1
|
Alcayaga J, Vera J, Reyna-Jeldes M, Covarrubias AA, Coddou C, Díaz-Jara E, Del Rio R, Retamal MA. Activation of Intra-nodose Ganglion P2X7 Receptors Elicit Increases in Neuronal Activity. Cell Mol Neurobiol 2023:10.1007/s10571-023-01318-8. [PMID: 36680690 DOI: 10.1007/s10571-023-01318-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023]
Abstract
Vagus nerve innervates several organs including the heart, stomach, and pancreas among others. Somas of sensory neurons that project through the vagal nerve are located in the nodose ganglion. The presence of purinergic receptors has been reported in neurons and satellite glial cells in several sensory ganglia. In the nodose ganglion, calcium depletion-induced increases in neuron activity can be partly reversed by P2X7 blockers applied directly into the ganglion. The later suggest a possible role of P2X7 receptors in the modulation of neuronal activity within this sensory ganglion. We aimed to characterize the response to P2X7 activation in nodose ganglion neurons under physiological conditions. Using an ex vivo preparation for electrophysiological recordings of the neural discharges of nodose ganglion neurons, we found that treatments with ATP induce transient neuronal activity increases. Also, we found a concentration-dependent increase in neural activity in response to Bz-ATP (ED50 = 0.62 mM, a selective P2X7 receptor agonist), with a clear desensitization pattern when applied every ~ 30 s. Electrophysiological recordings from isolated nodose ganglion neurons reveal no differences in the responses to Bz-ATP and ATP. Finally, we showed that the P2X7 receptor was expressed in the rat nodose ganglion, both in neurons and satellite glial cells. Additionally, a P2X7 receptor negative allosteric modulator decreased the duration of Bz-ATP-induced maximal responses without affecting their amplitude. Our results show the presence of functional P2X7 receptors under physiological conditions within the nodose ganglion of the rat, and suggest that ATP modulation of nodose ganglion activity may be in part mediated by the activation of P2X7 receptors.
Collapse
Affiliation(s)
- Julio Alcayaga
- Laboratorio de Fisiología Celular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile. .,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile.
| | - Jorge Vera
- Laboratorio de Fisiología Celular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | - Mauricio Reyna-Jeldes
- Laboratorio de Señalización Purinérgica, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Alejandra A Covarrubias
- Laboratorio de Señalización Purinérgica, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Claudio Coddou
- Laboratorio de Señalización Purinérgica, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.,Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago, Chile
| | - Esteban Díaz-Jara
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Mauricio A Retamal
- Universidad de Desarrollo, Programa de Comunicación Celular en Cáncer. Facultad de Medicina Clínica Alemana., Santiago, Chile. .,Universidad del Desarrollo. , Centro de Fisiología Celular e Integrativa, Clínica Alemana Facultad de Medicina., Santiago, Chile.
| |
Collapse
|
2
|
Functional Coupling of Slack Channels and P2X3 Receptors Contributes to Neuropathic Pain Processing. Int J Mol Sci 2021; 22:ijms22010405. [PMID: 33401689 PMCID: PMC7795269 DOI: 10.3390/ijms22010405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/19/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
The sodium-activated potassium channel Slack (KNa1.1, Slo2.2, or Kcnt1) is highly expressed in populations of sensory neurons, where it mediates the sodium-activated potassium current (IKNa) and modulates neuronal activity. Previous studies suggest that Slack is involved in the processing of neuropathic pain. However, mechanisms underlying the regulation of Slack activity in this context are poorly understood. Using whole-cell patch-clamp recordings we found that Slack-mediated IKNa in sensory neurons of mice is reduced after peripheral nerve injury, thereby contributing to neuropathic pain hypersensitivity. Interestingly, Slack is closely associated with ATP-sensitive P2X3 receptors in a population of sensory neurons. In vitro experiments revealed that Slack-mediated IKNa may be bidirectionally modulated in response to P2X3 activation. Moreover, mice lacking Slack show altered nocifensive responses to P2X3 stimulation. Our study identifies P2X3/Slack signaling as a mechanism contributing to hypersensitivity after peripheral nerve injury and proposes a potential novel strategy for treatment of neuropathic pain.
Collapse
|
3
|
Krajewski JL. P2X3-Containing Receptors as Targets for the Treatment of Chronic Pain. Neurotherapeutics 2020; 17:826-838. [PMID: 33009633 PMCID: PMC7609758 DOI: 10.1007/s13311-020-00934-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Current therapies for the treatment of chronic pain provide inadequate relief for millions of suffering patients, demonstrating the need for better therapies that will treat pain effectively and improve the quality of patient's lives. Better understanding of the mechanisms that mediate chronic pain is critical for developing drugs with improved clinical outcomes. Adenosine triphosphate (ATP) is a key modulator in nociceptive pathways. Release of ATP from injured tissue or sympathetic efferents has sensitizing effects on sensory neurons in the periphery, and presynaptic vesicular release of ATP from the central terminals can increase glutamate release thereby potentiating downstream central sensitization mechanisms, a condition thought to underlie many chronic pain conditions. The purinergic receptors on sensory nerves primarily responsible for ATP signaling are P2X3 and P2X2/3. Selective knockdown experiments, or inhibition with small molecules, demonstrate P2X3-containing receptors are key targets to modulate nociceptive signals. Preclinical studies have identified that P2X3-containing receptors are critical for sensory transduction for bladder function, and clinical studies have shown promise in treatment for bladder pain and pain associated with osteoarthritis. Further clinical characterization of antagonists to P2X3-containing receptors may lead to improved therapies in the treatment of chronic pain.
Collapse
|
4
|
Pelleg A, Xu F, Zhuang J, Undem B, Burnstock G. DT-0111: a novel drug-candidate for the treatment of COPD and chronic cough. Ther Adv Respir Dis 2020; 13:1753466619877960. [PMID: 31558105 PMCID: PMC6767719 DOI: 10.1177/1753466619877960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Extracellular adenosine 5′-triphosphate (ATP) plays important mechanistic
roles in pulmonary disorders in general and chronic obstructive pulmonary
disease (COPD) and cough in particular. The effects of ATP in the lungs are
mediated to a large extent by P2X2/3 receptors (P2X2/3R) localized on vagal
sensory nerve terminals (both C and Aδ fibers). The activation of these
receptors by ATP triggers a pulmonary-pulmonary central reflex, which
results in bronchoconstriction and cough, and is also proinflammatory due to
the release of neuropeptides from these nerve terminals via
the axon reflex. These actions of ATP in the lungs constitute a strong
rationale for the development of a new class of drugs targeting P2X2/3R.
DT-0111 is a novel, small, water-soluble molecule that acts as an antagonist
at P2X2/3R sites. Methods: Experiments using receptor-binding functional assays, rat nodose ganglionic
cells, perfused innervated guinea pig lung preparation ex
vivo, and anesthetized and conscious guinea pigs in
vivo were performed. Results: DT-0111 acted as a selective and effective antagonist at P2X2/3R, that is, it
did not activate or block P2YR; markedly inhibited the activation by ATP of
nodose pulmonary vagal afferents in vitro; and, given as an
aerosol, inhibited aerosolized ATP-induced bronchoconstriction and cough
in vivo. Conclusions: These results indicate that DT-0111 is an attractive drug-candidate for the
treatment of COPD and chronic cough, both of which still constitute major
unmet clinical needs. The reviews of this paper are available via the supplementary
material section.
Collapse
Affiliation(s)
- Amir Pelleg
- Drexel University College of Medicine, 245 N 15th Street, Philadelphia, PA 19102, USA.,Danmir Therapeutics, LLC, Haverford, PA, USA
| | - Fadi Xu
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Jianguo Zhuang
- Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Bradley Undem
- Johns Hopkins University Asthma Center, Baltimore, MD, USA
| | - Geoffrey Burnstock
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia.,Autonomic Neuroscience Institute, Royal Free and University College Medical School, London, UK
| |
Collapse
|
5
|
Hearing loss mutations alter the functional properties of human P2X2 receptor channels through distinct mechanisms. Proc Natl Acad Sci U S A 2019; 116:22862-22871. [PMID: 31636190 DOI: 10.1073/pnas.1912156116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation of P2X2 receptor channels by extracellular ATP is thought to play important roles in cochlear adaptation to elevated sound levels and protection from overstimulation. Each subunit of a trimeric P2X2 receptor is composed of intracellular N and C termini, a large extracellular domain containing the ATP binding site and 2 transmembrane helices (TM1 and TM2) that form a cation permeable pore. Whole-exome sequencing and linkage analysis have identified 3 hP2X2 receptor mutations (V60L, D273Y, and G353R) that cause dominantly inherited progressive sensorineural hearing loss (DFNA41). Available structures of related P2X receptors suggest that these 3 mutations localize to TM1 (V60L), TM2 (G353R), or the β-sheet linking the TMs to the extracellular ATP binding sites (D273Y). Previous studies have concluded that the V60L and G353R mutants are nonfunctional, whereas the D273Y mutant has yet to be studied. Here, we demonstrate that both V60L and G353R mutations do form functional channels, whereas the D273Y mutation prevents the expression of functional channels on the cell membrane. Our results show that the V60L mutant forms constitutively active channels that are insensitive to ATP or the antagonist suramin, suggesting uncoupling of the pore and the ligand binding domains. In contrast, the G353R mutant can be activated by ATP but exhibits alterations in sensitivity to ATP, inward rectification, and ion selectivity. Collectively, our results demonstrate that the loss of functional P2X2 receptors or distinct alterations of its functional properties lead to noise-induced hearing loss, highlighting the importance of these channels in preserving hearing.
Collapse
|
6
|
Blanke EN, Stella SL, Ruiz-Velasco V, Holmes GM. Purinergic receptor expression and function in rat vagal sensory neurons innervating the stomach. Neurosci Lett 2019; 706:182-188. [PMID: 31085293 DOI: 10.1016/j.neulet.2019.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/23/2022]
Abstract
The nodose ganglion (NG) is the main parasympathetic ganglion conveying sensory signals to the CNS from numerous visceral organs including digestive signals such as gastric distension or the release the gastrointestinal peptides. The response characteristics of NG neurons to ATP and ADP and pharmacological interrogation of purinergic receptor subtypes have been previously investigated but often in NG cells of undetermined visceral origin. In this study, we confirmed the presence of P2X3 and P2Y1 receptors and characterized P2X and P2Y responses in gastric-innervating NG neurons. Application of ATP-evoked large inward currents and cytosolic Ca2+ increases in gastric-innervating NG neurons. Despite the expression of P2Y1 receptors, ADP elicited only minor modulation of voltage-gated Ca2+ channels. Considering the sensitivity of NG neurons to comorbidities associated with disease or neural injury, purinergic modulation of gastric NG neurons in disease- or injury-states is worthy of further investigation.
Collapse
Affiliation(s)
- Emily N Blanke
- Department of Neural & Behavioral Sciences, Penn State University College of Medicine, 500 University Dr., MC H109, Hershey, PA, 17033, USA
| | - Salvatore L Stella
- Department of Neural & Behavioral Sciences, Penn State University College of Medicine, 500 University Dr., MC H109, Hershey, PA, 17033, USA
| | - Victor Ruiz-Velasco
- Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, USA
| | - Gregory M Holmes
- Department of Neural & Behavioral Sciences, Penn State University College of Medicine, 500 University Dr., MC H109, Hershey, PA, 17033, USA.
| |
Collapse
|
7
|
Tanaka M, Hosoya A, Mori H, Kayasuga R, Nakamura H, Ozawa H. Minodronic acid induces morphological changes in osteoclasts at bone resorption sites and reaches a level required for antagonism of purinergic P2X2/3 receptors. J Bone Miner Metab 2018; 36:54-63. [PMID: 28243795 DOI: 10.1007/s00774-017-0814-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/14/2017] [Indexed: 10/20/2022]
Abstract
Minodronic acid is an aminobisphosphonate that is an antagonist of purinergic P2X2/3 receptors involved in pain. The aim of this study was to investigate the action and distribution of minodronic acid and the potential for P2X2/3 receptor antagonism based on the estimated concentration of minodronic acid. Microlocalization of radiolabeled minodronic acid was examined in the femur of neonatal rats. The bone-binding characteristics of minodronic acid and morphological changes in osteoclasts were analyzed in vitro. The minodronic acid concentration around bone resorption lacunae was predicted based on bone binding and the shape of lacunae. In microautoradiography, radioactive silver grains were abundant in bone-attached osteoclasts and were detected in calcified and ossification zones and in the cytoplasm of osteoclasts but not in the hypertrophic cartilage zone. In an osteoclast culture with 1 µM minodronic acid, 65% of minodronic acid was bound to bone, and C-terminal cross-linking telopeptide release was inhibited by 96%. Cultured osteoclasts without minodronic acid treatment formed ruffled borders and bone resorption lacunae and had rich cytoplasm, whereas those treated with 1 µM minodronic acid were not multinucleated, stained densely with toluidine blue, and were detached from the bone surface. In the 1 µM culture, the estimated minodronic acid concentration in resorption lacunae was 880 µM, which is higher than the IC50 for minodronic acid antagonism of P2X2/3 receptors. Thus, inhibition of P2X2/3 receptors around osteoclasts may contribute to the analgesic effect of minodronic acid.
Collapse
Affiliation(s)
- Makoto Tanaka
- Research Promotion, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto, Osaka, 618-8585, Japan.
| | - Akihiro Hosoya
- Department of Oral Histology, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Hiroshi Mori
- Discovery Research Laboratories, Ono Pharmaceutical Co., Ltd., Shimamoto, Osaka, 618-8585, Japan
| | - Ryoji Kayasuga
- Discovery Research Laboratories, Ono Pharmaceutical Co., Ltd., Shimamoto, Osaka, 618-8585, Japan
| | - Hiroaki Nakamura
- Department of Oral Histology, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Hidehiro Ozawa
- Department of Oral Histology, Matsumoto Dental University, Nagano, 399-0781, Japan
| |
Collapse
|
8
|
Stamp LA, Gwynne RM, Foong JPP, Lomax AE, Hao MM, Kaplan DI, Reid CA, Petrou S, Allen AM, Bornstein JC, Young HM. Optogenetic Demonstration of Functional Innervation of Mouse Colon by Neurons Derived From Transplanted Neural Cells. Gastroenterology 2017; 152:1407-1418. [PMID: 28115057 DOI: 10.1053/j.gastro.2017.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/21/2016] [Accepted: 01/09/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Cell therapy offers the potential to treat gastrointestinal motility disorders caused by diseased or absent enteric neurons. We examined whether neurons generated from transplanted enteric neural cells provide a functional innervation of bowel smooth muscle in mice. METHODS Enteric neural cells expressing the light-sensitive ion channel, channelrhodopsin, were isolated from the fetal or postnatal mouse bowel and transplanted into the distal colon of 3- to 4-week-old wild-type recipient mice. Intracellular electrophysiological recordings of responses to light stimulation of the transplanted cells were made from colonic smooth muscle cells in recipient mice. Electrical stimulation of endogenous enteric neurons was used as a control. RESULTS The axons of graft-derived neurons formed a plexus in the circular muscle layer. Selective stimulation of graft-derived cells by light resulted in excitatory and inhibitory junction potentials, the electrical events underlying contraction and relaxation, respectively, in colonic muscle cells. Graft-derived excitatory and inhibitory motor neurons released the same neurotransmitters as endogenous motor neurons-acetylcholine and a combination of adenosine triphosphate and nitric oxide, respectively. Graft-derived neurons also included interneurons that provided synaptic inputs to motor neurons, but the pharmacologic properties of interneurons varied with the age of the donors from which enteric neural cells were obtained. CONCLUSIONS Enteric neural cells transplanted into the bowel give rise to multiple functional types of neurons that integrate and provide a functional innervation of the smooth muscle of the bowel wall. Circuits composed of both motor neurons and interneurons were established, but the age at which cells are isolated influences the neurotransmitter phenotype of interneurons that are generated.
Collapse
Affiliation(s)
- Lincon A Stamp
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Rachel M Gwynne
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Jaime P P Foong
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Alan E Lomax
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Marlene M Hao
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - David I Kaplan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher A Reid
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew M Allen
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Joel C Bornstein
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
9
|
Jovanovic S, Radulovic T, Coddou C, Dietz B, Nerlich J, Stojilkovic SS, Rübsamen R, Milenkovic I. Tonotopic action potential tuning of maturing auditory neurons through endogenous ATP. J Physiol 2016; 595:1315-1337. [PMID: 28030754 DOI: 10.1113/jp273272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/02/2016] [Indexed: 01/10/2023] Open
Abstract
KEY POINTS Following the genetically controlled formation of neuronal circuits, early firing activity guides the development of sensory maps in the auditory, visual and somatosensory system. However, it is not clear whether the activity of central auditory neurons is specifically regulated depending on the position within the sensory map. In the ventral cochlear nucleus, the first central station along the auditory pathway, we describe a mechanism through which paracrine ATP signalling enhances firing in a cell-specific and tonotopically-determined manner. Developmental down-regulation of P2X2/3R currents along the tonotopic axis occurs simultaneously with an increase in AMPA receptor currents, suggesting a high-to-low frequency maturation pattern. Facilitated action potential (AP) generation, measured as higher firing rate, shorter EPSP-AP delay in vivo and shorter AP latency in slice experiments, is consistent with increased synaptic efficacy caused by ATP. The long lasting change in intrinsic neuronal excitability is mediated by the heteromeric P2X2/3 receptors. ABSTRACT Synaptic refinement and strengthening are activity-dependent processes that establish orderly arranged cochleotopic maps throughout the central auditory system. The maturation of auditory brainstem circuits is guided by action potentials (APs) arising from the inner hair cells in the developing cochlea. The AP firing of developing central auditory neurons can be modulated by paracrine ATP signalling, as shown for the cochlear nucleus bushy cells and principal neurons in the medial nucleus of the trapezoid body. However, it is not clear whether neuronal activity may be specifically regulated with respect to the nuclear tonotopic position (i.e. sound frequency selectivity). Using slice recordings before hearing onset and in vivo recordings with iontophoretic drug applications after hearing onset, we show that cell-specific purinergic modulation follows a precise tonotopic pattern in the ventral cochlear nucleus of developing gerbils. In high-frequency regions, ATP responsiveness diminished before hearing onset. In low-to-mid frequency regions, ATP modulation persisted after hearing onset in a subset of low-frequency bushy cells (characteristic frequency< 10 kHz). Down-regulation of P2X2/3R currents along the tonotopic axis occurs simultaneously with an increase in AMPA receptor currents, thus suggesting a high-to-low frequency maturation pattern. Facilitated AP generation, measured as higher firing frequency, shorter EPSP-AP delay in vivo, and shorter AP latency in slice experiments, is consistent with increased synaptic efficacy caused by ATP. Finally, by combining recordings and pharmacology in vivo, in slices, and in human embryonic kidney 293 cells, it was shown that the long lasting change in intrinsic neuronal excitability is mediated by the P2X2/3R.
Collapse
Affiliation(s)
- Saša Jovanovic
- Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Tamara Radulovic
- Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany.,Carl Ludwig Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Claudio Coddou
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Beatrice Dietz
- Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Jana Nerlich
- Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany.,Carl Ludwig Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Rudolf Rübsamen
- Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
| | - Ivan Milenkovic
- Institute of Biology, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany.,Carl Ludwig Institute for Physiology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
10
|
Abstract
UNLABELLED P2 receptors activated by ATP are expressed in the skeletal system. However, the role of P2 receptors in osteoblast differentiation remains unclear. METHODS Participation of P2 receptors in differentiation was investigated in the preosteoblast MC3T3-M1 cell line. Preosteoblasts were stimulated for 7 or 14 days in the presence of osteogenic medium containing ATP and its analogs, and then alkaline phosphatase (ALP) activity, gene expression analyses, and protein expression were assessed. RESULTS We observed that ATP and its analogs promoted increased ALP activity after 7 days of treatment. In contrast, these agonists promoted reductions in ALP activity after 14 days. Some antagonists, such as PPADS (P2 antagonist), MRS2179 (P2Y1 antagonist), MRS2578 (P2Y6 antagonist), and AZ11645373 (P2X7 antagonist) reduced the increases in ALP activity after 7 days. However, only AZ11645373 inhibited the reduction in ALP activity after 14 days. The expression of the P2Y2, P2Y6, P2X4, and P2X7 receptors was observed. Furthermore, treatment with ATP modulated the expression of P2 receptors, increasing P2X4 expression and reducing P2Y6 and P2X7 expression. Similar results were observed after 14 days. In addition, ATP treatment for 7 days increased the expression of transcription factors associated with osteoblast differentiation, such as Runx2, SP7, and Dix5, whereas SP7 and Dix5 expression was reduced at 14 days. These results suggest that P2 receptor activation modulates the differentiation of osteoblasts and is dependent upon the stage of differentiation. These results also suggest that several P2 receptors are involved in this process.
Collapse
|
11
|
Takahashi N, Nakamuta N, Yamamoto Y. Morphology of P2X3-immunoreactive nerve endings in the rat laryngeal mucosa. Histochem Cell Biol 2015; 145:131-46. [DOI: 10.1007/s00418-015-1371-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2015] [Indexed: 11/25/2022]
|
12
|
Kowalski M, Hausmann R, Schmid J, Dopychai A, Stephan G, Tang Y, Schmalzing G, Illes P, Rubini P. Flexible subunit stoichiometry of functional human P2X2/3 heteromeric receptors. Neuropharmacology 2015; 99:115-30. [PMID: 26184350 DOI: 10.1016/j.neuropharm.2015.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 07/01/2015] [Accepted: 07/09/2015] [Indexed: 11/27/2022]
Abstract
The aim of the present work was to clarify whether heterotrimeric P2X2/3 receptors have a fixed subunit stoichiometry consisting of one P2X2 and two P2X3 subunits as previously suggested, or a flexible stoichiometry containing also the inverse subunit composition. For this purpose we transfected HEK293 cells with P2X2 and P2X3 encoding cDNA at the ratios of 1:2 and 4:1, and analysed the biophysical and pharmacological properties of the generated receptors by means of the whole-cell patch-clamp technique. The concentration-response curves for the selective agonist α,β-meATP did not differ from each other under the two transfection ratios. However, co-expression of an inactive P2X2 mutant and the wild type P2X3 subunit and vice versa resulted in characteristic distortions of the α,β-meATP concentration-response relationships, depending on which subunit was expressed in excess, suggesting that HEK293 cells express mixtures of (P2X2)1/(P2X3)2 and (P2X2)2/(P2X3)1 receptors. Whereas the allosteric modulators H+ and Zn2+ failed to discriminate between the two possible heterotrimeric receptor variants, the α,β-meATP-induced responses were blocked more potently by the competitive antagonist A317491, when the P2X2 subunit was expressed in deficit of the P2X3 subunit. Furthermore, blue-native PAGE analysis of P2X2 and P2X3 subunits co-expressed in Xenopus laevis oocytes and HEK293 cells revealed that plasma membrane-bound P2X2/3 receptors appeared in two clearly distinct heterotrimeric complexes: a (P2X2-GFP)2/(P2X3)1 complex and a (P2X2-GFP)1/(P2X3)2 complex. These data strongly indicate that the stoichiometry of the heteromeric P2X2/3 receptor is not fixed, but determined in a permutational manner by the relative availability of P2X2 and P2X3 subunits.
Collapse
Affiliation(s)
- Maria Kowalski
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany
| | - Ralf Hausmann
- Molecular Pharmacology, RWTH Aachen University, 52074 Aachen, Germany
| | - Julia Schmid
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany
| | - Anke Dopychai
- Molecular Pharmacology, RWTH Aachen University, 52074 Aachen, Germany
| | - Gabriele Stephan
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany
| | - Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 610075 Chengdu, China
| | | | - Peter Illes
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany
| | - Patrizia Rubini
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany.
| |
Collapse
|
13
|
Wieskopf JS, Mathur J, Limapichat W, Post MR, Al-Qazzaz M, Sorge RE, Martin LJ, Zaykin DV, Smith SB, Freitas K, Austin JS, Dai F, Zhang J, Marcovitz J, Tuttle AH, Slepian PM, Clarke S, Drenan RM, Janes J, Al Sharari S, Segall SK, Aasvang EK, Lai W, Bittner R, Richards CI, Slade GD, Kehlet H, Walker J, Maskos U, Changeux JP, Devor M, Maixner W, Diatchenko L, Belfer I, Dougherty DA, Su AI, Lummis SCR, Imad Damaj M, Lester HA, Patapoutian A, Mogil JS. The nicotinic α6 subunit gene determines variability in chronic pain sensitivity via cross-inhibition of P2X2/3 receptors. Sci Transl Med 2015; 7:287ra72. [PMID: 25972004 PMCID: PMC5018401 DOI: 10.1126/scitranslmed.3009986] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chronic pain is a highly prevalent and poorly managed human health problem. We used microarray-based expression genomics in 25 inbred mouse strains to identify dorsal root ganglion (DRG)-expressed genetic contributors to mechanical allodynia, a prominent symptom of chronic pain. We identified expression levels of Chrna6, which encodes the α6 subunit of the nicotinic acetylcholine receptor (nAChR), as highly associated with allodynia. We confirmed the importance of α6* (α6-containing) nAChRs by analyzing both gain- and loss-of-function mutants. We find that mechanical allodynia associated with neuropathic and inflammatory injuries is significantly altered in α6* mutants, and that α6* but not α4* nicotinic receptors are absolutely required for peripheral and/or spinal nicotine analgesia. Furthermore, we show that Chrna6's role in analgesia is at least partially due to direct interaction and cross-inhibition of α6* nAChRs with P2X2/3 receptors in DRG nociceptors. Finally, we establish the relevance of our results to humans by the observation of genetic association in patients suffering from chronic postsurgical and temporomandibular pain.
Collapse
Affiliation(s)
- Jeffrey S Wieskopf
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Jayanti Mathur
- Genomic Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Walrati Limapichat
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael R Post
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mona Al-Qazzaz
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Robert E Sorge
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Loren J Martin
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Dmitri V Zaykin
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Shad B Smith
- Center for Neurosensory Disorders, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kelen Freitas
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Jean-Sebastien Austin
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Feng Dai
- Departments of Anesthesiology and Human Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jie Zhang
- Genomic Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Jaclyn Marcovitz
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Alexander H Tuttle
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Peter M Slepian
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Sarah Clarke
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Ryan M Drenan
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Jeff Janes
- Genomic Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Shakir Al Sharari
- Department of Pharmacology, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Samantha K Segall
- Center for Neurosensory Disorders, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eske K Aasvang
- Section for Surgical Pathophysiology, Rigshospitalet, Copenhagen University, 2100 Copenhagen, Denmark
| | - Weike Lai
- Departments of Anesthesiology and Human Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Reinhard Bittner
- Department of Surgery, Marienhospital Stuttgart, 70199 Stuttgart, Germany
| | | | - Gary D Slade
- Department of Dental Ecology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Henrik Kehlet
- Section for Surgical Pathophysiology, Rigshospitalet, Copenhagen University, 2100 Copenhagen, Denmark
| | - John Walker
- Genomic Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Uwe Maskos
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Département de Neuroscience, Institute Pasteur, 75724 Paris, France
| | - Jean-Pierre Changeux
- Neurobiologie Intégrative des Systèmes Cholinergiques, CNRS UMR 3571, Département de Neuroscience, Institute Pasteur, 75724 Paris, France
| | - Marshall Devor
- Department of Cell and Developmental Biology, Institute of Life Sciences and Center for Research on Pain, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - William Maixner
- Center for Neurosensory Disorders, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Luda Diatchenko
- Center for Neurosensory Disorders, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. Faculty of Dentistry, Department of Anesthesia, and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Inna Belfer
- Departments of Anesthesiology and Human Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Dennis A Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Andrew I Su
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sarah C R Lummis
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Henry A Lester
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ardem Patapoutian
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, and Howard Hughes Medical Institute, La Jolla, CA 92037, USA
| | - Jeffrey S Mogil
- Department of Psychology and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1B1, Canada.
| |
Collapse
|
14
|
Pain-enhancing mechanism through interaction between TRPV1 and anoctamin 1 in sensory neurons. Proc Natl Acad Sci U S A 2015; 112:5213-8. [PMID: 25848051 DOI: 10.1073/pnas.1421507112] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The capsaicin receptor transient receptor potential cation channel vanilloid 1 (TRPV1) is activated by various noxious stimuli, and the stimuli are converted into electrical signals in primary sensory neurons. It is believed that cation influx through TRPV1 causes depolarization, leading to the activation of voltage-gated sodium channels, followed by the generation of action potential. Here we report that the capsaicin-evoked action potential could be induced by two components: a cation influx-mediated depolarization caused by TRPV1 activation and a subsequent anion efflux-mediated depolarization via activation of anoctamin 1 (ANO1), a calcium-activated chloride channel, resulting from the entry of calcium through TRPV1. The interaction between TRPV1 and ANO1 is based on their physical binding. Capsaicin activated the chloride currents in an extracellular calcium-dependent manner in HEK293T cells expressing TRPV1 and ANO1. Similarly, in mouse dorsal root ganglion neurons, capsaicin-activated inward currents were inhibited significantly by a specific ANO1 antagonist, T16Ainh-A01 (A01), in the presence of a high concentration of EGTA but not in the presence of BAPTA [1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid]. The generation of a capsaicin-evoked action potential also was inhibited by A01. Furthermore, pain-related behaviors in mice treated with capsaicin, but not with αβ-methylene ATP, were reduced significantly by the concomitant administration of A01. These results indicate that TRPV1-ANO1 interaction is a significant pain-enhancing mechanism in the peripheral nervous system.
Collapse
|
15
|
Yokoyama T, Fukuzumi S, Hayashi H, Nakamuta N, Yamamoto Y. GABA-mediated modulation of ATP-induced intracellular calcium responses in nodose ganglion neurons of the rat. Neurosci Lett 2014; 584:168-72. [PMID: 25451727 DOI: 10.1016/j.neulet.2014.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 11/16/2022]
Abstract
We examined ATP-induced intracellular Ca(2+) ([Ca(2+)]i) responses in the neurons and satellite cells from one of the viscerosensory ganglia, the nodose ganglion (NG), as well as the GABA-mediated modulation of ATP-induced neuronal [Ca(2+)]i responses using intracellular calcium imaging. In neurons with satellite cells, ATP induced [Ca(2+)]i increases in both the neurons and satellite cells. The P2X receptor agonist, α,β-meATP, induced [Ca(2+)]i increases in neurons and this response was inhibited by the P2X receptor antagonist, PPADS. On the other hand, the P2Y receptor agonist, ADP, induced [Ca(2+)]i increases in satellite cells, and this response was inhibited by the P2Y receptor antagonist, MRS2179. RT-PCR detected the expression of P2X2, P2X3, P2Y1, and P2Y2 receptor mRNAs in NG extracts. Immunohistochemistry revealed that NG neurons and satellite cells were immunoreactive to P2X2 and P2X3, and P2Y1 and P2Y2 receptors, respectively. In isolated neurons, the ATP-evoked [Ca(2+)]i increase was inhibited by GABA. However, in neurons with satellite cells, the GABAA receptor antagonist, bicuculline, enhanced the ATP-induced [Ca(2+)]i increase in neurons. These results suggest that viscerosensory neuronal excitability may be modulated by GABA from satellite cells in NG.
Collapse
Affiliation(s)
- Takuya Yokoyama
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan; Department of Basic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, Gifu, Japan
| | - Shou Fukuzumi
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Hitomi Hayashi
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan; Department of Basic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, Gifu, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan; Department of Basic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, Gifu, Japan.
| |
Collapse
|
16
|
Pankratov Y, Lalo U. Calcium permeability of ligand-gated Ca2+ channels. Eur J Pharmacol 2014; 739:60-73. [DOI: 10.1016/j.ejphar.2013.11.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 10/22/2013] [Accepted: 11/07/2013] [Indexed: 11/28/2022]
|
17
|
Stojilkovic SS, Leiva-Salcedo E, Rokic MB, Coddou C. Regulation of ATP-gated P2X channels: from redox signaling to interactions with other proteins. Antioxid Redox Signal 2014; 21:953-70. [PMID: 23944253 PMCID: PMC4116155 DOI: 10.1089/ars.2013.5549] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE The family of purinergic P2X receptors (P2XRs) is a part of ligand-gated superfamily of channels activated by extracellular adenosine-5'-triphosphate. P2XRs are present in virtually all mammalian tissues as well as in tissues of other vertebrate and nonvertebrate species and mediate a large variety of functions, including fast transmission at central synapses, contraction of smooth muscle cells, platelet aggregation, and macrophage activation to proliferation and cell death. RECENT ADVANCES The recent solving of crystal structure of the zebrafish P2X4.1R is a major advance in the understanding of structural correlates of channel activation and regulation. Combined with growing information obtained in the post-structure era and the reinterpretation of previous work within the context of the tridimensional structure, these data provide a better understanding of how the channel operates at the molecular levels. CRITICAL ISSUES This review focuses on the relationship between redox signaling and P2XR function. We also discuss other allosteric modulation of P2XR gating in the physiological/pathophysiological context. This includes the summary of extracellular actions of trace metals, which can be released to the synaptic cleft, pH decrease that happens during ischemia and inflammation, and calcium, an extracellular and intracellular messenger. FUTURE DIRECTIONS Our evolving understanding of activation and regulation of P2XRs is helpful in clarifying the mechanism by which these channels trigger and modulate cellular functions. Further research is required to identify the signaling pathways contributing to the regulation of the receptor activity and to develop novel and receptor-specific allosteric modulators, which could be used in vivo with therapeutic potential.
Collapse
Affiliation(s)
- Stanko S Stojilkovic
- 1 Section on Cellular Signaling, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health , Bethesda, Maryland
| | | | | | | |
Collapse
|
18
|
Alves LA, da Silva JHM, Ferreira DNM, Fidalgo-Neto AA, Teixeira PCN, de Souza CAM, Caffarena ER, de Freitas MS. Structural and molecular modeling features of P2X receptors. Int J Mol Sci 2014; 15:4531-49. [PMID: 24637936 PMCID: PMC3975412 DOI: 10.3390/ijms15034531] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/05/2013] [Accepted: 12/10/2013] [Indexed: 01/05/2023] Open
Abstract
Currently, adenosine 5'-triphosphate (ATP) is recognized as the extracellular messenger that acts through P2 receptors. P2 receptors are divided into two subtypes: P2Y metabotropic receptors and P2X ionotropic receptors, both of which are found in virtually all mammalian cell types studied. Due to the difficulty in studying membrane protein structures by X-ray crystallography or NMR techniques, there is little information about these structures available in the literature. Two structures of the P2X4 receptor in truncated form have been solved by crystallography. Molecular modeling has proven to be an excellent tool for studying ionotropic receptors. Recently, modeling studies carried out on P2X receptors have advanced our knowledge of the P2X receptor structure-function relationships. This review presents a brief history of ion channel structural studies and shows how modeling approaches can be used to address relevant questions about P2X receptors.
Collapse
Affiliation(s)
- Luiz Anastacio Alves
- Cell Communication Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), 4365 Brazil ave, Rio de Janeiro 21045-900, Brazil.
| | - João Herminio Martins da Silva
- Oswaldo Cruz Foundation (FIOCRUZ) Ceará Avenida Santos Dumont, 5753, Torre Saúde, Sala 1303, Papicu, Fortaleza-CE, CEP 60180-900, Brazil.
| | - Dinarte Neto Moreira Ferreira
- Cell Communication Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), 4365 Brazil ave, Rio de Janeiro 21045-900, Brazil.
| | - Antonio Augusto Fidalgo-Neto
- Cell Communication Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), 4365 Brazil ave, Rio de Janeiro 21045-900, Brazil.
| | - Pedro Celso Nogueira Teixeira
- Cell Communication Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), 4365 Brazil ave, Rio de Janeiro 21045-900, Brazil.
| | - Cristina Alves Magalhães de Souza
- Cell Communication Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), 4365 Brazil ave, Rio de Janeiro 21045-900, Brazil.
| | - Ernesto Raúl Caffarena
- Scientific Computation Program, Oswaldo Cruz Foundation (FIOCRUZ), 4365 Brazil ave, Rio de Janeiro 21045-900, Brazil.
| | - Mônica Santos de Freitas
- Jiri Jonas Nuclear Magnetic Resonance Center, Science and Technology Institute of Structural Biology and Bioimaging, Leopoldo de Meis Medical Biochemistry Institute, Rio de Janeiro Federal University (UFRJ), Carlos Chagas Filho ave, 373, Rio de Janeiro 21941-901, Brazil.
| |
Collapse
|
19
|
Samways DSK, Li Z, Egan TM. Principles and properties of ion flow in P2X receptors. Front Cell Neurosci 2014; 8:6. [PMID: 24550775 PMCID: PMC3914235 DOI: 10.3389/fncel.2014.00006] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/06/2014] [Indexed: 12/25/2022] Open
Abstract
P2X receptors are a family of trimeric ion channels that are gated by extracellular adenosine 5′-triphosphate (ATP). These receptors have long been a subject of intense research interest by virtue of their vital role in mediating the rapid and direct effects of extracellular ATP on membrane potential and cytosolic Ca2+ concentration, which in turn underpin the ability of ATP to regulate a diverse range of clinically significant physiological functions, including those associated with the cardiovascular, sensory, and immune systems. An important aspect of an ion channel's function is, of course, the means by which it transports ions across the biological membrane. A concerted effort by investigators over the last two decades has culminated in significant advances in our understanding of how P2X receptors conduct the inward flux of Na+ and Ca2+ in response to binding by ATP. However, this work has relied heavily on results from current recordings of P2X receptors altered by site-directed mutagenesis. In the absence of a 3-dimensional channel structure, this prior work provided only a vague and indirect appreciation of the relationship between structure, ion selectivity and flux. The recent publication of the crystal structures for both the closed and open channel conformations of the zebrafish P2X4 receptor has thus proved a significant boon, and has provided an important opportunity to overview the amassed functional data in the context of a working 3-dimensional model of a P2X receptor. In this paper, we will attempt to reconcile the existing functional data regarding ion permeation through P2X receptors with the available crystal structure data, highlighting areas of concordance and discordance as appropriate.
Collapse
Affiliation(s)
| | - Zhiyuan Li
- Guangzhou Institute of Biomedicine and Health, University of Chinese Academy of Sciences Guangzhou, China
| | - Terrance M Egan
- Department of Pharmacological and Physiological Science, The Center for Excellence in Neuroscience, Saint Louis University School of Medicine St. Louis, MO, USA
| |
Collapse
|
20
|
Hausmann R, Bahrenberg G, Kuhlmann D, Schumacher M, Braam U, Bieler D, Schlusche I, Schmalzing G. A hydrophobic residue in position 15 of the rP2X3 receptor slows desensitization and reveals properties beneficial for pharmacological analysis and high-throughput screening. Neuropharmacology 2014; 79:603-15. [PMID: 24452010 DOI: 10.1016/j.neuropharm.2014.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/24/2013] [Accepted: 01/09/2014] [Indexed: 11/19/2022]
Abstract
The homotrimeric P2X3 subtype, one of the seven members of the ATP-gated P2X receptor family, plays a role in sensory neurotransmission, including nociception. To overcome the bias resulting from fast desensitization of the P2X3 receptor in dose-response analyses, a non-desensitizing P2X2-X3 receptor chimera has been repeatedly used as a surrogate for the P2X3 receptor for functional analysis. Here, we show that only three of the P2X2-specific amino acid residues of the P2X2-X3 chimera, (19)P(21)V(22)I, are needed to confer a slowly desensitizing phenotype to the P2X3 receptor. The strongest delay in desensitization of the P2X3 receptor by a single residue was observed when (15)Ser was replaced by Val or another hydrophobic residue. Pharmacologically, the S(15)V-rP2X3 mutant behaved similarly to the wt-P2X3 receptor. Analysis of the S(15)V-rP2X3 receptor in 1321N1 astrocytoma cells by a common calcium-imaging-based assay showed 10-fold higher calcium transients relative to those of the wt-rP2X3 receptor. The S(15)V-rP2X3 cell line enabled reliable analysis of antagonistic potencies and correctly reported the mechanism of action of the P2X3 receptor antagonists A-317491 and TNP-ATP by a calcium-imaging assay. Together, these data suggest that the S(15)V-rP2X3 mutant may be suitable not only for automated fluorescence-based screening of molecule libraries for identification of lead compounds but also for facilitated pharmacological characterization of specific P2X3 receptor ligands. We suggest that the mechanism of desensitization of the P2X3 receptor may involve the movement of an N-terminal inactivation particle, in analogy to the "hinged-lid" or "ball and chain" mechanisms of voltage-gated NaV and Shaker KV channels, respectively.
Collapse
Affiliation(s)
- Ralf Hausmann
- Department of Molecular Pharmacology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| | - Gregor Bahrenberg
- Grünenthal GmbH, Global Drug Discovery, Department of Molecular Pharmacology, Zieglerstrasse 6, 52078 Aachen, Germany
| | - Daniel Kuhlmann
- Department of Molecular Pharmacology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Michaela Schumacher
- Department of Molecular Pharmacology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Ursula Braam
- Department of Molecular Pharmacology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Dagmar Bieler
- Grünenthal GmbH, Global Drug Discovery, Department of Molecular Pharmacology, Zieglerstrasse 6, 52078 Aachen, Germany
| | - Ilka Schlusche
- Grünenthal GmbH, Global Drug Discovery, Department of Molecular Pharmacology, Zieglerstrasse 6, 52078 Aachen, Germany
| | - Günther Schmalzing
- Department of Molecular Pharmacology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| |
Collapse
|
21
|
Giniatullin R, Nistri A. Desensitization properties of P2X3 receptors shaping pain signaling. Front Cell Neurosci 2013; 7:245. [PMID: 24367291 PMCID: PMC3854565 DOI: 10.3389/fncel.2013.00245] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 11/18/2013] [Indexed: 12/02/2022] Open
Abstract
ATP-gated P2X3 receptors are mostly expressed by nociceptive sensory neurons and participate in transduction of pain signals. P2X3 receptors show a combination of fast desensitization onset and slow recovery. Moreover, even low nanomolar agonist concentrations unable to evoke a response, can induce desensitization via a phenomenon called “high affinity desensitization.” We have also observed that recovery from desensitization is agonist-specific and can range from seconds to minutes. The recovery process displays unusually high temperature dependence. Likewise, recycling of P2X3 receptors in peri-membrane regions shows unexpectedly large temperature sensitivity. By applying kinetic modeling, we have previously shown that desensitization characteristics of P2X3 receptor are best explained with a cyclic model of receptor operation involving three agonist molecules binding a single receptor and that desensitization is primarily developing from the open receptor state. Mutagenesis experiments suggested that desensitization depends on a certain conformation of the ATP binding pocket and on the structure of the transmembrane domains forming the ion pore. Further molecular determinants of desensitization have been identified by mutating the intracellular N- and C-termini of P2X3 receptor. Unlike other P2X receptors, the P2X3 subtype is facilitated by extracellular calcium that acts via specific sites in the ectodomain neighboring the ATP binding pocket. Thus, substitution of serine275 in this region (called “left flipper”) converts the natural facilitation induced by extracellular calcium to receptor inhibition. Given their strategic location in nociceptive neurons and unique desensitization properties, P2X3 receptors represent an attractive target for development of new analgesic drugs via promotion of desensitization aimed at suppressing chronic pain.
Collapse
Affiliation(s)
- Rashid Giniatullin
- 1Department of Neurobiology, A. I. Virtanen Institute, University of Eastern Finland Kuopio, Finland
| | - Andrea Nistri
- 2Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste Italy
| |
Collapse
|
22
|
Rokic MB, Stojilkovic SS. Two open states of P2X receptor channels. Front Cell Neurosci 2013; 7:215. [PMID: 24312007 PMCID: PMC3834609 DOI: 10.3389/fncel.2013.00215] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/29/2013] [Indexed: 11/16/2022] Open
Abstract
The occupancy of the orthosteric ligand binding sites of P2X receptor (P2XR) channels causes the rapid opening of a small cation-permeable pore, followed by a gradual dilation that renders the pore permeable to large organic cations. Electrophysiologically, this phenomenon was shown using whole-cell current recording on P2X2R-, P2X2/X5R-, P2X4R- and P2X7R-expressing cells that were bathed in N-methyl-D-glucamine (NMDG+)-containing buffers in the presence and/or absence of small monovalent and divalent cations. The pore dilation of P2X4R and P2X7R caused a secondary current growth, whereas that of P2X2R showed a sustained kinetic coupling of dilation and desensitization, leading to receptor channel closure. The pore size of the P2X7R open and dilated states was estimated to be approximately 0.85 nm and greater than 1 nm, respectively. The P2XR pore dilation was also observed in intact cells by measurement of fluorescent dye uptake/release, application of polyethylene glycols of different sizes, and atomic force microscopy. However, pore dilation was not observed at the single channel level. Structural data describing the dilated state are not available, and the relevance of orthosteric and allosteric ligand interactions to pore dilation was not studied.
Collapse
Affiliation(s)
- Milos B Rokic
- Section on Cellular Signaling, Program in Developmental Neuroscience, The Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | | |
Collapse
|
23
|
Subtype-specific control of P2X receptor channel signaling by ATP and Mg2+. Proc Natl Acad Sci U S A 2013; 110:E3455-63. [PMID: 23959888 DOI: 10.1073/pnas.1308088110] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The identity and forms of activating ligands for ion channels are fundamental to their physiological roles in rapid electrical signaling. P2X receptor channels are ATP-activated cation channels that serve important roles in sensory signaling and inflammation, yet the active forms of the nucleotide are unknown. In physiological solutions, ATP is ionized and primarily found in complex with Mg(2+). Here we investigated the active forms of ATP and found that the action of MgATP(2-) and ATP(4-) differs between subtypes of P2X receptors. The slowly desensitizing P2X2 receptor can be activated by free ATP, but MgATP(2-) promotes opening with very low efficacy. In contrast, both free ATP and MgATP(2-) robustly open the rapidly desensitizing P2X3 subtype. A further distinction between these two subtypes is the ability of Mg(2+) to regulate P2X3 through a distinct allosteric mechanism. Importantly, heteromeric P2X2/3 channels present in sensory neurons exhibit a hybrid phenotype, characterized by robust activation by MgATP(2-) and weak regulation by Mg(2+). These results reveal the existence of two classes of homomeric P2X receptors with differential sensitivity to MgATP(2-) and regulation by Mg(2+), and demonstrate that both restraining mechanisms can be disengaged in heteromeric channels to form fast and sensitive ATP signaling pathways in sensory neurons.
Collapse
|
24
|
Petrushenko YA. P2X Receptors: Peculiarities of the Structure and Modulation of the Functions. NEUROPHYSIOLOGY+ 2012. [DOI: 10.1007/s11062-012-9284-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
25
|
Lalo U, Verkhratsky A, Burnstock G, Pankratov Y. P2X receptor-mediated synaptic transmission. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/wmts.28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Petrenko N, Khafizov K, Tvrdonova V, Skorinkin A, Giniatullin R. Role of the ectodomain serine 275 in shaping the binding pocket of the ATP-gated P2X3 receptor. Biochemistry 2011; 50:8427-36. [PMID: 21879712 DOI: 10.1021/bi200812u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
ATP-activated P2X3 receptors expressed in nociceptive sensory neurons play an important role in pain signaling. Basic properties of this receptor subtype, including very strong desensitization, depend on the rate of dissociation of the agonist from the binding site. Even though the rough structure of the ATP binding site has been proposed on the basis of the X-ray structure of the zebrafish P2X4 receptor and mutagenesis studies, the fine subunit-specific structural properties predisposing the receptor to tight capture of the agonist inside the binding pocket have not been elucidated. In this work, by exploring in silico the functional role for the left flipper located in the ectodomain region, we identified within this loop a candidate residue S275, which could contribute to the closure of the agonist-binding pocket. Testing of the S275 mutants using the patch-clamp technique revealed a crucial role for S275 in agonist binding and receptor desensitization. The S275A mutant showed a reduced rate of onset of desensitization and accelerated resensitization and was weakly inhibited by nanomolar agonist. Extracellular calcium application produced inhibition instead of facilitation of membrane currents. Moreover, some full agonists became only partial agonists when applied to the S275A receptor. These effects were stronger with the more hydrophobic mutants S275C and S275V. Taken together, our data suggest that S275 contributes to the closure of the agonist-binding pocket and that effective capture of the agonist provided by the left flipper in calcium-dependent manner determines the high rate of desensitization, slow recovery, and sensitivity to nanomolar agonist of the P2X3 receptor.
Collapse
Affiliation(s)
- Nataliia Petrenko
- Department of Neurobiology, AI Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | |
Collapse
|
27
|
Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS. Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev 2011; 63:641-83. [PMID: 21737531 DOI: 10.1124/pr.110.003129] [Citation(s) in RCA: 394] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mammalian ATP-gated nonselective cation channels (P2XRs) can be composed of seven possible subunits, denoted P2X1 to P2X7. Each subunit contains a large ectodomain, two transmembrane domains, and intracellular N and C termini. Functional P2XRs are organized as homomeric and heteromeric trimers. This review focuses on the binding sites involved in the activation (orthosteric) and regulation (allosteric) of P2XRs. The ectodomains contain three ATP binding sites, presumably located between neighboring subunits and formed by highly conserved residues. The detection and coordination of three ATP phosphate residues by positively charged amino acids are likely to play a dominant role in determining agonist potency, whereas an AsnPheArg motif may contribute to binding by coordinating the adenine ring. Nonconserved ectodomain histidines provide the binding sites for trace metals, divalent cations, and protons. The transmembrane domains account not only for the formation of the channel pore but also for the binding of ivermectin (a specific P2X4R allosteric regulator) and alcohols. The N- and C- domains provide the structures that determine the kinetics of receptor desensitization and/or pore dilation and are critical for the regulation of receptor functions by intracellular messengers, kinases, reactive oxygen species and mercury. The recent publication of the crystal structure of the zebrafish P2X4.1R in a closed state provides a major advance in the understanding of this family of receptor channels. We will discuss data obtained from numerous site-directed mutagenesis experiments accumulated during the last 15 years with reference to the crystal structure, allowing a structural interpretation of the molecular basis of orthosteric and allosteric ligand actions.
Collapse
Affiliation(s)
- Claudio Coddou
- Section on Cellular Signaling, Program in Developmental Neuroscience, National Institute of Child Health and Human Developmant, National Institutes of Health, Bethesda, MD 20892-4510, USA
| | | | | | | | | |
Collapse
|
28
|
Nörenberg W, Hempel C, Urban N, Sobottka H, Illes P, Schaefer M. Clemastine potentiates the human P2X7 receptor by sensitizing it to lower ATP concentrations. J Biol Chem 2011; 286:11067-81. [PMID: 21262970 PMCID: PMC3064161 DOI: 10.1074/jbc.m110.198879] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/10/2011] [Indexed: 01/08/2023] Open
Abstract
P2X7 receptors have emerged as potential drug targets for the treatment of medical conditions such as e.g. rheumatoid arthritis and neuropathic pain. To assess the impact of pharmaceuticals on P2X7, we screened a compound library comprising approved or clinically tested drugs and identified several compounds that augment the ATP-triggered P2X7 activity in a stably transfected HEK293 cell line. Of these, clemastine markedly sensitized Ca(2+) entry through P2X7 to lower ATP concentrations. Extracellularly but not intracellularly applied clemastine rapidly and reversibly augmented P2X7-mediated whole-cell currents evoked by non-saturating ATP concentrations. Clemastine also accelerated the ATP-induced pore formation and Yo-Pro-1 uptake, increased the fractional NMDG(+) permeability, and stabilized the open channel conformation of P2X7. Thus, clemastine is an extracellularly binding allosteric modulator of P2X7 that sensitizes P2X7 to lower ATP concentrations and facilitates its pore dilation. The activity of clemastine on native P2X7 receptors, Ca(2+) entry, and whole-cell currents was confirmed in human monocyte-derived macrophages. Similar effects were observed in murine bone marrow-derived macrophages. Consistent with the data on recombinant P2X7, clemastine augmented the ATP-induced cation entry and Yo-Pro-1 uptake. In accordance with the observation that P2X7 controls the cytokine release from LPS-primed macrophages, we found that clemastine augmented the IL-1β release from LPS-primed human macrophages. Collectively, these data point to a sensitization of the recombinantly or natively expressed human P2X7 receptor toward its physiological activator, ATP, possibly leading to a modulation of macrophage-dependent immune responses.
Collapse
Affiliation(s)
- Wolfgang Nörenberg
- From the Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany
| | - Christoph Hempel
- From the Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany
| | - Nicole Urban
- From the Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany
| | - Helga Sobottka
- From the Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany
| | - Peter Illes
- From the Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany
| | - Michael Schaefer
- From the Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, 04107 Leipzig, Germany
| |
Collapse
|
29
|
Davies JP, Robson L. Pharmacological properties and physiological function of a P2X-like current in single proximal tubule cells isolated from frog kidney. J Membr Biol 2010; 237:79-91. [PMID: 20972559 PMCID: PMC2990016 DOI: 10.1007/s00232-010-9308-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 09/22/2010] [Indexed: 11/06/2022]
Abstract
Although previous studies have provided evidence for the expression of P2X receptors in renal proximal tubule, only one cell line study has provided functional evidence. The current study investigated the pharmacological properties and physiological role of native P2X-like currents in single frog proximal tubule cells using the whole-cell patch-clamp technique. Extracellular ATP activated a cation conductance (P2Xf) that was also Ca2+-permeable. The agonist sequence for activation was ATP = αβ-MeATP > BzATP = 2-MeSATP, and P2Xf was inhibited by suramin, PPADS and TNP-ATP. Activation of P2Xf attenuated the rundown of a quinidine-sensitive K+ conductance, suggesting that P2Xf plays a role in K+ channel regulation. In addition, ATP/ADP apyrase and inhibitors of P2Xf inhibited regulatory volume decrease (RVD). These data are consistent with the presence of a P2X receptor that plays a role in the regulation of cell volume and K+ channels in frog renal proximal tubule cells.
Collapse
Affiliation(s)
- John P Davies
- Department of Biomedical Science, University of Sheffield, Sheffield S102TN, UK
| | | |
Collapse
|
30
|
Kotnis S, Bingham B, Vasilyev DV, Miller SW, Bai Y, Yeola S, Chanda PK, Bowlby MR, Kaftan EJ, Samad TA, Whiteside GT. Genetic and Functional Analysis of Human P2X5 Reveals a Distinct Pattern of Exon 10 Polymorphism with Predominant Expression of the Nonfunctional Receptor Isoform. Mol Pharmacol 2010; 77:953-60. [DOI: 10.1124/mol.110.063636] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
31
|
|
32
|
Cross-inhibition between native and recombinant TRPV1 and P2X3 receptors. Pain 2009; 143:26-36. [DOI: 10.1016/j.pain.2009.01.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 12/16/2008] [Accepted: 01/05/2009] [Indexed: 11/19/2022]
|
33
|
Wang Y, Li G, Yu K, Liang S, Wan F, Xu C, Gao Y, Liu S, Lin J. Expressions of P2X2 and P2X3 receptors in rat nodose neurons after myocardial ischemia injury. Auton Neurosci 2008; 145:71-5. [PMID: 19064335 DOI: 10.1016/j.autneu.2008.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 11/10/2008] [Accepted: 11/11/2008] [Indexed: 12/12/2022]
Abstract
The role of ATP is as a functional neurotransmitter and local intercellular signaling molecule. The nodose neurons express both P2X(2) and P2X(3) subunits in their plasma membrane. This study wants to observe the expression of P2X(2) receptor and the expression relationship between P2X(2) and P2X(3) in nodose neurons after myocardial ischemic injury. The expressions of P2X(3) immunoreactivity, mRNA and protein were analyzed by immunohistochemistry, in situ hybridization and western blotting. P2X(2) and P2X(3) immunoreactivity, mRNA expression had been increased after myocardial ischemia in nodose neurons. Myocardial ischemia enhanced P2X(2) and P2X(3) protein level in nodose ganglia after myocardial ischemia. P2X(2) receptor in nodose neurons participated in the transmission of cardiac pain. The changes of P2X(2) and P2X(3) immunoreactivities, mRNA and protein that occurred following myocardial ischemic injury in the nodose ganglia showed that a correlation existed between P2X(2) and P2X(3) expression. It suggests that P2X(2) receptor subtype in company with P2X(3) receptor subtype plays the important role in cardiac vagal sensory nociceptors with a sensitivity to ATP.
Collapse
Affiliation(s)
- Yunxia Wang
- Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kestler C, Neuhuber WL, Raab M. Distribution of P2X(3) receptor immunoreactivity in myenteric ganglia of the mouse esophagus. Histochem Cell Biol 2008; 131:13-27. [PMID: 18810483 DOI: 10.1007/s00418-008-0498-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2008] [Indexed: 02/07/2023]
Abstract
Intraganglionic laminar endings (IGLEs) represent the major vagal afferent terminals throughout the gut. Electrophysiological experiments revealed a modulatory role of ATP in the IGLE-mechanotransduction process and the P2X(2)-receptor has been described in IGLEs of mouse, rat and guinea pig. Another purinoceptor, the P2X(3)-receptor, was found in IGLEs of the rat esophagus. These findings prompted us to investigate occurrence and distribution of the P2X(3)-receptor in the mouse esophagus. Using multichannel immunofluorescence and confocal microscopy, P2X(3)-immunoreactivity (-iry) was found colocalized with the vesicular glutamate transporter 2 (VGLUT2), a specific marker for IGLEs, on average in three-fourths of esophageal IGLEs. The distribution of P2X(3) immunoreactive (-ir) IGLEs was similar to that of P2X(2)-iry and showed increasing numbers towards the abdominal esophagus. P2X(3)/P2X(2)-colocalization within IGLEs suggested the occurrence of heteromeric P2X(2/3) receptors. In contrast to the rat, where only a few P2X(3)-ir perikarya were described, P2X(3) stained perikarya in ~80% of myenteric ganglia in the mouse. Detailed analysis revealed P2X(3)-iry in subpopulations of nitrergic (nNOS) and cholinergic (ChAT) myenteric neurons and ganglionic neuropil of the mouse esophagus. We conclude that ATP might act as a neuromodulator in IGLEs via a (P2X(2))-P2X(3) receptor-mediated pathway especially in the abdominal portion of the mouse esophagus.
Collapse
Affiliation(s)
- Christine Kestler
- Institut für Anatomie, Lehrstuhl I, Universität Erlangen-Nürnberg, Krankenhausstr. 9, 91054 Erlangen, Germany
| | | | | |
Collapse
|
35
|
Jarvis MF, Khakh BS. ATP-gated P2X cation-channels. Neuropharmacology 2008; 56:208-15. [PMID: 18657557 DOI: 10.1016/j.neuropharm.2008.06.067] [Citation(s) in RCA: 263] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 06/24/2008] [Accepted: 06/30/2008] [Indexed: 12/20/2022]
Abstract
P2X receptors are ATP-gated cation channels with important roles in diverse pathophysiological processes. Substantial progress has been made in the last few years with the discovery of both subunit selective antagonists and modulators. The purpose of this brief review is to summarize the advances in the pharmacology of P2X receptors, with key properties presented in an easy to access format. Ligand-gated ion channels consist of three families in mammals; the ionotropic glutamate receptors, the Cys-loop receptors (for GABA, ACh, glycine and serotonin) and the P2X receptors for ATP. The first two of these are considered in articles accompanying this Special Issue. Here we consider the pharmacological properties of P2X receptors. We do not present a detailed discussion of P2X receptor physiological roles or structure-function studies. Moreover, the pharmacological basis for discriminating between the main subtypes of P2X receptor and their nomenclature has been published by the Nomenclature Committee of the International Union of Pharmacology (NC-IUPHAR) P2X Receptor Subcommittee, and so these aspects are not revisited here. Instead in this brief article we seek to present a summary of the pharmacology of recombinant homomeric and heteromeric P2X receptors, with particular emphasis on new antagonists. In this article we have tried to present as much information as possible in two tables in the hope this will be useful as a day-to-day resource, and also because an excellent and detailed review has recently been published.
Collapse
Affiliation(s)
- Michael F Jarvis
- Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA.
| | | |
Collapse
|
36
|
Pankratov Y, Lalo U, Krishtal OA, Verkhratsky A. P2X receptors and synaptic plasticity. Neuroscience 2008; 158:137-48. [PMID: 18495357 DOI: 10.1016/j.neuroscience.2008.03.076] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 03/09/2008] [Accepted: 03/17/2008] [Indexed: 01/15/2023]
Abstract
Adenosine triphosphate (ATP) is released in many synapses in the CNS either together with other neurotransmitters, such as glutamate and GABA, or on its own. Postsynaptic action of ATP is mediated through metabotropic P2Y and ionotropic P2X receptors abundantly expressed in neural cells. Activation of P2X receptors induces fast excitatory postsynaptic currents in synapses located in various brain regions, including medial habenula, hippocampus and cortex. P2X receptors display relatively high Ca2+ permeability and can mediate substantial Ca2+ influx at resting membrane potential. P2X receptors can dynamically interact with other neurotransmitter receptors, including N-methyl-D-aspartate (NMDA) receptors, GABA(A) receptors and nicotinic acetylcholine (ACh) receptors. Activation of P2X receptors has multiple modulatory effects on synaptic plasticity, either inhibiting or facilitating the long-term changes of synaptic strength depending on physiological context. At the same time precise mechanisms of P2X-dependent regulation of synaptic plasticity remain elusive. Further understanding of the role of P2X receptors in regulation of synaptic transmission in the CNS requires dissection of P2X-mediated effects on pre-synaptic terminals, postsynaptic membrane and glial cells.
Collapse
Affiliation(s)
- Y Pankratov
- The University of Warwick, Department of Biological Sciences, Gibbet Hill Road, Coventry CV4 7AL, UK
| | | | | | | |
Collapse
|
37
|
Inhibition of P2X7 receptors by divalent cations: old action and new insight. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:339-46. [DOI: 10.1007/s00249-008-0315-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 03/11/2008] [Accepted: 03/13/2008] [Indexed: 10/22/2022]
|
38
|
Fountain SJ, Cao L, Young MT, North RA. Permeation properties of a P2X receptor in the green algae Ostreococcus tauri. J Biol Chem 2008; 283:15122-6. [PMID: 18381285 PMCID: PMC2397467 DOI: 10.1074/jbc.m801512200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have cloned a P2X receptor (OtP2X) from the green algae Ostreococcus tauri. The 42-kDa receptor shares ∼28% identity with human P2X receptors and 23% with the Dictyostelium P2X receptor. ATP application evoked flickery single channel openings in outside-out membrane patches from human embryonic kidney 293 cells expressing OtP2X. Whole-cell recordings showed concentration-dependent cation currents reversing close to zero mV; ATP gave a half-maximal current at 250 μm. αβ-Methylene-ATP evoked only small currents in comparison to ATP (EC50 > 5 mm). 2′,3′-O-(4-Benzoylbenzoyl)-ATP, βγ-imido-ATP, ADP, and several other nucleotide triphosphates did not activate any current. The currents evoked by 300 μm ATP were not inhibited by 100 μm suramin, pyridoxal-phosphate-6-azophenyl-2′,4′-disulfonic acid, 2′,3′-O-(2,4,6-trinitrophenol)-ATP, or copper. Ion substitution experiments indicated permeabilities relative to sodium with the rank order calcium >choline >Tris >tetraethylammonium >N-methyl-d-glucosamine. However, OtP2X had a low relative calcium permeability (PCa/PNa = 0.4) in comparison with other P2X receptors. This was due at least in part to the presence of an asparagine residue (Asn353) at a position in the second transmembrane domain in place of the aspartate that is completely conserved in all other P2X receptor subunits, because replacement of Asn353 with aspartate increased calcium permeability by ∼50%. The results indicate that the ability of ATP to gate cation permeation across membranes exists in cells that diverged in evolutionary terms from animals about 1 billion years ago.
Collapse
Affiliation(s)
- Samuel J Fountain
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, United Kingdom
| | | | | | | |
Collapse
|
39
|
Elg S, Marmigere F, Mattsson JP, Ernfors P. Cellular subtype distribution and developmental regulation of TRPC channel members in the mouse dorsal root ganglion. J Comp Neurol 2007; 503:35-46. [PMID: 17480026 DOI: 10.1002/cne.21351] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Transient receptor potential (TRP) channels play essential roles in sensory physiology and their expression in different classes of sensory neurons reflect distinct receptive properties of these neurons. While expression of the TRPV, TRPA, and to a certain degree TRPM classes of channels has been studied in sensory neurons, little is known about the expression and regulation of TRPC channels. In this study we examined the regulation of all TRPC members (TRPC1-C7) throughout embryonic and postnatal development of the dorsal root ganglion (DRG) and nodose ganglion (NG). In adult mice, mRNAs for all channels were present in the DRG, with TRPC1, 3, and 6 being the most abundant, TRPC2, C4, and C5 at lower levels, and TRPC7 at very low levels. While TRPC2 mRNAs were downregulated from high levels at embryonic (E) day 12 and E14 until adult, TRPC4, C5, and C7 expressions increased from E12 to peak levels at E18. TRPC1, C3, and C6, the most abundant TRPC channel mRNAs, increased progressively from E12 to adult. Expression and regulation of TRPC channels mRNAs in the NG were unexpectedly similar to the DRG. TRPC1 and C2 was expressed in the neurofilament-200 (NF-200)-positive large size subclass of neurons, while TRPC3 mRNAs expression, which stained up to 35% of DRG neurons, was almost exclusively present in nonpeptidergic isolectin B4 (IB4)-positive small size neurons that were largely TRPV1-negative. Our results suggest important roles of the TRPC family of channels in sensory physiology of both nociceptive as well as nonnociceptive classes of neurons.
Collapse
Affiliation(s)
- Susanne Elg
- Department of Molecular Pharmacology, AstraZeneca R&D Mölndal, Mölndal, Sweden
| | | | | | | |
Collapse
|
40
|
Wirkner K, Sperlagh B, Illes P. P2X3 receptor involvement in pain states. Mol Neurobiol 2007; 36:165-83. [PMID: 17952660 DOI: 10.1007/s12035-007-0033-y] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 03/19/2007] [Indexed: 12/20/2022]
Abstract
The understanding of how pain is processed at each stage in the peripheral and central nervous system is the precondition to develop new therapies for the selective treatment of pain. In the periphery, ATP can be released from various cells as a consequence of tissue injury or visceral distension and may stimulate the local nociceptors. The highly selective distribution of P2X(3) and P2X(2/3) receptors within the nociceptive system has inspired a variety of approaches to elucidate the potential role of ATP as a pain mediator. Depolarization by ATP of neurons in pain-relevant neuronal structures such as trigeminal ganglion, dorsal root ganglion, and spinal cord dorsal horn neurons are well investigated. P2X receptor-mediated afferent activation appears to have been implicated in visceral and neuropathic pain and even in migraine and cancer pain. This article reviews recently published research describing the role that ATP and P2X receptors may play in pain perception, highlighting the importance of the P2X(3) receptor in different states of pain.
Collapse
Affiliation(s)
- Kerstin Wirkner
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany.
| | | | | |
Collapse
|
41
|
Bechstedt S, Howard J. Models of Hair Cell Mechanotransduction. CURRENT TOPICS IN MEMBRANES 2007; 59:399-424. [DOI: 10.1016/s1063-5823(06)59015-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
42
|
Volonté C, Amadio S, D'Ambrosi N, Colpi M, Burnstock G. P2 receptor web: Complexity and fine-tuning. Pharmacol Ther 2006; 112:264-80. [PMID: 16780954 DOI: 10.1016/j.pharmthera.2005.04.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 04/12/2005] [Indexed: 12/25/2022]
Abstract
The present review offers a new perspective on a family of receptors, termed P2 receptors, specific for nucleoside tri- and diphosphates of purines/pyrimidines. We emphasize here that while decoding the inputs of various related extracellular ligands, P2 receptors are a clear example of increasing biological complexity. They are represented by 7 ionotropic P2X and 8 metabotropic P2Y receptors; they have very heterogeneous ligands and binding characteristics, molecular properties, transduction mechanisms, cellular localization and protein-protein interactions. While the reason for this sophistication is unknown, a few compelling issues emerge while looking at such a rich variety. We ask, for instance, why so many different receptor subtypes are necessary for triggering biological properties and functions, and if these receptors are more than the sum of their single entities. A first possibility is that newly synthesized P2 proteins are casually located on the cell surface (stochastic hypothesis). Alternatively, distinct subunits are engaged on different cell phenotypes by genetic control (genetic determinism) and/or selective recruitment under physiopathological conditions and epigenetic stimuli (epigenetic determinism). Nevertheless, an appropriate way to both dissect the vast biological scenario and molecular complexity among P2 receptors and to integrate and upgrade their assortment is to regard them as a "combinatorial receptor web", that is, a dynamic architecture of P2 proteins demonstrating economic efficiency and involving a process of "fine-tuning", a mechanism which endorses the dynamic nature of all biological reactions. In the present analysis, we stimulate a scientific query about what contributes to such a vast P2 receptor sophistication.
Collapse
Affiliation(s)
- Cinzia Volonté
- Santa Lucia Foundation/CNR, Via Del Fosso di Fiorano 64, 00143 Roma, Italy.
| | | | | | | | | |
Collapse
|
43
|
Excitatory effect of ATP on rat area postrema neurons. Purinergic Signal 2006; 2:545-57. [PMID: 18404492 PMCID: PMC2096647 DOI: 10.1007/s11302-006-9004-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 01/26/2006] [Indexed: 02/03/2023] Open
Abstract
ATP-induced inward currents and increases in the cytosolic Ca(2+) concentration ([Ca](in)) were investigated in neurons acutely dissociated from rat area postrema using whole-cell patch-clamp recordings and fura-2 microfluorometry, respectively. The ATP-induced current (I (ATP)) and [Ca](in) increases were mimicked by 2-methylthio-ATP and ATP-gammaS, and were inhibited by P2X receptor (P2XR) antagonists. The current-voltage relationship of the I (ATP) exhibited a strong inward rectification, and the amplitude of the I (ATP) was concentration-dependent. The I (ATP) was markedly reduced in the absence of external Na(+), and the addition of Ca(2+) to Na(+)-free saline increased the I (ATP). ATP did not increase [Ca](in) in the absence of external Ca(2+), and Ca(2+) channel antagonists partially inhibited the ATP-induced [Ca](in) increase, indicating that ATP increases [Ca](in) by Ca(2+) influx through both P2XR channels and voltage-dependent Ca(2+) channels. There was a negative interaction between P2XR- and nicotinic ACh receptor (nAChR)-channels, which depended on the amplitude and direction of current flow through either channel. Current occlusion was observed at V (h)s between -70 and -10 mV when the I (ATP) and ACh-induced current (I (ACh)) were inward, but no occlusion was observed when these currents were outward at a V (h) of +40 mV. The I (ATP) was not inhibited by co-application of ACh when the I (ACh) was markedly decreased either by removal of permeant cations, by setting V (h) close to the equilibrium potential of I (ACh), or by the addition of d-tubocurarine or serotonin. These results suggest that the inhibitory interaction is attributable to inward current flow of cations through the activated P2XR- and nAChR-channels.
Collapse
|
44
|
Egan TM, Samways DSK, Li Z. Biophysics of P2X receptors. Pflugers Arch 2006; 452:501-12. [PMID: 16708237 DOI: 10.1007/s00424-006-0078-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Accepted: 03/16/2006] [Indexed: 10/24/2022]
Abstract
The P2X receptor is the baby brother of the ligand-gated ion channel super-family. An understanding of its role in human physiology is still developing, and no one truly knows how it works to transport ions across the membrane. In this study, we review some aspects of P2X channel biophysics, concentrating on ion permeation and gating. P2X channels transport both small and large cations and anions across cell membranes in a manner that depends on both the subunit composition of the receptor and the experimental conditions. We describe the pore properties of wild-type receptors and use the altered phenotypes of mutant receptors to point the way towards a structural model of the pore.
Collapse
Affiliation(s)
- Terrance M Egan
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, St. Louis, MO 63104, USA.
| | | | | |
Collapse
|
45
|
Gever JR, Cockayne DA, Dillon MP, Burnstock G, Ford APDW. Pharmacology of P2X channels. Pflugers Arch 2006; 452:513-37. [PMID: 16649055 DOI: 10.1007/s00424-006-0070-9] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 03/08/2006] [Indexed: 02/07/2023]
Abstract
Significant progress in understanding the pharmacological characteristics and physiological importance of homomeric and heteromeric P2X channels has been achieved in recent years. P2X channels, gated by ATP and most likely trimerically assembled from seven known P2X subunits, are present in a broad distribution of tissues and are thought to play an important role in a variety of physiological functions, including peripheral and central neuronal transmission, smooth muscle contraction, and inflammation. The known homomeric and heteromeric P2X channels can be distinguished from each other on the basis of pharmacological differences when expressed recombinantly in cell lines, but whether this pharmacological classification holds true in native cells and in vivo is less well-established. Nevertheless, several potent and selective P2X antagonists have been discovered in recent years and shown to be efficacious in various animal models including those for visceral organ function, chronic inflammatory and neuropathic pain, and inflammation. The recent advancement of drug candidates targeting P2X channels into human trials, confirms the medicinal exploitability of this novel target family and provides hope that safe and effective medicines for the treatment of disorders involving P2X channels may be identified in the near future.
Collapse
Affiliation(s)
- Joel R Gever
- Department of Biochemical Pharmacology, Roche Palo Alto, 3431 Hillview Avenue, Palo Alto, CA 94304, USA.
| | | | | | | | | |
Collapse
|
46
|
Tozaki-Saitoh H, Koizumi S, Sato Y, Tsuda M, Nagao T, Inoue K. Retinoic acids increase P2X2 receptor expression through the 5'-flanking region of P2rx2 gene in rat phaeochromocytoma PC-12 cells. Mol Pharmacol 2006; 70:319-28. [PMID: 16638968 DOI: 10.1124/mol.105.020511] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The P2X2 receptor is a subtype of ionotropic ATP receptor and plays a significant role in regulating fast synaptic transmission in the nervous system. Because the expression level of the P2X2 receptor is known to determine its channel properties and functional interactions with other neurotransmitter channels, elucidating the mechanisms underlying the regulation of P2X2 receptor expression in neuronal cells is important. Here, we identified three motifs that correspond to the retinoic acid response element in the 5'-flanking region of the rat P2X2 gene. In rat pheochromocytoma PC-12 cells, treatment with 9-cis-retinoic acid as well as all-trans-retinoic acid significantly increased the mRNA and protein level of P2X2 receptor. In addition, in PC-12 cells transiently transfected with a luciferase reporter gene driven by the promoter region of the rat P2X2 gene, both 9-cis-retinoic acid and all-trans-retinoic acid increased the luciferase activity, whereas their effects were diminished by truncation of the retinoic acid response elements in the promoter. Furthermore, 9-cis-retinoic acid enhanced the ATP-evoked whole cell currents and intracellular Ca2+- and ATP-evoked dopamine release, indicating the up-regulation of functional P2X2 receptors on the plasma membrane. These results provide the molecular mechanism underlying the transcriptional regulation of P2X2 receptors and suggest that retinoid is an important factor in regulating P2X2 receptors in the nervous system.
Collapse
Affiliation(s)
- Hidetoshi Tozaki-Saitoh
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Ma W, Korngreen A, Weil S, Cohen EBT, Priel A, Kuzin L, Silberberg SD. Pore properties and pharmacological features of the P2X receptor channel in airway ciliated cells. J Physiol 2006; 571:503-17. [PMID: 16423852 PMCID: PMC1805806 DOI: 10.1113/jphysiol.2005.103408] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Airway ciliated cells express an ATP-gated P2X receptor channel of unknown subunit composition (P2X(cilia)) which is modulated by Na+ and by long exposures to ATP. P2X(cilia) was investigated by recording currents from freshly dissociated rabbit airway ciliated cells with the patch-clamp technique in the whole-cell configuration. During the initial continuous exposure to extracellular ATP, P2X(cilia) currents gradually increase in magnitude (priming), yet the permeability to N-methyl-D-glucamine (NMDG) does not change, indicating that priming does not arise from a progressive change in pore diameter. Na+, which readily permeates P2X(cilia) receptor channels, was found to inhibit the channel extracellular to the electric field. The rank order of permeability to various monovalent cations is: Li+, Na+, K+, Rb+, Cs+, NMDG+ and TEA+, with a relative permeability of 1.35, 1.0, 0.99, 0.91, 0.79, 0.19 and 0.10, respectively. The rank order for the alkali cations follows an Eisenman series XI for a high-strength field site. Ca2+ has been estimated to be 7-fold more permeant than Na+. The rise in [Ca2+]i in ciliated cells, induced by the activation of P2X(cilia), is largely inhibited by either Brilliant Blue G or KN-62, indicating that P2X7 may be a part of P2X(cilia). P2X(cilia) is augmented by Zn2+ and by ivermectin, and P2X4 receptor protein is detected by immunolabelling at the basal half of the cilia, strongly suggesting that P2X4 is a component of P2X(cilia) receptor channels. Taken together, these results suggest that P2X(cilia) is either assembled from P2X4 and P2X7 subunits, or formed from modified P2X4 subunits.
Collapse
Affiliation(s)
- Weiyuan Ma
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
ATP-activated currents were studied in Leydig cells of mice with the patch-clamp technique. Whole cell currents were rapidly activating and slowly desensitizing (55% decrement from the peak value on exposure to 100 microM ATP for 60 s), requiring 3 min of washout to recover 100% of the response. The concentration-response relationships for ATP, adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS), and 2-methylthio-ATP (2-MeS-ATP) were described by the Hill equation with a concentration evoking 50% of maximal ATP response (K(d)) of 44, 110, and 637 microM, respectively, and a Hill coefficient of 2. The order of efficacy of agonists was ATP >or= ATPgammaS > 2-MeS-ATP > 2',3'-O-(4-benzoylbenzoyl)-ATP (BzATP). alphabeta-Methylene-ATP (alphabeta-MeATP), GTP, UTP, cAMP, and adenosine were ineffective. Suramin and pyridoxal phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) blocked the responses in a concentration-dependent manner. The ATP-activated currents were dependent on extracellular pH, being maximal at pH 6.5 and decreasing with both acidification and alkalinization (apparent dissociation constant (pK(a)) of 5.9 and 7.4, respectively). The whole cell current-voltage relationship showed inward rectification and reversed near 0 mV. Experiments performed in bi-ionic conditions for measurement of reversal potentials showed that this channel is highly permeable to calcium [permeability (P)(Ca)/P(Na) = 5.32], but not to chloride (P(Cl)/P(Na) = 0.03) or N-methyl-D-glucamine (NMDG) (P(NMDG)/P(Na) = 0.09). Unitary currents recorded in outside-out patches had a chord conductance of 27 pS (between -90 and -50 mV) and were inward rectifying. The average current passing through the excised patch decreased with time [time constant (tau) = 13 s], resembling desensitization of the macroscopic current. These findings indicate that the ATP receptor present in Leydig cells shows properties most similar to those of cloned homomeric P2X(2).
Collapse
Affiliation(s)
- Luiz Artur Poletto Chaves
- Department of Physiology, School of Medicine of Ribeirão Preto/USP, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto/SP, Brazil
| | | | | |
Collapse
|
49
|
Brosenitsch TA, Adachi T, Lipski J, Housley GD, Funk GD. Developmental downregulation of P2X3 receptors in motoneurons of the compact formation of the nucleus ambiguus. Eur J Neurosci 2005; 22:809-24. [PMID: 16115205 DOI: 10.1111/j.1460-9568.2005.04261.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Motoneurons of the compact division of the nucleus ambiguus (cNA) are the final output neurons of the swallowing pattern generator. Thus, their normal function is critical to neonatal survival. To explore the role of purinergic signaling in modulating the excitability of these motoneurons during development, immunohistochemical and whole-cell recording techniques were used to characterize expression patterns of ionotropic P2X receptors and the effects of ATP on cNA motoneurons. Medullary slices containing the cNA were prepared from neonatal (P0-4) and juvenile (P15-21) rats. In neonatal cNA motoneurons, local application of 1 mM ATP produced a large (-133 +/- 17 pA; n = 78), desensitizing, inward current that was mimicked by 1 mM alpha,beta meATP and 2meSATP, and inhibited by the P2 antagonist, PPADS (5 microM), and the P2X3 antagonist, A-317481 (0.1-1 mM). In juvenile cNA motoneurons, 1 mM ATP produced negligible currents, while 10 mM ATP produced small (-59 +/- 14 pA; n = 42), primarily non-desensitizing currents. Immunohistochemistry demonstrated that in the neonate, the expression of P2X3 was robust, P2X2 and P2X5 moderate, P2X4 and P2X6 weak, and P2X1 absent. In the juvenile cNA, only low levels of P2X5 and P2X6 labeling were detected. These data indicate that P2X receptors in cNA motoneurons are profoundly downregulated during the first two postnatal weeks, and suggest a role for the purinoceptor system, particularly P2X3 receptors, in the control of esophageal motor networks during early postnatal periods.
Collapse
Affiliation(s)
- Teresa A Brosenitsch
- Department of Physiology, Faculty of Medicine and Health Science, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
50
|
Kochukov MY, Ritchie AK. P2X7 receptor stimulation of membrane internalization in a thyrocyte cell line. J Membr Biol 2005; 204:11-21. [PMID: 16007499 DOI: 10.1007/s00232-005-0742-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 03/10/2005] [Indexed: 01/30/2023]
Abstract
Using fluorescent membrane markers, we have previously shown that extracellular ATP stimulates both exocytosis and membrane internalization in the Fisher rat thyroid cell line FRTL. In this study, we examine the actions of ATP using whole-cell recording conditions that favor stimulation of membrane internalization. ATP stimulation of the P2X(7) receptor activated a reversible, Ca(2+)-permeable, cation conductance that slowly increased in size without changes in ion selectivity. ATP also induced a delayed irreversible decrease in cell capacitance (C(m)) that was equivalent to an 8% decrease in membrane surface area. Addition of guanosine 5'-0-2-thiodiphosphate to the pipette solution inhibited the ATP-induced decrease in C(m) without affecting channel activation. The effects of ATP on membrane conductance were mimicked by 2',3'-O-(4-benzoylbenzoyl)-ATP, but not by UTP, adenosine, or 2-methylthio-ATP, and were inhibited by pyridoxal phosphate-6-azophenyl-2'4'-disulfonic acid, adenosine 5'-triphosphate-2'3'-dialdehyde, and Cu(2+). The capacitance decrease persisted in Na(+)-, Ca(2+)- and Cl(-)-free external saline or with Ca(2+)-free pipette solution. It is concluded that ATP activation of the inotropic P2X(7) receptor stimulates membrane internalization by a mechanism that involves intracellular GTP, but does not require internal Ca(2+) or influx of Na(+) or Ca(2+) through the receptor-gated channel.
Collapse
Affiliation(s)
- M Y Kochukov
- Department of Physiology and Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0641, USA
| | | |
Collapse
|