1
|
Zaidi SEZ, Zaheer R, Zovoilis A, McAllister TA. Enterococci as a One Health indicator of antimicrobial resistance. Can J Microbiol 2024; 70:303-335. [PMID: 38696839 DOI: 10.1139/cjm-2024-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
The rapid increase of antimicrobial-resistant bacteria in humans and livestock is concerning. Antimicrobials are essential for the treatment of disease in modern day medicine, and their misuse in humans and food animals has contributed to an increase in the prevalence of antimicrobial-resistant bacteria. Globally, antimicrobial resistance is recognized as a One Health problem affecting humans, animals, and environment. Enterococcal species are Gram-positive bacteria that are widely distributed in nature. Their occurrence, prevalence, and persistence across the One Health continuum make them an ideal candidate to study antimicrobial resistance from a One Health perspective. The objective of this review was to summarize the role of enterococci as an indicator of antimicrobial resistance across One Health sectors. We also briefly address the prevalence of enterococci in human, animal, and environmental settings. In addition, a 16S RNA gene-based phylogenetic tree was constructed to visualize the evolutionary relationship among enterococcal species and whether they segregate based on host environment. We also review the genomic basis of antimicrobial resistance in enterococcal species across the One Health continuum.
Collapse
Affiliation(s)
- Sani-E-Zehra Zaidi
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- University of Manitoba, Department of Biochemistry and Medical Genetics, 745 Bannatyne Ave, Winnipeg
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Athanasios Zovoilis
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- University of Manitoba, Department of Biochemistry and Medical Genetics, 745 Bannatyne Ave, Winnipeg
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
2
|
Laverde D, Armiento S, Molinaro A, Huebner J, De Castro C, Romero-Saavedra F. Identification of a capsular polysaccharide from Enterococcus faecium U0317 using a targeted approach to discover immunogenic carbohydrates for vaccine development. Carbohydr Polym 2024; 330:121731. [PMID: 38368077 DOI: 10.1016/j.carbpol.2023.121731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 02/19/2024]
Abstract
Enterococcus faecium, a gram-positive opportunistic pathogen, has become a major concern for nosocomial infections due to its resistance to several antibiotics, including vancomycin. Finding novel alternatives for treatment prevention, such as vaccines, is therefore crucial. In this study, we used various techniques to discover a novel capsular polysaccharide. Firstly, we identified an encapsulated E. faecium strain by evaluating the opsonophagocytic activity of fifteen strains with antibodies targeting the well-known lipoteichoic acid antigen. This activity was attributed to an unknown polysaccharide. We then prepared a crude cell wall glycopolymer and fractionated it, guided by immunodot-blot analysis. The most immunoreactive fractions were used for opsonophagocytic inhibition assays. The fraction containing the inhibitory polysaccharide underwent structural characterization using NMR and chemical analyses. The elucidated structure presents a branched repeating unit, with the linear part being: →)-β-d-Gal-(1 → 4)-β-d-Glc-(1 → 4)-β-d-Gal-(1 → 4)-β-d-GlcNAc-(1→, further decorated with a terminal α-d-Glc and a d-phosphoglycerol moiety, attached to O-2 and O-3 of the 4-linked Gal unit, respectively. This polysaccharide was conjugated to BSA and the synthetic glycoprotein used to immunize mice. The resulting sera exhibited good opsonic activity, suggesting its potential as a vaccine antigen. In conclusion, our effector-function-based approach successfully identified an immunogenic capsular polysaccharide with promising applications in immunotherapy.
Collapse
Affiliation(s)
- Diana Laverde
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Samantha Armiento
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Santangelo, Napoli, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Santangelo, Napoli, Italy
| | - Johannes Huebner
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Cristina De Castro
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Santangelo, Napoli, Italy
| | - Felipe Romero-Saavedra
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
3
|
Monteiro Marques J, Coelho M, Santana AR, Pinto D, Semedo-Lemsaddek T. Dissemination of Enterococcal Genetic Lineages: A One Health Perspective. Antibiotics (Basel) 2023; 12:1140. [PMID: 37508236 PMCID: PMC10376465 DOI: 10.3390/antibiotics12071140] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Enterococcus spp. are commensals of the gastrointestinal tracts of humans and animals and colonize a variety of niches such as water, soil, and food. Over the last three decades, enterococci have evolved as opportunistic pathogens, being considered ESKAPE pathogens responsible for hospital-associated infections. Enterococci's ubiquitous nature, excellent adaptative capacity, and ability to acquire virulence and resistance genes make them excellent sentinel proxies for assessing the presence/spread of pathogenic and virulent clones and hazardous determinants across settings of the human-animal-environment triad, allowing for a more comprehensive analysis of the One Health continuum. This review provides an overview of enterococcal fitness and pathogenic traits; the most common clonal complexes identified in clinical, veterinary, food, and environmental sources; as well as the dissemination of pathogenic genomic traits (virulome, resistome, and mobilome) found in high-risk clones worldwide, across the One Health continuum.
Collapse
Affiliation(s)
- Joana Monteiro Marques
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Mariana Coelho
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Andressa Rodrigues Santana
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Daniel Pinto
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Teresa Semedo-Lemsaddek
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477 Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
4
|
Quintela-Baluja M, Jobling K, Graham DW, Tabraiz S, Shamurad B, Alnakip M, Böhme K, Barros-Velázquez J, Carrera M, Calo-Mata P. Rapid Proteomic Characterization of Bacteriocin-Producing Enterococcus faecium Strains from Foodstuffs. Int J Mol Sci 2022; 23:ijms232213830. [PMID: 36430310 PMCID: PMC9697693 DOI: 10.3390/ijms232213830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Enterococcus belongs to a group of microorganisms known as lactic acid bacteria (LAB), which constitute a broad heterogeneous group of generally food-grade microorganisms historically used in food preservation. Enterococci live as commensals of the gastrointestinal tract of warm-blooded animals, although they also are present in food of animal origin (milk, cheese, fermented sausages), vegetables, and plant materials because of their ability to survive heat treatments and adverse environmental conditions. The biotechnological traits of enterococci can be applied in the food industry; however, the emergence of enterococci as a cause of nosocomial infections makes their food status uncertain. Recent advances in high-throughput sequencing allow the subtyping of bacterial pathogens, but it cannot reflect the temporal dynamics and functional activities of microbiomes or bacterial isolates. Moreover, genetic analysis is based on sequence homologies, inferring functions from databases. Here, we used an end-to-end proteomic workflow to rapidly characterize two bacteriocin-producing Enterococcus faecium (Efm) strains. The proteome analysis was performed with liquid chromatography coupled to a trapped ion mobility spectrometry-time-of-flight mass spectrometry instrument (TimsTOF) for high-throughput and high-resolution characterization of bacterial proteins. Thus, we identified almost half of the proteins predicted in the bacterial genomes (>1100 unique proteins per isolate), including quantifying proteins conferring resistance to antibiotics, heavy metals, virulence factors, and bacteriocins. The obtained proteomes were annotated according to function, resulting in 22 complete KEGG metabolic pathway modules for both strains. The workflow used here successfully characterized these bacterial isolates and showed great promise for determining and optimizing the bioengineering and biotechnology properties of other LAB strains in the food industry.
Collapse
Affiliation(s)
- Marcos Quintela-Baluja
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
- Correspondence:
| | - Kelly Jobling
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - David W. Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Shamas Tabraiz
- School of Natural and Applied Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, UK
| | | | - Mohamed Alnakip
- Department of Food Control, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Karola Böhme
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
| | - Mónica Carrera
- Department of Food Technology, Spanish National Research Council (CSIC), Marine Research Institute (IIM), 36208 Vigo, Spain
| | - Pilar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
| |
Collapse
|
5
|
Lisotto P, Raangs EC, Couto N, Rosema S, Lokate M, Zhou X, Friedrich AW, Rossen JWA, Harmsen HJM, Bathoorn E, Chlebowicz-Fliss MA. Long-read sequencing-based in silico phage typing of vancomycin-resistant Enterococcus faecium. BMC Genomics 2021; 22:758. [PMID: 34688274 PMCID: PMC8542323 DOI: 10.1186/s12864-021-08080-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vancomycin-resistant enterococci (VRE) are successful nosocomial pathogens able to cause hospital outbreaks. In the Netherlands, core-genome MLST (cgMLST) based on short-read sequencing is often used for molecular typing. Long-read sequencing is more rapid and provides useful information about the genome's structural composition but lacks the precision required for SNP-based typing and cgMLST. Here we compared prophages among 50 complete E. faecium genomes belonging to different lineages to explore whether a phage signature would be usable for typing and identifying an outbreak caused by VRE. As a proof of principle, we investigated if long-read sequencing data would allow for identifying phage signatures and thereby outbreak-related isolates. RESULTS Analysis of complete genome sequences of publicly available isolates showed variation in phage content among different lineages defined by MLST. We identified phage present in multiple STs as well as phages uniquely detected within a single lineage. Next, in silico phage typing was applied to twelve MinION sequenced isolates belonging to two different genetic backgrounds, namely ST117/CT24 and ST80/CT16. Genomic comparisons of the long-read-based assemblies allowed us to correctly identify isolates of the same complex type based on global genome architecture and specific phage signature similarity. CONCLUSIONS For rapid identification of related VRE isolates, phage content analysis in long-read sequencing data is possible. This allows software development for real-time typing analysis of long-read sequencing data, which will generate results within several hours. Future studies are required to assess the discriminatory power of this method in the investigation of ongoing outbreaks over a longer time period.
Collapse
Affiliation(s)
- Paola Lisotto
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Erwin C Raangs
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Natacha Couto
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Sigrid Rosema
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mariëtte Lokate
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Xuewei Zhou
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexander W Friedrich
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - John W A Rossen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA.,IDbyDNA Inc., Salt Lake City, UT, USA
| | - Hermie J M Harmsen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Erik Bathoorn
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Monika A Chlebowicz-Fliss
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
6
|
Janjusevic A, Markovic Denic L, Minic R, Grgurevic A, Cirkovic I. Intestinal carriage of vancomycin-resistant Enterococcus spp. among high-risk patients in university hospitals in Serbia: first surveillance report. Ann Clin Microbiol Antimicrob 2021; 20:18. [PMID: 33743726 PMCID: PMC7981873 DOI: 10.1186/s12941-021-00423-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The screening for intestinal carriage of vancomycin-resistant Enterococcus spp. (VRE) among high risk patients in the Balkan region and molecular epidemiology of VRE is insufficiently investigated, yet it could be of key importance in infection control. The aim of this study was to provide baseline data on VRE intestinal carriage among high-risk patients in Serbian university hospitals, to determine the phenotypic/genotypic profiles of the isolated VRE, to obtain knowledge of local resistance patterns and bridge the gaps in current VRE surveillance. METHODS The VRE reservoir was investigated using stool samples from 268 inpatients. Characterization of isolated VRE stains consisted of BD Phoenix system, genotypic identification, glycopeptide and quinupristin-dalfopristin (Q-D) resistance probing, virulence gene (esp, hyl, efaA, asa1, gelE, cpd) detection and MLVA. Biofilm formation was evaluated by the microtiter plate method. RESULTS VRE carriage prevalence among at-risk patients was 28.7%. All VRE strains were vanA positive multidrug-resistant Enterococcus faecium (VRfm), harboring ermB-1 (38.9%), esp (84%), efaA (71.2%), hyl (54.5%), asa1 (23.4%), gelE and cpd (11.6%) each. Ability of biofilm production was detected in 20.8%. Genetic relatedness of the isolates revealed 13 clusters, heterogeneous picture and 25 unique MTs profiles. CONCLUSION The obtained prevalence of VRE intestinal carriage among high-risk inpatients in Serbia is higher than the European average, with high percentage of multidrug resistance. The emergence of resistance to Q-D is of particular concern. Close monitoring of pattern of resistance and strict adherence to specific guidelines are urgently needed in Serbia.
Collapse
Affiliation(s)
- Ana Janjusevic
- Department of Bacteriology, Institute of Virology, Vaccines and Sera “Torlak”, Vojvode Stepe 458, 11152 Belgrade, Serbia
| | - Ljiljana Markovic Denic
- Department of Epidemiology, Institute of Epidemiology, Faculty of Medicine, University of Belgrade, Visegradska 26a, PO Box 20, 11129 Belgrade, Serbia
| | - Rajna Minic
- Department of Bacteriology, Institute of Virology, Vaccines and Sera “Torlak”, Vojvode Stepe 458, 11152 Belgrade, Serbia
| | - Anita Grgurevic
- Department of Epidemiology, Institute of Epidemiology, Faculty of Medicine, University of Belgrade, Visegradska 26a, PO Box 20, 11129 Belgrade, Serbia
| | - Ivana Cirkovic
- Department of Bacteriology, Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr Subotića 1, 11000 Belgrade, Serbia
| |
Collapse
|
7
|
Nguyen P, Khicher S, Osman H, Patel N. A Rare Case of Enterococcus gallinarum-Associated Peritonitis and Literature Review. Cureus 2020; 12:e12328. [PMID: 33520526 PMCID: PMC7839278 DOI: 10.7759/cureus.12328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Peritonitis is a well-known complication seen with peritoneal dialysis. Peritonitis is associated with increased mortality risk and is commonly caused by gram-positive and gram-negative bacteria, but it can also be the result of fungal or viral infections. Therefore, it is imperative to obtain a peritoneal fluid sample to send for cell count with differential, gram stain, and culture prior to starting empiric antibiotic therapy. We report a case of peritoneal dialysis-related peritonitis caused by Enterococcus gallinarum, for which there has only been one other reported case in the medical literature. Our patient was initially placed on vancomycin and cefepime but continued to deteriorate until peritoneal fluid cultures revealed E. gallinarum. Based on sensitivities, the patient was treated with daptomycin and cefazolin, which resolved her peritonitis.
Collapse
Affiliation(s)
- Paul Nguyen
- Internal Medicine, Wayne State University School of Medicine, Detroit, USA
| | - Suman Khicher
- Rheumatology, Wayne State University School of Medicine, Detroit, USA
| | - Heba Osman
- Internal Medicine, Wayne State University School of Medicine, Detroit, USA
| | - Neel Patel
- Internal Medicine, Wayne State University School of Medicine, Detroit, USA
| |
Collapse
|
8
|
Mancilla-Rojano J, Ochoa SA, Reyes-Grajeda JP, Flores V, Medina-Contreras O, Espinosa-Mazariego K, Parra-Ortega I, Rosa-Zamboni DDL, Castellanos-Cruz MDC, Arellano-Galindo J, Cevallos MA, Hernández-Castro R, Xicohtencatl-Cortes J, Cruz-Córdova A. Molecular Epidemiology of Acinetobacter calcoaceticus- Acinetobacter baumannii Complex Isolated From Children at the Hospital Infantil de México Federico Gómez. Front Microbiol 2020; 11:576673. [PMID: 33178158 PMCID: PMC7593844 DOI: 10.3389/fmicb.2020.576673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
The Acinetobacter calcoaceticus-baumannii (Acb) complex is regarded as a group of phenotypically indistinguishable opportunistic pathogens responsible for mainly causing hospital-acquired pneumonia and bacteremia. The aim of this study was to determine the frequency of isolation of the species that constitute the Acb complex, as well as their susceptibility to antibiotics, and their distribution at the Hospital Infantil de Mexico Federico Gomez (HIMFG). A total of 88 strains previously identified by Vitek 2®, 40 as Acinetobacter baumannii and 48 as Acb complex were isolated from 52 children from 07, January 2015 to 28, September 2017. A. baumannii accounted for 89.77% (79/88) of the strains; Acinetobacter pittii, 6.82% (6/88); and Acinetobacter nosocomialis, 3.40% (3/88). Most strains were recovered mainly from patients in the intensive care unit (ICU) and emergency wards. Blood cultures (BC) provided 44.32% (39/88) of strains. The 13.63% (12/88) of strains were associated with primary bacteremia, 3.4% (3/88) with secondary bacteremia, and 2.3% (2/88) with pneumonia. In addition, 44.32% (39/88) were multidrug-resistant (MDR) strains and, 11.36% (10/88) were extensively drug-resistant (XDR). All strains amplified the blaOXA-51 gene; 51.13% (45/88), the blaOXA-23 gene; 4.54% (4/88), the blaOXA-24 gene; and 2.27% (2/88), the blaOXA-58 gene. Plasmid profiles showed that the strains had 1–6 plasmids. The strains were distributed in 52 pulsotypes, and 24 showed identical restriction patterns, with a correlation coefficient of 1.0. Notably, some strains with the same pulsotype were isolated from different patients, wards, or years, suggesting the persistence of more than one clone. Twenty-seven sequence types (STs) were determined for the strains based on a Pasteur multilocus sequence typing (MLST) scheme using massive sequencing; the most prevalent was ST 156 (27.27%, 24/88). The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas I-Fb system provided amplification in A. baumannii and A. pittii strains (22.73%, 20/88). This study identified an increased number of MDR strains and the relationship among strains through molecular typing. The data suggest that more than one strain could be causing an infection in some patient. The implementation of molecular epidemiology allowed the characterization of a set of strains and identification of different attributes associated with its distribution in a specific environment.
Collapse
Affiliation(s)
- Jetsi Mancilla-Rojano
- Laboratorio de Investigación en Bacteriología Intestinal, Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, CDMX, Mexico.,Facultad de Medicina, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Sara A Ochoa
- Laboratorio de Investigación en Bacteriología Intestinal, Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, CDMX, Mexico
| | - Juan Pablo Reyes-Grajeda
- Subdirección de Desarrollo de Aplicaciones Clínicas, Instituto Nacional de Medicina Genómica, Ciudad de México, Mexico
| | - Víctor Flores
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Irapuato, Mexico
| | - Oscar Medina-Contreras
- Unidad de Investigación Epidemiológica en Endocrinología y Nutrición, Hospital Infantil de México Federico Gómez, CDMX, Mexico
| | - Karina Espinosa-Mazariego
- Laboratorio de Investigación en Bacteriología Intestinal, Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, CDMX, Mexico
| | - Israel Parra-Ortega
- Departamento de Laboratorio Clínico, Laboratorio Central, Hospital Infantil de México Federico Gómez, CDMX, Mexico
| | | | | | - José Arellano-Galindo
- Unidad de investigación en Enfermedades Infecciosas, Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, CDMX, Mexico
| | - Miguel A Cevallos
- Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | - Juan Xicohtencatl-Cortes
- Laboratorio de Investigación en Bacteriología Intestinal, Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, CDMX, Mexico
| | - Ariadnna Cruz-Córdova
- Laboratorio de Investigación en Bacteriología Intestinal, Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, CDMX, Mexico
| |
Collapse
|
9
|
Rios R, Reyes J, Carvajal LP, Rincon S, Panesso D, Echeverri AM, Dinh A, Kolokotronis SO, Narechania A, Tran TT, Munita JM, Murray BE, Planet PJ, Arias CA, Diaz L. Genomic Epidemiology of Vancomycin-Resistant Enterococcus faecium (VREfm) in Latin America: Revisiting The Global VRE Population Structure. Sci Rep 2020; 10:5636. [PMID: 32221315 PMCID: PMC7101424 DOI: 10.1038/s41598-020-62371-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Little is known about the population structure of vancomycin-resistant Enterococcus faecium (VREfm) in Latin America (LATAM). Here, we provide a complete genomic characterization of 55 representative Latin American VREfm recovered from 1998-2015 in 5 countries. The LATAM VREfm population is structured into two main clinical clades without geographical clustering. Using the LATAM genomes, we reconstructed the global population of VREfm by including 285 genomes from 36 countries spanning from 1946 to 2017. In contrast to previous studies, our results show an early branching of animal related isolates and a further split of clinical isolates into two sub-clades within clade A. The overall phylogenomic structure of clade A was highly dependent on recombination (54% of the genome) and the split between clades A and B was estimated to have occurred more than 2,765 years ago. Furthermore, our molecular clock calculations suggest the branching of animal isolates and clinical clades occurred ~502 years ago whereas the split within the clinical clade occurred ~302 years ago (previous studies showed a more recent split between clinical an animal branches around ~74 years ago). By including isolates from Latin America, we present novel insights into the population structure of VREfm and revisit the evolution of these pathogens.
Collapse
Affiliation(s)
- Rafael Rios
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia
| | - Jinnethe Reyes
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia.,Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Lina P Carvajal
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia
| | - Sandra Rincon
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia
| | - Diana Panesso
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia.,Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.,Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Aura M Echeverri
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia
| | - An Dinh
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.,Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Sergios-Orestis Kolokotronis
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA.,Department of Epidemiology and Biostatistics, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Apurva Narechania
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| | - Truc T Tran
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.,Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Jose M Munita
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.,Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA.,Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile.,Genomics and Resistant Microbes Group, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Barbara E Murray
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.,Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA.,Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Paul J Planet
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania & Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cesar A Arias
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia.,Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.,Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA.,Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile.,Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Lorena Diaz
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia. .,Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA. .,Millennium Initiative for Collaborative Research On Bacterial Resistance (MICROB-R), Santiago, Chile.
| |
Collapse
|
10
|
Fiore E, Van Tyne D, Gilmore MS. Pathogenicity of Enterococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0053-2018. [PMID: 31298205 PMCID: PMC6629438 DOI: 10.1128/microbiolspec.gpp3-0053-2018] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Indexed: 12/19/2022] Open
Abstract
Enterococci are unusually well adapted for survival and persistence in a variety of adverse environments, including on inanimate surfaces in the hospital environment and at sites of infection. This intrinsic ruggedness undoubtedly played a role in providing opportunities for enterococci to interact with other overtly drug-resistant microbes and acquire additional resistances on mobile elements. The rapid rise of antimicrobial resistance among hospital-adapted enterococci has rendered hospital-acquired infections a leading therapeutic challenge. With about a quarter of a genome of additional DNA conveyed by mobile elements, there are undoubtedly many more properties that have been acquired that help enterococci persist and spread in the hospital setting and cause diseases that have yet to be defined. Much remains to be learned about these ancient and rugged microbes, particularly in the area of pathogenic mechanisms involved with human diseases.
Collapse
Affiliation(s)
- Elizabeth Fiore
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| | - Daria Van Tyne
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| | - Michael S Gilmore
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
11
|
Malatji BG, Mason S, Mienie LJ, Wevers RA, Meyer H, van Reenen M, Reinecke CJ. The GC-MS metabolomics signature in patients with fibromyalgia syndrome directs to dysbiosis as an aspect contributing factor of FMS pathophysiology. Metabolomics 2019; 15:54. [PMID: 30919098 DOI: 10.1007/s11306-019-1513-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/18/2019] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Fibromyalgia syndrome (FMS) is a chronic pain syndrome. Previous analyses of untargeted metabolomics data indicated altered metabolic profile in FMS patients. OBJECTIVES We report a semi-targeted explorative metabolomics study on the urinary metabolite profile of FMS patients; exploring the potential of urinary metabolite information to augment existing medical diagnosis. METHODS All cases were females. Patients had a medical history of persistent FMS (n = 18). Control groups were first-generation family members of the patients (n = 11), age-related individuals without indications of FMS (n = 10), and healthy, young (18-22 years) individuals (n = 41). The biofluid investigated was early morning urine samples. Data generation was done through gas chromatography-mass spectrometry (GC-MS) analysis and data processing and analyses were performed using Matlab, R, SPSS and SAS software. RESULTS Quantitative analysis revealed the presence of 196 metabolites. Unsupervised and supervised multivariate analyses distinguished all three control groups and the FMS patients, which could be related to 14 significantly increased metabolites. These metabolites are associated with energy metabolism, digestion and metabolism of carbohydrates and other host and gut metabolites. CONCLUSIONS Overall, urinary metabolite profiles in the FMS patients suggest: (1) energy utilization is a central aspect of this pain disorder, (2) dysbiosis seems to prevail in FMS patients, indicated by disrupted microbiota metabolites, supporting the model that microbiota may alter brain function through the gut-brain axis, with the gut being a gateway to generalized pain, and (3) screening of urine from FMS is an avenue to explore for adding non-invasive clinical information for diagnosis and treatment of FMS.
Collapse
Affiliation(s)
- Bontle G Malatji
- Faculty of Natural and Agricultural Sciences, Centre for Human Metabolomics, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Shayne Mason
- Faculty of Natural and Agricultural Sciences, Centre for Human Metabolomics, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa.
| | - Lodewyk J Mienie
- Faculty of Natural and Agricultural Sciences, Centre for Human Metabolomics, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Ron A Wevers
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Helgard Meyer
- Department of Family Medicine, Kalafong Hospital, University of Pretoria, Private Bag X396, Pretoria, South Africa
| | - Mari van Reenen
- Faculty of Natural and Agricultural Sciences, Centre for Human Metabolomics, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Carolus J Reinecke
- Faculty of Natural and Agricultural Sciences, Centre for Human Metabolomics, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| |
Collapse
|
12
|
Kim HS, Kim DH, Yoon HJ, Lee WJ, Woo SH, Choi SP. Factors Associated with Vancomycin-Resistant Enterococcus Colonization in Patients Transferred to Emergency Departments in Korea. J Korean Med Sci 2018; 33:e295. [PMID: 30473648 PMCID: PMC6249167 DOI: 10.3346/jkms.2018.33.e295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/16/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Vancomycin-resistant enterococci (VRE) infections have become a major healthcare-associated pathogen problem worldwide. Nosocomial VRE infections could be effectively controlled by screening patients at high risk of harboring VRE and thereby lowering the influx of VRE into healthcare centers. In this study, we evaluated factors associated with VRE colonization in patients transferred to emergency departments, to detect patients at risk for VRE carriage. METHODS This study was conducted in the emergency department of a medical college-affiliated hospital in Korea. Every patient transferred to the emergency department and admitted to the hospital from January to December 2016 was screened for VRE using rectal cultures. In this cross-sectional study, the dependent variable was VRE colonization and the independent variables were demographic and clinical factors of the patients and factors related to the transferring hospital. Patients were divided into two groups, VRE and non-VRE, and previously collected patient data were analyzed. Then we performed logistic regression analyses of characteristics that differed significantly between groups. RESULTS Out of 650 patients, 106 (16.3%) had positive VRE culture results. Significant variables in the logistic analysis were transfer from geriatric long-term care hospital (adjusted odds ration [aOR]: 8.017; 95% confidence interval [CI]: 1.378-46.651), hospital days (4-7 days; aOR: 7.246; 95% CI: 3.229-16.261), duration of antimicrobial exposure (1-3 days; aOR: 1.976; 95% CI: 1.137-3.436), and age (aOR: 1.025; 95% CI: 1.007-1.043). CONCLUSION VRE colonization in patients transferred to the emergency department is associated primarily with factors related to the transferred hospitals rather than demographic and clinical characteristics.
Collapse
Affiliation(s)
- Hyun Soon Kim
- Department of Emergency Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dae Hee Kim
- Department of Emergency Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| | - Hai-jeon Yoon
- Department of Nuclear Medicine, Ewha Womans University School of Medicine, Seoul, Korea
| | - Woon Jeong Lee
- Department of Emergency Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seon Hee Woo
- Department of Emergency Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Pill Choi
- Department of Emergency Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
13
|
Bronzato GF, Oliva MS, Alvin MG, Pribul BR, Rodrigues DP, Coelho SM, Coelho IS, Souza MM. MALDI-TOF MS as a tool for the identification of Vibrio alginolyticus from Perna perna mussels (Linnaeus, 1758). PESQUISA VETERINARIA BRASILEIRA 2018. [DOI: 10.1590/1678-5150-pvb-5233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
ABSTRACT: Vibrio species are ubiquitous in aquatic environments, including coastal and marine habitats. Vibrio alginolyticus is an opportunistic pathogen for fish, crustaceans and mussels and their identification by biochemical tests may be impaired due their nutritional requirements. The study used Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) to identify 49 Vibrio spp. isolates associated with mussels (Perna perna) from different locations along the Rio de Janeiro coast. The rpoA gene was used as a genus-specific marker of Vibrio spp. and was positive in all 209 isolates. MALDI-TOF MS confirmed 87.8% of V. alginolyticus when compared to the results of the biochemical tests. Four isolates were identified as Shewanella putrefaciens (8.16%) and one was identified as V. parahaemolyticus (2.0%). Just one isolate was not identified by this technique (2.0%). The pyrH sequencing confirmed 75% of the proteomic technique results. MALDI-TOF MS is an excellent option for characterization of bacterial species, as it is efficient, fast and easy to apply. In addition, our study confirms its high specificity and sensitivity in these marine bacteria identification.
Collapse
|
14
|
Abstract
The Enterococcus genus comprises over 50 species that live as commensal bacteria in the gastrointestinal (GI) tracts of insects, birds, reptiles, and mammals. Named "entero" to emphasize their intestinal habitat, Enterococcus faecalis and Enterococcus faecium were first isolated in the early 1900s and are the most abundant species of this genus found in the human fecal microbiota. In the past 3 decades, enterococci have developed increased resistance to several classes of antibiotics and emerged as a prevalent causative agent of health care-related infections. In U.S. hospitals, antibiotic use has increased the transmission of multidrug-resistant enterococci. Antibiotic treatment depletes broad communities of commensal microbes from the GI tract, allowing resistant enterococci to densely colonize the gut. The reestablishment of a diverse intestinal microbiota is an emerging approach to combat infections caused by antibiotic-resistant bacteria in the GI tract. Because enterococci exist as commensals, modifying the intestinal microbiome to eliminate enterococcal clinical pathogens poses a challenge. To better understand how enterococci exist as both commensals and pathogens, in this article we discuss their clinical importance, antibiotic resistance, diversity in genomic composition and habitats, and interaction with the intestinal microbiome that may be used to prevent clinical infection.
Collapse
|
15
|
Ahmed MO, Baptiste KE. Vancomycin-Resistant Enterococci: A Review of Antimicrobial Resistance Mechanisms and Perspectives of Human and Animal Health. Microb Drug Resist 2017; 24:590-606. [PMID: 29058560 DOI: 10.1089/mdr.2017.0147] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Vancomycin-resistant enterococci (VRE) are both of medical and public health importance associated with serious multidrug-resistant infections and persistent colonization. Enterococci are opportunistic environmental inhabitants with a remarkable adaptive capacity to evolve and transmit antimicrobial-resistant determinants. The VRE gene operons show distinct genetic variability and apparently continued evolution leading to a variety of antimicrobial resistance phenotypes and various environmental and livestock reservoirs for the most common van genes. Such complex diversity renders a number of important therapeutic options including "last resort antibiotics" ineffective and poses a particular challenge for clinical management. Enterococci resistance to glycopeptides and multidrug resistance warrants attention and continuous monitoring.
Collapse
Affiliation(s)
- Mohamed O Ahmed
- 1 Department of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Tripoli , Tripoli, Libya
| | - Keith E Baptiste
- 2 Department of Veterinary Medicine, Danish Medicines Agency , Copenhagen South, Denmark
| |
Collapse
|
16
|
Turolla A, Sabatino R, Fontaneto D, Eckert EM, Colinas N, Corno G, Citterio B, Biavasco F, Antonelli M, Mauro A, Mangiaterra G, Di Cesare A. Defence strategies and antibiotic resistance gene abundance in enterococci under stress by exposure to low doses of peracetic acid. CHEMOSPHERE 2017; 185:480-488. [PMID: 28715758 DOI: 10.1016/j.chemosphere.2017.07.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/28/2017] [Accepted: 07/08/2017] [Indexed: 06/07/2023]
Abstract
Peracetic acid (PAA) is an organic compound used efficiently as disinfectant in wastewater treatments. Yet, at low doses it may cause selection; thus, the effect of low doses of PAA on Enterococcus faecium as a proxy of human-related microbial waste was evaluated. Bacteria were treated with increasing doses of PAA (from 0 to 25 mg L-1 min) and incubated in regrowth experiments under non-growing, limiting conditions and under growing, favorable conditions. The changes in bacterial abundance, in bacterial phenotype (number and composition of small cell clusters), and in the abundance of an antibiotic resistance gene (ARG) was evaluated. The experiment demonstrated that the selected doses of PAA efficiently removed enterococci, and induced a long-lasting effect after PAA inactivation. The relative abundance of small clusters increased during the experiment when compared with that of the inoculum. Moreover, under growing favorable conditions the relative abundance of small clusters decreased and the number of cells per cluster increased with increasing PAA doses. A strong stability of the measured ARG was found, not showing any effect during the whole experiment. The results demonstrated the feasibility of low doses of PAA to inactivate bacteria. However, the stress induced by PAA disinfection promoted a bacterial adaptation, even if potentially without affecting the abundance of the ARG.
Collapse
Affiliation(s)
- Andrea Turolla
- Department of Civil and Environmental Engineering (DICA) - Environmental Section, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Raffaella Sabatino
- Laboratory of Metabolic Research, Ospedale San Giuseppe, IRCCS Istituto Auxologico Italiano, Strada Cadorna 90, 28988, Piancavallo di Oggebbio, Italy; Laboratory of Clinical Neurobiology, Ospedale San Giuseppe, IRCCS Istituto Auxologico Italiano, Strada Cadorna 90, 28988, Piancavallo di Oggebbio, Italy
| | - Diego Fontaneto
- Microbial Ecology Group, National Research Council - Institute of Ecosystem Study (CNR-ISE), Largo Tonolli 50, 28922, Verbania, Italy
| | - Ester M Eckert
- Microbial Ecology Group, National Research Council - Institute of Ecosystem Study (CNR-ISE), Largo Tonolli 50, 28922, Verbania, Italy
| | - Noemi Colinas
- Microbial Ecology Group, National Research Council - Institute of Ecosystem Study (CNR-ISE), Largo Tonolli 50, 28922, Verbania, Italy
| | - Gianluca Corno
- Microbial Ecology Group, National Research Council - Institute of Ecosystem Study (CNR-ISE), Largo Tonolli 50, 28922, Verbania, Italy.
| | - Barbara Citterio
- Department of Biomolecular Sciences, Biotechnology Section, University of Urbino "Carlo Bo", via Arco d'Augusto 2, 61032, Fano, Italy
| | - Francesca Biavasco
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Manuela Antonelli
- Department of Civil and Environmental Engineering (DICA) - Environmental Section, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy
| | - Alessandro Mauro
- Laboratory of Clinical Neurobiology, Ospedale San Giuseppe, IRCCS Istituto Auxologico Italiano, Strada Cadorna 90, 28988, Piancavallo di Oggebbio, Italy; Department of Neuroscience "Rita Levi Montalcini", University of Turin, via Cherasco 15, 10126, Turin, Italy
| | - Gianmarco Mangiaterra
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Andrea Di Cesare
- Microbial Ecology Group, National Research Council - Institute of Ecosystem Study (CNR-ISE), Largo Tonolli 50, 28922, Verbania, Italy
| |
Collapse
|
17
|
Egli A, Schmid H, Kuenzli E, Widmer AF, Battegay M, Plagge H, Frei R, Achermann R, Weisser M. Association of daptomycin use with resistance development in Enterococcus faecium bacteraemia-a 7-year individual and population-based analysis. Clin Microbiol Infect 2016; 23:118.e1-118.e7. [PMID: 27746397 DOI: 10.1016/j.cmi.2016.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 09/23/2016] [Accepted: 10/03/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE In this study we aimed to analyse the association between use of daptomycin and MICs of daptomycin in Enterococcus faecium bacteraemia. METHODS We prospectively enrolled patients aged ≥18 years with E. faecium bacteraemia hospitalized at the University Hospital Basel from 2008 to 2014. We determined daptomycin MICs by Etests and used pulsed field gel electrophoresis to determine clonal relatedness. We recorded the defined daily dosages of daptomycin (DDDs) per 100 patient-days and clinical data from charts. We correlated daptomycin MIC with use of daptomycin in patients with recurrence/persistence. RESULTS In 195 E. faecium bacteraemias originating from 162 patients the median MIC for daptomycin was 2 mg/L (IQR 2-3); 30% (15.4%) isolates had a MIC ≥4 mg/L and 6 (3.1%) were resistant (MIC >4 mg/L) according to CLSI criteria. The usage of daptomycin increased more than four-fold from 0.36 DDDs/100 patient-days in 2008 to 1.6 in 2014. In 13 of 28 (42.9%) patients with a relapsing or persisting bacteraemia, the daptomycin MIC of the second isolate increased from a median of 2.0 to 2.5 mg/L (p 0.010); 3/13 (23.1%) developed resistance. All patients with the same clone in the first and second episode and an increase of daptomycin MIC had been treated with daptomycin (6/6 versus 1/7 p 0.005). CONCLUSIONS Daptomycin MICs and Daptomycin usage increased over time. On an individual patient level daptomycin exposure was associated with an increased MIC in subsequent bacteraemia episodes. Diversity did not indicate a clonal origin and argues for a de novo development of resistance.
Collapse
Affiliation(s)
- A Egli
- Clinical Microbiology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland; Applied Microbiology Research, Department Biomedicine, University of Basel, Switzerland
| | - H Schmid
- Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - E Kuenzli
- Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland; Epidemiology, Biostatistics and Prevention Institute, University of Zürich, Zürich, Switzerland
| | - A F Widmer
- Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - M Battegay
- Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - H Plagge
- Hospital Pharmacy, University Hospital Basel, Basel, Switzerland
| | - R Frei
- Clinical Microbiology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - R Achermann
- Applied Microbiology Research, Department Biomedicine, University of Basel, Switzerland
| | - M Weisser
- Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland; Department of Clinical Research, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
18
|
Morroni G, Di Cesare A, Di Sante L, Brenciani A, Vignaroli C, Pasquaroli S, Giovanetti E, Sabatino R, Rossi L, Magnani M, Biavasco F. Enterococcus faecium ST17 from Coastal Marine Sediment Carrying Transferable Multidrug Resistance Plasmids. Microb Drug Resist 2016; 22:523-530. [PMID: 26982016 DOI: 10.1089/mdr.2015.0222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The multidrug-resistant Enterococcus faecium 17i48, sequence type 17, from marine sediment, carrying erm(B), tet(M), and tet(L) genes, was analyzed for the presence of antibiotic resistance plasmids and for the ability to transfer resistance genes. The strain was found to harbor the replicon type (repA) of pRE25, pRUM, pHTβ, and the axe-txe toxin-antitoxin (TA) system. In mating experiments, tet(M) and tet(L) were cotransferred with the repApRE25, whereas erm(B) was consistently cotransferred with the axe-txe and repApRUM, suggesting that tetracycline and erythromycin resistance genes were carried on different elements both transferable by conjugation, likely via pHTβ-mediated mobilization. Hybridization and PCR mapping demonstrated that tet(M) and tet(L) were located in tandem on a pDO1-like plasmid that also carried the repApRE25, whereas erm(B) was carried by a pRUM-like plasmid. Sequencing of the latter plasmid showed a high nucleotide identity with pRUM and the presence of cat, aadE, sat4, and a complete aphA resistance genes. These findings show that the genetic features of E. faecium 17i48 are consistent with a hospital-adapted clone and suggest that antibiotic resistance may spread in the environment, also in the absence of antibiotic pressure, due to TA system plasmid maintenance.
Collapse
Affiliation(s)
- Gianluca Morroni
- 1 Department of Biomedical Sciences and Public Health, Polytechnic University of Marche , Ancona, Italy
| | - Andrea Di Cesare
- 2 Department of Life and Environmental Sciences, Polytechnic University of Marche , Ancona, Italy
| | - Laura Di Sante
- 2 Department of Life and Environmental Sciences, Polytechnic University of Marche , Ancona, Italy
| | - Andrea Brenciani
- 1 Department of Biomedical Sciences and Public Health, Polytechnic University of Marche , Ancona, Italy
| | - Carla Vignaroli
- 2 Department of Life and Environmental Sciences, Polytechnic University of Marche , Ancona, Italy
| | - Sonia Pasquaroli
- 2 Department of Life and Environmental Sciences, Polytechnic University of Marche , Ancona, Italy
| | - Eleonora Giovanetti
- 2 Department of Life and Environmental Sciences, Polytechnic University of Marche , Ancona, Italy
| | - Raffaella Sabatino
- 3 Biochemistry and Molecular Biology Section, Department of Biomolecular Sciences, University of Urbino "Carlo Bo," Urbino, Italy
| | - Luigia Rossi
- 3 Biochemistry and Molecular Biology Section, Department of Biomolecular Sciences, University of Urbino "Carlo Bo," Urbino, Italy
| | - Mauro Magnani
- 3 Biochemistry and Molecular Biology Section, Department of Biomolecular Sciences, University of Urbino "Carlo Bo," Urbino, Italy
| | - Francesca Biavasco
- 2 Department of Life and Environmental Sciences, Polytechnic University of Marche , Ancona, Italy
| |
Collapse
|
19
|
Molecular characterization of resistance, virulence and clonality in vancomycin-resistant Enterococcus faecium and Enterococcus faecalis : A hospital-based study in Beijing, China. INFECTION GENETICS AND EVOLUTION 2015; 33:253-60. [DOI: 10.1016/j.meegid.2015.05.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/10/2015] [Accepted: 05/11/2015] [Indexed: 11/21/2022]
|
20
|
Soheili S, Ghafourian S, Sekawi Z, Neela VK, Sadeghifard N, Taherikalani M, Khosravi A, Ramli R, Hamat RA. The mazEF toxin-antitoxin system as an attractive target in clinical isolates of Enterococcus faecium and Enterococcus faecalis. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2553-61. [PMID: 26005332 PMCID: PMC4428366 DOI: 10.2147/dddt.s77263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The toxin–antitoxin (TA) system is a regulatory system where two sets of genes encode the toxin and its corresponding antitoxin. In this study, the prevalence of TA systems in independently isolated clinical isolates of Enterococcus faecium and Enterococcus faecalis was determined, the dominant TA system was identified, different virulence genes in E. faecium and E. faecalis were surveyed, the level of expression of the virulence and TA genes in normal and stress conditions was determined, and finally their associations with the TA genes were defined. Remarkably, the analysis demonstrated higBA and mazEF in all clinical isolates, and their locations were on chromosomes and plasmids, respectively. On the other hand, a quantitative analysis of TA and virulence genes revealed that the expression level in both genes is different under normal and stress conditions. The results obtained by anti-mazF peptide nucleic acids demonstrated that the expression level of virulence genes had decreased. These findings demonstrate an association between TA systems and virulence factors. The mazEF on the plasmids and the higBA TA genes on the chromosomes of all E. faecium and E. faecalis strains were dominant. Additionally, there was a decrease in the expression of virulence genes in the presence of anti-mazF peptide nucleic acids. Therefore, it is suggested that mazEF TA systems are potent and sensitive targets in all E. faecium and E. faecalis strains.
Collapse
Affiliation(s)
- Sara Soheili
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sobhan Ghafourian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Zamberi Sekawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Vasantha Kumari Neela
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nourkhoda Sadeghifard
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Morovat Taherikalani
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Afra Khosravi
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Ramliza Ramli
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaakob Latif, Bandar Tun Razak, Kuala Lumpur, Malaysia
| | - Rukman Awang Hamat
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
21
|
Mikalsen T, Pedersen T, Willems R, Coque TM, Werner G, Sadowy E, van Schaik W, Jensen LB, Sundsfjord A, Hegstad K. Investigating the mobilome in clinically important lineages of Enterococcus faecium and Enterococcus faecalis. BMC Genomics 2015; 16:282. [PMID: 25885771 PMCID: PMC4438569 DOI: 10.1186/s12864-015-1407-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/27/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The success of Enterococcus faecium and E. faecalis evolving as multi-resistant nosocomial pathogens is associated with their ability to acquire and share adaptive traits, including antimicrobial resistance genes encoded by mobile genetic elements (MGEs). Here, we investigate this mobilome in successful hospital associated genetic lineages, E. faecium sequence type (ST)17 (n=10) and ST78 (n=10), E. faecalis ST6 (n=10) and ST40 (n=10) by DNA microarray analyses. RESULTS The hybridization patterns of 272 representative targets including plasmid backbones (n=85), transposable elements (n=85), resistance determinants (n=67), prophages (n=29) and clustered regularly interspaced short palindromic repeats (CRISPR)-cas sequences (n=6) separated the strains according to species, and for E. faecalis also according to STs. RCR-, Rep_3-, RepA_N- and Inc18-family plasmids were highly prevalent and with the exception of Rep_3, evenly distributed between the species. There was a considerable difference in the replicon profile, with rep 17/pRUM , rep 2/pRE25 , rep 14/EFNP1 and rep 20/pLG1 dominating in E. faecium and rep 9/pCF10 , rep 2/pRE25 and rep 7 in E. faecalis strains. We observed an overall high correlation between the presence and absence of genes coding for resistance towards antibiotics, metals, biocides and their corresponding MGEs as well as their phenotypic antimicrobial susceptibility pattern. Although most IS families were represented in both E. faecalis and E. faecium, specific IS elements within these families were distributed in only one species. The prevalence of IS256-, IS3-, ISL3-, IS200/IS605-, IS110-, IS982- and IS4-transposases was significantly higher in E. faecium than E. faecalis, and that of IS110-, IS982- and IS1182-transposases in E. faecalis ST6 compared to ST40. Notably, the transposases of IS981, ISEfm1 and IS1678 that have only been reported in few enterococcal isolates were well represented in the E. faecium strains. E. faecalis ST40 strains harboured possible functional CRISPR-Cas systems, and still resistance and prophage sequences were generally well represented. CONCLUSIONS The targeted MGEs were highly prevalent among the selected STs, underlining their potential importance in the evolution of hospital-adapted lineages of enterococci. Although the propensity of inter-species horizontal gene transfer (HGT) must be emphasized, the considerable species-specificity of these MGEs indicates a separate vertical evolution of MGEs within each species, and for E. faecalis within each ST.
Collapse
Affiliation(s)
- Theresa Mikalsen
- Research group for Host-microbe Interactions, Department of Medical Biology, Faculty of Health Science, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Torunn Pedersen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
| | - Rob Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Teresa M Coque
- Servicio de Microbiologia, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain. .,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain.
| | - Guido Werner
- Division of Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany.
| | - Ewa Sadowy
- Department of Molecular Microbiology, National Medicines Institute, ul, Chełmska 30/34, 00-725, Warsaw, Poland.
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Lars Bogø Jensen
- Division of Food Microbiologyt, National Food Institute, Danish Technical University, Copenhagen V, Denmark.
| | - Arnfinn Sundsfjord
- Research group for Host-microbe Interactions, Department of Medical Biology, Faculty of Health Science, UiT - The Arctic University of Norway, Tromsø, Norway. .,Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
| | - Kristin Hegstad
- Research group for Host-microbe Interactions, Department of Medical Biology, Faculty of Health Science, UiT - The Arctic University of Norway, Tromsø, Norway. .,Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
| |
Collapse
|
22
|
Population biology of intestinal enterococcus isolates from hospitalized and nonhospitalized individuals in different age groups. Appl Environ Microbiol 2014; 81:1820-31. [PMID: 25548052 DOI: 10.1128/aem.03661-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The diversity of enterococcal populations from fecal samples from hospitalized (n = 133) and nonhospitalized individuals (n = 173) of different age groups (group I, ages 0 to 19 years; group II, ages 20 to 59 years; group III, ages ≥60 years) was analyzed. Enterococci were recovered at similar rates from hospitalized and nonhospitalized persons (77.44% to 79.77%) of all age groups (75.0% to 82.61%). Enterococcus faecalis and Enterococcus faecium were predominant, although seven other Enterococcus species were identified. E. faecalis and E. faecium (including ampicillin-resistant E. faecium) colonization rates in nonhospitalized persons were age independent. For inpatients, E. faecalis colonization rates were age independent, but E. faecium colonization rates (particularly the rates of ampicillin-resistant E. faecium colonization) significantly increased with age. The population structure of E. faecium and E. faecalis was determined by superimposing goeBURST and Bayesian analysis of the population structure (BAPS). Most E. faecium sequence types (STs; 150 isolates belonging to 75 STs) were linked to BAPS groups 1 (22.0%), 2 (31.3%), and 3 (36.7%). A positive association between hospital isolates and BAPS subgroups 2.1a and 3.3a (which included major ampicillin-resistant E. faecium human lineages) and between community-based ampicillin-resistant E. faecium isolates and BAPS subgroups 1.2 and 3.3b was found. Most E. faecalis isolates (130 isolates belonging to 58 STs) were grouped into 3 BAPS groups, BAPS groups 1 (36.9%), 2 (40.0%), and 3 (23.1%), with each one comprising widespread lineages. No positive associations with age or hospitalization were established. The diversity and dynamics of enterococcal populations in the fecal microbiota of healthy humans are largely unexplored, with the available knowledge being fragmented and contradictory. The study offers a novel and comprehensive analysis of enterococcal population landscapes and suggests that E. faecium populations from hospitalized patients and from community-based individuals differ, with a predominance of certain clonal lineages, often in association with elderly individuals, occurring in the hospital setting.
Collapse
|
23
|
Abstract
The Enterococcus genus comprises over 50 species that live as commensal bacteria in the gastrointestinal (GI) tracts of insects, birds, reptiles, and mammals. Named "entero" to emphasize their intestinal habitat, Enterococcus faecalis and Enterococcus faecium were first isolated in the early 1900s and are the most abundant species of this genus found in the human fecal microbiota. In the past 3 decades, enterococci have developed increased resistance to several classes of antibiotics and emerged as a prevalent causative agent of health care-related infections. In U.S. hospitals, antibiotic use has increased the transmission of multidrug-resistant enterococci. Antibiotic treatment depletes broad communities of commensal microbes from the GI tract, allowing resistant enterococci to densely colonize the gut. The reestablishment of a diverse intestinal microbiota is an emerging approach to combat infections caused by antibiotic-resistant bacteria in the GI tract. Because enterococci exist as commensals, modifying the intestinal microbiome to eliminate enterococcal clinical pathogens poses a challenge. To better understand how enterococci exist as both commensals and pathogens, in this article we discuss their clinical importance, antibiotic resistance, diversity in genomic composition and habitats, and interaction with the intestinal microbiome that may be used to prevent clinical infection.
Collapse
|
24
|
Cantón R, Horcajada JP, Oliver A, Garbajosa PR, Vila J. Inappropriate use of antibiotics in hospitals: the complex relationship between antibiotic use and antimicrobial resistance. Enferm Infecc Microbiol Clin 2014; 31 Suppl 4:3-11. [PMID: 24129283 DOI: 10.1016/s0213-005x(13)70126-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hospitals are considered an excellent compartment for the selection of resistant and multi-drug resistant (MDR) bacteria. The overuse and misuse of antimicrobial agents are considered key points fuelling this situation. Antimicrobial stewardship programs have been designed for better use of these compounds to prevent the emergence of resistant microorganisms and to diminish the upward trend in resistance. Nevertheless, the relationship between antibiotic use and antimicrobial resistance is complex, and the desired objectives are difficult to reach. Various factors affecting this relationship have been advocated including, among others, antibiotic exposure and mutant selection windows, antimicrobial pharmacodynamics, the nature of the resistance (natural or acquired, including mutational and that associated with horizontal gene transfer) and the definition of resistance. Moreover, antimicrobial policies to promote better use of these drugs should be implemented not only in the hospital setting coupled with infection control programs, but also in the community, which should also include animal and environmental compartments. Within hospitals, the restriction of antimicrobials, cycling and mixing strategies and the use of combination therapies have been used to avoid resistance. Nevertheless, the results have not always been favorable and resistant bacteria have persisted despite the theoretical benefits of these strategies. Mathematical models as well as microbiological knowledge can explain this failure, which is mainly related to the current scenario involving MDR bacteria and overcoming the fitness associated with resistance. New antimicrobials, rapid diagnostic and antimicrobial susceptibility testing and biomarkers will be useful for future antimicrobial stewardship interventions.
Collapse
Affiliation(s)
- Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | | | | | | | | |
Collapse
|
25
|
Insufficient discriminatory power of MALDI-TOF mass spectrometry for typing of Enterococcus faecium and Staphylococcus aureus isolates. J Microbiol Methods 2014; 100:58-69. [DOI: 10.1016/j.mimet.2014.02.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/24/2014] [Accepted: 02/24/2014] [Indexed: 12/15/2022]
|
26
|
Di Cesare A, Pasquaroli S, Vignaroli C, Paroncini P, Luna GM, Manso E, Biavasco F. The marine environment as a reservoir of enterococci carrying resistance and virulence genes strongly associated with clinical strains. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:184-190. [PMID: 24596292 DOI: 10.1111/1758-2229.12125] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/30/2013] [Indexed: 06/03/2023]
Abstract
To gain insights into the relationships and the genetic exchange among environmental and clinical enterococci, 59 strains (29 from marine aquaculture sites and 30 from clinical settings) resistant to tetracycline, erythromycin, ampicillin and/or gentamicin were analysed for the antibiotic resistance tet(M), tet(L), tet(O), erm(A), erm(B), mef blaZ, aac(6')-Ie aph(2″)-Ia and virulence gelE, cylB, efaA and esp genes, and for the copper resistance gene tcrB. Antibiotic resistance and virulence genes were detected more frequently in clinical than in environmental enterococci; the opposite was true for copper resistance. Conjugation experiments demonstrated the transfer of antibiotic resistance genes from marine to clinical enterococci in interspecific mating and the uncommon joint transfer of tet(L) and erm(B). Enterobacterial repetitive intergenic consensus polymerase chain reaction typing evidenced a cluster (90% similarity) encompassing strains carrying multiple antibiotic resistance genes from both sets; the others marine isolates exhibited polyclonality and bore tcrB. Our results demonstrate that antibiotic-resistant marine enterococci bear antibiotic resistance genes transferable to humans and suggest that copper resistance, not observed among clinical strains, may be useful for survival in the environment, whereas virulence genes likely confer no advantage to enterococcal populations adapted to a lifestyle outside the host.
Collapse
Affiliation(s)
- Andrea Di Cesare
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Sidhu JPS, Skelly E, Hodgers L, Ahmed W, Li Y, Toze S. Prevalence of enterococcus species and their virulence genes in fresh water prior to and after storm events. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:2979-2988. [PMID: 24494806 DOI: 10.1021/es4050083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Enterococcus spp. isolates (n = 286) collected from six surface water bodies in subtropical Brisbane, Australia, prior to and after storm events, were identified to species level and tested for the presence of seven clinically important virulence genes (VGs). Enterococcus faecalis (48%), Enterococcus faecium (14%), Enterococcus mundtii (13%), and Enterococcus casseliflavus (13%) were frequently detected at all sites. The frequency of E. faecium occurrence increased from 6% in the dry period to 18% after the wet period. The endocarditis antigen (efaA), gelatinase (gelE), collagen-binding protein (ace), and aggregation substance (asa1) were detected in 61%, 43%, 43%, and 23% of Enterococcus isolates, respectively. The chances of occurrence of ace, gelE, efaA, and asa1 genes in E. faecalis were found to be much higher compared to the other Enterococcus spp. The observed odds ratio of occurrence of ace and gelE genes in E. faecalis was much higher at 7.96 and 6.40 times, respectively. The hyl gene was 3.84 times more likely to be detected in E. casseliflavus. The presence of multiple VGs in most of the E. faecalis isolates underscores the importance of E. faecalis as a reservoir of VGs in the fresh water aquatic environment. Consequently, if contaminated surface water is to be used for production of potable and nonpotable water some degree of treatment depending upon intended use such as detention in basins prior to use or chlorination is required.
Collapse
Affiliation(s)
- J P S Sidhu
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Brisbane 4102, Australia
| | | | | | | | | | | |
Collapse
|
28
|
Hendrickx APA, van Schaik W, Willems RJL. The cell wall architecture of Enterococcus faecium: from resistance to pathogenesis. Future Microbiol 2014; 8:993-1010. [PMID: 23902146 DOI: 10.2217/fmb.13.66] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cell wall of Gram-positive bacteria functions as a surface organelle that continuously interacts with its environment through a plethora of cell wall-associated molecules. Enterococcus faecium is a normal inhabitant of the GI tract of mammals, but has recently become an important etiological agent of hospital-acquired infections in debilitated patients. Insights into the assembly and function of enterococcal cell wall components and their interactions with the host during colonization and infection are essential to explain the worldwide emergence of E. faecium as an important multiantibiotic-resistant nosocomial pathogen. Understanding the biochemistry of cell wall biogenesis and principles of antibiotic resistance at the molecular level may open up new frontiers in research on enterococci, particularly for the development of novel antimicrobial strategies. In this article, we outline the current knowledge on the most important antimicrobial resistance mechanisms that involve peptidoglycan synthesis and the role of cell wall constituents, including lipoteichoic acid, wall teichoic acid, capsular polysaccharides, LPxTG cell wall-anchored surface proteins, WxL-type surface proteins and pili, in the pathogenesis of E. faecium.
Collapse
Affiliation(s)
- Antoni P A Hendrickx
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | |
Collapse
|
29
|
Radhouani H, Silva N, Poeta P, Torres C, Correia S, Igrejas G. Potential impact of antimicrobial resistance in wildlife, environment and human health. Front Microbiol 2014; 5:23. [PMID: 24550896 PMCID: PMC3913889 DOI: 10.3389/fmicb.2014.00023] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/14/2014] [Indexed: 11/13/2022] Open
Abstract
Given the significant spatial and temporal heterogeneity in antimicrobial resistance distribution and the factors that affect its evolution, dissemination, and persistence, it is important to highlight that antimicrobial resistance must be viewed as an ecological problem. Monitoring the resistance prevalence of indicator bacteria such as Escherichia coli and enterococci in wild animals makes it possible to show that wildlife has the potential to serve as an environmental reservoir and melting pot of bacterial resistance. These researchers address the issue of antimicrobial-resistant microorganism proliferation in the environment and the related potential human health and environmental impact.
Collapse
Affiliation(s)
- Hajer Radhouani
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro Vila Real, Portugal ; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro Vila Real, Portugal ; Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro Vila Real, Portugal ; Veterinary Science Department, University of Trás-os-Montes and Alto Douro Vila Real, Portugal
| | - Nuno Silva
- Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro Vila Real, Portugal
| | - Patrícia Poeta
- Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro Vila Real, Portugal ; Veterinary Science Department, University of Trás-os-Montes and Alto Douro Vila Real, Portugal
| | - Carmen Torres
- Biochemistry and Molecular Biology Area, University of La Rioja Logroño, Spain
| | - Susana Correia
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro Vila Real, Portugal ; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro Vila Real, Portugal ; Animal and Veterinary Research Centre, University of Trás-os-Montes and Alto Douro Vila Real, Portugal ; Veterinary Science Department, University of Trás-os-Montes and Alto Douro Vila Real, Portugal
| | - Gilberto Igrejas
- Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro Vila Real, Portugal ; Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro Vila Real, Portugal
| |
Collapse
|
30
|
ICESluvan, a 94-kilobase mosaic integrative conjugative element conferring interspecies transfer of VanB-type glycopeptide resistance, a novel bacitracin resistance locus, and a toxin-antitoxin stabilization system. J Bacteriol 2013; 195:5381-90. [PMID: 24078615 DOI: 10.1128/jb.02165-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 94-kb integrative conjugative element (ICESluvan) transferable to Enterococcus faecium and Enterococcus faecalis from an animal isolate of Streptococcus lutetiensis consists of a mosaic of genetic fragments from different Gram-positive bacteria. A variant of ICESluvan was confirmed in S. lutetiensis from a patient. A complete Tn5382/Tn1549 with a vanB2 operon is integrated into a streptococcal ICESde3396-like region harboring a putative bacteriophage exclusion system, a putative agglutinin receptor precursor, and key components of a type IV secretion system. Moreover, ICESluvan encodes a putative MobC family mobilization protein and a relaxase and, thus, in total has all genetic components essential for conjugative transfer. A 9-kb element within Tn5382/Tn1549 encodes, among others, putative proteins similar to the TnpX site-specific recombinase in Faecalibacterium and VanZ in Paenibacillus, which may contribute to the detected low-level teicoplanin resistance. Furthermore, ICESluvan encodes a novel bacitracin resistance locus that is associated with reduced susceptibility to bacitracin when transferred to E. faecium. The expression of a streptococcal pezAT toxin-antitoxin-encoding operon of ICESluvan in S. lutetiensis, E. faecium, and E. faecalis was confirmed by reverse transcription (RT)-PCR, indicating an active toxin-antitoxin system which may contribute to stabilizing ICESluvan within new hosts. Junction PCR and DNA sequencing confirmed that ICESluvan excised to form a circular intermediate in S. lutetiensis, E. faecalis, and E. faecium. Transfer between E. faecalis cells was observed in the presence of helper plasmid pIP964. Sequence analysis of the original S. lutetiensis donor and enterococcal transconjugants showed that ICESluvan integrates in a site-specific manner into the C-terminal end of the chromosomal tRNA methyltransferase gene rumA.
Collapse
|
31
|
Tremblay CL, Charlebois A, Masson L, Archambault M. Characterization of hospital-associated lineages of ampicillin-resistant Enterococcus faecium from clinical cases in dogs and humans. Front Microbiol 2013; 4:245. [PMID: 23986753 PMCID: PMC3750202 DOI: 10.3389/fmicb.2013.00245] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 08/05/2013] [Indexed: 12/20/2022] Open
Abstract
Ampicillin-resistant Enterococcus faecium (ARE) has rapidly emerged worldwide and is one of the most important nosocomial pathogens. However, very few reports are available on ARE isolates from canine clinical cases. The objective of this study was to characterize ARE strains of canine clinical origin from a veterinary teaching hospital in Canada and to compare them with human strains. Ten ARE strains from dogs and humans were characterized by multilocus sequence typing (MLST), pulsed field gel electrophoresis (PFGE), antibiotic susceptibility and biofilm activities, presence of rep-families, CRISPR-cas and putative virulence genes. All ARE strains (n = 10) were resistant to ciprofloxacin and lincomycin. Resistances to tetracycline (n = 6), macrolides (n = 6), and to high concentrations of gentamicin, kanamycin and streptomycin (n = 5) were also observed. Canine ARE isolates were found to be susceptible to vancomycin whereas resistance to this antibiotic was observed in human strains. Ampicillin resistance was linked to PBP5 showing mutations at 25 amino acid positions. Fluoroquinolone resistance was attributable to ParC, GyrA, and GyrB mutations. Data demonstrated that all canine ARE were acm (collagen binding protein)-positive and that most harbored the efaAfm gene, encoding for a cell wall adhesin. Biofilm formation was observed in two human strains but not in canine strains. Two to five rep-families were observed per strain but no CRISPR sequences were found. A total of six STs (1, 18, 65, 202, 205, and 803) were found with one belonging to a new ST (ST803). These STs were identical or closely related to human hospital-associated lineages. This report describes for the first time the characterization of canine ARE hospital-associated strains in Canada and also supports the importance of prudent antibiotic use in veterinary medicine to avoid zoonotic spread of canine ARE.
Collapse
Affiliation(s)
- Cindy-Love Tremblay
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University of Montreal, CRIPA Research Group Quebec, QC, Canada
| | | | | | | |
Collapse
|
32
|
Gútiez L, Gómez-Sala B, Recio I, del Campo R, Cintas LM, Herranz C, Hernández PE. Enterococcus faecalis strains from food, environmental, and clinical origin produce ACE-inhibitory peptides and other bioactive peptides during growth in bovine skim milk. Int J Food Microbiol 2013; 166:93-101. [DOI: 10.1016/j.ijfoodmicro.2013.06.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 06/10/2013] [Accepted: 06/16/2013] [Indexed: 01/27/2023]
|
33
|
Top J, Paganelli FL, Zhang X, van Schaik W, Leavis HL, van Luit-Asbroek M, van der Poll T, Leendertse M, Bonten MJM, Willems RJL. The Enterococcus faecium enterococcal biofilm regulator, EbrB, regulates the esp operon and is implicated in biofilm formation and intestinal colonization. PLoS One 2013; 8:e65224. [PMID: 23741484 PMCID: PMC3669262 DOI: 10.1371/journal.pone.0065224] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/23/2013] [Indexed: 11/18/2022] Open
Abstract
Nowadays, Enterococcus faecium is one of the leading nosocomial pathogens worldwide. Strains causing clinical infections or hospital outbreaks are enriched in the enterococcal surface protein (Esp) encoding ICEEfm1 mobile genetic element. Previous studies showed that Esp is involved in biofilm formation, endocarditis and urinary tract infections. In this study, we characterized the role of the putative AraC type of regulator (locus tag EfmE1162_2351), which we renamed ebrB and which is, based on the currently available whole genome sequences, always located upstream of the esp gene, and studied its role in Esp surface exposure during growth. A markerless deletion mutant of ebrB resulted in reduced esp expression and complete abolishment of Esp surface exposure, while Esp cell-surface exposure was restored when this mutant was complemented with an intact copy of ebrB. This demonstrates a role for EbrB in esp expression. However, during growth, ebrB expression levels did not change over time, while an increase in esp expression at both RNA and protein level was observed during mid-log and late-log phase. These results indicate the existence of a secondary regulation system for esp, which might be an unknown quorum sensing system as the enhanced esp expression seems to be cell density dependent. Furthermore, we determined that esp is part of an operon of at least 3 genes putatively involved in biofilm formation. A semi-static biofilm model revealed reduced biofilm formation for the EbrB deficient mutant, while dynamics of biofilm formation using a flow cell system revealed delayed biofilm formation in the ebrB mutant. In a mouse intestinal colonization model the ebrB mutant was less able to colonize the gut compared to wild-type strain, especially in the small intestine. These data indicate that EbrB positively regulates the esp operon and is implicated in biofilm formation and intestinal colonization.
Collapse
Affiliation(s)
- Janetta Top
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zaheer R, Cook SR, Klima CL, Stanford K, Alexander T, Topp E, Read RR, McAllister TA. Effect of subtherapeutic vs. therapeutic administration of macrolides on antimicrobial resistance in Mannheimia haemolytica and enterococci isolated from beef cattle. Front Microbiol 2013; 4:133. [PMID: 23750157 PMCID: PMC3664329 DOI: 10.3389/fmicb.2013.00133] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/06/2013] [Indexed: 11/13/2022] Open
Abstract
Macrolides are the first-line treatment against bovine respiratory disease (BRD), and are also used to treat infections in humans. The macrolide, tylosin phosphate, is often included in the diet of cattle as a preventative for liver abscesses in many regions of the world outside of Europe. This study investigated the effects of administering macrolides to beef cattle either systemically through a single subcutaneous injection (therapeutic) or continuously in-feed (subtherapeutic), on the prevalence and antimicrobial resistance of Mannheimia haemolytica and Enterococcus spp. isolated from the nasopharynx and faeces, respectively. Nasopharyngeal and faecal samples were collected weekly over 28 days from untreated beef steers and from steers injected once with tilmicosin or tulathromycin or continuously fed tylosin phosphate at dosages recommended by manufacturers. Tilmicosin and tulathromycin were effective in lowering (P < 0.05) the prevalence of M. haemolytica, whereas subtherapeutic tylosin had no effect. M. haemolytica isolated from control- and macrolide-treated animals were susceptible to macrolides as well as to other antibiotics. Major bacteria co-isolated with M. haemolytica from the nasopharynx included Pasteurella multocida, Staphylococcus spp., Acinetobacter spp., Escherichia coli and Bacillus spp. With the exception of M. haemolytica and P. multocida, erythromycin resistance was frequently found in other isolated species. Both methods of macrolide administration increased (P < 0.05) the proportion of erythromycin resistant enterococci within the population, which was comprised almost exclusively of Enterococcus hirae. Injectable macrolides impacted both respiratory and enteric microbes, whereas orally administered macrolides only influenced enteric bacteria.
Collapse
Affiliation(s)
- Rahat Zaheer
- Lethbridge Research Centre, Agriculture and Agri-Food CanadaLethbridge, AB, Canada
| | - Shaun R. Cook
- Lethbridge Research Centre, Agriculture and Agri-Food CanadaLethbridge, AB, Canada
| | - Cassidy L. Klima
- Lethbridge Research Centre, Agriculture and Agri-Food CanadaLethbridge, AB, Canada
| | - Kim Stanford
- Alberta Agriculture and Rural DevelopmentLethbridge, AB, Canada
| | - Trevor Alexander
- Lethbridge Research Centre, Agriculture and Agri-Food CanadaLethbridge, AB, Canada
| | - Edward Topp
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food CanadaLondon, ON, Canada
| | - Ron R. Read
- Faculty of Medicine, University of CalgaryCalgary, AB, Canada
| | - Tim A. McAllister
- Lethbridge Research Centre, Agriculture and Agri-Food CanadaLethbridge, AB, Canada
| |
Collapse
|
35
|
Werner G, Coque TM, Franz CMAP, Grohmann E, Hegstad K, Jensen L, van Schaik W, Weaver K. Antibiotic resistant enterococci-tales of a drug resistance gene trafficker. Int J Med Microbiol 2013; 303:360-79. [PMID: 23602510 DOI: 10.1016/j.ijmm.2013.03.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Enterococci have been recognized as important hospital-acquired pathogens in recent years, and isolates of E. faecalis and E. faecium are the third- to fourth-most prevalent nosocomial pathogen worldwide. Acquired resistances, especially against penicilin/ampicillin, aminoglycosides (high-level) and glycopeptides are therapeutically important and reported in increasing numbers. On the other hand, isolates of E. faecalis and E. faecium are commensals of the intestines of humans, many vertebrate and invertebrate animals and may also constitute an active part of the plant flora. Certain enterococcal isolates are used as starter cultures or supplements in food fermentation and food preservation. Due to their preferred intestinal habitat, their wide occurrence, robustness and ease of cultivation, enterococci are used as indicators for fecal pollution assessing hygiene standards for fresh- and bathing water and they serve as important key indicator bacteria for various veterinary and human resistance surveillance systems. Enterococci are widely prevalent and genetically capable of acquiring, conserving and disseminating genetic traits including resistance determinants among enterococci and related Gram-positive bacteria. In the present review we aimed at summarizing recent advances in the current understanding of the population biology of enterococci, the role mobile genetic elements including plasmids play in shaping the population structure and spreading resistance. We explain how these elements could be classified and discuss mechanisms of plasmid transfer and regulation and the role and cross-talk of enterococcal isolates from food and food animals to humans.
Collapse
Affiliation(s)
- Guido Werner
- National Reference Centre for Stapyhlococci and Enterococci, Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode Branch, Burgstr. 37, 38855 Wernigerode, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Somarajan SR, Murray BE. Could a Phosphotransferase System Provide the Means to Control Outbreaks of Enterococcus faecium Infection? J Infect Dis 2013; 207:1633-6. [DOI: 10.1093/infdis/jit080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Munita JM, Arias CA, Murray BE. Editorial Commentary: Enterococcus faecalis infective endocarditis: is it time to abandon aminoglycosides? Clin Infect Dis 2013; 56:1269-72. [PMID: 23392395 DOI: 10.1093/cid/cit050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
38
|
Spiliopoulou I, Anastassiou ED, Petinaki E. Comment on: Intensive care unit dissemination of multiple clones of linezolid-resistant Enterococcus faecalis and Enterococcus faecium. J Antimicrob Chemother 2012; 67:3015-6. [DOI: 10.1093/jac/dks297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Zhang X, Paganelli FL, Bierschenk D, Kuipers A, Bonten MJM, Willems RJL, van Schaik W. Genome-wide identification of ampicillin resistance determinants in Enterococcus faecium. PLoS Genet 2012; 8:e1002804. [PMID: 22761597 PMCID: PMC3386183 DOI: 10.1371/journal.pgen.1002804] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/17/2012] [Indexed: 01/03/2023] Open
Abstract
Enterococcus faecium has become a nosocomial pathogen of major importance, causing infections that are difficult to treat owing to its multi-drug resistance. In particular, resistance to the β-lactam antibiotic ampicillin has become ubiquitous among clinical isolates. Mutations in the low-affinity penicillin binding protein PBP5 have previously been shown to be important for ampicillin resistance in E. faecium, but the existence of additional resistance determinants has been suggested. Here, we constructed a high-density transposon mutant library in E. faecium and developed a transposon mutant tracking approach termed Microarray-based Transposon Mapping (M-TraM), leading to the identification of a compendium of E. faecium genes that contribute to ampicillin resistance. These genes are part of the core genome of E. faecium, indicating a high potential for E. faecium to evolve towards β-lactam resistance. To validate the M-TraM results, we adapted a Cre-lox recombination system to construct targeted, markerless mutants in E. faecium. We confirmed the role of four genes in ampicillin resistance by the generation of targeted mutants and further characterized these mutants regarding their resistance to lysozyme. The results revealed that ddcP, a gene predicted to encode a low-molecular-weight penicillin binding protein with D-alanyl-D-alanine carboxypeptidase activity, was essential for high-level ampicillin resistance. Furthermore, deletion of ddcP sensitized E. faecium to lysozyme and abolished membrane-associated D,D-carboxypeptidase activity. This study has led to the development of a broadly applicable platform for functional genomic-based studies in E. faecium, and it provides a new perspective on the genetic basis of ampicillin resistance in this organism. Enterococcus faecium has emerged as an important nosocomial pathogen around the world. Clinical E. faecium isolates are often resistant to multiple antibiotics, thereby complicating therapeutic interventions. However, the molecular mechanisms that contribute to the recent emergence of E. faecium as a nosocomial pathogen of major importance are only poorly understood, which is, at least partially, due to the lack of appropriate genetic tools for the study of this organism. Here, we developed a systematic genome-wide strategy, based on transposon mutagenesis and microarray-based screening, to identify E. faecium genes that contribute to ampicillin resistance. We also adapted the Cre-lox recombination system to construct targeted, markerless mutants in E. faecium. These tools enabled us to perform both high-throughput genome-wide analysis and specific targeted investigations in a clinical E. faecium isolate. We comprehensively identified, confirmed, and characterized a compendium of genes affecting the sensitivity to ampicillin in E. faecium. The identified intrinsic ampicillin resistance determinants are highly conserved among E. faecium, indicating that this organism has a high potential to evolve towards ampicillin resistance. These ampicillin-resistance determinants may serve as targets for the development of novel antimicrobial therapeutics.
Collapse
Affiliation(s)
- Xinglin Zhang
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Fernanda L. Paganelli
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Damien Bierschenk
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annemarie Kuipers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marc J. M. Bonten
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rob J. L. Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
40
|
Assessment of tetracycline and erythromycin resistance transfer during sausage fermentation by culture-dependent and -independent methods. Food Microbiol 2012; 30:348-54. [DOI: 10.1016/j.fm.2011.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/25/2011] [Accepted: 12/01/2011] [Indexed: 11/18/2022]
|
41
|
|
42
|
Párraga-Niño N, Colomé-Calls N, Canals F, Querol E, Ferrer-Navarro M. A comprehensive proteome of Mycoplasma genitalium. J Proteome Res 2012; 11:3305-16. [PMID: 22582988 DOI: 10.1021/pr300084c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycoplasma genitalium is a human pathogen associated with several sexually transmitted diseases. Proteomic technologies, along with other methods for global gene expression analysis, play a key role in understanding the mechanisms of bacterial pathogenesis and physiology. The proteome of M. genitalium, model of a minimal cell, has been extended using a combination of different proteomic approaches and technologies. The total proteome of this microorganism has been analyzed using gel-based and gel-free approaches, achieving the identification of 85.3% of the predicted ORFs. In addition, a comprehensive analysis of membrane subproteome has been performed. For this purpose, the TX-114 soluble fraction has been analyzed as well as the surface proteins, using cell-surface protein labeling with CyDye. Finally, the serological response of M. genitalium-infected patients and healthy donors has been analyzed to identify proteins that trigger immunological response. Here, we present the most extensive M. genitalium proteome analysis (85.3% of predicted ORFs), a comprehensive M. genitalium membrane analysis, and a study of the human serological response to M. genitalium.
Collapse
Affiliation(s)
- Noemí Párraga-Niño
- Institut de Biotecnologia i de Biomedicina (IBB) and Dpt Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona (UAB), E-08193 Cerdanyola del Vallès (Barcelona), Spain
| | | | | | | | | |
Collapse
|
43
|
Di Cesare A, Vignaroli C, Luna GM, Pasquaroli S, Biavasco F. Antibiotic-resistant enterococci in seawater and sediments from a coastal fish farm. Microb Drug Resist 2012; 18:502-9. [PMID: 22546011 DOI: 10.1089/mdr.2011.0204] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to detect and characterize antibiotic-resistant enterococci in seawater and sediment from a Mediterranean aquaculture site where no antibiotics are used. Colonies (650) grown on Slanetz-Bartley (SB) agar were amplified on antibiotic-supplemented SB, and erythromycin (ERY), tetracycline (TET), and ampicillin (AMP) MICs were determined. Of 75 resistant isolates (17 to TET, 5 to ERY, and 45 to AMP), 5 Enterococcus faecalis, 25 E. faecium, 5 E. casseliflavus, 1 E. gallinarum, 1 E. durans, and 23 Enterococcus spp. were identified by genus- and species-specific polymerase chain reaction (PCR). tet(M), tet(O), tet(L), tet(K), erm(B), erm(A), erm(C), mef, msr, blaZ, and int(Tn916) were sought by PCR, including an improved multiplex PCR assay targeting tet(M), tet(L), and erm(B). Tet(M) was the most frequent TET resistance gene; msr(C) was the sole ERY resistance gene detected. blaZ was found in 29/45 AMP-resistant isolates; however, no β-lactamase production was detected. Antibiotic-resistant enterococci were recovered 2 km off the coast despite the absence of selective pressure exerted by antibiotic use. The occurrence of resistant strains in the absence of the tested genes may indicate the presence of less common resistance determinants. This first evidence of resistant enterococci at a Mediterranean aquaculture site suggests the existence of a marine reservoir of antibiotic resistances potentially transmissible to virulent strains that could be affected by mariculture in an antibiotic-independent manner.
Collapse
Affiliation(s)
- Andrea Di Cesare
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | | | | | | | | |
Collapse
|
44
|
Transcriptional regulator PerA influences biofilm-associated, platelet binding, and metabolic gene expression in Enterococcus faecalis. PLoS One 2012; 7:e34398. [PMID: 22496800 PMCID: PMC3319582 DOI: 10.1371/journal.pone.0034398] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/27/2012] [Indexed: 12/02/2022] Open
Abstract
Enterococcus faecalis is an opportunistic pathogen and a leading cause of nosocomial infections, traits facilitated by the ability to quickly acquire and transfer virulence determinants. A 150 kb pathogenicity island (PAI) comprised of genes contributing to virulence is found in many enterococcal isolates and is known to undergo horizontal transfer. We have shown that the PAI-encoded transcriptional regulator PerA contributes to pathogenicity in the mouse peritonitis infection model. In this study, we used whole-genome microarrays to determine the PerA regulon. The PerA regulon is extensive, as transcriptional analysis showed 151 differentially regulated genes. Our findings reveal that PerA coordinately regulates genes important for metabolism, amino acid degradation, and pathogenicity. Further transcriptional analysis revealed that PerA is influenced by bicarbonate. Additionally, PerA influences the ability of E. faecalis to bind to human platelets. Our results suggest that PerA is a global transcriptional regulator that coordinately regulates genes responsible for enterococcal pathogenicity.
Collapse
|
45
|
Zaheer R, Yanke LJ, Church D, Topp E, Read RR, McAllister TA. High-throughput species identification of enterococci using pyrosequencing. J Microbiol Methods 2012; 89:174-8. [PMID: 22465481 DOI: 10.1016/j.mimet.2012.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/15/2012] [Accepted: 03/15/2012] [Indexed: 10/28/2022]
Abstract
Here we report the development and validation of an automated high-throughput pyrosequencing-based method for the reliable identification of isolated Enterococcus species. This method exploits the discrete species-specificity of hypervariable groES-EL spacer region and utilizes a universal dispensation order optimized for a wide range of Enterococcus species.
Collapse
Affiliation(s)
- Rahat Zaheer
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada T1J 4B1
| | | | | | | | | | | |
Collapse
|
46
|
Weisser M, Oostdijk EA, Willems RJL, Bonten MJM, Frei R, Elzi L, Halter J, Widmer AF, Top J. Dynamics of ampicillin-resistant Enterococcus faecium clones colonizing hospitalized patients: data from a prospective observational study. BMC Infect Dis 2012; 12:68. [PMID: 22436212 PMCID: PMC3359220 DOI: 10.1186/1471-2334-12-68] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 03/22/2012] [Indexed: 11/18/2022] Open
Abstract
Background Little is known about the dynamics of colonizing Enterococcus faecium clones during hospitalization, invasive infection and after discharge. Methods In a prospective observational study we compared intestinal E. faecium colonization in three patient cohorts: 1) Patients from the Hematology Unit at the University Hospital Basel (UHBS), Switzerland, were investigated by weekly rectal swabs (RS) during hospitalization (group 1a, n = 33) and monthly after discharge (group 1b, n = 21). 2) Patients from the Intensive Care Unit (ICU) at the University Medical Center Utrecht, the Netherlands (group 2, n = 25) were swabbed weekly. 3) Patients with invasive E. faecium infection at UHBS were swabbed at the time of infection (group 3, n = 22). From each RS five colonies with typical E. faecium morphology were picked. Species identification was confirmed by PCR and ampicillin-resistant E. faecium (ARE) isolates were typed using Multiple Locus Variable Number Tandem Repeat Analysis (MLVA). The Simpson's Index of Diversity (SID) was calculated. Results Out of 558 ARE isolates from 354 RS, MT159 was the most prevalent clone (54%, 100%, 52% and 83% of ARE in groups 1a, 1b, 2 and 3, respectively). Among hematological inpatients 13 (40%) had ARE. During hospitalization, the SID of MLVA-typed ARE decreased from 0.745 [95%CI 0.657-0.833] in week 1 to 0.513 [95%CI 0.388-0.637] in week 3. After discharge the only detected ARE was MT159 in 3 patients. In the ICU (group 2) almost all patients (84%) were colonized with ARE. The SID increased significantly from 0.373 [95%CI 0.175-0.572] at week 1 to a maximum of 0.808 [95%CI 0.768-0.849] at week 3 due to acquisition of multiple ARE clones. All 16 patients with invasive ARE were colonized with the same MLVA clone (p < 0.001). Conclusions In hospitalized high-risk patients MT159 is the most frequent colonizer and cause of invasive E. faecium infections. During hospitalization, ASE are quickly replaced by ARE. Diversity of ARE increases on units with possible cross-transmission such as ICUs. After hospitalization ARE are lost with the exception of MT159. In invasive infections, the invasive clone is the predominant gut colonizer.
Collapse
Affiliation(s)
- Maja Weisser
- Division of Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The genus Enterococcus includes some of the most important nosocomial multidrug-resistant organisms, and these pathogens usually affect patients who are debilitated by other, concurrent illnesses and undergoing prolonged hospitalization. This Review discusses the factors involved in the changing epidemiology of enterococcal infections, with an emphasis on Enterococcus faecium as an emergent and challenging nosocomial problem. The effects of antibiotics on the gut microbiota and on colonization with vancomycin-resistant enterococci are highlighted, including how enterococci benefit from the antibiotic-mediated eradication of gram-negative members of the gut microbiota. Analyses of enterococcal genomes indicate that there are certain genetic lineages, including an E. faecium clade of ancient origin, with the ability to succeed in the hospital environment, and the possible virulence determinants that are found in these genetic lineages are discussed. Finally, we review the most important mechanisms of resistance to the antibiotics that are used to treat vancomycin-resistant enterococci.
Collapse
|
48
|
Santagati M, Campanile F, Stefani S. Genomic diversification of enterococci in hosts: the role of the mobilome. Front Microbiol 2012; 3:95. [PMID: 22435066 PMCID: PMC3303144 DOI: 10.3389/fmicb.2012.00095] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/27/2012] [Indexed: 12/11/2022] Open
Abstract
Enterococci are ubiquitous lactic acid bacteria, possessing a flexible nature that allows them to colonize various environments and hosts but also to be opportunistic pathogens. Many papers have contributed to a better understanding of: (i) the taxonomy of this complex group of microorganisms; (ii) intra-species variability; (iii) the role of different pathogenicity traits; and (iv) some markers related to the character of host-specificity, but the reasons of such incredible success of adaptability is still far from being fully explained. Recently, genomic-based studies have improved our understanding of the genome diversity of the most studied species, i.e., E. faecalis and E. faecium. From these studies, what is becoming evident is the role of the mobilome in adding new abilities to colonize new hosts and environments, and eventually in driving their evolution: specific clones associated with human infections or specific hosts can exist, but probably the consideration of these populations as strictly clonal groups is only partially correct. The variable presence of mobile genetic elements may, indeed, be one of the factors involved in the evolution of one specific group in a specific host and/or environment. Certainly more extensive studies using new high throughput technologies are mandatory to fully understand the evolution of predominant clones and species in different hosts and environments.
Collapse
Affiliation(s)
- Maria Santagati
- Molecular Microbiology and Antibiotic Resistance Lab, Department of Microbiology, University of Catania Catania, Italy
| | | | | |
Collapse
|
49
|
Abstract
Vancomycin-resistant enterococci (VRE) are one of the leading causes of nosocomial infections in health care facilities around the globe. In particular, infections caused by vancomycin-resistant Enterococcus faecium are becoming increasingly common. Comparative and functional genomic studies of E. faecium isolates have so far been limited owing to the lack of a fully assembled E. faecium genome sequence. Here we address this issue and report the complete 3.0-Mb genome sequence of the multilocus sequence type 17 vancomycin-resistant Enterococcus faecium strain Aus0004, isolated from the bloodstream of a patient in Melbourne, Australia, in 1998. The genome comprises a 2.9-Mb circular chromosome and three circular plasmids. The chromosome harbors putative E. faecium virulence factors such as enterococcal surface protein, hemolysin, and collagen-binding adhesin. Aus0004 has a very large accessory genome (38%) that includes three prophage and two genomic islands absent among 22 other E. faecium genomes. One of the prophage was present as inverted 50-kb repeats that appear to have facilitated a 683-kb chromosomal inversion across the replication terminus, resulting in a striking replichore imbalance. Other distinctive features include 76 insertion sequence elements and a single chromosomal copy of Tn1549 containing the vanB vancomycin resistance element. A complete E. faecium genome will be a useful resource to assist our understanding of this emerging nosocomial pathogen.
Collapse
|
50
|
Mlynarczyk A, Szymanek-Majchrzak K, Kosykowska E, Grzybowska W, Tyski S, Mrowka A, Baczkowska T, Durlik M, Pacholczyk M, Chmura A, Ciszek M, Paczek L, Mlynarczyk G. The dominant sequence types of vancomycin-resistant Enterococcus faecium among transplantation ward patients. Transplant Proc 2012; 43:3132-4. [PMID: 21996246 DOI: 10.1016/j.transproceed.2011.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Vancomycin-resistant enterococci (VRE) frequently cause therapeutic problems and provide information about the epidemiological condition of the ward. MATERIALS AND METHODS VRE isolated from patients on transplantation wards in 2007-2008 were compared using 2 molecular methods: RFLP-PFGE (restriction fragment length polymorphism-pulse field gel electrophoresis) and MLST (multilocus sequence typing). RESULTS The analysis covered 29 Enterococcus faecium strains resistant to glycopeptides, each from a different patient. All organisms were typed using 2 molecular methods. MLST results were compared with an international base. The 30 examined strains belonged to 8 different worldwide known sequence types. All could be recognized as representatives of a single clonal complex CC17. CONCLUSION Both methods of typing appeared to be useful to asses the epidemiological condition of the investigated wards.
Collapse
Affiliation(s)
- A Mlynarczyk
- Department of Medical Microbiology, Medical University of Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|