, we identified characteristic Raman marker bands in the spectrum and calculated batch-wise weighted sum scores from standardized Raman intensity differences between spectra of antibiotic exposed and nonexposed samples of the same strains. The lead substances for three relevant antibiotic classes (fluoroquinolone ciprofloxacin, third-generation cephalosporin cefotaxime, ureidopenicillin piperacillin) against multidrug-resistant Gram-negative bacteria (MRGN) revealed a high sensitivity and specificity for the susceptibility testing of two Escherichia coli laboratory strains and 12 clinical isolates. The method benefits from the parallel incubation of control and treated samples, which reduces the variance due to alterations in cultivation conditions and the standardization of differences between batches leading to long-term comparability of Raman measurements.
Collapse
Affiliation(s)
- Theresa Götz
- Institute of Medical Statistics, Computer Sciences and Data Science, Jena University Hospital, Jena, Germany
| | - Marcel Dahms
- Leibniz Institute of Photonic Technology, Leibniz-IPHT, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
- InfectoGnostics Research Campus Jena e.V, Centre for Applied Research, Jena, Germany
| | - Johanna Kirchhoff
- Leibniz Institute of Photonic Technology, Leibniz-IPHT, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
- InfectoGnostics Research Campus Jena e.V, Centre for Applied Research, Jena, Germany
| | | | - Uwe Glaser
- Leibniz Institute of Photonic Technology, Leibniz-IPHT, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
- InfectoGnostics Research Campus Jena e.V, Centre for Applied Research, Jena, Germany
| | - Jürgen A Bohnert
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Mathias W Pletz
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Leibniz-IPHT, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
- InfectoGnostics Research Campus Jena e.V, Centre for Applied Research, Jena, Germany
- Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Peter Schlattmann
- Institute of Medical Statistics, Computer Sciences and Data Science, Jena University Hospital, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Ute Neugebauer
- Leibniz Institute of Photonic Technology, Leibniz-IPHT, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
- InfectoGnostics Research Campus Jena e.V, Centre for Applied Research, Jena, Germany
- Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
40
|
Reduced Susceptibility to Carbapenems in a Klebsiella pneumoniae Clinical Isolate Producing SCO-1 and CTX-M-15 β-Lactamases Together with OmpK35 and OmpK36 Porin Deficiency. Antimicrob Agents Chemother 2020; 64:AAC.00556-20. [PMID: 32423955 PMCID: PMC7526818 DOI: 10.1128/aac.00556-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
41
|
Castanheira M, Doyle TB, Hubler C, Sader HS, Mendes RE. Ceftazidime-avibactam activity against a challenge set of carbapenem-resistant Enterobacterales: Ompk36 L3 alterations and β-lactamases with ceftazidime hydrolytic activity lead to elevated MIC values. Int J Antimicrob Agents 2020; 56:106011. [DOI: 10.1016/j.ijantimicag.2020.106011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/24/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022]
|
42
|
Cantón R, Oliver A, Alós JI, de Benito N, Bou G, Campos J, Calvo J, Canut A, Castillo J, Cercenado E, Domínguez MÁ, Fernández-Cuenca F, Guinea J, Larrosa N, Liñares J, López-Cerero L, López-Navas A, Marco F, Mirelis B, Moreno-Romo MÁ, Morosini MI, Navarro F, Oteo J, Pascual Á, Pérez-Trallero E, Pérez-Vázquez M, Soriano A, Torres C, Vila J, Martínez-Martínez L. Recommendations of the Spanish Antibiogram Committee (COESANT) for selecting antimicrobial agents and concentrations for in vitro susceptibility studies using automated systems. Enferm Infecc Microbiol Clin 2020; 38:182-187. [PMID: 30878313 DOI: 10.1016/j.eimc.2019.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/06/2019] [Indexed: 02/05/2023]
Abstract
Automated antimicrobial susceptibility testing devices are widely implemented in clinical microbiology laboratories in Spain, mainly using EUCAST (European Committee on Antimicrobial Susceptibility Testing) breakpoints. In 2007, a group of experts published recommendations for including antimicrobial agents and selecting concentrations in these systems. Under the patronage of the Spanish Antibiogram Committee (Comité Español del Antibiograma, COESANT) and the Study Group on Mechanisms of Action and Resistance to Antimicrobial Agents (GEMARA) from the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), and aligned with the Spanish National Plan against Antimicrobial Resistance (PRAN), a group of experts have updated this document. The main modifications from the previous version comprise the inclusion of new antimicrobial agents, adaptation of the ranges of concentrations to cover the EUCAST breakpoints and epidemiological cut-off values (ECOFFs), and the inference of new resistance mechanisms. This proposal should be considered by different manufacturers and users when designing new panels or cards. In addition, recommendations for selective reporting are also included. With this approach, the implementation of EUCAST breakpoints will be easier, increasing the quality of antimicrobial susceptibility testing data and their microbiological interpretation. It will also benefit epidemiological surveillance studies as well as the clinical use of antimicrobials aligned with antimicrobial stewardship programs.
Collapse
Affiliation(s)
- Rafael Cantón
- Servicio de Microbiología, Hospital Universtario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.
| | - Antonio Oliver
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Microbiología, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Juan Ignacio Alós
- Servicio de Microbiología, Hospital Universitario de Getafe, Madrid, Spain
| | - Natividad de Benito
- Unidad de Enfermedades Infecciosas, Hospital de la Santa Creu i Sant Pau, Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Universitat Autònoma, Barcelona, Spain
| | - Germán Bou
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Microbiología-INIBIC, Complejo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - José Campos
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Jorge Calvo
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla and Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Andrés Canut
- Servicio de Microbiología, Hospital Universitario de Álava, Vitoria, Spain
| | - Javier Castillo
- Servicio de Microbiología, Hospital Clínico Universitario, Zaragoza, Spain
| | - Emilia Cercenado
- Servicio de Microbiología y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Maria Ángeles Domínguez
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Microbiología, Hospital Universitario de Bellvitge, Barcelona, Spain
| | - Felipe Fernández-Cuenca
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Microbiología, Hospital Virgen Macarena, Sevilla, Spain
| | - Jesús Guinea
- Servicio de Microbiología y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Nieves Larrosa
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Microbiología, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Josefina Liñares
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Microbiología, Hospital Universtario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Lorena López-Cerero
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Microbiología, Hospital Virgen Macarena, Sevilla, Spain
| | - Antonio López-Navas
- Agencia Española de Medicamentos y Productos Sanitarios (AEMPS), Madrid, Spain
| | - Francesc Marco
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; Departamento de Microbiología, Centro de Diagnóstico Biomédico (CDB), Hospital Clínic, Universidad de Barcelona, and ISGlobal, Barcelona, Spain
| | - Beatriz Mirelis
- Servicio de Microbiología, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - María Isabel Morosini
- Servicio de Microbiología, Hospital Universtario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain
| | - Ferran Navarro
- Servicio de Microbiología, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jesús Oteo
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Álvaro Pascual
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Microbiología, Hospital Virgen Macarena, Sevilla, Spain
| | - Emilio Pérez-Trallero
- Servicio de Microbiología, Hospital Universitario Donostia-IIS Biodonostia, San Sebastián, Spain
| | - María Pérez-Vázquez
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Alex Soriano
- Servicio de Enfermedades Infecciosas, Hospital Clínic, Barcelona, Spain
| | - Carmen Torres
- Facultad de Ciencias y Tecnología, Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | - Jordi Vila
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; Departamento de Microbiología, Centro de Diagnóstico Biomédico (CDB), Hospital Clínic, Universidad de Barcelona, and ISGlobal, Barcelona, Spain
| | - Luis Martínez-Martínez
- Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Gestión Clínica de Microbiología, Hospital Reina Sofía, Departamento de Microbiología, Universidad de Córdoba, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| |
Collapse
|
43
|
Porins and small-molecule translocation across the outer membrane of Gram-negative bacteria. Nat Rev Microbiol 2019; 18:164-176. [DOI: 10.1038/s41579-019-0294-2] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
|
44
|
Patro LPP, Rathinavelan T. Targeting the Sugary Armor of Klebsiella Species. Front Cell Infect Microbiol 2019; 9:367. [PMID: 31781512 PMCID: PMC6856556 DOI: 10.3389/fcimb.2019.00367] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 10/09/2019] [Indexed: 12/25/2022] Open
Abstract
The emergence of multidrug-resistant strains of Gram-negative Klebsiella species is an urgent global threat. The World Health Organization has listed Klebsiella pneumoniae as one of the global priority pathogens in critical need of next-generation antibiotics. Compared to other Gram-negative pathogens, K. pneumoniae accumulates a greater diversity of antimicrobial-resistant genes at a higher frequency. The evolution of a hypervirulent phenotype of K. pneumoniae is yet another concern. It has a broad ecological distribution affecting humans, agricultural animals, plants, and aquatic animals. Extracellular polysaccharides of Klebsiella, such as lipopolysaccharides, capsular polysaccharides, and exopolysaccharides, play crucial roles in conferring resistance against the host immune response, as well as in colonization, surface adhesion, and for protection against antibiotics and bacteriophages. These extracellular polysaccharides are major virulent determinants and are highly divergent with respect to their antigenic properties. Wzx/Wzy-, ABC-, and synthase-dependent proteinaceous nano-machineries are involved in the biosynthesis, transport, and cell surface expression of these sugar molecules. Although the proteins involved in the biosynthesis and surface expression of these sugar molecules represent potential drug targets, variation in the amino acid sequences of some of these proteins, in combination with diversity in their sugar composition, poses a major challenge to the design of a universal drug for Klebsiella infections. This review discusses the challenges in universal Klebsiella vaccine and drug development from the perspective of antigen sugar compositions and the proteins involved in extracellular antigen transport.
Collapse
|
45
|
Davin-Regli A, Lavigne JP, Pagès JM. Enterobacter spp.: Update on Taxonomy, Clinical Aspects, and Emerging Antimicrobial Resistance. Clin Microbiol Rev 2019; 32:e00002-19. [PMID: 31315895 PMCID: PMC6750132 DOI: 10.1128/cmr.00002-19] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The genus Enterobacter is a member of the ESKAPE group, which contains the major resistant bacterial pathogens. First described in 1960, this group member has proven to be more complex as a result of the exponential evolution of phenotypic and genotypic methods. Today, 22 species belong to the Enterobacter genus. These species are described in the environment and have been reported as opportunistic pathogens in plants, animals, and humans. The pathogenicity/virulence of this bacterium remains rather unclear due to the limited amount of work performed to date in this field. In contrast, its resistance against antibacterial agents has been extensively studied. In the face of antibiotic treatment, it is able to manage different mechanisms of resistance via various local and global regulator genes and the modulation of the expression of different proteins, including enzymes (β-lactamases, etc.) or membrane transporters, such as porins and efflux pumps. During various hospital outbreaks, the Enterobacter aerogenes and E. cloacae complex exhibited a multidrug-resistant phenotype, which has stimulated questions about the role of cascade regulation in the emergence of these well-adapted clones.
Collapse
Affiliation(s)
- Anne Davin-Regli
- INSERM, SSA, IRBA, MCT, Aix Marseille University, Marseille, France
| | - Jean-Philippe Lavigne
- Department of Microbiology, U1047, INSERM, University Montpellier and University Hospital Nîmes, Nîmes, France
| | - Jean-Marie Pagès
- INSERM, SSA, IRBA, MCT, Aix Marseille University, Marseille, France
| |
Collapse
|
46
|
Ho S, Nguyen L, Trinh T, MacDougall C. Recognizing and Overcoming Resistance to New Beta-Lactam/Beta-Lactamase Inhibitor Combinations. Curr Infect Dis Rep 2019; 21:39. [PMID: 31501948 DOI: 10.1007/s11908-019-0690-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW To describe the mechanisms and clinical relevance of emergent resistance to three recently introduced beta-lactamase inhibitor combinations (BLICs) active against resistant Gram-negative organisms: ceftolozane-tazobactam, ceftazidime-avibactam, and meropenem-vaborbactam. RECENT FINDINGS Despite their recent introduction into practice, clinical reports of resistance to BLICs among typically susceptible organisms have already emerged, in some cases associated with therapeutic failure. The resistance mechanisms vary by agent, including mutations in beta-lactamase active sites, upregulation of efflux pumps, and alterations in the structure or expression of porin channels. These changes may confer cross-resistance or, rarely, increased susceptibility to related agents. Clinicians need to be aware of the potential for initial or emergent resistance to BLICs and ensure appropriate antimicrobial susceptibility testing is performed. Dose optimization and novel combinations of agents may play a role in preventing and managing resistance. Recently approved BLICs have provided important new therapeutic options against resistant Gram-negative organisms, but are already coming up against emergent resistance. Awareness of the potential for resistance, early detection, and dose optimization may be important in preserving the utility of these agents.
Collapse
Affiliation(s)
- Stephanie Ho
- University of California San Francisco School of Pharmacy, 533 Parnassus Ave, U-503 Box 0622, San Francisco, CA, 94143, USA
| | - Lynn Nguyen
- University of California San Francisco Medical Center, San Francisco, CA, USA
| | - Trang Trinh
- University of California San Francisco School of Pharmacy, 533 Parnassus Ave, U-503 Box 0622, San Francisco, CA, 94143, USA
| | - Conan MacDougall
- University of California San Francisco School of Pharmacy, 533 Parnassus Ave, U-503 Box 0622, San Francisco, CA, 94143, USA.
| |
Collapse
|
47
|
Camprubí-Font C, Ruiz Del Castillo B, Barrabés S, Martínez-Martínez L, Martinez-Medina M. Amino Acid Substitutions and Differential Gene Expression of Outer Membrane Proteins in Adherent-Invasive Escherichia coli. Front Microbiol 2019; 10:1707. [PMID: 31447798 PMCID: PMC6691688 DOI: 10.3389/fmicb.2019.01707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/10/2019] [Indexed: 01/01/2023] Open
Abstract
Variations in the sequence and/or the expression of outer membrane proteins (OMPs) may modulate bacterial virulence. OmpA and OmpC have been involved in the interaction of adherent-invasive Escherichia coli (AIEC) strain LF82 with intestinal epithelial cells (IECs). Scarce data exist about OMPs sequence variants in a collection of AIEC strains, and no study of OMPs expression during infection exists. We aimed to determine whether particular mutations or differential expression of OMPs are associated with AIEC virulence. The ompA, ompC, and ompF genes in 14 AIEC and 30 non-AIEC strains were sequenced by Sanger method, and the protein expression profile was analyzed by urea-SDS-PAGE. Gene expression was determined during in vitro bacterial infection of intestine-407 cells by RT-qPCR. The distribution of amino acid substitutions in OmpA-A200V, OmpC-S89N, V220I, and W231D associated with pathotype and specific changes (OmpA-A200V, OmpC-V220I, D232A, OmpF-E51V, and M60K) correlated with adhesion and/or invasion indices but no particular variants were found specific of AIEC. OMPs protein levels did not differ according to pathotype when growing in Mueller-Hinton broth. Interestingly, higher OMPs gene expression levels were reported in non-AIEC growing in association with cells compared with those non-AIEC strains growing in the supernatants of infected cultures (p < 0.028), whereas in AIEC strains ompA expression was the only increased when growing in association with cells (p = 0.032), but they did not significantly alter ompC and ompF expression under this condition (p > 0.146). Despite no particular OMPs sequence variants have been found as a common and distinctive trait in AIEC, some mutations could facilitate a better interaction with the host. Moreover, the different behavior between pathotypes regarding OMPs gene expression at different stages of infection could be related with the virulence of the strains.
Collapse
Affiliation(s)
- Carla Camprubí-Font
- Laboratory of Molecular Microbiology, Department of Biology, Universitat de Girona, Girona, Spain
| | - Belén Ruiz Del Castillo
- Service of Microbiology, University Hospital Marques de Valdecilla-Valdecilla Biomedical Research Institute (IDIVAL), Santander, Spain
| | - Silvia Barrabés
- Biochemistry and Molecular Biology Unit, Department of Biology, Universitat de Girona, Girona, Spain
| | - Luis Martínez-Martínez
- Microbiology Unit, University Hospital Reina Sofia, Córdoba, Spain.,Department of Microbiology, University of Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | | |
Collapse
|
48
|
Rao MR, Chandrashaker P, Mahale RP, Shivappa SG, Gowda RS, Chitharagi VB. Detection of carbapenemase production in Enterobacteriaceae and Pseudomonas species by carbapenemase Nordmann-Poirel test. J Lab Physicians 2019; 11:107-110. [PMID: 31160847 PMCID: PMC6543936 DOI: 10.4103/jlp.jlp_132_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE: Multidrug-resistant organisms causing community-acquired and hospital-acquired infections are increasing at a dangerous rate. Carbapenemase-producing Enterobacteriaceae and Pseudomonas species are an important source of concern since these organisms are not only resistant to beta-lactam antibiotics but also show cross-resistance to other groups of antibiotics. In the present study, rapid detection of these carbapenemase-producing Enterobacteriaceae and Pseudomonas species by carbapenemase Nordmann–Poirel (Carba NP) test was evaluated by comparing with modified Hodge test (MHT). MATERIALS AND METHODS: Imipenem-resistant Enterobacteriaceae and Pseudomonas species isolated from various samples such as pus, blood, sputum, urine, and endotracheal aspirates were processed for carbapenemase detection by MHT and Carba NP test. Kappa analysis was done to evaluate the percentage agreement between the two tests. RESULTS: Seventy imipenem-resistant Enterobacteriaceae and Pseudomonas isolates were analyzed in the present study for carbapenemase production. 63.41% of Enterobacteriaceae and 34.48% of Pseudomonas species were carbapenemase producers considering both the methods. By MHT, 36 (51.42%) isolates and, by Carba NP test, 35 (50%) isolates were positive for carbapenemase production out of the 70 isolates. CONCLUSION: Carba NP test when compared to MHT is a simple, rapid, cost-effective biochemical test which can be used in all laboratories in the identification of life-threatening carbapenemase-producing Gram-negative bacteria.
Collapse
Affiliation(s)
- Morubagal R Rao
- Department of Microbiology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Pooja Chandrashaker
- Department of Microbiology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Rashmi P Mahale
- Department of Microbiology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Sowmya G Shivappa
- Department of Microbiology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Ranjitha S Gowda
- Department of Microbiology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Vidyavathi B Chitharagi
- Department of Microbiology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| |
Collapse
|
49
|
Mendes RE, Jones RN, Woosley LN, Cattoir V, Castanheira M. Application of Next-Generation Sequencing for Characterization of Surveillance and Clinical Trial Isolates: Analysis of the Distribution of β-lactamase Resistance Genes and Lineage Background in the United States. Open Forum Infect Dis 2019; 6:S69-S78. [PMID: 30895217 PMCID: PMC6419912 DOI: 10.1093/ofid/ofz004] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background Sequencing technologies and techniques have seen remarkable transformation and innovation that have significantly affected sequencing capability. Data analyses have replaced sequencing as the main challenge. This paper provides an overview on applying next-generation sequencing (NGS) and analysis and discusses the benefits and challenges. In addition, this document shows results from using NGS and bioinformatics tools to screen for β-lactamase genes and assess the epidemiological structure of Escherichia coli– and Klebsiella pneumoniae–causing bloodstream (BSIs) and urinary tract (UTIs) infections in patients hospitalized in the United States during the SENTRY Antimicrobial Surveillance Program for 2016. Methods A total of 3525 isolates (2751 E. coli and 774 K. pneumoniae) causing BSIs (n = 892) and UTIs (n = 2633) in hospitalized patients in the United States were included. Isolates were tested for susceptibility by broth microdilution, and those that met a minimum inhibitory concentration (MIC)–based screening criteria had their genomes sequenced and analyzed. Results A total of 11.6% and 16.1% of E. coli–causing UTIs and BSIs, respectively, met the MIC-based criteria, whereas 11.0% and 13.7% of K. pneumoniae isolates causing UTIs and BSIs, respectively, met the criteria. Among E. coli, blaCTX-M variants (87.6% overall) prevailed (60.5% of CTX-M group 1 and 26.9% of group 9). A total of 60.3% of K. pneumoniae isolates carried blaCTX-M variants (52.7% and 7.6% of groups 1 and 9, respectively). Two E. coli (0.6%) and 13 K. pneumoniae (12.9%) isolates harbored blaKPC. Among KPC-producing K. pneumoniae (2 from BSIs and 11 from UTIs), 84.6% (11/13) were ST258 (CC258). Seventeen and 38 unique clonal complexes (CCs) were noted in E. coli that caused BSIs and UTIs, respectively, and CC131 (or ST131) was the most common CC among BSI (53.6%) and UTI (58.2%) isolates. Twenty-three and 26 CCs were noted among K. pneumoniae–causing BSIs and UTIs, respectively. CC258 (28.3%) prevailed in UTI pathogens, whereas CC307 (15.0%) was the most common CC among BSI isolates. Conclusions This study provides a benchmark for the distribution of β-lactamase genes and the population structure information for the most common Enterobacteriaceae species responsible for BSIs and UTIs in US medical centers during the 2016 SENTRY Program.
Collapse
Affiliation(s)
| | | | | | - Vincent Cattoir
- University Hospital of Rennes, Department of Clinical Microbiology, Rennes, France.,National Reference Center for Antimicrobial Resistance, Rennes, France.,University of Rennes 1, Unit Inserm U1230, Rennes, France
| | | |
Collapse
|
50
|
Bonardi S, Cabassi CS, Longhi S, Pia F, Corradi M, Gilioli S, Scaltriti E. Detection of Extended- Spectrum Beta-Lactamase producing Escherichia coli from mesenteric lymph nodes of wild boars ( Sus scrofa). Ital J Food Saf 2019; 7:7707. [PMID: 30854342 PMCID: PMC6379689 DOI: 10.4081/ijfs.2018.7707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022] Open
Abstract
Wild boars (Sus scrofa) are increasing in several European countries, including Italy. In areas with intensive animal farming, like the Italian Emilia-Romagna region, they are likely to be exposed to antimicrobialresistant (AMR) bacteria of livestock origin. In 2017-2018, 108 mesenteric lymph nodes samples were collected from 108 wild boars hunted in Parma province, Emilia-Romagna region, to be tested for ESBL- and carbapenemase-producing Escherichia coli. One isolate (WB-21L) out of 108 (0.9%) was phenotypically confirmed as ESBLproducing E. coli. The strain WB-21L was tested by PCR for the genes blaSHV, blaCTX-M, blaTEM, blaAmpC, blaKPC, blaNDM, blaVIM, blaIMP, blaOXA-48, blaSPM, blaBIC, blaSIM, blaDIM, blaGIM, blaAIM, resulting positive for TEM β- lactamase. Resistance to ampicillin, amoxicillin/clavulanic acid, streptomycin, sulfasomidine, tetracycline and trimethoprim confirmed the multi-resistance nature of the strain WB-21L. Nine E.coli isolates showed resistance to meropenem by the Kirby Bauer test but none of them showed Meropenem MIC values indicative of resistance. In conclusion, the present study shows the presence of ESBL E. coli in wild boars and the possible risk of transfer to game meat handlers and consumers. Future studies are needed to better evaluate the sources of AMR bacteria in wildlife.
Collapse
Affiliation(s)
| | | | - Simona Longhi
- Department of Veterinary Sciences, University of Parma
| | - Federico Pia
- Department of Veterinary Sciences, University of Parma
| | - Margherita Corradi
- Management Body for Parks and Biodiversity "Emilia Occidentale", Sala Baganza (PR)
| | - Stefano Gilioli
- Management Body for Parks and Biodiversity "Emilia Occidentale", Sala Baganza (PR)
| | - Erika Scaltriti
- Experimental Institute for Zooprophylaxis of Lombardy and Emilia-Romagna Regions, Risk Analysis and Genomic Epidemiology Unit, Parma, Italy
| |
Collapse
|