1
|
Driessen EP, Walker KE, Hallman T, Casper A, Eddy SL, Schneider JR, Lane AK. "It's been a Process": A Multiple Case Study of Biology Instructor Efforts to Reform their Sex and Gender Curriculum to be More Inclusive of Students with Queer Genders and Intersex Students. CBE LIFE SCIENCES EDUCATION 2024; 23:ar51. [PMID: 39423039 DOI: 10.1187/cbe.24-01-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Inaccurate sex and gender narratives have saturated the political landscape, resulting in legal restrictions for people with queer genders. Biology educators can correct these false narratives by teaching scientifically accurate and queer gender and intersex inclusive sex and gender curriculum. Here, we interviewed four undergraduate biology instructors who were working to reform their sex and gender curriculum. Using their reformed curriculum to promote conversation in the interviews, we asked participants about their curriculum, their reform process, and the obstacles they faced in implementing their reformed curriculum. We noticed the instructors' journeys to reforming involved intense personal work and education, both at the beginning and iteratively throughout implementation. We found instructors focused on changing language and using a variety of inclusive activities in their undergraduate biology classroom, ranging from highlighting scientists with queer genders to assigning students to research the experiences of people with queer genders with adolescent hormone therapy. Instructors mentioned obstacles to implementing reformed curriculum, including fear of potentially isolating students and concern about the instructor's own positionality. Removing obstacles and supporting the process of unlearning exclusive ways of teaching sex and gender topics may bolster instructor efforts to provide more accurate and inclusive biology education.
Collapse
Affiliation(s)
- Emily P Driessen
- Department of Biology Teaching and Learning, University of Minnesota, Minneapolis, MN 55455
| | - Keenan E Walker
- Department of Biology Teaching and Learning, University of Minnesota, Minneapolis, MN 55455
| | - Tess Hallman
- Department of Biology Teaching and Learning, University of Minnesota, Minneapolis, MN 55455
| | - Aramati Casper
- Department of Biology, Colorado State University, Fort Collins, CO 80521
| | - Sarah L Eddy
- Department of Biology Teaching and Learning, University of Minnesota, Minneapolis, MN 55455
- Department of Biological Sciences, Florida International University, Miami, FL 33199
| | - Joel R Schneider
- Department of Biology Teaching and Learning, University of Minnesota, Minneapolis, MN 55455
| | - A Kelly Lane
- Department of Biology Teaching and Learning, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
2
|
Mu C, Hao C, You L, Wang Y, Qiang S, Liu Y, Wang J. Population distribution characteristics of mating type genes and genetic stability in Morchella sextelata. Arch Microbiol 2024; 206:412. [PMID: 39313680 DOI: 10.1007/s00203-024-04141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
The reproductive mode of morels (Morchella spp.) is governed by mating type genes, specifically MAT1-1 and MAT1-2. This study investigated the presence of mating type genes at various growth stages and in different parts of cultivated Morchella sextelata. This study revealed significant fluctuations in the detection ratio of the two mating type genes during ascocarps growth. Single ascospore strains with MAT1-1, MAT1-2 and both mating types were selected for experimentations. Stress stimuli including H2O2, Congo red and NaCl were introduced into the medium. Differences in the cultural and physiological characteristics of single spore strains were analyzed, and mating type genes were identified after subculturing to assess their stability. The results indicated that a total of 297 samples with a single mating type gene were detected in 480 samples selected from the five stages of fruiting body growth, accounting for 61.9%. Stress exposure influenced colony morphology, mycelial growth rate, and biomass, leading to significant increases in malondialdehyde content and osmotic adjustment compounds, including soluble protein and proline. Physiological and biochemical parameters varied among the three mating type strains under different stress conditions. Principal component analysis was used to calculate the weight values, which showed that the MAT1-2 strain exhibited the highest tolerance to chemical stresses, particularly oxidative stress. Subculturing under stress revealed that single mating type strains ceased growth by the 8th generation, whereas both mating type strains could continue to the 15th generation without loss of mating type genes, indicating broader environmental adaptability and higher viability. These findings offer novel insights into mating type gene function and serve as a scientific foundation for the development of high-yield, stress-resistant morel varieties.
Collapse
Affiliation(s)
- Chunfeng Mu
- School of Agriculture, Ludong University, No.186, Hongqi Mid-Road, Zhifu District, Yantai City, Shandong Province, 264025, China
| | - Chen Hao
- School of Agriculture, Ludong University, No.186, Hongqi Mid-Road, Zhifu District, Yantai City, Shandong Province, 264025, China
| | - Lunhe You
- School of Agriculture, Ludong University, No.186, Hongqi Mid-Road, Zhifu District, Yantai City, Shandong Province, 264025, China
| | - Yichun Wang
- School of Agriculture, Ludong University, No.186, Hongqi Mid-Road, Zhifu District, Yantai City, Shandong Province, 264025, China
| | - Sheng Qiang
- School of Agriculture, Ludong University, No.186, Hongqi Mid-Road, Zhifu District, Yantai City, Shandong Province, 264025, China
| | - Yu Liu
- School of Agriculture, Ludong University, No.186, Hongqi Mid-Road, Zhifu District, Yantai City, Shandong Province, 264025, China.
| | - Jianrui Wang
- School of Agriculture, Ludong University, No.186, Hongqi Mid-Road, Zhifu District, Yantai City, Shandong Province, 264025, China.
| |
Collapse
|
3
|
Hartfield M, Glémin S. Polygenic selection to a changing optimum under self-fertilisation. PLoS Genet 2024; 20:e1011312. [PMID: 39018328 DOI: 10.1371/journal.pgen.1011312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/29/2024] [Accepted: 05/21/2024] [Indexed: 07/19/2024] Open
Abstract
Many traits are polygenic, affected by multiple genetic variants throughout the genome. Selection acting on these traits involves co-ordinated allele-frequency changes at these underlying variants, and this process has been extensively studied in random-mating populations. Yet many species self-fertilise to some degree, which incurs changes to genetic diversity, recombination and genome segregation. These factors cumulatively influence how polygenic selection is realised in nature. Here, we use analytical modelling and stochastic simulations to investigate to what extent self-fertilisation affects polygenic adaptation to a new environment. Our analytical solutions show that while selfing can increase adaptation to an optimum, it incurs linkage disequilibrium that can slow down the initial spread of favoured mutations due to selection interference, and favours the fixation of alleles with opposing trait effects. Simulations show that while selection interference is present, high levels of selfing (at least 90%) aids adaptation to a new optimum, showing a higher long-term fitness. If mutations are pleiotropic then only a few major-effect variants fix along with many neutral hitchhikers, with a transient increase in linkage disequilibrium. These results show potential advantages to self-fertilisation when adapting to a new environment, and how the mating system affects the genetic composition of polygenic selection.
Collapse
Affiliation(s)
- Matthew Hartfield
- Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sylvain Glémin
- Université de Rennes, Centre National de la Recherche Scientifique (CNRS), ECOBIO (Ecosystèmes, Biodiversité, Evolution) - Unité Mixte de Recherche (UMR) 6553, Rennes, France
- Department of Ecology and Evolution, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Wilken PM, Lane FA, Steenkamp ET, Wingfield MJ, Wingfield BD. Unidirectional mating-type switching is underpinned by a conserved MAT1 locus architecture. Fungal Genet Biol 2024; 170:103859. [PMID: 38114017 DOI: 10.1016/j.fgb.2023.103859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
Unidirectional mating-type switching is a form of homothallic reproduction known only in a small number of filamentous ascomycetes. Their ascospores can give rise to either self-sterile isolates that require compatible partners for subsequent sexual reproduction, or self-fertile individuals capable of completing this process in isolation. The limited studies previously conducted in these fungi suggest that the differences in mating specificity are determined by the architecture of the MAT1 locus. In self-fertile isolates that have not undergone unidirectional mating-type switching, the locus contains both MAT1-1 and MAT1-2 mating-type genes, typical of primary homothallism. In the self-sterile isolates produced after a switching event, the MAT1-2 genes are lacking from the locus, likely due to a recombination-mediated deletion of the MAT1-2 gene information. To determine whether these arrangements of the MAT1 locus support unidirectional mating-type switching in the Ceratocystidaceae, the largest known fungal assemblage capable of this reproduction strategy, a combination of genetic and genomic approaches were used. The MAT1 locus was annotated in representative species of Ceratocystis, Endoconidiophora, and Davidsoniella. In all cases, MAT1-2 genes interrupted the MAT1-1-1 gene in self-fertile isolates. The MAT1-2 genes were flanked by two copies of a direct repeat that accurately predicted the boundaries of the deletion event that would yield the MAT1 locus of self-sterile isolates. Although the relative position of the MAT1-2 gene region differed among species, it always disrupted the MAT1-1-1 gene and/or its expression in the self-fertile MAT1 locus. Following switching, this gene and/or its expression was restored in the self-sterile arrangement of the locus. This mirrors what has been reported in other species capable of unidirectional mating-type switching, providing the strongest support for a conserved MAT1 locus structure that is associated with this process. This study contributes to our understanding of the evolution of unidirectional mating-type switching.
Collapse
Affiliation(s)
- P Markus Wilken
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa.
| | - Frances A Lane
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| |
Collapse
|
5
|
Holden S, Bakkeren G, Hubensky J, Bamrah R, Abbasi M, Qutob D, de Graaf ML, Kim SH, Kutcher HR, McCallum BD, Randhawa HS, Iqbal M, Uloth K, Burlakoti RR, Brar GS. Uncovering the history of recombination and population structure in western Canadian stripe rust populations through mating type alleles. BMC Biol 2023; 21:233. [PMID: 37880702 PMCID: PMC10601111 DOI: 10.1186/s12915-023-01717-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/27/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND The population structure of crop pathogens such as Puccinia striiformis f. sp. tritici (Pst), the cause of wheat stripe rust, is of interest to researchers looking to understand these pathogens on a molecular level as well as those with an applied focus such as disease epidemiology. Cereal rusts can reproduce sexually or asexually, and the emergence of novel lineages has the potential to cause serious epidemics such as the one caused by the 'Warrior' lineage in Europe. In a global context, Pst lineages in Canada were not well-characterized and the origin of foreign incursions was not known. Additionally, while some Pst mating type genes have been identified in published genomes, there has been no rigorous assessment of mating type diversity and distribution across the species. RESULTS We used a whole-genome/transcriptome sequencing approach for the Canadian Pst population to identify lineages in their global context and evidence tracing foreign incursions. More importantly: for the first time ever, we identified nine alleles of the homeodomain mating type locus in the worldwide Pst population and show that previously identified lineages exhibit a single pair of these alleles. Consistently with the literature, we find only two pheromone receptor mating type alleles. We show that the recent population shift from the 'PstS1' lineage to the 'PstS1-related' lineage is also associated with the introduction of a novel mating type allele (Pst-b3-HD) to the Canadian population. We also show evidence for high levels of mating type diversity in samples associated with the Himalayan center of diversity for Pst, including a single Canadian race previously identified as 'PstPr' (probable recombinant) which we identify as a foreign incursion, most closely related to isolates sampled from China circa 2015. CONCLUSIONS These data describe a recent shift in the population of Canadian Pst field isolates and characterize homeodomain-locus mating type alleles in the global Pst population which can now be utilized in testing several research questions and hypotheses around sexuality and hybridization in rust fungi.
Collapse
Affiliation(s)
- Samuel Holden
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, BC, Canada.
| | - Guus Bakkeren
- Agriculture and Agri-Food Canada (AAFC), Summerland Research and Development Center, Summerland, BC, Canada
| | - John Hubensky
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, BC, Canada
| | - Ramandeep Bamrah
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, BC, Canada
| | - Mehrdad Abbasi
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, BC, Canada
| | - Dinah Qutob
- Kent State University, Stark Campus, North Canton, OH, USA
| | - Mei-Lan de Graaf
- Agriculture and Agri-Food Canada (AAFC), Summerland Research and Development Center, Summerland, BC, Canada
| | - Sang Hu Kim
- Agriculture and Agri-Food Canada (AAFC), Summerland Research and Development Center, Summerland, BC, Canada
| | - Hadley R Kutcher
- Department of Plant Science/Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Brent D McCallum
- Agriculture and Agri-Food Canada (AAFC), Brandon Research and Development Center, Brandon, MB, Canada
| | - Harpinder S Randhawa
- Agriculture and Agri-Food Canada (AAFC), Lethbridge Research and Development Center, Lethbridge, AB, Canada
| | - Muhammad Iqbal
- Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Keith Uloth
- British Columbia Pest Monitoring Network, Dawson Creek, BC, Canada
| | - Rishi R Burlakoti
- Agriculture and Agri-Food Canada (AAFC), Agassiz Research and Development Center, Agassiz, BC, Canada
| | - Gurcharn S Brar
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, BC, Canada.
| |
Collapse
|
6
|
McLaughlin JF, Brock KM, Gates I, Pethkar A, Piattoni M, Rossi A, Lipshutz SE. Multivariate Models of Animal Sex: Breaking Binaries Leads to a Better Understanding of Ecology and Evolution. Integr Comp Biol 2023; 63:891-906. [PMID: 37156506 PMCID: PMC10563656 DOI: 10.1093/icb/icad027] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
"Sex" is often used to describe a suite of phenotypic and genotypic traits of an organism related to reproduction. However, these traits-gamete type, chromosomal inheritance, physiology, morphology, behavior, etc.-are not necessarily coupled, and the rhetorical collapse of variation into a single term elides much of the complexity inherent in sexual phenotypes. We argue that consideration of "sex" as a constructed category operating at multiple biological levels opens up new avenues for inquiry in our study of biological variation. We apply this framework to three case studies that illustrate the diversity of sex variation, from decoupling sexual phenotypes to the evolutionary and ecological consequences of intrasexual polymorphisms. We argue that instead of assuming binary sex in these systems, some may be better categorized as multivariate and nonbinary. Finally, we conduct a meta-analysis of terms used to describe diversity in sexual phenotypes in the scientific literature to highlight how a multivariate model of sex can clarify, rather than cloud, studies of sexual diversity within and across species. We argue that such an expanded framework of "sex" better equips us to understand evolutionary processes, and that as biologists, it is incumbent upon us to push back against misunderstandings of the biology of sexual phenotypes that enact harm on marginalized communities.
Collapse
Affiliation(s)
- J F McLaughlin
- Department of Environmental Science, Policy, and Management, College of Natural Resources, University of California, Berkeley, CA 94720, USA
| | - Kinsey M Brock
- Department of Environmental Science, Policy, and Management, College of Natural Resources, University of California, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Isabella Gates
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Anisha Pethkar
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Marcus Piattoni
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Alexis Rossi
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Sara E Lipshutz
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
7
|
James TY. Sex Without Sexes: Can the Cost of Finding a Mate Explain Diversity in Fungal Mating Systems? Integr Comp Biol 2023; 63:922-935. [PMID: 37218718 DOI: 10.1093/icb/icad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023] Open
Abstract
Eukaryotes have evolved myriad ways of uniting gametes during sexual reproduction. A repeated pattern is the convergent evolution of a mating system with the fusion of larger gametes with smaller gametes (anisogamy) from that of fusion between morphologically identical gametes (isogamy). In anisogamous species, sexes are defined as individuals that produce only one gamete type. Although sexes abound throughout Eukarya, in fungi there are no biological sexes, because even in anisogamous species, individuals are hermaphroditic and produce both gamete types. For this reason, the term mating types is preferred over sexes, and, thus defined, only individuals of differing mating types can mate (homoallelic incompatibility). In anisogamous fungal species, there is scant evidence that there are more than two mating types, and this may be linked to genetic constraints, such as the use of mating types to determine the inheritance of cytoplasmic genomes. However, the mushroom fungi (Agaricomycetes) stand out as having both large numbers of mating types within a species, which will allow nearly all individuals to be compatible with each other, and reciprocal exchange of nuclei during mating, which will avoid cytoplasmic mixing and cyto-nuclear conflicts. Although the limitation of mating types to two in most fungi is consistent with the cyto-nuclear conflicts model, there are many facets of the Agaricomycete life cycle that also suggest they will demand a high outbreeding efficiency. Specifically, they are mostly obligately sexual and outcrossing, inhabit complex competitive niches, and display broadcast spore dispersal. Subsequently, the Agaricomycete individual pays a high cost to being choosy when encountering a mate. Here, I discuss the costs of mate finding and choice and demonstrate how most fungi have multiple ways of reducing these costs, which can explain why mating types are mostly limited to two per species. Nevertheless, it is perplexing that fungi have not evolved multiple mating types on more occasions nor evolved sexes. The few exceptions to these rules suggest that it is dictated by both molecular and evolutionary constraints.
Collapse
Affiliation(s)
- Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Aanen DK, van ’t Padje A, Auxier B. Longevity of Fungal Mycelia and Nuclear Quality Checks: a New Hypothesis for the Role of Clamp Connections in Dikaryons. Microbiol Mol Biol Rev 2023; 87:e0002221. [PMID: 37409939 PMCID: PMC10521366 DOI: 10.1128/mmbr.00022-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
This paper addresses the stability of mycelial growth in fungi and differences between ascomycetes and basidiomycetes. Starting with general evolutionary theories of multicellularity and the role of sex, we then discuss individuality in fungi. Recent research has demonstrated the deleterious consequences of nucleus-level selection in fungal mycelia, favoring cheaters with a nucleus-level benefit during spore formation but a negative effect on mycelium-level fitness. Cheaters appear to generally be loss-of-fusion (LOF) mutants, with a higher propensity to form aerial hyphae developing into asexual spores. Since LOF mutants rely on heterokaryosis with wild-type nuclei, we argue that regular single-spore bottlenecks can efficiently select against such cheater mutants. We then zoom in on ecological differences between ascomycetes being typically fast-growing but short-lived with frequent asexual-spore bottlenecks and basidiomycetes being generally slow-growing but long-lived and usually without asexual-spore bottlenecks. We argue that these life history differences have coevolved with stricter nuclear quality checks in basidiomycetes. Specifically, we propose a new function for clamp connections, structures formed during the sexual stage in ascomycetes and basidiomycetes but during somatic growth only in basidiomycete dikaryons. During dikaryon cell division, the two haploid nuclei temporarily enter a monokaryotic phase, by alternatingly entering a retrograde-growing clamp cell, which subsequently fuses with the subapical cell to recover the dikaryotic cell. We hypothesize that clamp connections act as screening devices for nuclear quality, with both nuclei continuously testing each other for fusion ability, a test that LOF mutants will fail. By linking differences in longevity of the mycelial phase to ecology and stringency of nuclear quality checks, we propose that mycelia have a constant and low lifetime cheating risk, irrespective of their size and longevity.
Collapse
Affiliation(s)
- Duur K. Aanen
- Department of Plant Sciences, Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | - Anouk van ’t Padje
- Department of Plant Sciences, Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| | - Benjamin Auxier
- Department of Plant Sciences, Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
9
|
Krah FS, Büntgen U, Bässler C. Temperature affects the timing and duration of fungal fruiting patterns across major terrestrial biomes. Ecol Lett 2023; 26:1572-1583. [PMID: 37340568 DOI: 10.1111/ele.14275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/22/2023]
Abstract
The Earth's ecosystems are affected by a complex interplay of biotic and abiotic factors. While global temperatures increase, associated changes in the fruiting behaviour of fungi remain unknown. Here, we analyse 6.1 million fungal fruit body (mushroom) records and show that the major terrestrial biomes exhibit similarities and differences in fruiting events. We observed one main fruiting peak in most years across all biomes. However, in boreal and temperate biomes, there was a substantial number of years with a second peak, indicating spring and autumn fruiting. Distinct fruiting peaks are spatially synchronized in boreal and temperate biomes, but less defined and longer in the humid tropics. The timing and duration of fungal fruiting were significantly related to temperature mean and variability. Temperature-dependent aboveground fungal fruiting behaviour, which is arguably also representative of belowground processes, suggests that the observed biome-specific differences in fungal phenology will change in space and time when global temperatures continue to increase.
Collapse
Affiliation(s)
- Franz-Sebastian Krah
- Fungal Ecology and BayCEER, University of Bayreuth, Bayreuth, Germany
- Conservation Biology, Institute for Ecology, Evolution and Diversity Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ulf Büntgen
- Department of Geography, University of Cambridge, Cambridge, UK
- Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland
- Department of Geography, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Claus Bässler
- Fungal Ecology and BayCEER, University of Bayreuth, Bayreuth, Germany
- Conservation Biology, Institute for Ecology, Evolution and Diversity Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Bavarian Forest National Park, Grafenau, Germany
| |
Collapse
|
10
|
Henshaw JM, Bittlingmaier M, Schärer L. Hermaphroditic origins of anisogamy. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220283. [PMID: 36934747 PMCID: PMC10024982 DOI: 10.1098/rstb.2022.0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/23/2022] [Indexed: 03/21/2023] Open
Abstract
Anisogamy-the size dimorphism of gametes-is the defining difference between the male and female sexual strategies. Game-theoretic thinking led to the first convincing explanation for the evolutionary origins of anisogamy in the 1970s. Since then, formal game-theoretic models have continued to refine our understanding of when and why anisogamy should evolve. Such models typically presume that the earliest anisogamous organisms had separate sexes. However, in most taxa, there is no empirical evidence to support this assumption. Here, we present a model of the coevolution of gamete size and sex allocation, which allows for anisogamy to emerge alongside either hermaphroditism or separate sexes. We show that hermaphroditic anisogamy can evolve directly from isogamous ancestors when the average size of spawning groups is small and fertilization is relatively efficient. Sex allocation under hermaphroditism becomes increasingly female-biased as group size decreases and the degree of anisogamy increases. When spawning groups are very small, our model also predicts the existence of complex isogamous organisms in which individuals allocate resources equally to two large gamete types. We discuss common, but potentially unwarranted, assumptions in the literature that could be relaxed in future models. This article is part of the theme issue 'Half a century of evolutionary games: a synthesis of theory, application and future directions'.
Collapse
Affiliation(s)
- Jonathan M. Henshaw
- Institute of Biology I, University of Freiburg, Hauptstraße 1, D-79104 Freiburg, Germany
| | - Markus Bittlingmaier
- Institute of Biology I, University of Freiburg, Hauptstraße 1, D-79104 Freiburg, Germany
- Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200 Moulis, France
| | - Lukas Schärer
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel CH-4051, Switzerland
| |
Collapse
|
11
|
Bedekovic T, Usher J. Is There a Relationship Between Mating and Pathogenesis in Two Human Fungal Pathogens, Candida albicans and Candida glabrata?. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023; 10:47-54. [PMID: 37151577 PMCID: PMC10154270 DOI: 10.1007/s40588-023-00192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/09/2023]
Abstract
Purpose of Review Human fungal pathogens are rapidly increasing in incidence and readily able to evade the host immune responses. Our ability to study the genetic behind this has been limited due to the apparent lack of a sexual cycle and forward genetic tools. In this review, we discuss the evolution of mating, meiosis, and pathogenesis and if these processes are advantageous to pathogens. Recent Findings This review summarises what is currently known about the sexual cycles of two important human fungal pathogens, Candida albicans and Candida glabrata. This includes the identification of parasexual cycle in C. albicans and the observed low levels of recombination in C. glabrata populations. Summary In this review, we present what is currently known about the mating types and mating/sexual cycles of two clinically important human fungal pathogens, Candida albicans and Candida glabrata. We discuss the evolution of meiosis using the knowledge that has been amassed from the decades of studying Saccharomyces cerevisiae and how this can be applied to fungal pathogens. We further discuss how the evolution of pathogenesis has played a role in influencing mating processes in human fungal pathogens and compare sexual cycles between C. albicans and C. glabrata, highlighting knowledge gaps and suggesting how these two fungi have evolved distinct mating niches to allow the development of disease in a human host.
Collapse
Affiliation(s)
- Tina Bedekovic
- MRC Centre for Medical Mycology, Department of Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
| | - Jane Usher
- MRC Centre for Medical Mycology, Department of Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
| |
Collapse
|
12
|
McLaughlin JF, Aguilar C, Bernstein JM, Navia-Gine WG, Cueto-Aparicio LE, Alarcon AC, Alarcon BD, Collier R, Takyar A, Vong SJ, López-Chong OG, Driver R, Loaiza JR, De León LF, Saltonstall K, Lipshutz SE, Arcila D, Brock KM, Miller MJ. Comparative phylogeography reveals widespread cryptic diversity driven by ecology in Panamanian birds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023. [PMID: 36993716 DOI: 10.1101/2023.01.26.525769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
UNLABELLED Widespread species often harbor unrecognized genetic diversity, and investigating the factors associated with such cryptic variation can help us better understand the forces driving diversification. Here, we identify potential cryptic species based on a comprehensive dataset of COI mitochondrial DNA barcodes from 2,333 individual Panamanian birds across 429 species, representing 391 (59%) of the 659 resident landbird species of the country, as well as opportunistically sampled waterbirds. We complement this dataset with additional publicly available mitochondrial loci, such as ND2 and cytochrome b, obtained from whole mitochondrial genomes from 20 taxa. Using barcode identification numbers (BINs), we find putative cryptic species in 19% of landbird species, highlighting hidden diversity in the relatively well-described avifauna of Panama. Whereas some of these mitochondrial divergence events corresponded with recognized geographic features that likely isolated populations, such as the Cordillera Central highlands, the majority (74%) of lowland splits were between eastern and western populations. The timing of these splits are not temporally coincident across taxa, suggesting that historical events, such as the formation of the Isthmus of Panama and Pleistocene climatic cycles, were not the primary drivers of cryptic diversification. Rather, we observed that forest species, understory species, insectivores, and strongly territorial species-all traits associated with lower dispersal ability-were all more likely to have multiple BINs in Panama, suggesting strong ecological associations with cryptic divergence. Additionally, hand-wing index, a proxy for dispersal capability, was significantly lower in species with multiple BINs, indicating that dispersal ability plays an important role in generating diversity in Neotropical birds. Together, these results underscore the need for evolutionary studies of tropical bird communities to consider ecological factors along with geographic explanations, and that even in areas with well-known avifauna, avian diversity may be substantially underestimated. LAY SUMMARY - What factors are common among bird species with cryptic diversity in Panama? What role do geography, ecology, phylogeographic history, and other factors play in generating bird diversity?- 19% of widely-sampled bird species form two or more distinct DNA barcode clades, suggesting widespread unrecognized diversity.- Traits associated with reduced dispersal ability, such as use of forest understory, high territoriality, low hand-wing index, and insectivory, were more common in taxa with cryptic diversity. Filogeografía comparada revela amplia diversidad críptica causada por la ecología en las aves de Panamá. RESUMEN Especies extendidas frecuentemente tiene diversidad genética no reconocida, y investigando los factores asociados con esta variación críptica puede ayudarnos a entender las fuerzas que impulsan la diversificación. Aquí, identificamos especies crípticas potenciales basadas en un conjunto de datos de códigos de barras de ADN mitocondrial de 2,333 individuos de aves de Panama en 429 especies, representando 391 (59%) de las 659 especies de aves terrestres residentes del país, además de algunas aves acuáticas muestreada de manera oportunista. Adicionalmente, complementamos estos datos con secuencias mitocondriales disponibles públicamente de otros loci, tal como ND2 o citocroma b, obtenidos de los genomas mitocondriales completos de 20 taxones. Utilizando los números de identificación de código de barras (en ingles: BINs), un sistema taxonómico numérico que proporcina una estimación imparcial de la diversidad potencial a nivel de especie, encontramos especies crípticas putativas en 19% de las especies de aves terrestres, lo que destaca la diversidad oculta en la avifauna bien descrita de Panamá. Aunque algunos de estos eventos de divergencia conciden con características geográficas que probablemente aislaron las poblaciones, la mayoría (74%) de la divergencia en las tierras bajas se encuentra entre las poblaciones orientales y occidentales. El tiempo de esta divergencia no coincidió entre los taxones, sugiriendo que eventos históricos tales como la formación del Istmo de Panamá y los ciclos climáticos del pleistoceno, no fueron los principales impulsores de la especiación. En cambio, observamos asociaciones fuertes entre las características ecológicas y la divergencia mitocondriale: las especies del bosque, sotobosque, con una dieta insectívora, y con territorialidad fuerte mostraton múltiple BINs probables. Adicionalmente, el índice mano-ala, que está asociado a la capacidad de dispersión, fue significativamente menor en las especies con BINs multiples, sugiriendo que la capacidad de dispersión tiene un rol importamente en la generación de la diversidad de las aves neotropicales. Estos resultos demonstran la necesidad de que estudios evolutivos de las comunidades de aves tropicales consideren los factores ecológicos en conjunto con las explicaciones geográficos. Palabras clave: biodiversidad tropical, biogeografía, códigos de barras, dispersión, especies crípticas.
Collapse
|
13
|
Vittorelli N, Rodríguez de la Vega RC, Snirc A, Levert E, Gautier V, Lalanne C, De Filippo E, Gladieux P, Guillou S, Zhang Y, Tejomurthula S, Grigoriev IV, Debuchy R, Silar P, Giraud T, Hartmann FE. Stepwise recombination suppression around the mating-type locus in an ascomycete fungus with self-fertile spores. PLoS Genet 2023; 19:e1010347. [PMID: 36763677 PMCID: PMC9949647 DOI: 10.1371/journal.pgen.1010347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/23/2023] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
Recombination is often suppressed at sex-determining loci in plants and animals, and at self-incompatibility or mating-type loci in plants and fungi. In fungal ascomycetes, recombination suppression around the mating-type locus is associated with pseudo-homothallism, i.e. the production of self-fertile dikaryotic sexual spores carrying the two opposite mating types. This has been well studied in two species complexes from different families of Sordariales: Podospora anserina and Neurospora tetrasperma. However, it is unclear whether this intriguing association holds in other species. We show here that Schizothecium tetrasporum, a fungus from a third family in the order Sordariales, also produces mostly self-fertile dikaryotic spores carrying the two opposite mating types. This was due to a high frequency of second meiotic division segregation at the mating-type locus, indicating the occurrence of a single and systematic crossing-over event between the mating-type locus and the centromere, as in P. anserina. The mating-type locus has the typical Sordariales organization, plus a MAT1-1-1 pseudogene in the MAT1-2 haplotype. High-quality genome assemblies of opposite mating types and segregation analyses revealed a suppression of recombination in a region of 1.47 Mb around the mating-type locus. We detected three evolutionary strata, indicating a stepwise extension of recombination suppression. The three strata displayed no rearrangement or transposable element accumulation but gene losses and gene disruptions were present, and precisely at the strata margins. Our findings indicate a convergent evolution of self-fertile dikaryotic sexual spores across multiple ascomycete fungi. The particular pattern of meiotic segregation at the mating-type locus was associated with recombination suppression around this locus, that had extended stepwise. This association between pseudo-homothallism and recombination suppression across lineages and the presence of gene disruption at the strata limits are consistent with a recently proposed mechanism of sheltering deleterious alleles to explain stepwise recombination suppression.
Collapse
Affiliation(s)
- Nina Vittorelli
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
- Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France
- Département de Biologie, École Normale Supérieure, PSL Université Paris, Paris, France
| | | | - Alodie Snirc
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Emilie Levert
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
- Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France
| | - Valérie Gautier
- Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France
| | - Christophe Lalanne
- Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France
| | - Elsa De Filippo
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
- Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France
| | - Pierre Gladieux
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Sonia Guillou
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Yu Zhang
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Sravanthi Tejomurthula
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Robert Debuchy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Philippe Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France
| | - Tatiana Giraud
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Fanny E. Hartmann
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| |
Collapse
|
14
|
Casper AMA, Rebolledo N, Lane AK, Jude L, Eddy SL. "It's completely erasure": A Qualitative Exploration of Experiences of Transgender, Nonbinary, Gender Nonconforming, and Questioning Students in Biology Courses. CBE LIFE SCIENCES EDUCATION 2022; 21:ar69. [PMID: 36112619 PMCID: PMC9727607 DOI: 10.1187/cbe.21-12-0343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/11/2022] [Accepted: 07/26/2022] [Indexed: 05/13/2023]
Abstract
Biology is the study of the diversity of life, which includes diversity in sex, gender, and sexual, romantic, and related orientations. However, a small body of literature suggests that undergraduate biology courses focus on only a narrow representation of this diversity (binary sexes, heterosexual orientations, etc.). In this study, we interviewed students with queer genders to understand the messages about sex, gender, and orientation they encountered in biology and the impact of these messages on them. We found five overarching themes in these interviews. Students described two narratives about sex, gender, and orientation in their biology classes that made biology implicitly exclusionary. These narratives harmed students by impacting their sense of belonging, career preparation, and interest in biology content. However, students employed a range of resilience strategies to resist these harms. Finally, students described the currently unrealized potential for biology and biology courses to validate queer identities by representing the diversity in sex and orientation in biology. We provide teaching suggestions derived from student interviews for making biology more queer-inclusive.
Collapse
Affiliation(s)
- A. M. Aramati Casper
- Department of Biology, Department of Civil and Environmental Engineering & Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523-1372
| | - Nico Rebolledo
- Department of Biological Sciences, Florida International University, Miami, FL 33199
| | - A. Kelly Lane
- Biology Teaching and Learning, Minneapolis, MN 55455
| | | | - Sarah L. Eddy
- Department of Biological Sciences, Florida International University, Miami, FL 33199
| |
Collapse
|
15
|
Origin and persistence of polymorphism in loci targeted by disassortative preference: a general model. J Math Biol 2022; 86:4. [PMID: 36441252 DOI: 10.1007/s00285-022-01832-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022]
Abstract
The emergence and persistence of polymorphism within populations generally requires specific regimes of natural or sexual selection. Here, we develop a unified theoretical framework to explore how polymorphism at targeted loci can be generated and maintained by either disassortative mating choice or balancing selection due to, for example, heterozygote advantage. To this aim, we model the dynamics of alleles at a single locus A in a population of haploid individuals, where reproductive success depends on the combination of alleles carried by the parents at locus A. Our theoretical study of the model confirms that the conditions for the persistence of a given level of allelic polymorphism depend on the relative reproductive advantages among pairs of individuals. Interestingly, equilibria with unbalanced allelic frequencies were shown to emerge from successive introduction of mutants. We then investigate the role of the function linking allelic divergence to reproductive advantage on the evolutionary fate of alleles within the population. Our results highlight the significance of the shape of this function for both the number of alleles maintained and their level of genetic divergence. Large number of alleles are maintained with substantial replacement of alleles, when disassortative advantage slowly increases with allelic differentiation . In contrast, few highly differentiated alleles are predicted to be maintained when genetic differentiation has a strong effect on disassortative advantage. These opposite effects predicted by our model explain how disassortative mate choice may lead to various levels of allelic differentiation and polymorphism, and shed light on the effect of mate preferences on the persistence of balanced and unbalanced polymorphism in natural population.
Collapse
|
16
|
da Silva VS, Machado CR. Sex in protists: A new perspective on the reproduction mechanisms of trypanosomatids. Genet Mol Biol 2022; 45:e20220065. [PMID: 36218381 PMCID: PMC9552303 DOI: 10.1590/1678-4685-gmb-2022-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/07/2022] [Indexed: 11/04/2022] Open
Abstract
The Protist kingdom individuals are the most ancestral representatives of eukaryotes. They have inhabited Earth since ancient times and are currently found in the most diverse environments presenting a great heterogeneity of life forms. The unicellular and multicellular algae, photosynthetic and heterotrophic organisms, as well as free-living and pathogenic protozoa represents the protist group. The evolution of sex is directly associated with the origin of eukaryotes being protists the earliest protagonists of sexual reproduction on earth. In eukaryotes, the recombination through genetic exchange is a ubiquitous mechanism that can be stimulated by DNA damage. Scientific evidences support the hypothesis that reactive oxygen species (ROS) induced DNA damage can promote sexual recombination in eukaryotes which might have been a decisive factor for the origin of sex. The fact that some recombination enzymes also participate in meiotic sex in modern eukaryotes reinforces the idea that sexual reproduction emerged as consequence of specific mechanisms to cope with mutations and alterations in genetic material. In this review we will discuss about origin of sex and different strategies of evolve sexual reproduction in some protists such that cause human diseases like malaria, toxoplasmosis, sleeping sickness, Chagas disease, and leishmaniasis.
Collapse
Affiliation(s)
- Verônica Santana da Silva
- Universidade Federal de Minas Gerais, Departamento de Genética,
Ecologia e Evolução, Belo Horizonte, MG, Brazil
| | - Carlos Renato Machado
- Universidade Federal de Minas Gerais, Departamento de Bioquímica e
Imunologia, Belo Horizonte, MG, Brazil
| |
Collapse
|
17
|
Li H, Xu J, Wang S, Wang P, Rao W, Hou B, Zhang Y. Genetic Differentiation and Widespread Mitochondrial Heteroplasmy among Geographic Populations of the Gourmet Mushroom Thelephora ganbajun from Yunnan, China. Genes (Basel) 2022; 13:genes13050854. [PMID: 35627240 PMCID: PMC9141859 DOI: 10.3390/genes13050854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 11/30/2022] Open
Abstract
The mitochondrial genomes are generally considered non-recombining and homoplasmic in nature. However, our previous study provided the first evidence of extensive and stable mitochondrial heteroplasmy in natural populations of the basidiomycete fungus Thelephora ganbajun from Yunnan province, China. The heteroplasmy was characterized by the presence of two types of introns residing at adjacent but different sites in the cytochrome oxidase subunits I (cox1) gene within an individual strain. However, the frequencies of these two introns among isolates from different geographical populations and the implications for the genetic structure in natural populations have not been investigated. In this study, we analyzed DNA sequence variation at the internal transcribed spacer (ITS) regions of the nuclear ribosomal RNA gene cluster among 489 specimens from 30 geographic locations from Yunnan and compared that variation with distribution patterns of the two signature introns in the cox1 gene that are indicative of heteroplasmy in this species. In our samples, evidence for gene flow, abundant genetic diversity, and genotypic uniqueness among geographic samples in Yunnan were revealed by ITS sequence variation. While there was insignificant positive correlation between geographic distance and genetic differentiation among the geographic samples based on ITS sequences, a moderate significant correlation was found between ITS sequence variation, geographical distance of sampling sites, and distribution patterns of the two heteroplasmic introns in the cox1 gene. Interestingly, there was a significantly negative correlation between the copy numbers of the two co-existing introns. We discussed the implications of our results for a better understanding of the spread of stable mitochondrial heteroplasmy, mito-nuclear interactions, and conservation of this important gourmet mushroom.
Collapse
Affiliation(s)
- Haixia Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China; (H.L.); (J.X.); (S.W.); (P.W.)
- School of Life Science, Yunnan University, Kunming 650032, China; (W.R.); (B.H.)
| | - Jianping Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China; (H.L.); (J.X.); (S.W.); (P.W.)
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Shaojuan Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China; (H.L.); (J.X.); (S.W.); (P.W.)
- School of Life Science, Yunnan University, Kunming 650032, China; (W.R.); (B.H.)
| | - Pengfei Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China; (H.L.); (J.X.); (S.W.); (P.W.)
| | - Wanqin Rao
- School of Life Science, Yunnan University, Kunming 650032, China; (W.R.); (B.H.)
| | - Bin Hou
- School of Life Science, Yunnan University, Kunming 650032, China; (W.R.); (B.H.)
| | - Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China; (H.L.); (J.X.); (S.W.); (P.W.)
- Correspondence:
| |
Collapse
|
18
|
Jacobs KC, Lew DJ. Pheromone Guidance of Polarity Site Movement in Yeast. Biomolecules 2022; 12:502. [PMID: 35454091 PMCID: PMC9027094 DOI: 10.3390/biom12040502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 01/11/2023] Open
Abstract
Cells' ability to track chemical gradients is integral to many biological phenomena, including fertilization, development, accessing nutrients, and combating infection. Mating of the yeast Saccharomyces cerevisiae provides a tractable model to understand how cells interpret the spatial information in chemical gradients. Mating yeast of the two different mating types secrete distinct peptide pheromones, called a-factor and α-factor, to communicate with potential partners. Spatial gradients of pheromones are decoded to guide mobile polarity sites so that polarity sites in mating partners align towards each other, as a prerequisite for cell-cell fusion and zygote formation. In ascomycetes including S. cerevisiae, one pheromone is prenylated (a-factor) while the other is not (α-factor). The difference in physical properties between the pheromones, combined with associated differences in mechanisms of secretion and extracellular pheromone metabolism, suggested that the pheromones might differ in the spatial information that they convey to potential mating partners. However, as mating appears to be isogamous in this species, it is not clear why any such signaling difference would be advantageous. Here we report assays that directly track movement of the polarity site in each partner as a way to understand the spatial information conveyed by each pheromone. Our findings suggest that both pheromones convey very similar information. We speculate that the different pheromones were advantageous in ancestral species with asymmetric mating systems and may represent an evolutionary vestige in yeasts that mate isogamously.
Collapse
Affiliation(s)
| | - Daniel J. Lew
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA;
| |
Collapse
|
19
|
Characterization of Mediterranean Durum Wheat for Resistance to Pyrenophora tritici-repentis. Genes (Basel) 2022; 13:genes13020336. [PMID: 35205379 PMCID: PMC8872616 DOI: 10.3390/genes13020336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
Tan spot (TS), caused by the fugus Pyrenophora tritici-repentis (Ptr), has gained significant importance in the last few years, thereby representing a threat to wheat production in all major wheat-growing regions, including Tunisia. In this context, we evaluated a Mediterranean collection of 549 durum wheat accessions under field conditions for resistance to Ptr over two cropping seasons in Jendouba (Tunisia), a hot spot for Ptr. The relative disease severities showed significant phenotypic variation from resistance to susceptibility. The correlation between disease scores over the two trials was significant, as 50% of the accessions maintained good levels of resistance (resistant–moderately resistant). Seedling and adult-stage reactions were significantly correlated. The ANOVA analysis revealed that the genotype term is highly significant at the adult stage, thus emphasizing the high genetic variability of the tested accessions. Reaction-type comparison among and between countries revealed a high diversity of TS resistance. Plant height (PH) was negatively correlated to disease scores, indicating that PH might either have a significant effect on TS severity or that it can be a potential disease escape trait. The evaluation of this collection allowed for the identification of potential diverse resistance sources to Ptr that can be incorporated in breeding programs.
Collapse
|
20
|
Affiliation(s)
- Ash T Zemenick
- University of California Berkeley's Sagehen Creek Field Station, Truckee, California, United States
| | - Shaun Turney
- university-educated parents, currently on paternity leave from his work as a non-tenure-track course lecturer, biology
| | - Alex J Webster
- University of New Mexico's Department of Biology, Albuquerque, New Mexico, United States
| | | | - Marjorie G Weber
- Michigan State University's Plant Biology Department and Program in Ecology, Evolution, and Behavior, East Lansing, Michigan, United States
| |
Collapse
|
21
|
De Cauwer I, Vernet P, Billiard S, Godé C, Bourceaux A, Ponitzki C, Saumitou-Laprade P. Widespread coexistence of self-compatible and self-incompatible phenotypes in a diallelic self-incompatibility system in Ligustrum vulgare (Oleaceae). Heredity (Edinb) 2021; 127:384-392. [PMID: 34482370 PMCID: PMC8479060 DOI: 10.1038/s41437-021-00463-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
The breakdown of self-incompatibility (SI) in angiosperms is one of the most commonly observed evolutionary transitions. While multiple examples of SI breakdown have been documented in natural populations, there is strikingly little evidence of stable within-population polymorphism with both inbreeding (self-compatible) and outcrossing (self-incompatible) individuals. This absence of breeding system polymorphism corroborates theoretical expectations that predict that in/outbreeding polymorphism is possible only under very restricted conditions. However, theory also predicts that a diallelic sporophytic SI system should facilitate the maintenance of such polymorphism. We tested this prediction by studying the breeding system of Ligustrum vulgare L., an insect-pollinated hermaphroditic species of the Oleaceae family. Using stigma tests with controlled pollination and paternity assignment of open-pollinated progenies, we confirmed the existence of two self-incompatibility groups in this species. We also demonstrated the occurrence of self-compatible individuals in different populations of Western Europe arising from a mutation affecting the functioning of the pollen component of SI. Our results show that the observed low frequency of self-compatible individuals in natural populations is compatible with theoretical predictions only if inbreeding depression is very high.
Collapse
Affiliation(s)
- Isabelle De Cauwer
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| | - Philippe Vernet
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| | - Sylvain Billiard
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| | - Cécile Godé
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| | - Angélique Bourceaux
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| | - Chloé Ponitzki
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| | - Pierre Saumitou-Laprade
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| |
Collapse
|
22
|
Benites LF, Bucchini F, Sanchez-Brosseau S, Grimsley N, Vandepoele K, Piganeau G. Evolutionary Genomics of Sex-Related Chromosomes at the Base of the Green Lineage. Genome Biol Evol 2021; 13:6380139. [PMID: 34599324 PMCID: PMC8557840 DOI: 10.1093/gbe/evab216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2021] [Indexed: 12/11/2022] Open
Abstract
Although sex is now accepted as a ubiquitous and ancestral feature of eukaryotes, direct observation of sex is still lacking in most unicellular eukaryotic lineages. Evidence of sex is frequently indirect and inferred from the identification of genes involved in meiosis from whole genome data and/or the detection of recombination signatures from genetic diversity in natural populations. In haploid unicellular eukaryotes, sex-related chromosomes are named mating-type (MTs) chromosomes and generally carry large genomic regions where recombination is suppressed. These regions have been characterized in Fungi and Chlorophyta and determine gamete compatibility and fusion. Two candidate MT+ and MT− alleles, spanning 450–650 kb, have recently been described in Ostreococcus tauri, a marine phytoplanktonic alga from the Mamiellophyceae class, an early diverging branch in the green lineage. Here, we investigate the architecture and evolution of these candidate MT+ and MT− alleles. We analyzed the phylogenetic profile and GC content of MT gene families in eight different genomes whose divergence has been previously estimated at up to 640 Myr, and found evidence that the divergence of the two MT alleles predates speciation in the Ostreococcus genus. Phylogenetic profiles of MT trans-specific polymorphisms in gametologs disclosed candidate MTs in two additional species, and possibly a third. These Mamiellales MT candidates are likely to be the oldest mating-type loci described to date, which makes them fascinating models to investigate the evolutionary mechanisms of haploid sex determination in eukaryotes.
Collapse
Affiliation(s)
- Luis Felipe Benites
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| | - François Bucchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Sophie Sanchez-Brosseau
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| | - Nigel Grimsley
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium.,Bioinformatics Institute Ghent, Ghent University, Belgium
| | - Gwenaël Piganeau
- Integrative Biology of Marine Organisms (BIOM), Sorbonne University, CNRS, Oceanological Observatory of Banyuls, Banyuls-sur-Mer, France
| |
Collapse
|
23
|
Hartmann FE, Ament-Velásquez SL, Vogan AA, Gautier V, Le Prieur S, Berramdane M, Snirc A, Johannesson H, Grognet P, Malagnac F, Silar P, Giraud T. Size Variation of the Nonrecombining Region on the Mating-Type Chromosomes in the Fungal Podospora anserina Species Complex. Mol Biol Evol 2021; 38:2475-2492. [PMID: 33555341 PMCID: PMC8136517 DOI: 10.1093/molbev/msab040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Sex chromosomes often carry large nonrecombining regions that can extend progressively over time, generating evolutionary strata of sequence divergence. However, some sex chromosomes display an incomplete suppression of recombination. Large genomic regions without recombination and evolutionary strata have also been documented around fungal mating-type loci, but have been studied in only a few fungal systems. In the model fungus Podospora anserina (Ascomycota, Sordariomycetes), the reference S strain lacks recombination across a 0.8-Mb region around the mating-type locus. The lack of recombination in this region ensures that nuclei of opposite mating types are packaged into a single ascospore (pseudohomothallic lifecycle). We found evidence for a lack of recombination around the mating-type locus in the genomes of ten P. anserina strains and six closely related pseudohomothallic Podospora species. Importantly, the size of the nonrecombining region differed between strains and species, as indicated by the heterozygosity levels around the mating-type locus and experimental selfing. The nonrecombining region is probably labile and polymorphic, differing in size and precise location within and between species, resulting in occasional, but infrequent, recombination at a given base pair. This view is also supported by the low divergence between mating types, and the lack of strong linkage disequilibrium, chromosomal rearrangements, transspecific polymorphism and genomic degeneration. We found a pattern suggestive of evolutionary strata in P. pseudocomata. The observed heterozygosity levels indicate low but nonnull outcrossing rates in nature in these pseudohomothallic fungi. This study adds to our understanding of mating-type chromosome evolution and its relationship to mating systems.
Collapse
Affiliation(s)
- Fanny E Hartmann
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | | | - Aaron A Vogan
- Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Valérie Gautier
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris, Paris, France
| | - Stephanie Le Prieur
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Myriam Berramdane
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Alodie Snirc
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | | | - Pierre Grognet
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Fabienne Malagnac
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris, Paris, France
| | - Tatiana Giraud
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| |
Collapse
|
24
|
Abstract
True morels (Morchella spp., Morchellaceae, Ascomycota) are widely regarded as a highly prized delicacy and are of great economic and scientific value. Recently, the rapid development of cultivation technology and expansion of areas for artificial morel cultivation have propelled morel research into a hot topic. Many studies have been conducted in various aspects of morel biology, but despite this, cultivation sites still frequently report failure to fruit or only low production of fruiting bodies. Key problems include the gap between cultivation practices and basic knowledge of morel biology. In this review, in an effort to highlight the mating systems, evolution, and life cycle of morels, we summarize the current state of knowledge of morel sexual reproduction, the structure and evolution of mating-type genes, the sexual process itself, and the influence of mating-type genes on the asexual stages and conidium production. Understanding of these processes is critical for improving technology for the cultivation of morels and for scaling up their commercial production. Morel species may well be good candidates as model species for improving sexual development research in ascomycetes in the future.
Collapse
|
25
|
Heesch S, Serrano-Serrano M, Barrera-Redondo J, Luthringer R, Peters AF, Destombe C, Cock JM, Valero M, Roze D, Salamin N, Coelho SM. Evolution of life cycles and reproductive traits: Insights from the brown algae. J Evol Biol 2021; 34:992-1009. [PMID: 34096650 DOI: 10.1101/530477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/18/2021] [Indexed: 05/28/2023]
Abstract
A vast diversity of types of life cycles exists in nature, and several theories have been advanced to explain how this diversity has evolved and how each type of life cycle is retained over evolutionary time. Here, we exploited the diversity of life cycles and reproductive traits of the brown algae (Phaeophyceae) to test several hypotheses on the evolution of life cycles. We investigated the evolutionary dynamics of four life-history traits: life cycle, sexual system, level of gamete dimorphism and gamete parthenogenetic capacity. We assigned states to up to 77 representative species of the taxonomic diversity of the brown algal group, in a multi-gene phylogeny. We used maximum likelihood and Bayesian analyses of correlated evolution, while taking the phylogeny into account, to test for correlations between traits and to investigate the chronological sequence of trait acquisition. Our analyses are consistent with the prediction that diploid growth evolves when sexual reproduction is preferred over asexual reproduction, possibly because it allows the complementation of deleterious mutations. We also found that haploid sex determination is ancestral in relation to diploid sex determination. However, our results could not address whether increased zygotic and diploid growth are associated with increased sexual dimorphism. Our analyses suggest that in the brown algae, isogamous species evolved from anisogamous ancestors, contrary to the commonly reported pattern where evolution proceeds from isogamy to anisogamy.
Collapse
Affiliation(s)
- Svenja Heesch
- CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, UPMC Univ Paris 06, Roscoff, France
- Applied Ecology & Phycology, Institute for Biosciences, University of Rostock, Rostock, Germany
| | | | - Josué Barrera-Redondo
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Rémy Luthringer
- CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, UPMC Univ Paris 06, Roscoff, France
| | | | - Christophe Destombe
- Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC, UACH, IRL 3614, Roscoff, France
| | - J Mark Cock
- CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, UPMC Univ Paris 06, Roscoff, France
| | - Myriam Valero
- Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC, UACH, IRL 3614, Roscoff, France
| | - Denis Roze
- Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC, UACH, IRL 3614, Roscoff, France
| | - Nicolas Salamin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Susana M Coelho
- CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, UPMC Univ Paris 06, Roscoff, France
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
26
|
Heesch S, Serrano-Serrano M, Barrera-Redondo J, Luthringer R, Peters AF, Destombe C, Cock JM, Valero M, Roze D, Salamin N, Coelho SM. Evolution of life cycles and reproductive traits: Insights from the brown algae. J Evol Biol 2021; 34:992-1009. [PMID: 34096650 DOI: 10.1111/jeb.13880] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
A vast diversity of types of life cycles exists in nature, and several theories have been advanced to explain how this diversity has evolved and how each type of life cycle is retained over evolutionary time. Here, we exploited the diversity of life cycles and reproductive traits of the brown algae (Phaeophyceae) to test several hypotheses on the evolution of life cycles. We investigated the evolutionary dynamics of four life-history traits: life cycle, sexual system, level of gamete dimorphism and gamete parthenogenetic capacity. We assigned states to up to 77 representative species of the taxonomic diversity of the brown algal group, in a multi-gene phylogeny. We used maximum likelihood and Bayesian analyses of correlated evolution, while taking the phylogeny into account, to test for correlations between traits and to investigate the chronological sequence of trait acquisition. Our analyses are consistent with the prediction that diploid growth evolves when sexual reproduction is preferred over asexual reproduction, possibly because it allows the complementation of deleterious mutations. We also found that haploid sex determination is ancestral in relation to diploid sex determination. However, our results could not address whether increased zygotic and diploid growth are associated with increased sexual dimorphism. Our analyses suggest that in the brown algae, isogamous species evolved from anisogamous ancestors, contrary to the commonly reported pattern where evolution proceeds from isogamy to anisogamy.
Collapse
Affiliation(s)
- Svenja Heesch
- CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, UPMC Univ Paris 06, Roscoff, France
- Applied Ecology & Phycology, Institute for Biosciences, University of Rostock, Rostock, Germany
| | | | - Josué Barrera-Redondo
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Rémy Luthringer
- CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, UPMC Univ Paris 06, Roscoff, France
| | | | - Christophe Destombe
- Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC, UACH, IRL 3614, Roscoff, France
| | - J Mark Cock
- CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, UPMC Univ Paris 06, Roscoff, France
| | - Myriam Valero
- Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC, UACH, IRL 3614, Roscoff, France
| | - Denis Roze
- Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC, UACH, IRL 3614, Roscoff, France
| | - Nicolas Salamin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Susana M Coelho
- CNRS, Algal Genetics Group, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Université, UPMC Univ Paris 06, Roscoff, France
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
27
|
Anders A, Colin R, Banderas A, Sourjik V. Asymmetric mating behavior of isogamous budding yeast. SCIENCE ADVANCES 2021; 7:7/24/eabf8404. [PMID: 34117059 PMCID: PMC8195471 DOI: 10.1126/sciadv.abf8404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/28/2021] [Indexed: 05/12/2023]
Abstract
Anisogamy, the size difference between small male and large female gametes, is known to enable selection for sexual dimorphism and behavioral differences between sexes. Nevertheless, even isogamous species exhibit molecular asymmetries between mating types, which are known to ensure their self-incompatibility. Here, we show that different properties of the pheromones secreted by the MATa and MATα mating types of budding yeast lead to asymmetry in their behavioral responses during mating in mixed haploid populations, which resemble behavioral asymmetries between gametes in anisogamous organisms. MATa behaves as a random searcher that is stimulated in proportion to the fraction of MATα partner cells within the population, whereas MATα behaves as a short-range directional distance sensor. Mathematical modeling suggests that the observed asymmetric responses can enhance efficiency of mating and might thus provide a selective advantage. Our results demonstrate that the emergence of asymmetric mating behavior did not require anisogamy-based sexual selection.
Collapse
Affiliation(s)
- Alexander Anders
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- LOEWE Research Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Remy Colin
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- LOEWE Research Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Alvaro Banderas
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Laboratoire Physico Chimie Curie, CNRS UMR168, Institut Curie, Paris, France
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- LOEWE Research Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
28
|
Johnson JD, White NL, Kangabire A, Abrams DM. A dynamical model for the origin of anisogamy. J Theor Biol 2021; 521:110669. [PMID: 33745906 DOI: 10.1016/j.jtbi.2021.110669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
The vast majority of multi-cellular organisms are anisogamous, meaning that male and female sex cells differ in size. It remains an open question how this asymmetric state evolved, presumably from the symmetric isogamous state where all gametes are roughly the same size (drawn from the same distribution). Here, we use tools from the study of nonlinear dynamical systems to develop a simple mathematical model for this phenomenon. Unlike some prior work, we do not assume the existence of mating types. We also model frequency dependent selection via "mean-field coupling," whereby the likelihood that a gamete survives is an increasing function of its size relative to the population's mean gamete size. Using theoretical analysis and numerical simulation, we demonstrate that this mean-referenced competition will almost inevitably result in a stable anisogamous equilibrium, and thus isogamy may naturally lead to anisogamy.
Collapse
Affiliation(s)
- Joseph D Johnson
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA.
| | - Nathan L White
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
| | - Alain Kangabire
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
| | - Daniel M Abrams
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA; Department of Physics and Astronomy, Northwestern University, Evanston, IL60208, USA; Northwestern Institute on Complex Systems, Evanston, IL 60208, USA
| |
Collapse
|
29
|
Hartmann FE, Duhamel M, Carpentier F, Hood ME, Foulongne‐Oriol M, Silar P, Malagnac F, Grognet P, Giraud T. Recombination suppression and evolutionary strata around mating-type loci in fungi: documenting patterns and understanding evolutionary and mechanistic causes. THE NEW PHYTOLOGIST 2021; 229:2470-2491. [PMID: 33113229 PMCID: PMC7898863 DOI: 10.1111/nph.17039] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/03/2020] [Indexed: 05/08/2023]
Abstract
Genomic regions determining sexual compatibility often display recombination suppression, as occurs in sex chromosomes, plant self-incompatibility loci and fungal mating-type loci. Regions lacking recombination can extend beyond the genes determining sexes or mating types, by several successive steps of recombination suppression. Here we review the evidence for recombination suppression around mating-type loci in fungi, sometimes encompassing vast regions of the mating-type chromosomes. The suppression of recombination at mating-type loci in fungi has long been recognized and maintains the multiallelic combinations required for correct compatibility determination. We review more recent evidence for expansions of recombination suppression beyond mating-type genes in fungi ('evolutionary strata'), which have been little studied and may be more pervasive than commonly thought. We discuss testable hypotheses for the ultimate (evolutionary) and proximate (mechanistic) causes for such expansions of recombination suppression, including (1) antagonistic selection, (2) association of additional functions to mating-type, such as uniparental mitochondria inheritance, (3) accumulation in the margin of nonrecombining regions of various factors, including deleterious mutations or transposable elements resulting from relaxed selection, or neutral rearrangements resulting from genetic drift. The study of recombination suppression in fungi could thus contribute to our understanding of recombination suppression expansion across a broader range of organisms.
Collapse
Affiliation(s)
- Fanny E. Hartmann
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
| | - Marine Duhamel
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
- Ruhr‐Universität Bochum, Evolution of Plants and Fungi ‐ Gebäude ND 03/174Universitätsstraße150, 44801 BochumGermany
| | - Fantin Carpentier
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
| | - Michael E. Hood
- Biology Department, Science CentreAmherst CollegeAmherstMA01002USA
| | | | - Philippe Silar
- Lab Interdisciplinaire Energies DemainUniv Paris DiderotSorbonne Paris CiteParis 13F‐75205France
| | - Fabienne Malagnac
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayCEACNRSGif‐sur‐Yvette91198France
| | - Pierre Grognet
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayCEACNRSGif‐sur‐Yvette91198France
| | - Tatiana Giraud
- Ecologie Systematique EvolutionBatiment 360Université Paris‐SaclayCNRSAgroParisTechOrsay91400France
| |
Collapse
|
30
|
|
31
|
Berríos-Caro E, Galla T, Constable GWA. Switching environments, synchronous sex, and the evolution of mating types. Theor Popul Biol 2021; 138:28-42. [PMID: 33639174 DOI: 10.1016/j.tpb.2021.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 01/31/2023]
Abstract
While facultative sex is common in sexually reproducing species, for reasons of tractability most mathematical models assume that such sex is asynchronous in the population. In this paper, we develop a model of switching environments to instead capture the effect of an entire population transitioning synchronously between sexual and asexual modes of reproduction. We use this model to investigate the evolution of the number of self-incompatible mating types in finite populations, which empirically can range from two to thousands. When environmental switching is fast, we recover the results of earlier studies that implicitly assumed populations were engaged in asynchronous sexual reproduction. However when the environment switches slowly, we see deviations from previous asynchronous theory, including a lower number of mating types at equilibrium and bimodality in the stationary distribution of mating types. We provide analytic approximations for both the fast and slow switching regimes, as well as a numerical scheme based on the Kolmogorov equations for the system to quickly evaluate the model dynamics at intermediate parameters. Our approach exploits properties of integer partitions in number theory. We also demonstrate how additional biological processes such as selective sweeps can be accounted for in this switching environment framework, showing that beneficial mutations can further erode mating type diversity in synchronous facultatively sexual populations.
Collapse
Affiliation(s)
- Ernesto Berríos-Caro
- Theoretical Physics, Department of Physics and Astronomy, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom.
| | - Tobias Galla
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), 07122 Palma de Mallorca, Spain; Theoretical Physics, Department of Physics and Astronomy, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom
| | | |
Collapse
|
32
|
Sawka-Gądek N, Potekhin A, Singh DP, Grevtseva I, Arnaiz O, Penel S, Sperling L, Tarcz S, Duret L, Nekrasova I, Meyer E. Evolutionary Plasticity of Mating-Type Determination Mechanisms in Paramecium aurelia Sibling Species. Genome Biol Evol 2021; 13:evaa258. [PMID: 33313646 PMCID: PMC7900874 DOI: 10.1093/gbe/evaa258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
The Paramecium aurelia complex, a group of morphologically similar but sexually incompatible sibling species, is a unique example of the evolutionary plasticity of mating-type systems. Each species has two mating types, O (Odd) and E (Even). Although O and E types are homologous in all species, three different modes of determination and inheritance have been described: genetic determination by Mendelian alleles, stochastic developmental determination, and maternally inherited developmental determination. Previous work in three species of the latter kind has revealed the key roles of the E-specific transmembrane protein mtA and its highly specific transcription factor mtB: type O clones are produced by maternally inherited genome rearrangements that inactivate either mtA or mtB during development. Here we show, through transcriptome analyses in five additional species representing the three determination systems, that mtA expression specifies type E in all cases. We further show that the Mendelian system depends on functional and nonfunctional mtA alleles, and identify novel developmental rearrangements in mtA and mtB which now explain all cases of maternally inherited mating-type determination. Epistasis between these genes likely evolved from less specific interactions between paralogs in the P. aurelia common ancestor, after a whole-genome duplication, but the mtB gene was subsequently lost in three P. aurelia species which appear to have returned to an ancestral regulation mechanism. These results suggest a model accounting for evolutionary transitions between determination systems, and highlight the diversity of molecular solutions explored among sibling species to maintain an essential mating-type polymorphism in cell populations.
Collapse
Affiliation(s)
- Natalia Sawka-Gądek
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Alexey Potekhin
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Deepankar Pratap Singh
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Inessa Grevtseva
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Olivier Arnaiz
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Simon Penel
- CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université de Lyon, Villeurbanne, France
| | - Linda Sperling
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sebastian Tarcz
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Laurent Duret
- CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Université de Lyon, Villeurbanne, France
| | - Irina Nekrasova
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Eric Meyer
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
33
|
Gladieux P, De Bellis F, Hann-Soden C, Svedberg J, Johannesson H, Taylor JW. Neurospora from Natural Populations: Population Genomics Insights into the Life History of a Model Microbial Eukaryote. Methods Mol Biol 2021; 2090:313-336. [PMID: 31975173 DOI: 10.1007/978-1-0716-0199-0_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The ascomycete filamentous fungus Neurospora crassa played a historic role in experimental biology and became a model system for genetic research. Stimulated by a systematic effort to collect wild strains initiated by Stanford geneticist David Perkins, the genus Neurospora has also become a basic model for the study of evolutionary processes, speciation, and population biology. In this chapter, we will first trace the history that brought Neurospora into the era of population genomics. We will then cover the major contributions of population genomic investigations using Neurospora to our understanding of microbial biogeography and speciation, and review recent work using population genomics and genome-wide association mapping that illustrates the unique potential of Neurospora as a model for identifying the genetic basis of (potentially adaptive) phenotypes in filamentous fungi. The advent of population genomics has contributed to firmly establish Neurospora as a complete model system and we hope our review will entice biologists to include Neurospora in their research.
Collapse
Affiliation(s)
- Pierre Gladieux
- UMR BGPI, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.
| | - Fabien De Bellis
- UMR AGAP, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Christopher Hann-Soden
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Jesper Svedberg
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Hanna Johannesson
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - John W Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
34
|
Kijpornyongpan T, Aime MC. Investigating the Smuts: Common Cues, Signaling Pathways, and the Role of MAT in Dimorphic Switching and Pathogenesis. J Fungi (Basel) 2020; 6:jof6040368. [PMID: 33339287 PMCID: PMC7766764 DOI: 10.3390/jof6040368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
The corn smut fungus Ustilago maydis serves as a model species for studying fungal dimorphism and its role in phytopathogenic development. The pathogen has two growth phases: a saprobic yeast phase and a pathogenic filamentous phase. Dimorphic transition of U. maydis involves complex processes of signal perception, mating, and cellular reprogramming. Recent advances in improvement of reference genomes, high-throughput sequencing and molecular genetics studies have been expanding research in this field. However, the biology of other non-model species is frequently overlooked. This leads to uncertainty regarding how much of what is known in U. maydis is applicable to other dimorphic fungi. In this review, we will discuss dimorphic fungi in the aspects of physiology, reproductive biology, genomics, and molecular genetics. We also perform comparative analyses between U. maydis and other fungi in Ustilaginomycotina, the subphylum to which U. maydis belongs. We find that lipid/hydrophobicity is a potential common cue for dimorphic transition in plant-associated dimorphic fungi. However, genomic profiles alone are not adequate to explain dimorphism across different fungi.
Collapse
|
35
|
Maisonneuve L, Chouteau M, Joron M, Llaurens V. Evolution and genetic architecture of disassortative mating at a locus under heterozygote advantage. Evolution 2020; 75:149-165. [PMID: 33210282 DOI: 10.1111/evo.14129] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/04/2020] [Indexed: 02/02/2023]
Abstract
The evolution of mate choice is a major topic in evolutionary biology because it is thought to be a key factor in trait and species diversification. Here, we aim at uncovering the ecological conditions and genetic architecture enabling the puzzling evolution of disassortative mating based on adaptive traits. This rare form of mate choice is observed for some polymorphic traits but theoretical predictions on the emergence and persistence of this behavior are largely lacking. Thus, we developed a mathematical model to specifically understand the evolution of disassortative mating based on mimetic color pattern in the polymorphic butterfly Heliconius numata. We confirm that heterozygote advantage favors the evolution of disassortative mating and show that disassortative mating is more likely to emerge if at least one allele at the trait locus is free from any recessive deleterious mutations. We modeled different possible genetic architectures underlying mate choice behavior, such as self-referencing alleles, or specific preference or rejection alleles. Our results showed that self-referencing or rejection alleles linked to the color pattern locus enable the emergence of disassortative mating. However, rejection alleles allow the emergence of disassortative mating only when the color pattern and preference loci are tightly linked.
Collapse
Affiliation(s)
- Ludovic Maisonneuve
- Institut de Systematique, Evolution, Biodiversité (UMR7205), Museum National d'Histoire Naturelle, CNRS, Sorbonne-Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier, Paris, 75005, France
| | - Mathieu Chouteau
- Laboratoire Ecologie, Evolution, Interactions Des Systèmes Amazoniens (LEEISA), USR 3456, Université De Guyane, IFREMER, CNRS Guyane, 275 route de Montabo, 97334 Cayenne, French Guiana
| | - Mathieu Joron
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| | - Violaine Llaurens
- Institut de Systematique, Evolution, Biodiversité (UMR7205), Museum National d'Histoire Naturelle, CNRS, Sorbonne-Université, EPHE, Université des Antilles, CP50, 57 rue Cuvier, Paris, 75005, France
| |
Collapse
|
36
|
Wang G, Chen K, Zhang J, Deng S, Xiong J, He X, Fu Y, Miao W. Drivers of Mating Type Composition in Tetrahymena thermophila. Genome Biol Evol 2020; 12:2328-2343. [PMID: 32946549 PMCID: PMC7846192 DOI: 10.1093/gbe/evaa197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2020] [Indexed: 11/23/2022] Open
Abstract
Sex offers advantages even in primarily asexual species. Some ciliates appear to utilize such reproductive strategy with many mating types. However, the factors determining the composition of mating types in the unicellular ciliate Tetrahymena thermophila are poorly understood, and this is further complicated by non-Mendelian determination of mating type in the offspring. We therefore developed a novel population genetics model to predict how various factors influence the dynamics of mating type composition, including natural selection. The model predicted either the coexistence of all seven mating types or fixation of a single mating type in a population, depending on parameter combinations, irrespective of natural selection. To understand what factor(s) may be more influential and to test the validity of theoretical prediction, five replicate populations were maintained in laboratory such that several factors could be controlled or measured. Whole-genome sequencing was used to identify newly arising mutations and determine mating type composition. Strikingly, all populations were found to be driven by strong selection on newly arising beneficial mutations to fixation of their carrying mating types, and the trajectories of speed to fixation agreed well with our theoretical predictions. This study illustrates the evolutionary strategies that T. thermophila can utilize to optimize population fitness.
Collapse
Affiliation(s)
- Guangying Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kai Chen
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing Zhang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shanjun Deng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xionglei He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yunxin Fu
- Laboratory for Conservation and Utilization of Bioresources, Yunnan University, Kunming, China.,Department of Biostatistics and Data Science and Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China.,University of Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Animal Evolution and Genetics, Kunming, China
| |
Collapse
|
37
|
Quantification of Outcrossing Events in Haploid Fungi Using Microsatellite Markers. J Fungi (Basel) 2020; 6:jof6020048. [PMID: 32295110 PMCID: PMC7345254 DOI: 10.3390/jof6020048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 11/16/2022] Open
Abstract
Species in genera of the fungal family Ceratocystidaceae are known to have different mating strategies, including heterothallism and homothallism. Of these, species of Ceratocystis, typified by the pathogen Ceratocystis fimbriata all undergo unidirectional mating-type switching. This implies that the pathogens possess the ability to self, but also to undergo sexual outcrossing between isolates of different mating types. In this study, we extended the recently developed microsatellite-based technique to determine the extent to which outcrossing occurs in ascospore masses of haploid fungi to two field collections of Ceratocystis albifundus. In this way, the role of reproductive strategies in shaping population structure and diversity could be better understood. Results showed that a high frequency of outcrossing occurs in isolates of the pathogen from both non-native and native areas. This explains the high level of genetic diversity previously observed in this population despite the fact that this pathogen has the ability to self.
Collapse
|
38
|
Havenga M, Wingfield BD, Wingfield MJ, Roets F, Dreyer LL, Tatham CT, Duong TA, Wilken PM, Chen S, Aylward J. Mating strategy and mating type distribution in six global populations of the Eucalyptus foliar pathogen Teratosphaeria destructans. Fungal Genet Biol 2020; 137:103350. [DOI: 10.1016/j.fgb.2020.103350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 12/18/2022]
|
39
|
Wu E, Wang Y, Yahuza L, He M, Sun D, Huang Y, Liu Y, Yang L, Zhu W, Zhan J. Rapid adaptation of the Irish potato famine pathogen Phytophthora infestans to changing temperature. Evol Appl 2020; 13:768-780. [PMID: 32211066 PMCID: PMC7086108 DOI: 10.1111/eva.12899] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/19/2019] [Accepted: 10/28/2019] [Indexed: 01/06/2023] Open
Abstract
Temperature plays a multidimensional role in host-pathogen interactions. As an important element of climate change, elevated world temperature resulting from global warming presents new challenges to sustainable disease management. Knowledge of pathogen adaptation to global warming is needed to predict future disease epidemiology and formulate mitigating strategies. In this study, 21 Phytophthora infestans isolates originating from seven thermal environments were acclimated for 200 days under stepwise increase or decrease of experimental temperatures and evolutionary responses of the isolates to the thermal changes were evaluated. We found temperature acclimation significantly increased the fitness and genetic adaptation of P. infestans isolates at both low and high temperatures. Low-temperature acclimation enforced the countergradient adaptation of the pathogen to its past selection and enhanced the positive association between the pathogen's intrinsic growth rate and aggressiveness. At high temperatures, we found that pathogen growth collapsed near the maximum temperature for growth, suggesting a thermal niche boundary may exist in the evolutionary adaptation of P. infestans. These results indicate that pathogens can quickly adapt to temperature shifts in global warming. If this is associated with environmental conditions favoring pathogen spread, it will threaten future food security and human health and require the establishment of mitigating actions.
Collapse
Affiliation(s)
- E‐Jiao Wu
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
- Jiangsu Key Laboratory for Horticultural Crop Genetic ImprovementInstitute of PomologyJiangsu Academy of Agricultural SciencesNanjingChina
| | - Yan‐Ping Wang
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lurwanu Yahuza
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Meng‐Han He
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
- College of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| | - Dan‐Li Sun
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yan‐Mei Huang
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yu‐Chan Liu
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Li‐Na Yang
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Wen Zhu
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiasui Zhan
- Fujian Key Laboratory of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
40
|
Hartfield M, Bataillon T. Selective Sweeps Under Dominance and Inbreeding. G3 (BETHESDA, MD.) 2020; 10:1063-1075. [PMID: 31974096 PMCID: PMC7056974 DOI: 10.1534/g3.119.400919] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/18/2020] [Indexed: 12/26/2022]
Abstract
A major research goal in evolutionary genetics is to uncover loci experiencing positive selection. One approach involves finding 'selective sweeps' patterns, which can either be 'hard sweeps' formed by de novo mutation, or 'soft sweeps' arising from recurrent mutation or existing standing variation. Existing theory generally assumes outcrossing populations, and it is unclear how dominance affects soft sweeps. We consider how arbitrary dominance and inbreeding via self-fertilization affect hard and soft sweep signatures. With increased self-fertilization, they are maintained over longer map distances due to reduced effective recombination and faster beneficial allele fixation times. Dominance can affect sweep patterns in outcrossers if the derived variant originates from either a single novel allele, or from recurrent mutation. These models highlight the challenges in distinguishing hard and soft sweeps, and propose methods to differentiate between scenarios.
Collapse
Affiliation(s)
- Matthew Hartfield
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario M5S 3B2, Canada,
- Bioinformatics Research Centre, Aarhus University, Aarhus 8000, Denmark, and
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Thomas Bataillon
- Bioinformatics Research Centre, Aarhus University, Aarhus 8000, Denmark, and
| |
Collapse
|
41
|
Krumbeck Y, Constable GWA, Rogers T. Fitness differences suppress the number of mating types in evolving isogamous species. ROYAL SOCIETY OPEN SCIENCE 2020; 7:192126. [PMID: 32257356 PMCID: PMC7062084 DOI: 10.1098/rsos.192126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/31/2020] [Indexed: 06/11/2023]
Abstract
Sexual reproduction is not always synonymous with the existence of two morphologically different sexes; isogamous species produce sex cells of equal size, typically falling into multiple distinct self-incompatible classes, termed mating types. A long-standing open question in evolutionary biology is: what governs the number of these mating types across species? Simple theoretical arguments imply an advantage to rare types, suggesting the number of types should grow consistently; however, empirical observations are very different. While some isogamous species exhibit thousands of mating types, such species are exceedingly rare, and most have fewer than 10. In this paper, we present a mathematical analysis to quantify the role of fitness variation-characterized by different mortality rates-in determining the number of mating types emerging in simple evolutionary models. We predict that the number of mating types decreases as the variance of mortality increases.
Collapse
Affiliation(s)
- Yvonne Krumbeck
- Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK
| | | | - Tim Rogers
- Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
42
|
Lütkenhaus R, Traeger S, Breuer J, Carreté L, Kuo A, Lipzen A, Pangilinan J, Dilworth D, Sandor L, Pöggeler S, Gabaldón T, Barry K, Grigoriev IV, Nowrousian M. Comparative Genomics and Transcriptomics To Analyze Fruiting Body Development in Filamentous Ascomycetes. Genetics 2019; 213:1545-1563. [PMID: 31604798 PMCID: PMC6893386 DOI: 10.1534/genetics.119.302749] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023] Open
Abstract
Many filamentous ascomycetes develop three-dimensional fruiting bodies for production and dispersal of sexual spores. Fruiting bodies are among the most complex structures differentiated by ascomycetes; however, the molecular mechanisms underlying this process are insufficiently understood. Previous comparative transcriptomics analyses of fruiting body development in different ascomycetes suggested that there might be a core set of genes that are transcriptionally regulated in a similar manner across species. Conserved patterns of gene expression can be indicative of functional relevance, and therefore such a set of genes might constitute promising candidates for functional analyses. In this study, we have sequenced the genome of the Pezizomycete Ascodesmis nigricans, and performed comparative transcriptomics of developing fruiting bodies of this fungus, the Pezizomycete Pyronema confluens, and the Sordariomycete Sordaria macrospora With only 27 Mb, the A. nigricans genome is the smallest Pezizomycete genome sequenced to date. Comparative transcriptomics indicated that gene expression patterns in developing fruiting bodies of the three species are more similar to each other than to nonsexual hyphae of the same species. An analysis of 83 genes that are upregulated only during fruiting body development in all three species revealed 23 genes encoding proteins with predicted roles in vesicle transport, the endomembrane system, or transport across membranes, and 13 genes encoding proteins with predicted roles in chromatin organization or the regulation of gene expression. Among four genes chosen for functional analysis by deletion in S. macrospora, three were shown to be involved in fruiting body formation, including two predicted chromatin modifier genes.
Collapse
Affiliation(s)
- Ramona Lütkenhaus
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Stefanie Traeger
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Jan Breuer
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Laia Carreté
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - David Dilworth
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Laura Sandor
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
| | - Stefanie Pöggeler
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August University, Göttingen, 37077 Göttingen, Germany
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08002 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Kerrie Barry
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation, 08003 Barcelona, Spain
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598
- Department of Plant and Microbial Biology, University of California Berkeley, California 94720
| | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
43
|
Usher J. The Mechanisms of Mating in Pathogenic Fungi-A Plastic Trait. Genes (Basel) 2019; 10:E831. [PMID: 31640207 PMCID: PMC6826560 DOI: 10.3390/genes10100831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/30/2019] [Accepted: 10/17/2019] [Indexed: 01/20/2023] Open
Abstract
The impact of fungi on human and plant health is an ever-increasing issue. Recent studies have estimated that human fungal infections result in an excess of one million deaths per year and plant fungal infections resulting in the loss of crop yields worth approximately 200 million per annum. Sexual reproduction in these economically important fungi has evolved in response to the environmental stresses encountered by the pathogens as a method to target DNA damage. Meiosis is integral to this process, through increasing diversity through recombination. Mating and meiosis have been extensively studied in the model yeast Saccharomyces cerevisiae, highlighting that these mechanisms have diverged even between apparently closely related species. To further examine this, this review will inspect these mechanisms in emerging important fungal pathogens, such as Candida, Aspergillus, and Cryptococcus. It shows that both sexual and asexual reproduction in these fungi demonstrate a high degree of plasticity.
Collapse
Affiliation(s)
- Jane Usher
- Medical Research Council Centre for Medical Mycology, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter EX4 4QD, UK.
| |
Collapse
|
44
|
Czuppon P, Constable GWA. Invasion and Extinction Dynamics of Mating Types Under Facultative Sexual Reproduction. Genetics 2019; 213:567-580. [PMID: 31391266 PMCID: PMC6781889 DOI: 10.1534/genetics.119.302306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/04/2019] [Indexed: 01/08/2023] Open
Abstract
In sexually reproducing isogamous species, syngamy between gametes is generally not indiscriminate, but rather restricted to occurring between complementary self-incompatible mating types. A longstanding question regards the evolutionary pressures that control the number of mating types observed in natural populations, which ranges from two to many thousands. Here, we describe a population genetic null model of this reproductive system, and derive expressions for the stationary probability distribution of the number of mating types, the establishment probability of a newly arising mating type, and the mean time to extinction of a resident type. Our results yield that the average rate of sexual reproduction in a population correlates positively with the expected number of mating types observed. We further show that the low number of mating types predicted in the rare-sex regime is primarily driven by low invasion probabilities of new mating type alleles, with established resident alleles being very stable over long evolutionary periods. Moreover, our model naturally exhibits varying selection strength dependent on the number of resident mating types. This results in higher extinction and lower invasion rates for an increasing number of residents.
Collapse
Affiliation(s)
- Peter Czuppon
- Center for Interdisciplinary Research in Biology, CNRS, Collège de France, PSL Research University, 75231 Paris, France
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Université, UPEC, CNRS, IRD, INRA, 75252 Paris, France
| | - George W A Constable
- Department of Mathematical Sciences, The University of Bath, BA2 7AY, United Kingdom
| |
Collapse
|
45
|
The Parauncinula polyspora Draft Genome Provides Insights into Patterns of Gene Erosion and Genome Expansion in Powdery Mildew Fungi. mBio 2019; 10:mBio.01692-19. [PMID: 31551331 PMCID: PMC6759760 DOI: 10.1128/mbio.01692-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Powdery mildew fungi are widespread and agronomically relevant phytopathogens causing major yield losses. Their genomes have disproportionately large numbers of mobile genetic elements, and they have experienced a significant loss of highly conserved fungal genes. In order to learn more about the evolutionary history of this fungal group, we explored the genome of an Asian oak tree pathogen, Parauncinula polyspora, a species that diverged early during evolution from the remaining powdery mildew fungi. We found that the P. polyspora draft genome is comparatively compact, has a low number of protein-coding genes, and, despite the absence of a dedicated genome defense system, lacks the massive proliferation of repetitive sequences. Based on these findings, we infer an evolutionary trajectory that shaped the genomes of powdery mildew fungi. Due to their comparatively small genome size and short generation time, fungi are exquisite model systems to study eukaryotic genome evolution. Powdery mildew fungi present an exceptional case because of their strict host dependency (termed obligate biotrophy) and the atypical size of their genomes (>100 Mb). This size expansion is largely due to the pervasiveness of transposable elements on 70% of the genome and is associated with the loss of multiple conserved ascomycete genes required for a free-living lifestyle. To date, little is known about the mechanisms that drove these changes, and information on ancestral powdery mildew genomes is lacking. We report genome analysis of the early-diverged and exclusively sexually reproducing powdery mildew fungus Parauncinula polyspora, which we performed on the basis of a natural leaf epiphytic metapopulation sample. In contrast to other sequenced species of this taxonomic group, the assembled P. polyspora draft genome is surprisingly small (<30 Mb), has a higher content of conserved ascomycete genes, and is sparsely equipped with transposons (<10%), despite the conserved absence of a common defense mechanism involved in constraining repetitive elements. We speculate that transposable element spread might have been limited by this pathogen’s unique reproduction strategy and host features and further hypothesize that the loss of conserved ascomycete genes may promote the evolutionary isolation and host niche specialization of powdery mildew fungi. Limitations associated with this evolutionary trajectory might have been in part counteracted by the evolution of plastic, transposon-rich genomes and/or the expansion of gene families encoding secreted virulence proteins.
Collapse
|
46
|
Czuppon P, Rogers DW. Evolution of mating types in finite populations: The precarious advantage of being rare. J Evol Biol 2019; 32:1290-1299. [PMID: 31479547 DOI: 10.1111/jeb.13528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/28/2019] [Accepted: 08/19/2019] [Indexed: 01/03/2023]
Abstract
Sexually reproducing populations with self-incompatibility bear the cost of limiting potential mates to individuals of a different type. Rare mating types escape this cost since they are unlikely to encounter incompatible partners, leading to the deterministic prediction of continuous invasion by new mutants and an ever-increasing number of types. However, rare types are also at an increased risk of being lost by random drift. Calculating the number of mating types that a population can maintain requires consideration of both the deterministic advantages and the stochastic risks. By comparing the relative importance of selection and drift, we show that a population of size N can maintain a maximum of approximately N1/3 mating types for intermediate population sizes, whereas for large N, we derive a formal estimate. Although the number of mating types in a population is quite stable, the rare-type advantage promotes turnover of types. We derive explicit formulas for both the invasion and turnover probabilities in finite populations.
Collapse
Affiliation(s)
- Peter Czuppon
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Centre Interdisciplinaire de Recherche en Biologie, CNRS Collège de France, PSL Research University, Paris, France.,Institut d'Ecologie et des Sciences de l'Environnement (IEES), UPEC, CNRS, IRD, INRA, Sorbonne Université, Paris, France
| | - David W Rogers
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
47
|
Hadjivasiliou Z, Pomiankowski A. Evolution of asymmetric gamete signaling and suppressed recombination at the mating type locus. eLife 2019; 8:48239. [PMID: 31464685 PMCID: PMC6715347 DOI: 10.7554/elife.48239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/25/2019] [Indexed: 11/24/2022] Open
Abstract
The two partners required for sexual reproduction are rarely the same. This pattern extends to species which lack sexual dimorphism yet possess self-incompatible gametes determined at mating-type regions of suppressed recombination, likely precursors of sex chromosomes. Here we investigate the role of cellular signaling in the evolution of mating-types. We develop a model of ligand-receptor dynamics, and identify factors that determine the capacity of cells to send and receive signals. The model specifies conditions favoring the evolution of gametes producing ligand and receptor asymmetrically and shows how these are affected by recombination. When the recombination rate evolves, the conditions favoring asymmetric signaling also favor tight linkage of ligand and receptor loci in distinct linkage groups. These results suggest that selection for asymmetric gamete signaling could be the first step in the evolution of non-recombinant mating-type loci, paving the road for the evolution of anisogamy and sexes. Sexual reproduction, from birds to bees, relies on distinct classes of sex cells, known as gametes, fusing together. Most single cell organisms, rather than producing eggs and sperm, have similar sized gametes that fall into distinct ‘mating types’. However, only sex cells belonging to different mating types can fuse together and sexually reproduce. At first glance, it seems illogical that cells from the same mating type cannot reproduce with each other, as this restricts eligible partners within a population and makes finding a mate more difficult. Yet the typical pattern amongst single cell organisms is still two distinct classes of sex cells, just as in birds and bees. How did the obsession with mating between two different types become favored during evolution? One possibility is that cells with different mating types can recognize and communicate with each other more easily. Cells communicate by releasing proteins known as ligands, which bind to specific receptors found on the cell’s surface. Using mathematical modelling, Hadjivasiliou and Pomiankowski showed that natural selection typically favors ‘asymmetric’ signaling, whereby cells evolve to either produce receptor A with ligand B, or have the reverse pattern and produce receptor B with ligand A. These asymmetric mutants are favored because they avoid producing ligands that clog or activate the receptors on their own surface. As a result, different types of cells are better at recognizing each other and mating more quickly. When cells sexually reproduce they exchange genetic material with each other to produce offspring with a combination of genes that differ to their own. However, if the genes coding for ligand and receptor pairs were constantly being ‘swapped’, this could lead to new combinations, and a loss of asymmetric signaling. Hadjivasiliou and Pomiankowski showed that for asymmetric signaling to evolve, natural selection favors the genes encoding these non-compatible ligand and receptor pairs to be closely linked within the genome. This ensures that the mis-matching ligand and receptor are inherited together, preventing cells from producing pairs which can bind to themselves. This study provides an original way to address an evolutionary question which has long puzzled biologists. These findings raise further questions about how gametes evolved to become the sperm and egg, and how factors such as signaling between cells can determine the sex of more complex organisms, such as ourselves.
Collapse
Affiliation(s)
- Zena Hadjivasiliou
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.,Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London, United Kingdom.,Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Andrew Pomiankowski
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London, United Kingdom.,Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
48
|
Laine AL, Barrès B, Numminen E, Siren JP. Variable opportunities for outcrossing result in hotspots of novel genetic variation in a pathogen metapopulation. eLife 2019; 8:47091. [PMID: 31210640 PMCID: PMC6667214 DOI: 10.7554/elife.47091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/18/2019] [Indexed: 11/17/2022] Open
Abstract
Many pathogens possess the capacity for sex through outcrossing, despite being able to reproduce also asexually and/or via selfing. Given that sex is assumed to come at a cost, these mixed reproductive strategies typical of pathogens have remained puzzling. While the ecological and evolutionary benefits of outcrossing are theoretically well-supported, support for such benefits in pathogen populations are still scarce. Here, we analyze the epidemiology and genetic structure of natural populations of an obligate fungal pathogen, Podosphaera plantaginis. We find that the opportunities for outcrossing vary spatially. Populations supporting high levels of coinfection –a prerequisite of sex – result in hotspots of novel genetic diversity. Pathogen populations supporting coinfection also have a higher probability of surviving winter. Jointly our results show that outcrossing has direct epidemiological consequences as well as a major impact on pathogen population genetic diversity, thereby providing evidence of ecological and evolutionary benefits of outcrossing in pathogens. The existence of sex – broadly defined as the coming together of genes from different individuals – is one of the big evolutionary puzzles. Reproduction allows an organism to pass on its genes to future generations. However, while asexual and self-fertilizing individuals transmit all of their genes to their offspring, individuals that reproduce through sex transmit only half of their genome. This is considered the cost of sex. Many pathogens reproduce through sex, despite often also being able to reproduce asexually or by self-fertilization. Typically a pre-requisite of sex in pathogens is for at least two different strains to infect the same host. Aside from this limitation, little is known about when, where and why pathogens have sex. It has been tricky to study due to the microscopic size of pathogens and the difficulties of identifying different sexes. Moreover, sexual reproduction may be triggered by environmental cues that are difficult to mimic under controlled experimental conditions. Are there any benefits associated with pathogen sex? To find out, Laine et al. analyzed data collected over the course of four years from thousands of populations of a powdery mildew fungus that infected plants across the Åland islands. This revealed that the opportunities for pathogen sex vary in different locations. Areas where multiple strains of the fungus commonly infect the same plants result in hotspots of new genetic diversity. These mixed populations are also more likely to survive winter. This demonstrates the potential for pathogen sexual reproduction to provide an ecological benefit. Identifying areas and populations where pathogens have sex can help to identify when and where new strains are most likely to emerge. In the future, studies that use similar methods to Laine et al. could help to predict where infections and diseases are highly likely to arise.
Collapse
Affiliation(s)
- Anna-Liisa Laine
- Research Centre for Ecological Change, Organismal and Evolutionary Biology, University of Helsinki, Helsinki, Finland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse, Switzerland
| | - Benoit Barrès
- Research Centre for Ecological Change, Organismal and Evolutionary Biology, University of Helsinki, Helsinki, Finland
| | - Elina Numminen
- Research Centre for Ecological Change, Organismal and Evolutionary Biology, University of Helsinki, Helsinki, Finland
| | - Jukka P Siren
- Research Centre for Ecological Change, Organismal and Evolutionary Biology, University of Helsinki, Helsinki, Finland.,Helsinki Institute for Information Technology, Department of Computer Science, Aalto University, Espoo, Finland
| |
Collapse
|
49
|
Little Evidence of Antagonistic Selection in the Evolutionary Strata of Fungal Mating-Type Chromosomes ( Microbotryum lychnidis-dioicae). G3-GENES GENOMES GENETICS 2019; 9:1987-1998. [PMID: 31015196 PMCID: PMC6553529 DOI: 10.1534/g3.119.400242] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recombination suppression on sex chromosomes often extends in a stepwise manner, generating evolutionary strata of differentiation between sex chromosomes. Sexual antagonism is a widely accepted explanation for evolutionary strata, postulating that sets of genes beneficial in only one sex are successively linked to the sex-determining locus. The anther-smut fungus Microbotryum lychnidis-dioicae has mating-type chromosomes with evolutionary strata, only some of which link mating-type genes. Male and female roles are non-existent in this fungus, but mating-type antagonistic selection can also generate evolutionary strata, although the life cycle of the fungus suggests it should be restricted to few traits. Here, we tested the hypothesis that mating-type antagonism may have triggered recombination suppression beyond mating-type genes in M. lychnidis-dioicae by searching for footprints of antagonistic selection in evolutionary strata not linking mating-type loci. We found that these evolutionary strata (i) were not enriched in genes upregulated in the haploid phase, where cells are of alternative mating types, (ii) carried no gene differentially expressed between mating types, and (iii) carried no genes displaying footprints of specialization in terms of protein sequences (dN/dS) between mating types after recommended filtering. Without filtering, eleven genes showed signs of positive selection in the strata not linking mating-type genes, which constituted an enrichment compared to autosomes, but their functions were not obviously involved in antagonistic selection. Thus, we found no strong evidence that antagonistic selection has contributed to extending recombination suppression beyond mating-type genes. Alternative hypotheses should therefore be explored to improve our understanding of the sex-related chromosome evolution.
Collapse
|
50
|
Carpentier F, Rodríguez de la Vega RC, Branco S, Snirc A, Coelho MA, Hood ME, Giraud T. Convergent recombination cessation between mating-type genes and centromeres in selfing anther-smut fungi. Genome Res 2019; 29:944-953. [PMID: 31043437 PMCID: PMC6581054 DOI: 10.1101/gr.242578.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 04/29/2019] [Indexed: 12/28/2022]
Abstract
The degree of selfing has major impacts on adaptability and is often controlled by molecular mechanisms determining mating compatibility. Changes in compatibility systems are therefore important evolutionary events, but their underlying genomic mechanisms are often poorly understood. Fungi display frequent shifts in compatibility systems, and their small genomes facilitate elucidation of the mechanisms involved. In particular, linkage between the pre- and postmating compatibility loci has evolved repeatedly, increasing the odds of gamete compatibility under selfing. Here, we studied the mating-type chromosomes of two anther-smut fungi with unlinked mating-type loci despite a self-fertilization mating system. Segregation analyses and comparisons of high-quality genome assemblies revealed that these two species displayed linkage between mating-type loci and their respective centromeres. This arrangement renders the same improved odds of gamete compatibility as direct linkage of the two mating-type loci under the automictic mating (intratetrad selfing) of anther-smut fungi. Recombination cessation was found associated with a large inversion in only one of the four linkage events. The lack of trans-specific polymorphism at genes located in nonrecombining regions and linkage date estimates indicated that the events of recombination cessation occurred independently in the two sister species. Our study shows that natural selection can repeatedly lead to similar genomic patterns and phenotypes, and that different evolutionary paths can lead to distinct yet equally beneficial responses to selection. Our study further highlights that automixis and gene linkage to centromeres have important genetic and evolutionary consequences, while being poorly recognized despite being present in a broad range of taxa.
Collapse
Affiliation(s)
- Fantin Carpentier
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France
| | - Ricardo C Rodríguez de la Vega
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France
| | - Sara Branco
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France
| | - Alodie Snirc
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France
| | - Marco A Coelho
- UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Michael E Hood
- Department of Biology, Amherst College, Amherst, Massachusetts 01002, USA
| | - Tatiana Giraud
- Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, 91400 Orsay, France
| |
Collapse
|