1
|
Dissection of the long-range projections of specific neurons at the synaptic level in the whole mouse brain. Proc Natl Acad Sci U S A 2022; 119:e2202536119. [PMID: 36161898 PMCID: PMC9546530 DOI: 10.1073/pnas.2202536119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Through synaptic connections, long-range circuits transmit information among neurons and connect different brain regions to form functional motifs and execute specific functions. Tracing the synaptic distribution of specific neurons requires submicron-level resolution information. However, it is a great challenge to map the synaptic terminals completely because these fine structures span multiple regions, even in the whole brain. Here, we develop a pipeline including viral tracing, sample embedding, fluorescent micro-optical sectional tomography, and big data processing. We mapped the whole-brain distribution and architecture of long projections of the parvalbumin neurons in the basal forebrain at the synaptic level. These neurons send massive projections to multiple downstream regions with subregional preference. With three-dimensional reconstruction in the targeted areas, we found that synaptic degeneration was inconsistent with the accumulation of amyloid-β plaques but was preferred in memory-related circuits, such as hippocampal formation and thalamus, but not in most hypothalamic nuclei in 8-month-old mice with five familial Alzheimer's disease mutations. Our pipeline provides a platform for generating a whole-brain atlas of cell-type-specific synaptic terminals in the physiological and pathological brain, which can provide an important resource for the study of the organizational logic of specific neural circuits and the circuitry changes in pathological conditions.
Collapse
|
2
|
Maynard S, Rostaing P, Schaefer N, Gemin O, Candat A, Dumoulin A, Villmann C, Triller A, Specht CG. Identification of a stereotypic molecular arrangement of endogenous glycine receptors at spinal cord synapses. eLife 2021; 10:74441. [PMID: 34878402 PMCID: PMC8752092 DOI: 10.7554/elife.74441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022] Open
Abstract
Precise quantitative information about the molecular architecture of synapses is essential to understanding the functional specificity and downstream signaling processes at specific populations of synapses. Glycine receptors (GlyRs) are the primary fast inhibitory neurotransmitter receptors in the spinal cord and brainstem. These inhibitory glycinergic networks crucially regulate motor and sensory processes. Thus far, the nanoscale organization of GlyRs underlying the different network specificities has not been defined. Here, we have quantitatively characterized the molecular arrangement and ultra-structure of glycinergic synapses in spinal cord tissue using quantitative super-resolution correlative light and electron microscopy. We show that endogenous GlyRs exhibit equal receptor-scaffold occupancy and constant packing densities of about 2000 GlyRs µm-2 at synapses across the spinal cord and throughout adulthood, even though ventral horn synapses have twice the total copy numbers, larger postsynaptic domains, and more convoluted morphologies than dorsal horn synapses. We demonstrate that this stereotypic molecular arrangement is maintained at glycinergic synapses in the oscillator mouse model of the neuromotor disease hyperekplexia despite a decrease in synapse size, indicating that the molecular organization of GlyRs is preserved in this hypomorph. We thus conclude that the morphology and size of inhibitory postsynaptic specializations rather than differences in GlyR packing determine the postsynaptic strength of glycinergic neurotransmission in motor and sensory spinal cord networks.
Collapse
Affiliation(s)
- Stephanie Maynard
- Institut de Biologie de l'ENS (IBENS), PSL University, Paris, France
| | - Philippe Rostaing
- Institut de Biologie de l'ENS (IBENS), PSL University, Paris, France
| | - Natascha Schaefer
- Institute for Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Olivier Gemin
- Institut de Biologie de l'ENS (IBENS), PSL University, Paris, France
| | - Adrien Candat
- Institut de Biologie de l'ENS (IBENS), PSL University, Paris, France
| | - Andréa Dumoulin
- Institut de Biologie de l'ENS (IBENS), PSL University, Paris, France
| | - Carmen Villmann
- Institute for Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Antoine Triller
- Institut de Biologie de l'ENS (IBENS), PSL University, Paris, France
| | - Christian G Specht
- Diseases and Hormones of the Nervous System (DHNS), Inserm U1195, Université Paris-Saclay, Paris, France
| |
Collapse
|
3
|
Long-term potentiation of glycinergic synapses by semi-natural stimulation patterns during tonotopic map refinement. Sci Rep 2020; 10:16899. [PMID: 33037263 PMCID: PMC7547119 DOI: 10.1038/s41598-020-73050-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022] Open
Abstract
Before the onset of hearing, cochlea-generated patterns of spontaneous spike activity drive the maturation of central auditory circuits. In the glycinergic sound localization pathway from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO) this spontaneous activity guides the strengthening and silencing of synapses which underlies tonotopic map refinement. However, the mechanisms by which patterned activity regulates synaptic refinement in the MNTB-LSO pathway are still poorly understood. To address this question, we recorded from LSO neurons in slices from prehearing mice while stimulating MNTB afferents with stimulation patterns that mimicked those present in vivo. We found that these semi-natural stimulation patterns reliably elicited a novel form of long-term potentiation (LTP) of MNTB-LSO synapses. Stimulation patterns that lacked the characteristic high-frequency (200 Hz) component of prehearing spike activity failed to elicit potentiation. LTP was calcium dependent, required the activation of both g-protein coupled GABAB and metabotropic glutamate receptors and involved an increase in postsynaptic glycine receptor-mediated currents. Our results provide a possible mechanism linking spontaneous spike bursts to tonotopic map refinement and further highlight the importance of the co-release of GABA and glutamate from immature glycinergic MNTB terminals.
Collapse
|
4
|
Shen FY, Harrington MM, Walker LA, Cheng HPJ, Boyden ES, Cai D. Light microscopy based approach for mapping connectivity with molecular specificity. Nat Commun 2020; 11:4632. [PMID: 32934230 PMCID: PMC7493953 DOI: 10.1038/s41467-020-18422-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/21/2020] [Indexed: 11/28/2022] Open
Abstract
Mapping neuroanatomy is a foundational goal towards understanding brain function. Electron microscopy (EM) has been the gold standard for connectivity analysis because nanoscale resolution is necessary to unambiguously resolve synapses. However, molecular information that specifies cell types is often lost in EM reconstructions. To address this, we devise a light microscopy approach for connectivity analysis of defined cell types called spectral connectomics. We combine multicolor labeling (Brainbow) of neurons with multi-round immunostaining Expansion Microscopy (miriEx) to simultaneously interrogate morphology, molecular markers, and connectivity in the same brain section. We apply this strategy to directly link inhibitory neuron cell types with their morphologies. Furthermore, we show that correlative Brainbow and endogenous synaptic machinery immunostaining can define putative synaptic connections between neurons, as well as map putative inhibitory and excitatory inputs. We envision that spectral connectomics can be applied routinely in neurobiology labs to gain insights into normal and pathophysiological neuroanatomy.
Collapse
Affiliation(s)
- Fred Y Shen
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Margaret M Harrington
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Logan A Walker
- LS & A, Program in Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Hon Pong Jimmy Cheng
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Edward S Boyden
- McGovern Institute, Koch Institute, Department of Media Arts and Sciences, Department of Biological Engineering, and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Dawen Cai
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- LS & A, Program in Biophysics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Combining mGRASP and Optogenetics Enables High-Resolution Functional Mapping of Descending Cortical Projections. Cell Rep 2020; 24:1071-1080. [PMID: 30044974 PMCID: PMC6083038 DOI: 10.1016/j.celrep.2018.06.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 03/23/2018] [Accepted: 06/18/2018] [Indexed: 11/25/2022] Open
Abstract
We have applied optogenetics and mGRASP, a light microscopy technique that labels synaptic contacts, to map the number and strength of defined corticocollicular (CC) connections. Using mGRASP, we show that CC projections form small, medium, and large synapses, and both the number and the distribution of synapse size vary among the IC regions. Using optogenetics, we show that low-frequency stimulation of CC axons expressing channelrhodopsin produces prolonged elevations of the CC miniature EPSC (mEPSC) rate. Functional analysis of CC mEPSCs reveals small-, medium-, and large-amplitude events that mirror the synaptic distributions observed with mGRASP. Our results reveal that descending ipsilateral projections dominate CC feedback via an increased number of large synaptic contacts, especially onto the soma of IC neurons. This study highlights the feasibility of combining microscopy (i.e., mGRASP) and optogenetics to reveal synaptic weighting of defined projections at the level of single neurons, enabling functional connectomic mapping in diverse neural circuits. Optogenetic axonal stimulation causes prolonged increases in quantal synaptic release Quantal and anatomical measures of synapse strength directly correspond Strength and cellular location of cortical inputs to midbrain are region specific
Collapse
|
6
|
Lau C, Thakre PP, Bellingham MC. Alfaxalone Causes Reduction of Glycinergic IPSCs, but Not Glutamatergic EPSCs, and Activates a Depolarizing Current in Rat Hypoglossal Motor Neurons. Front Cell Neurosci 2019; 13:100. [PMID: 30967762 PMCID: PMC6440435 DOI: 10.3389/fncel.2019.00100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/27/2019] [Indexed: 11/20/2022] Open
Abstract
We investigated effects of the neuroactive steroid anesthetic alfaxalone on intrinsic excitability, and on inhibitory and excitatory synaptic transmission to hypoglossal motor neurons (HMNs). Whole cell recordings were made from HMNs in brainstem slices from 7 to 14-day-old Wistar rats. Spontaneous, miniature, and evoked inhibitory post-synaptic currents (IPSCs), and spontaneous and evoked excitatory PSCs (EPSCs) were recorded at –60 mV. Alfaxalone did not alter spontaneous glycinergic IPSC peak amplitude, rise-time or half-width up to 10 μM, but reduced IPSC frequency from 3 μM. Evoked IPSC amplitude was reduced from 30 nM. Evoked IPSC rise-time was prolonged and evoked IPSC decay time was increased only by 10 μM alfaxalone. Alfaxalone also decreased evoked IPSC paired pulse ratio (PPR). Spontaneous glutamatergic EPSC amplitude and frequency were not altered by alfaxalone, and evoked EPSC amplitude and PPR was also unchanged. Alfaxalone did not alter HMN repetitive firing or action potential amplitude. Baseline holding current at −60 mV with a CsCl-based pipette solution was increased in an inward direction; this effect was not seen when tetrodotoxin (TTX) was present. These results suggest that alfaxalone modulates glycine receptors (GlyRs), causing a delayed and prolonged channel opening, as well as causing presynaptic reduction of glycine release, and activates a membrane current, which remains to be identified. Alfaxalone selectively reduces glycinergic inhibitory transmission to rat HMNs via a combination of pre- and post-synaptic mechanisms. The net effect of these responses to alfaxalone is to increase HMN excitability and may therefore underlie neuro-motor excitation during neurosteroid anesthesia.
Collapse
Affiliation(s)
- Cora Lau
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Prajwal P Thakre
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Mark C Bellingham
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Nerlich J, Rübsamen R, Milenkovic I. Developmental Shift of Inhibitory Transmitter Content at a Central Auditory Synapse. Front Cell Neurosci 2017; 11:211. [PMID: 28769768 PMCID: PMC5516124 DOI: 10.3389/fncel.2017.00211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/03/2017] [Indexed: 12/11/2022] Open
Abstract
Synaptic inhibition in the CNS is mostly mediated by GABA or glycine. Generally, the use of the two transmitters is spatially segregated, but there are central synapses employing both, which allows for spatial and temporal variability of inhibitory mechanisms. Spherical bushy cells (SBCs) in the mammalian cochlear nucleus receive primary excitatory inputs through auditory nerve fibers arising from the organ of Corti and non-primary inhibition mediated by a dual glycine-GABA transmission. Slow kinetics IPSCs enable activity dependent tonic-like conductance build up, functioning as a gain control by filtering out small or temporally imprecise EPSPs. However, it remained elusive whether GABA and glycine are released as content of the same vesicle or from distinct presynaptic terminals. The developmental profile of quantal release was investigated with whole cell recordings of miniature inhibitory postsynaptic currents (mIPSCs) from P1–P25 SBCs of Mongolian gerbils. GABA is the initial transmitter eliciting slow-rising and -decaying events of relatively small amplitudes, occurring only during early postnatal life. Around and after hearing onset, the inhibitory quanta are predominantly containing glycine that—with maturity—triggers progressively larger and longer mIPSC. In addition, GABA corelease with glycine evokes mIPSCs of particularly large amplitudes consistently occurring across all ages, but with low probability. Together, these results suggest that GABA, as the primary transmitter released from immature inhibitory terminals, initially plays a developmental role. In maturity, GABA is contained in synaptic vesicles only in addition to glycine to increase the inhibitory potency, thereby fulfilling solely a modulatory function.
Collapse
Affiliation(s)
- Jana Nerlich
- Department of Physiology, Faculty of Medicine, Carl Ludwig Institute for Physiology, University of LeipzigLeipzig, Germany
| | - Rudolf Rübsamen
- Faculty of Biosciences, Pharmacy and Psychology, University of LeipzigLeipzig, Germany
| | - Ivan Milenkovic
- Department of Physiology, Faculty of Medicine, Carl Ludwig Institute for Physiology, University of LeipzigLeipzig, Germany
| |
Collapse
|
8
|
Alvarez FJ. Gephyrin and the regulation of synaptic strength and dynamics at glycinergic inhibitory synapses. Brain Res Bull 2016; 129:50-65. [PMID: 27612963 DOI: 10.1016/j.brainresbull.2016.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/23/2016] [Accepted: 09/05/2016] [Indexed: 01/23/2023]
Abstract
Glycinergic synapses predominate in brainstem and spinal cord where they modulate motor and sensory processing. Their postsynaptic mechanisms have been considered rather simple because they lack a large variety of glycine receptor isoforms and have relatively simple postsynaptic densities at the ultrastructural level. However, this simplicity is misleading being their postsynaptic regions regulated by a variety of complex mechanisms controlling the efficacy of synaptic inhibition. Early studies suggested that glycinergic inhibitory strength and dynamics depend largely on structural features rather than on molecular complexity. These include regulation of the number of postsynaptic glycine receptors, their localization and the amount of co-localized GABAA receptors and GABA-glycine co-transmission. These properties we now know are under the control of gephyrin. Gephyrin is the first postsynaptic scaffolding protein ever discovered and it was recently found to display a large degree of variation and regulation by splice variants, posttranslational modifications, intracellular trafficking and interactions with the underlying cytoskeleton. Many of these mechanisms are governed by converging excitatory activity and regulate gephyrin oligomerization and receptor binding, the architecture of the postsynaptic density (and by extension the whole synaptic complex), receptor retention and stability. These newly uncovered molecular mechanisms define the size and number of gephyrin postsynaptic regions and the numbers and proportions of glycine and GABAA receptors contained within. All together, they control the emergence of glycinergic synapses of different strength and temporal properties to best match the excitatory drive received by each individual neuron or local dendritic compartment.
Collapse
Affiliation(s)
- Francisco J Alvarez
- Department of Physiology, Emory University, Atlanta, GA 30322-3110, United States.
| |
Collapse
|
9
|
Sigal YM, Speer CM, Babcock HP, Zhuang X. Mapping Synaptic Input Fields of Neurons with Super-Resolution Imaging. Cell 2015; 163:493-505. [PMID: 26435106 PMCID: PMC4733473 DOI: 10.1016/j.cell.2015.08.033] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 07/22/2015] [Accepted: 08/12/2015] [Indexed: 01/28/2023]
Abstract
As a basic functional unit in neural circuits, each neuron integrates input signals from hundreds to thousands of synapses. Knowledge of the synaptic input fields of individual neurons, including the identity, strength, and location of each synapse, is essential for understanding how neurons compute. Here, we developed a volumetric super-resolution reconstruction platform for large-volume imaging and automated segmentation of neurons and synapses with molecular identity information. We used this platform to map inhibitory synaptic input fields of On-Off direction-selective ganglion cells (On-Off DSGCs), which are important for computing visual motion direction in the mouse retina. The reconstructions of On-Off DSGCs showed a GABAergic, receptor subtype-specific input field for generating direction selective responses without significant glycinergic inputs for mediating monosynaptic crossover inhibition. These results demonstrate unique capabilities of this super-resolution platform for interrogating neural circuitry.
Collapse
Affiliation(s)
- Yaron M Sigal
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Colenso M Speer
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Hazen P Babcock
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
10
|
Zhang Y, Dixon CL, Keramidas A, Lynch JW. Functional reconstitution of glycinergic synapses incorporating defined glycine receptor subunit combinations. Neuropharmacology 2015; 89:391-7. [DOI: 10.1016/j.neuropharm.2014.10.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/16/2014] [Accepted: 10/26/2014] [Indexed: 10/24/2022]
|
11
|
Dynamic fidelity control to the central auditory system: synergistic glycine/GABAergic inhibition in the cochlear nucleus. J Neurosci 2014; 34:11604-20. [PMID: 25164657 DOI: 10.1523/jneurosci.0719-14.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GABA and glycine are the major inhibitory transmitters that attune neuronal activity in the CNS of mammals. The respective transmitters are mostly spatially separated, that is, synaptic inhibition in the forebrain areas is mediated by GABA, whereas glycine is predominantly used in the brainstem. Accordingly, inhibition in auditory brainstem circuits is largely mediated by glycine, but there are few auditory synapses using both transmitters in maturity. Little is known about physiological advantages of such a two-transmitter inhibitory mechanism. We explored the benefit of engaging both glycine and GABA with inhibition at the endbulb of Held-spherical bushy cell synapse in the auditory brainstem of juvenile Mongolian gerbils. This model synapse enables selective in vivo activation of excitatory and inhibitory neuronal inputs through systemic sound stimulation and precise analysis of the input (endbulb of Held) output (spherical bushy cell) function. The combination of in vivo and slice electrophysiology revealed that the dynamic AP inhibition in spherical bushy cells closely matches the inhibitory conductance profile determined by the glycine-R and GABAA-R. The slow and potent glycinergic component dominates the inhibitory conductance, thereby primarily accounting for its high-pass filter properties. GABAergic transmission enhances the inhibitory strength and shapes its duration in an activity-dependent manner, thus increasing the inhibitory potency to suppress the excitation through the endbulb of Held. Finally, in silico modeling provides a strong link between in vivo and slice data by simulating the interactions between the endbulb- and the synergistic glycine-GABA-conductances during in vivo-like spontaneous and sound evoked activities.
Collapse
|
12
|
Specht CG, Izeddin I, Rodriguez PC, El Beheiry M, Rostaing P, Darzacq X, Dahan M, Triller A. Quantitative nanoscopy of inhibitory synapses: counting gephyrin molecules and receptor binding sites. Neuron 2013; 79:308-21. [PMID: 23889935 DOI: 10.1016/j.neuron.2013.05.013] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2013] [Indexed: 12/01/2022]
Abstract
The strength of synaptic transmission is controlled by the number and activity of neurotransmitter receptors. However, little is known about absolute numbers and densities of receptor and scaffold proteins and the stoichiometry of molecular interactions at synapses. Here, we conducted three-dimensional and quantitative nanoscopic imaging based on single-molecule detections to characterize the ultrastructure of inhibitory synapses and to count scaffold proteins and receptor binding sites. We observed a close correspondence between the spatial organization of gephyrin scaffolds and glycine receptors at spinal cord synapses. Endogenous gephyrin was clustered at densities of 5,000-10,000 molecules/μm(2). The stoichiometry between gephyrin molecules and receptor binding sites was approximately 1:1, consistent with a two-dimensional scaffold in which all gephyrin molecules can contribute to receptor binding. The competition of glycine and GABAA receptor complexes for synaptic binding sites highlights the potential of single-molecule imaging to quantify synaptic plasticity on the nanoscopic scale.
Collapse
Affiliation(s)
- Christian G Specht
- Biologie Cellulaire de la Synapse, Inserm U1024, Institute of Biology, École Normale Supérieure ENS, 46 rue d'Ulm, Paris 75005, France
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Differential distribution of glycine receptor subtypes at the rat calyx of Held synapse. J Neurosci 2013; 32:17012-24. [PMID: 23175852 DOI: 10.1523/jneurosci.1547-12.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The properties of glycine receptors (GlyRs) depend upon their subunit composition. While the prevalent adult forms of GlyRs are heteromers, previous reports suggested functional α homomeric receptors in mature nervous tissues. Here we show two functionally different GlyRs populations in the rat medial nucleus of trapezoid body (MNTB). Postsynaptic receptors formed α1/β-containing clusters on somatodendritic domains of MNTB principal neurons, colocalizing with glycinergic nerve endings to mediate fast, phasic IPSCs. In contrast, presynaptic receptors on glutamatergic calyx of Held terminals were composed of dispersed, homomeric α1 receptors. Interestingly, the parent cell bodies of the calyces of Held, the globular bushy cells of the cochlear nucleus, expressed somatodendritic receptors (α1/β heteromers) and showed similar clustering and pharmacological profile as GlyRs on MNTB principal cells. These results suggest that specific targeting of GlyR β-subunit produces segregation of GlyR subtypes involved in two different mechanisms of modulation of synaptic strength.
Collapse
|
14
|
Couchman K, Garrett A, Deardorff AS, Rattay F, Resatz S, Fyffe R, Walmsley B, Leão RN. Lateral superior olive function in congenital deafness. Hear Res 2011; 277:163-75. [PMID: 21276842 DOI: 10.1016/j.heares.2011.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 01/14/2011] [Accepted: 01/19/2011] [Indexed: 10/18/2022]
Abstract
The development of cochlear implants for the treatment of patients with profound hearing loss has advanced considerably in the last few decades, particularly in the field of speech comprehension. However, attempts to provide not only sound decoding but also spatial hearing are limited by our understanding of circuit adaptations in the absence of auditory input. Here we investigate the lateral superior olive (LSO), a nucleus involved in interaural level difference (ILD) processing in the auditory brainstem using a mouse model of congenital deafness (the dn/dn mouse). An electrophysiological investigation of principal neurons of the LSO from the dn/dn mouse reveals a higher than normal proportion of single spiking (SS) neurons, and an increase in the hyperpolarisation-activated I(h) current. However, inhibitory glycinergic input to the LSO appears to develop normally both pre and postsynaptically in dn/dn mice despite the absence of auditory nerve activity. In combination with previous electrophysiological findings from the dn/dn mouse, we also compile a simple Hodgkin and Huxley circuit model in order to investigate possible computational deficits in ILD processing resulting from congenital hearing loss. We find that the predominance of SS neurons in the dn/dn LSO may compensate for upstream modifications and help to maintain a functioning ILD circuit in the dn/dn mouse. This could have clinical repercussions on the development of stimulation paradigms for spatial hearing with cochlear implants.
Collapse
Affiliation(s)
- Kiri Couchman
- Division of Neuroscience, The John Curtin School of Medical Research, Australian National University, Canberra ACT, Australia
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kim G, Kandler K. Synaptic changes underlying the strengthening of GABA/glycinergic connections in the developing lateral superior olive. Neuroscience 2010; 171:924-33. [PMID: 20888399 DOI: 10.1016/j.neuroscience.2010.09.054] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/22/2010] [Accepted: 09/24/2010] [Indexed: 10/19/2022]
Abstract
Before hearing onset, the topographic organization of the auditory GABA/glycinergic pathway from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO) is refined by synaptic silencing and strengthening. The synaptic mechanisms underlying the developmental strengthening of maintained MNTB-LSO connections are unknown. Here we address this question using whole-cell recordings from LSO neurons in slices prepared from prehearing mice. Minimal and maximal stimulation techniques demonstrated that during the first two postnatal weeks, individual LSO neurons lose about 55% of their initial presynaptic MNTB partners while maintained single-fiber connections become about 14-fold stronger. Analysis of MNTB-evoked miniature events indicates that this strengthening is accompanied by a 2-fold increase in quantal amplitude. Strengthening is not caused by an increase in the probability of release because paired pulse ratios (PPRs) increased from 0.7 in newborn animals to 0.9 around hearing onset, indicating a developmental decrease rather than increase in release probability. In addition, a possible soma-dendritic relocation of MNTB input seems unlikely to underlie their strengthening as indicated by analysis of the rise times of synaptic currents. Taken together, we conclude that the developmental strengthening of MNTB-LSO connections is achieved by a 2-fold increase in quantal size and an 8-fold increase in quantal content.
Collapse
Affiliation(s)
- G Kim
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
16
|
Quantal analysis reveals a functional correlation between presynaptic and postsynaptic efficacy in excitatory connections from rat neocortex. J Neurosci 2010; 30:1441-51. [PMID: 20107071 DOI: 10.1523/jneurosci.3244-09.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
At many central synapses, the presynaptic bouton and postsynaptic density are structurally correlated. However, it is unknown whether this correlation extends to the functional properties of the synapses. To investigate this, we made recordings from synaptically coupled pairs of pyramidal neurons in rat visual cortex. The mean peak amplitude of EPSPs recorded from pairs of L2/3 neurons ranged between 40 microV and 2.9 mV. EPSP rise times were consistent with the majority of the synapses being located on basal dendrites; this was confirmed by full anatomical reconstructions of a subset of connected pairs. Over a third of the connections could be described using a quantal model that assumed simple binomial statistics. Release probability (P(r)) and quantal size (Q), as measured at the somatic recording site, showed considerable heterogeneity between connections. However, across the population of connections, values of P(r) and Q for individual connections were positively correlated with one another. This correlation also held for inputs to layer 5 pyramidal neurons from both layer 2/3 and neighboring layer 5 pyramidal neurons, suggesting that during development of cortical connections presynaptic and postsynaptic strengths are dependently scaled. For 2/3 to 2/3 connections, mean EPSP amplitude was correlated with both Q and P(r) values but uncorrelated with N, the number of functional release sites mediating the connection. The efficacy of a cortical connection is thus set by coordinated presynaptic and postsynaptic strength.
Collapse
|
17
|
Camp AJ, Lim R, Anderson WB, Schofield PR, Callister RJ, Brichta AM. Attenuated glycine receptor function reduces excitability of mouse medial vestibular nucleus neurons. Neuroscience 2010; 170:348-60. [PMID: 20600650 DOI: 10.1016/j.neuroscience.2010.06.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Revised: 05/28/2010] [Accepted: 06/16/2010] [Indexed: 10/19/2022]
Abstract
Spontaneous activity in medial vestibular nucleus (MVN) neurons is modulated by synaptic inputs. These inputs are crucial for maintaining gaze and posture and contribute to vestibular compensation after lesions of peripheral vestibular organs. We investigated how chronically attenuated glycinergic input affects excitability of MVN neurons. To this end we used three mouse strains (spastic, spasmodic, and oscillator), with well-characterized naturally occurring mutations in the inhibitory glycine receptor (GlyR). First, using whole-cell patch-clamp recordings, we demonstrated that the amplitude of the response to rapidly applied glycine was dramatically reduced by 25 to 90% in MVN neurons from mutant mice. We next determined how reduced GlyR function affected MVN neuron output. Neurons were classified using two schemas: (1) the shape of their action potential afterhyperpolarization (AHP); and (2) responses to hyperpolarizing current injection. In the first schema, neurons were classified as types A, B and C. The prevalence of type C neurons in the mutant strains was significantly increased. In the second schema, the proportion of neurons lacking post inhibitory rebound firing (PRF-deficient) was increased. In both schemas an increase in AHP amplitude was a common feature of the augmented neuron group (type C, PRF-deficient) in the mutant strains. We suggest increased AHP amplitude reduces overall excitability in the MVN and thus maintains network function in an environment of reduced glycinergic input.
Collapse
Affiliation(s)
- A J Camp
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Hunter Medical Research Institute, The University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | | | | | | | |
Collapse
|
18
|
Callister RJ, Graham BA. Early history of glycine receptor biology in Mammalian spinal cord circuits. Front Mol Neurosci 2010; 3:13. [PMID: 20577630 PMCID: PMC2889717 DOI: 10.3389/fnmol.2010.00013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 04/28/2010] [Indexed: 11/13/2022] Open
Abstract
In this review we provide an overview of key in vivo experiments undertaken in the cat spinal cord in the 1950s and 1960s, and point out their contributions to our present understanding of glycine receptor (GlyR) function. Importantly, some of these discoveries were made well before an inhibitory receptor, or its agonist, was identified. These contributions include the universal acceptance of a chemical mode of synaptic transmission; that GlyRs are chloride channels; are involved in reciprocal and recurrent spinal inhibition; are selectively blocked by strychnine; and can be distinguished from the GABAA receptor by their insensitivity to bicuculline. The early in vivo work on inhibitory mechanisms in spinal neurons also contributed to several enduring principles on synaptic function, such as the time associated with synaptic delay, the extension of Dale's hypothesis (regarding the chemical unity of nerve cells and their terminals) to neurons within the central nervous system, and the importance of inhibition for synaptic integration in motor and sensory circuits. We hope the work presented here will encourage those interested in GlyR biology and inhibitory mechanisms to seek out and read some of the “classic” articles that document the above discoveries.
Collapse
Affiliation(s)
- Robert John Callister
- School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute Newcastle, NSW, Australia
| | | |
Collapse
|
19
|
|
20
|
Anderson WB, Graham BA, Beveridge NJ, Tooney PA, Brichta AM, Callister RJ. Different forms of glycine- and GABA(A)-receptor mediated inhibitory synaptic transmission in mouse superficial and deep dorsal horn neurons. Mol Pain 2009; 5:65. [PMID: 19919721 PMCID: PMC2784755 DOI: 10.1186/1744-8069-5-65] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Accepted: 11/18/2009] [Indexed: 01/01/2023] Open
Abstract
Background Neurons in superficial (SDH) and deep (DDH) laminae of the spinal cord dorsal horn receive sensory information from skin, muscle, joints and viscera. In both regions, glycine- (GlyR) and GABAA-receptors (GABAARs) contribute to fast synaptic inhibition. For rat, several types of GABAAR coexist in the two regions and each receptor type provides different contributions to inhibitory tone. Recent work in mouse has discovered an additional type of GlyR, (containing alpha 3 subunits) in the SDH. The contribution of differing forms of the GlyR to sensory processing in SDH and DDH is not understood. Methods and Results Here we compare fast inhibitory synaptic transmission in mouse (P17-37) SDH and DDH using patch-clamp electrophysiology in transverse spinal cord slices (L3-L5 segments, 23°C). GlyR-mediated mIPSCs were detected in 74% (25/34) and 94% (25/27) of SDH and DDH neurons, respectively. In contrast, GABAAR-mediated mIPSCs were detected in virtually all neurons in both regions (93%, 14/15 and 100%, 18/18). Several Gly- and GABAAR properties also differed in SDH vs. DDH. GlyR-mediated mIPSC amplitude was smaller (37.1 ± 3.9 vs. 64.7 ± 5.0 pA; n = 25 each), decay time was slower (8.5 ± 0.8 vs. 5.5 ± 0.3 ms), and frequency was lower (0.15 ± 0.03 vs. 0.72 ± 0.13 Hz) in SDH vs. DDH neurons. In contrast, GABAAR-mediated mIPSCs had similar amplitudes (25.6 ± 2.4, n = 14 vs. 25. ± 2.0 pA, n = 18) and frequencies (0.21 ± 0.08 vs. 0.18 ± 0.04 Hz) in both regions; however, decay times were slower (23.0 ± 3.2 vs. 18.9 ± 1.8 ms) in SDH neurons. Mean single channel conductance underlying mIPSCs was identical for GlyRs (54.3 ± 1.6 pS, n = 11 vs. 55.7 ± 1.8, n = 8) and GABAARs (22.7 ± 1.7 pS, n = 10 vs. 22.4 ± 2.0 pS, n = 11) in both regions. We also tested whether the synthetic endocanabinoid, methandamide (methAEA), had direct effects on Gly- and GABAARs in each spinal cord region. MethAEA (5 μM) reduced GlyR-mediated mIPSC frequency in SDH and DDH, but did not affect other properties. Similar results were observed for GABAAR mediated mIPSCs, however, rise time was slowed by methAEA in SDH neurons. Conclusion Together these data show that Gly- and GABAARs with clearly differing physiological properties and cannabinoid-sensitivity contribute to fast synaptic inhibition in mouse SDH and DDH.
Collapse
Affiliation(s)
- Wayne B Anderson
- School of Biomedical Sciences and Pharmacy, The University of Newcastle and Hunter Medical Research Institute, University Drive, Callaghan, NSW 2308, Australia.
| | | | | | | | | | | |
Collapse
|
21
|
Lim R, Callister RJ, Brichta AM. An increase in glycinergic quantal amplitude and frequency during early vestibular compensation in mouse. J Neurophysiol 2009; 103:16-24. [PMID: 19889844 DOI: 10.1152/jn.91223.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The process of vestibular compensation includes both behavioral and neuronal recovery after unilateral loss of peripheral vestibular organs. The mechanisms that underlie this process are poorly understood. Previous research has shown the presence of both gamma-aminobutyric acid type A (GABA(A)) and glycine receptors in the medial vestibular nuclei (MVN). It has been suggested that inhibitory transmission mediated by these receptors may have a role in recovery during vestibular compensation. This study investigated changes in fast inhibitory synaptic transmission of GABA(A)ergic and glycinergic quantal events after unilateral labyrinthectomy (UL) at three different time points. Mice were anesthetized and peripheral vestibular organs were removed from one side of the head. After recovery, transverse brain stem sections (300 mum) were prepared from mice that had undergone UL either 4 hours, 2 days, or 7 days earlier. Our experiments do not show evidence for alterations in synaptic GABA(A) receptor properties in MVN neurons after UL at any time point investigated. In contrast, during early vestibular compensation (4 hours post UL) there is a significant increase in the glycinergic quantal current amplitude in contralesional MVN neurons compared with control. Our results also show an increase in the frequency of glycinergic quantal events of both ipsi- and contralesional MVN neurons during this early period. We suggest that changes in both pre- and postsynaptic glycine receptor mediated inhibitory synaptic transmission after sensory loss is an important mechanism by which neuronal discharge patterns can be modulated.
Collapse
Affiliation(s)
- Rebecca Lim
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | |
Collapse
|
22
|
Jakubs K, Bonde S, Iosif RE, Ekdahl CT, Kokaia Z, Kokaia M, Lindvall O. Inflammation regulates functional integration of neurons born in adult brain. J Neurosci 2008; 28:12477-88. [PMID: 19020040 PMCID: PMC6671710 DOI: 10.1523/jneurosci.3240-08.2008] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 09/30/2008] [Accepted: 10/04/2008] [Indexed: 11/21/2022] Open
Abstract
Inflammation influences several steps of adult neurogenesis, but whether it regulates the functional integration of the new neurons is unknown. Here, we explored, using confocal microscopy and whole-cell patch-clamp recordings, whether a chronic inflammatory environment affects the morphological and electrophysiological properties of new dentate gyrus granule cells, labeled with a retroviral vector encoding green fluorescent protein. Rats were exposed to intrahippocampal injection of lipopolysaccharide, which gave rise to long-lasting microglia activation. Inflammation caused no changes in intrinsic membrane properties, location, dendritic arborization, or spine density and morphology of the new cells. Excitatory synaptic drive increased to the same extent in new and mature cells in the inflammatory environment, suggesting increased network activity in hippocampal neural circuitries of lipopolysaccharide-treated animals. In contrast, inhibitory synaptic drive was more enhanced by inflammation in the new cells. Also, larger clusters of the postsynaptic GABA(A) receptor scaffolding protein gephyrin were found on dendrites of new cells born in the inflammatory environment. We demonstrate for the first time that inflammation influences the functional integration of adult-born hippocampal neurons. Our data indicate a high degree of synaptic plasticity of the new neurons in the inflammatory environment, which enables them to respond to the increase in excitatory input with a compensatory upregulation of activity and efficacy at their afferent inhibitory synapses.
Collapse
Affiliation(s)
- Katherine Jakubs
- Laboratory of Neurogenesis and Cell Therapy and
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE-221 84 Lund, Sweden, and
| | - Sara Bonde
- Laboratory of Neurogenesis and Cell Therapy and
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE-221 84 Lund, Sweden, and
| | - Robert E. Iosif
- Laboratory of Neurogenesis and Cell Therapy and
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE-221 84 Lund, Sweden, and
| | - Christine T. Ekdahl
- Laboratory of Neurogenesis and Cell Therapy and
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE-221 84 Lund, Sweden, and
- Division of Clinical Neurophysiology, University Hospital, SE-221 85 Lund, Sweden
| | - Zaal Kokaia
- Laboratory of Neural Stem Cell Biology, Section of Restorative Neurology, University Hospital, and
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE-221 84 Lund, Sweden, and
| | - Merab Kokaia
- Experimental Epilepsy Group, Section of Restorative Neurology, Wallenberg Neuroscience Center, University Hospital
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE-221 84 Lund, Sweden, and
| | - Olle Lindvall
- Laboratory of Neurogenesis and Cell Therapy and
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, SE-221 84 Lund, Sweden, and
| |
Collapse
|
23
|
Numbers, densities, and colocalization of AMPA- and NMDA-type glutamate receptors at individual synapses in the superficial spinal dorsal horn of rats. J Neurosci 2008; 28:9692-701. [PMID: 18815255 DOI: 10.1523/jneurosci.1551-08.2008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ionotropic glutamate receptors play important roles in spinal processing of nociceptive sensory signals and induction of central sensitization in chronic pain. Here we applied highly sensitive freeze-fracture replica labeling to laminae I-II of the spinal dorsal horn of rats and investigated the numbers, densities, and colocalization of AMPA- and NMDA-type glutamate receptors at individual postsynaptic membrane specializations with a high resolution. All glutamatergic postsynaptic membranes in laminae I-II expressed AMPA receptors, and most of them (96%) were also immunoreactive for the NR1 subunit of NMDA receptors. The numbers of gold particles for AMPA and NMDA receptors at individual postsynaptic membranes showed a linear correlation with the size of postsynaptic membrane specializations and varied in the range of 8-214 and 5-232 with median values of 37 and 28, whereas their densities varied in the range of 325-3365/microm(2) and 102-2263/microm(2) with median values of 1115/microm(2) and 777/microm(2), respectively. Virtually all (99%) glutamatergic postsynaptic membranes expressed GluR2, and most of them (87%) were also immunoreactive for GluR1. The numbers of gold particles for pan-AMPA, NR1, and GluR2 subunits showed a linear correlation with the size of postsynaptic surface areas. Concerning GluR1, there may be two populations of synapses with high and low GluR1 densities. In synapses larger than 0.1 microm(2), GluR1 subunits were recovered in very low numbers. Differential expression of GluR1 and GluR2 subunits suggests regulation of AMPA receptor subunit composition by presynaptic mechanism.
Collapse
|
24
|
Abstract
Noise--random disturbances of signals--poses a fundamental problem for information processing and affects all aspects of nervous-system function. However, the nature, amount and impact of noise in the nervous system have only recently been addressed in a quantitative manner. Experimental and computational methods have shown that multiple noise sources contribute to cellular and behavioural trial-to-trial variability. We review the sources of noise in the nervous system, from the molecular to the behavioural level, and show how noise contributes to trial-to-trial variability. We highlight how noise affects neuronal networks and the principles the nervous system applies to counter detrimental effects of noise, and briefly discuss noise's potential benefits.
Collapse
|
25
|
Balakrishnan V, Trussell LO. Synaptic inputs to granule cells of the dorsal cochlear nucleus. J Neurophysiol 2007; 99:208-19. [PMID: 17959739 DOI: 10.1152/jn.00971.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mammalian dorsal cochlear nucleus (DCN) integrates auditory nerve input with nonauditory signals via a cerebellar-like granule cell circuit. Although granule cells carry nonauditory information to the DCN, almost nothing is known about their physiology. Here we describe electrophysiological features of synaptic inputs to granule cells in the DCN by in vitro patch-clamp recordings from P12 to P22 rats. Granule cells ranged from 6 to 8 microm in cell body diameter and had high-input resistance. Excitatory postsynaptic currents consisted of both AMPA receptor-mediated and N-methyl-D-aspartate receptor-mediated currents. Synaptically evoked excitatory postsynaptic currents ranged from -25 to -140 pA with fast decay time constants. Synaptic stimulation evoked both short- and long-latency synaptic responses that summated to spike threshold, indicating the presence of a polysynaptic excitatory pathway in the granule cell circuit. Synaptically evoked inhibitory postsynaptic currents in Cl(-)-loaded cells ranged from -30 to -1,021 pA and were mediated by glycine and, to a lesser extent, GABA(A) receptors. Unlike cerebellar granule cells, DCN granule cells lacked tonic inhibition by GABA. The glycinergic synaptic conductance was mediated by heteromeric glycine receptors and was far stronger than the glutamatergic conductance, suggesting that glycinergic neurons may act to gate nonauditory signals in the DCN.
Collapse
Affiliation(s)
- Veeramuthu Balakrishnan
- Oregon Hearing Research Center and Vollum Institute, L335A, 3181 S. W. Sam Jackson Park Rd., Portland, OR 97239, USA
| | | |
Collapse
|
26
|
Sassoè-Pognetto M, Follesa P, Panzanelli P, Perazzini AZ, Porcu P, Sogliano C, Cherchi C, Concas A. Fluctuations in brain concentrations of neurosteroids are not associated to changes in gephyrin levels. Brain Res 2007; 1169:1-8. [PMID: 17698049 DOI: 10.1016/j.brainres.2007.06.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 06/20/2007] [Accepted: 06/23/2007] [Indexed: 11/24/2022]
Abstract
Fluctuations in the brain concentrations of neurosteroids are accompanied by changes in the expression of GABA(A) receptor subunits in the cerebral cortex and hippocampus. Here, we investigated the expression of the postsynaptic molecule gephyrin in the cerebral cortex and hippocampus of pregnant rats, as well as in rats treated chronically with contraceptive drugs. The amounts of gephyrin mRNA and protein did not change during pregnancy and after delivery, as well as in rats treated with ethynylestradiol (EE) and levonorgestrel (LNG) for 4 weeks. Similarly, using immunofluorescence and laser scanning confocal microscopy, we did not detect significant changes in the number and size of gephyrin-immunopositive clusters, which likely represent inhibitory postsynaptic sites. These findings indicate that the expression of gephyrin and the density of cortical inhibitory synapses are not influenced by endogenous neurosteroids.
Collapse
Affiliation(s)
- Marco Sassoè-Pognetto
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, and Istituto Nazionale di Neuroscienze, Corso Massimo d'Azeglio 52, I-10126 Torino, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Renshaw cell properties have been studied extensively for over 50 years, making them a uniquely well-defined class of spinal interneuron. Recent work has revealed novel ways to identify Renshaw cells in situ and this in turn has promoted a range of studies that have determined their ontogeny and organization of synaptic inputs in unprecedented detail. In this review we illustrate how mature Renshaw cell properties and connectivity arise through a combination of activity-dependent and genetically specified mechanisms. These new insights should aid the development of experimental strategies to manipulate Renshaw cells in spinal circuits and clarify their role in modulating motor output.
Collapse
Affiliation(s)
- Francisco J Alvarez
- Department of Neuroscience, Cell Biology & Physiology, Boonshoft School of Medicine, Wright State University, 3640 Col. Glenn Hwy, Dayton, OH 45435, USA.
| | | |
Collapse
|
28
|
Milenković I, Witte M, Turecek R, Heinrich M, Reinert T, Rübsamen R. Development of chloride-mediated inhibition in neurons of the anteroventral cochlear nucleus of gerbil (Meriones unguiculatus). J Neurophysiol 2007; 98:1634-44. [PMID: 17596413 DOI: 10.1152/jn.01150.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
At the initial stages in neuronal development, GABAergic and glycinergic neurotransmission exert depolarizing responses, assumed to be of importance for maturation, which in turn shift to hyperpolarizing in early postnatal life due to development of the chloride homeostasis system. Spherical bushy cells (SBC) of the mammalian cochlear nucleus integrate excitatory glutamatergic inputs with inhibitory (GABAergic and glycinergic) inputs to compute signals that contribute to sound localization based on interaural time differences. To provide a fundamental understanding of the properties of GABAergic neurotransmission in mammalian cochlear nucleus, we investigated the reversal potential of the GABA-evoked currents (E GABA) by means of gramicidin-perforated-patch recordings in developing SBC. The action of GABA switches from depolarizing to hyperpolarizing by the postnatal day 7 due to the negative shift in E GABA. Furthermore, we studied the expression pattern of the K+-Cl(-)-extruding cotransporter KCC2, previously shown to induce a switch from neonatal Cl(-) efflux to the mature Cl(-) influx in various neuron types, thereby causing a shift from depolarizing to hyperpolarizing GABA action. The KCC2 protein is expressed in SBC already at birth, yet its activity is attained toward the end of the first postnatal week as indicated by pharmacological inhibition. Interruption of the Cl(-) extrusion by [(dihydroindenyl)oxy] alkanoic acid or furosemide gradually shifted E(GABA) in positive direction with increasing maturity, suggesting that KCC2 could be involved in maintaining low [Cl(-)]i after the postnatal day 7 thereby providing the hyperpolarizing Cl(-)-mediated inhibition in SBC.
Collapse
Affiliation(s)
- Ivan Milenković
- Institute of Biology II, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Talstr. 33, D-04103 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Wu XS, Xue L, Mohan R, Paradiso K, Gillis KD, Wu LG. The origin of quantal size variation: vesicular glutamate concentration plays a significant role. J Neurosci 2007; 27:3046-56. [PMID: 17360928 PMCID: PMC6672571 DOI: 10.1523/jneurosci.4415-06.2007] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fusion of a single vesicle induces a quantal response, which is critical in determining synaptic strength. Quantal size varies at most synapses. Its underlying mechanisms are not well understood. Here, we examined five sources of variation: vesicular glutamate concentration ([Glu]v), vesicle volume, ultrafast fusion pore closure, the postsynaptic receptor, and the location between release and the postsynaptic receptor cluster at glutamatergic, calyx of Held synapses. By averaging 2.66 million fusion events from 459 synapses, we resolved the capacitance jump evoked by single vesicle fusion. This capacitance jump, an indicator of vesicle volume, was independent of the amplitude of the miniature EPSC (mEPSC) recorded simultaneously at the same synapses. Thus, vesicle volume is not the main source of mEPSC variation. The capacitance jump was not followed by submillisecond endocytosis, excluding ultrafast endocytosis as a source of variation. Larger mEPSCs were increased to a lesser extent by presynaptic glutamate dialysis, and reduced to a lesser extent by gamma-DGG (gamma-D-glutamylglycine), a competitive AMPA receptor blocker, suggesting that a higher glutamate concentration in the synaptic cleft contributes to the large size of mEPSCs. Larger mEPSCs were not accompanied by briefer rise times, inconsistent with the prediction by, and thus arguing against, the scenario that larger mEPSCs are caused by a shorter distance between the release site and the postsynaptic receptor cluster. In summary, the different amplitudes of mEPSCs were mainly attributable to release of vesicles having similar volumes, but different glutamate amounts, suggesting that [Glu]v is a main source of quantal size variation.
Collapse
Affiliation(s)
- Xin-Sheng Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, and
| | - Lei Xue
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, and
| | - Raja Mohan
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, and
| | - Kenneth Paradiso
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, and
| | - Kevin D. Gillis
- Dalton Cardiovascular Research Center, University of Missouri–Columbia Research Park, Columbia, Missouri 65211
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892, and
| |
Collapse
|
30
|
Carrasco MA, Castro P, Sepulveda FJ, Tapia JC, Gatica K, Davis MI, Aguayo LG. Regulation of glycinergic and GABAergic synaptogenesis by brain-derived neurotrophic factor in developing spinal neurons. Neuroscience 2007; 145:484-94. [PMID: 17306467 DOI: 10.1016/j.neuroscience.2006.12.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 11/15/2006] [Accepted: 12/05/2006] [Indexed: 11/26/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) effects on the establishment of glycinergic and GABAergic transmissions in mouse spinal neurons were examined using combined electrophysiological and calcium imaging techniques. BDNF (10 ng/ml) caused a significant acceleration in the onset of synaptogenesis without large effects on the survival of these neurons. Amplitude and frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) associated to activation of glycine and GABA(A) receptors were augmented in neurons cultured with BDNF. The neurotrophin effect was blocked by long term tetrodotoxin (TTX) addition suggesting a dependence on neuronal activity. In addition, BDNF caused a significant increase in glycine- and GABA-evoked current densities that partly explains the increase in synaptic transmission. Presynaptic mechanisms were also involved in BDNF effects since triethylammonium(propyl)-4-(2-(4-dibutylamino-phenyl)vinyl)pyridinium (FM1-43) destaining with high K(+) was augmented in neurons incubated with the neurotrophin. The effects of BDNF were mediated by receptor tyrosine kinase B (TrkB) and mitogen-activated protein kinase kinase (MEK) activation since culturing neurons with either (9S,10R,12R)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'- kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid methyl ester (K252a) or 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98059) blocked the augmentation in synaptic activity induced by the neurotrophin.
Collapse
Affiliation(s)
- M A Carrasco
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, P.O. Box 160-C, Concepción, Chile
| | | | | | | | | | | | | |
Collapse
|
31
|
Carrasco MA, Castro PA, Sepulveda FJ, Cuevas M, Tapia JC, Izaurieta P, van Zundert B, Aguayo LG. Anti-homeostatic synaptic plasticity of glycine receptor function after chronic strychnine in developing cultured mouse spinal neurons. J Neurochem 2006; 100:1143-54. [PMID: 17217420 DOI: 10.1111/j.1471-4159.2006.04306.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we describe a novel form of anti-homeostatic plasticity produced after culturing spinal neurons with strychnine, but not bicuculline or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Strychnine caused a large increase in network excitability, detected as spontaneous synaptic currents and calcium transients. The calcium transients were associated with action potential firing and activation of gamma-aminobutyric acid (GABA(A)) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors as they were blocked by tetrodotoxin (TTX), bicuculline, and CNQX. After chronic blockade of glycine receptors (GlyRs), the frequency of synaptic transmission showed a significant enhancement demonstrating the phenomenon of anti-homeostatic plasticity. Spontaneous inhibitory glycinergic currents in treated cells showed a fourfold increase in frequency (from 0.55 to 2.4 Hz) and a 184% increase in average peak amplitude compared with control. Furthermore, the augmentation in excitability accelerated the decay time constant of miniature inhibitory post-synaptic currents. Strychnine caused an increase in GlyR current density, without changes in the apparent affinity. These findings support the idea of a post-synaptic action that partly explains the increase in synaptic transmission. This phenomenon of synaptic plasticity was blocked by TTX, an antibody against brain-derived neurotrophic factor (BDNF) and K252a suggesting the involvement of the neuronal activity-dependent BDNF-TrkB signaling pathway. These results show that the properties of GlyRs are regulated by the degree of neuronal activity in the developing network.
Collapse
Affiliation(s)
- M A Carrasco
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Concepción, Chile
| | | | | | | | | | | | | | | |
Collapse
|
32
|
González-Forero D, Alvarez FJ. Differential postnatal maturation of GABAA, glycine receptor, and mixed synaptic currents in Renshaw cells and ventral spinal interneurons. J Neurosci 2005; 25:2010-23. [PMID: 15728841 PMCID: PMC6726047 DOI: 10.1523/jneurosci.2383-04.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Renshaw cells (RCs) receive excitatory inputs from motoneurons to which then they inhibit. The gain of this spinal recurrent inhibitory circuit is modulated by inhibitory synapses on RCs. Inhibitory synapses on RCs mature postnatally, developing unusually large postsynaptic gephyrin clusters that colocalize glycine and GABA(A) receptors. We hypothesized that these features potentiate inhibitory currents in RCs. Thus, we analyzed glycinergic and GABAergic "inhibitory" miniature postsynaptic currents (mPSCs) in neonatal [postnatal day 1 (P1) to P5] and mature (P9-P15) RCs and compared them to other ventral interneurons (non-RCs). Recorded neurons were Neurobiotin filled and identified as RCs or non-RCs using post hoc immunohistochemical criteria. Glycinergic, GABAergic, and mixed glycine/GABA mPSCs matured differently in RCs and non-RCs. In RCs, glycinergic and GABA(A) mPSC peak amplitudes increased 230 and 45%, respectively, from P1-P5 to P9-P15, whereas in non-RCs, glycinergic peak amplitudes changed little and GABA(A) amplitudes decreased. GABA(A) mPSCs were slower in RCs (P1-P5, tau = 58 ms; P9-P15, tau = 43 ms) compared with non-RCs (P1-P5, tau = 27 ms; P9-P15, tau = 14 ms). Thus, fast glycinergic currents dominated "mixed" mPSC peak amplitudes in mature RCs, and GABA(A) currents dominated their long decays. In non-RCs, GABAergic and mixed events had shorter durations, and their frequencies decreased with development. Functional maturation of inhibitory synapses on RCs correlates well with increased glycine receptor recruitment to large gephyrin patches, colocalization with alpha3/alpha5-containing GABA(A) receptors, and maintenance of GABA/glycine corelease. As a result, charge transfer in GABA, glycine, or mixed mPSCs was larger in mature RCs than in non-RCs, suggesting RCs receive potent inhibitory synapses.
Collapse
Affiliation(s)
- David González-Forero
- Department of Anatomy and Physiology, Wright State University, Dayton, Ohio 45435, USA
| | | |
Collapse
|
33
|
Tanaka JI, Matsuzaki M, Tarusawa E, Momiyama A, Molnar E, Kasai H, Shigemoto R. Number and density of AMPA receptors in single synapses in immature cerebellum. J Neurosci 2005; 25:799-807. [PMID: 15673659 PMCID: PMC6725634 DOI: 10.1523/jneurosci.4256-04.2005] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The number of ionotropic receptors in synapses is an essential factor for determining the efficacy of fast transmission. We estimated the number of functional AMPA receptors at single postsynaptic sites by a combination of two-photon uncaging of glutamate and the nonstationary fluctuation analysis in immature rat Purkinje cells (PCs), which receive a single type of excitatory input from climbing fibers. Areas of postsynaptic membrane specialization at the recorded synapses were measured by reconstruction of serial ultrathin sections. The number of functional AMPA receptors was proportional to the synaptic area with a density of approximately 1280 receptors/microm2. Moreover, highly sensitive freeze-fracture replica labeling revealed a homogeneous density of immunogold particles for AMPA receptors in synaptic sites (910 +/- 36 particles/microm2) and much lower density in extrasynaptic sites (19 +/- 2 particles/microm2) in the immature PCs. Our results indicate that in this developing synapse, the efficacy of transmission is determined by the synaptic area.
Collapse
Affiliation(s)
- Jun-ichi Tanaka
- Department of Physiological Sciences, Graduate University for Advanced Studies, Sokendai 444-8787, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Gonzalez-Forero D, Pastor AM, Geiman EJ, Benítez-Temiño B, Alvarez FJ. Regulation of gephyrin cluster size and inhibitory synaptic currents on Renshaw cells by motor axon excitatory inputs. J Neurosci 2005; 25:417-29. [PMID: 15647485 PMCID: PMC6725496 DOI: 10.1523/jneurosci.3725-04.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Renshaw cells receive a high density of inhibitory synapses characterized by large postsynaptic gephyrin clusters and mixed glycinergic/GABAergic inhibitory currents with large peak amplitudes and long decays. These properties appear adapted to increase inhibitory efficacy over Renshaw cells and mature postnatally by mechanisms that are unknown. We tested the hypothesis that heterosynaptic influences from excitatory motor axon inputs modulate the development of inhibitory synapses on Renshaw cells. Thus, tetanus (TeNT) and botulinum neurotoxin A (BoNT-A) were injected intramuscularly at postnatal day 5 (P5) to, respectively, elevate or reduce motor axon firing activity for approximately 2 weeks. After TeNT injections, the average gephyrin cluster areas on Renshaw cells increased by 18.4% at P15 and 28.4% at P20 and decreased after BoNT-A injections by 17.7% at P15 and 19.9% at P20. The average size differences resulted from changes in the proportions of small and large gephyrin clusters. Whole-cell recordings in P9-P15 Renshaw cells after P5 TeNT injections showed increases in the peak amplitude of glycinergic miniature postsynaptic currents (mPSCs) and the fast component of mixed (glycinergic/GABAergic) mPSCs compared with controls (60.9% and 78.9%, respectively). GABAergic mPSCs increased in peak amplitude to a smaller extent (45.8%). However, because of the comparatively longer decays of synaptic GABAergic currents, total current transfer changes after TeNT were similar for synaptic glycine and GABA(A) receptors (56 vs 48.9% increases, respectively). We concluded that motor axon excitatory synaptic activity modulates the development of inhibitory synapse properties on Renshaw cells, influencing recruitment of postsynaptic gephyrin and glycine receptors and, to lesser extent, GABA(A) receptors.
Collapse
Affiliation(s)
- David Gonzalez-Forero
- Department of Anatomy and Physiology, Wright State University, Dayton, Ohio 45435, USA
| | | | | | | | | |
Collapse
|
35
|
Kandler K, Gillespie DC. Developmental refinement of inhibitory sound-localization circuits. Trends Neurosci 2005; 28:290-6. [PMID: 15927684 PMCID: PMC4120098 DOI: 10.1016/j.tins.2005.04.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 03/30/2005] [Accepted: 04/19/2005] [Indexed: 10/25/2022]
Abstract
The ability to localize sound rapidly and accurately depends on the precise organization of inhibitory neuronal circuits in the auditory brainstem. However, the rules and mechanisms by which this precision is established during development are still poorly understood. Although activity-dependent reorganization has been known for over a decade to have a central role in this process, more recent studies have revealed an unanticipated degree of reorganization that occurs on levels ranging from cellular phenotype to network connectivity. These results suggest novel mechanisms by which immature inhibitory sound-localization circuits become optimized. Lessons from auditory brainstem circuits thus could provide insight into inhibitory development in other brain areas, where inhibitory networks are less experimentally accessible.
Collapse
Affiliation(s)
- Karl Kandler
- Department of Neurobiology and Center for the Neuronal Basis of Cognition, University of Pittsburgh School of Medicine, 3500 Terrace Street, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
36
|
KNIGHT DAVID, MANN DWAYNEL, JACKSON VMARGARET, TROUT STEPHENJ, CUNNANE TOMC, LAVIDIS NICKOLASA. Correlation of non-uniform protein expression with variation in transmitter release probability. Synapse 2005; 55:110-21. [PMID: 15543629 PMCID: PMC2677167 DOI: 10.1002/syn.20079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The strength of synaptic transmission is highly variable between different synapses. The present study examined some factors that may contribute to this variation in the strength of neurotransmission in sympathetic varicosities of the mouse vas deferens. Transmitter release was measured using a focal macropatch electrode placed over pairs of visualised varicosities. By regulating the calcium concentration of the solutions inside the recording electrode and in the bath independently of each other, transmitter release was restricted to one or two surface varicosities at each recording site. Using this technique, transmitter release probability was shown to be highly variable, even between adjacent varicosities on single axon branches. Very little variation was observed in the calcium influx following single impulse nerve stimulation between adjacent Oregon Green BAPTA-1 loaded varicosities. However, the staining intensities of three vesicular proteins, SV2, synaptophysin, and synaptotagmin 1, showed considerable variation between adjacent varicosities on single axon branches. This variation in staining intensity may be partly explained by variation in the density of synaptic vesicles. However, double staining experiments using two vesicular antigens showed some varicosities staining for one vesicular antigen, but not for the second, suggesting that the expression of these release machinery proteins is regulated locally within the varicosities. The results of the present study strengthen suggestions that synaptic strength is at least in part, regulated by variation in the expression of vesicular proteins.
Collapse
Affiliation(s)
- DAVID KNIGHT
- School of Biomedical Sciences, University of Queensland, QLD Australia, 4072
| | - DWAYNE L. MANN
- School of Biomedical Sciences, University of Queensland, QLD Australia, 4072
| | - V. MARGARET JACKSON
- University Department of Pharmacology, Mansfield Rd, Oxford, United Kingdom OX1 3QT
| | - STEPHEN J. TROUT
- University Department of Pharmacology, Mansfield Rd, Oxford, United Kingdom OX1 3QT
| | - TOM C. CUNNANE
- University Department of Pharmacology, Mansfield Rd, Oxford, United Kingdom OX1 3QT
| | - NICKOLAS A. LAVIDIS
- School of Biomedical Sciences, University of Queensland, QLD Australia, 4072
- Correspondence to: Dr. Nickolas A. Lavidis, School of Biomedical Sciences, University of Queensland, QLD Australia, 4072. E-mail:
| |
Collapse
|
37
|
Aguayo LG, van Zundert B, Tapia JC, Carrasco MA, Alvarez FJ. Changes on the properties of glycine receptors during neuronal development. ACTA ACUST UNITED AC 2004; 47:33-45. [PMID: 15572161 DOI: 10.1016/j.brainresrev.2004.06.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2004] [Indexed: 11/29/2022]
Abstract
Glycine receptors (GlyRs) play a major role in the excitability of spinal cord and brain stem neurons. During development, several properties of these receptors undergo significant changes resulting in major modifications of their physiological functions. For example, the receptor structure switches from a monomeric alpha or heteromeric alpha 2 beta in immature neurons to an alpha 1 beta receptor type in mature neurons. Together with these changes in receptor subunits, the postsynaptic cluster size increases with development. Parallel to these modifications, the apparent receptor affinity to glycine and strychnine, as well as that of Zn(2+) and ethanol increases with time. The mature receptor is characterized by a slow desensitizing current and high sensitivity to modulation by protein kinase C. Also, the high level of glycinergic transmission in immature spinal neurons modulates neuronal excitability causing membrane depolarization and changes in intracellular calcium. Due to these properties, chronic inhibition of glycinergic transmission affects neurite outgrowth and produces changes in the level of synaptic transmission induced by GABA(A) and AMPA receptors. Finally, the high level of plasticity found in immature GlyRs is likely associated to changes in cytoskeleton dynamics.
Collapse
Affiliation(s)
- Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, University of Concepcion, P.O. Box 160-C, Concepcíon, Chile.
| | | | | | | | | |
Collapse
|
38
|
van Zundert B, Alvarez FJ, Tapia JC, Yeh HH, Diaz E, Aguayo LG. Developmental-dependent action of microtubule depolymerization on the function and structure of synaptic glycine receptor clusters in spinal neurons. J Neurophysiol 2004; 91:1036-49. [PMID: 12968009 DOI: 10.1152/jn.00364.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microtubules have been proposed to interact with gephyrin/glycine receptors (GlyRs) in synaptic aggregates. However, the consequence of microtubule disruption on the structure of postsynaptic GlyR/gephyrin clusters is controversial and possible alterations in function are largely unknown. In this study, we have examined the physiological and morphological properties of GlyR/gephyrin clusters after colchicine treatment in cultured spinal neurons during development. In immature neurons (5-7 DIV), disruption of microtubules resulted in a 33 +/- 4% decrease in the peak amplitude and a 72 +/- 15% reduction in the frequency of spontaneous glycinergic miniature postsynaptic currents (mIPSCs) recorded in whole cell mode. However, similar colchicine treatments resulted in smaller effects on 10-12 DIV neurons and no effect on mature neurons (15-17 DIV). The decrease in glycinergic mIPSC amplitude and frequency reflects postsynaptic actions of colchicine, since postsynaptic stabilization of microtubules with GTP prevented both actions and similar reductions in mIPSC frequency were obtained by modifying the Cl(-) driving force to obtain parallel reductions in mIPSC amplitude. Confocal microscopy revealed that colchicine reduced the average length and immunofluorescence intensity of synaptic gephyrin/GlyR clusters in immature (approximately 30%) and intermediate (approximately 15%) neurons, but not in mature clusters. Thus the structural and functional changes of postsynaptic gephyrin/GlyR clusters after colchicine treatment were tightly correlated. Finally, RT-PCR, kinetic analysis and picrotoxin blockade of glycinergic mIPSCs indicated a reorganization of the postsynaptic region from containing both alpha2beta and alpha1beta GlyRs in immature neurons to only alpha1beta GlyRs in mature neurons. Microtubule disruption preferentially affected postsynaptic sites containing alpha2beta-containing synaptic receptors.
Collapse
Affiliation(s)
- Brigitte van Zundert
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Concepción, Chile
| | | | | | | | | | | |
Collapse
|
39
|
Lévi S, Logan SM, Tovar KR, Craig AM. Gephyrin is critical for glycine receptor clustering but not for the formation of functional GABAergic synapses in hippocampal neurons. J Neurosci 2004; 24:207-17. [PMID: 14715953 PMCID: PMC6729579 DOI: 10.1523/jneurosci.1661-03.2004] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The role of the scaffolding protein gephyrin at hippocampal inhibitory synapses is not well understood. A previous study (Kneussel et al., 1999) reported a complete loss of synaptic clusters of the major GABA(A)R subunits alpha2 and gamma2 in hippocampal neurons lacking gephyrin. In contrast, we show here that GABA(A)R alpha2 and gamma2 subunits do cluster at pyramidal synapses in hippocampal cultures from gephyrin-/- mice, albeit at reduced levels compared with control neurons. Synaptic aggregation of GABA(A)R alpha1 on interneurons was identical between the culture types. Furthermore, we recorded miniature IPSCs (mIPSCs) from gephyrin-/- neurons. Although the mean mIPSC amplitude was reduced (by 23%) compared with control, the frequency of these events was unchanged. Cell surface labeling experiments indicated that gephyrin contributes, in part, to aggregation but not to insertion or stabilization of GABA(A)R alpha2 and gamma2 in the plasma membrane. Thus, a major gephyrin-independent component of hippocampal inhibitory synapse development must exist. We also report that glycine receptors cluster at GABAergic synapses in a subset of hippocampal interneurons and pyramidal neurons. Unlike GABA(A)Rs, synaptic clustering of glycine receptors was completely abolished in gephyrin-/- neurons. Finally, artificial extrasynaptic aggregation of GABA(A)R was able to redistribute and cocluster gephyrin by a mechanism requiring a neuron-specific modification or intermediary protein. We propose a model of hippocampal inhibitory synapse development in which some GABA(A)Rs cluster at synapses by a gephyrin-independent mechanism and recruit gephyrin. This clustered gephyrin may then recruit glycine receptors, additional GABA(A)Rs, and other signal-transducing components.
Collapse
Affiliation(s)
- Sabine Lévi
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
40
|
Gomeza J, Ohno K, Hülsmann S, Armsen W, Eulenburg V, Richter DW, Laube B, Betz H. Deletion of the mouse glycine transporter 2 results in a hyperekplexia phenotype and postnatal lethality. Neuron 2004; 40:797-806. [PMID: 14622583 DOI: 10.1016/s0896-6273(03)00673-1] [Citation(s) in RCA: 232] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The glycine transporter subtype 2 (GlyT2) is localized in the axon terminals of glycinergic neurons. Mice deficient in GlyT2 are normal at birth but during the second postnatal week develop a lethal neuromotor deficiency that resembles severe forms of human hyperekplexia (hereditary startle disease) and is characterized by spasticity, tremor, and an inability to right. Histological and immunological analyses failed to reveal anatomical or biochemical abnormalities, but the amplitudes of glycinergic miniature inhibitory currents (mIPSCs) were strikingly reduced in hypoglossal motoneurons and dissociated spinal neurons from GlyT2-deficient mice. Thus, postnatal GlyT2 function is crucial for efficient transmitter loading of synaptic vesicles in glycinergic nerve terminals, and the GlyT2 gene constitutes a candidate disease gene in human hyperekplexia patients.
Collapse
MESH Headings
- Amino Acid Transport Systems, Neutral/deficiency
- Amino Acid Transport Systems, Neutral/genetics
- Animals
- Animals, Newborn
- Brain Stem/growth & development
- Brain Stem/metabolism
- Brain Stem/physiopathology
- Disease Models, Animal
- Fetus
- Gene Deletion
- Genes, Lethal/genetics
- Glycine/metabolism
- Glycine Plasma Membrane Transport Proteins
- Heredodegenerative Disorders, Nervous System/genetics
- Heredodegenerative Disorders, Nervous System/metabolism
- Heredodegenerative Disorders, Nervous System/physiopathology
- Hypoglossal Nerve/metabolism
- Hypoglossal Nerve/physiopathology
- Mice
- Mice, Knockout
- Motor Neurons/metabolism
- Neural Inhibition/genetics
- Organ Culture Techniques
- Phenotype
- Presynaptic Terminals/metabolism
- Reflex, Startle/genetics
- Synaptic Transmission/genetics
- Synaptic Vesicles/metabolism
Collapse
Affiliation(s)
- Jesús Gomeza
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, Deutschordenstrasse 46, 60528 Frankfurt, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Leao RN, Oleskevich S, Sun H, Bautista M, Fyffe REW, Walmsley B. Differences in glycinergic mIPSCs in the auditory brain stem of normal and congenitally deaf neonatal mice. J Neurophysiol 2003; 91:1006-12. [PMID: 14561690 DOI: 10.1152/jn.00771.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have investigated the fundamental properties of central auditory glycinergic synapses in early postnatal development in normal and congenitally deaf (dn/dn) mice. Glycinergic miniature inhibitory postsynaptic currents (mIPSCs) were recorded using patch-clamp methods in neurons from a brain slice preparation of the medial nucleus of the trapezoid body (MNTB), at 12-14 days postnatal age. Our results show a number of significant differences between normal and deaf mice. The frequency of mIPSCs is greater (50%) in deaf versus normal mice. Mean mIPSC amplitude is smaller in deaf mice than in normal mice (mean mIPSC amplitude: deaf, 64 pA; normal, 106 pA). Peak-scaled fluctuation analysis of mIPSCs showed that mean single channel conductance is greater in the deaf mice (deaf, 64 pS; normal, 45 pS). The mean decay time course of mIPSCs is slower in MNTB neurons from deaf mice (mean half-width: deaf, 2.9 ms; normal, 2.3 ms). Light- and electron-microscopic immunolabeling results showed that MNTB neurons from deaf mice have more (30%) inhibitory synaptic sites (postsynaptic gephyrin clusters) than MNTB neurons in normal mice. Our results demonstrate substantial differences in glycinergic transmission in normal and congenitally deaf mice, supporting a role for activity during development in regulating both synaptic structure (connectivity) and the fundamental (quantal) properties of mIPSCs at central glycinergic synapses.
Collapse
Affiliation(s)
- Richardson N Leao
- Synaptic Structure and Function Group, Division of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra ACT 0200, Australia
| | | | | | | | | | | |
Collapse
|
42
|
Cui J, Ma YP, Lipton SA, Pan ZH. Glycine receptors and glycinergic synaptic input at the axon terminals of mammalian retinal rod bipolar cells. J Physiol 2003; 553:895-909. [PMID: 14514876 PMCID: PMC2343622 DOI: 10.1113/jphysiol.2003.052092] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We investigated the properties of glycine receptors and glycinergic synaptic inputs at the axon terminals of rod bipolar cells (RBCs) in rats by patch-clamp recording. Glycine currents recorded from isolated axon terminals were larger than those from isolated somata/dendrites; this was confirmed by puffing glycine onto these two regions in retinal slices. The current density at terminal endings was more than one order of magnitude higher than the density at somatic/dendritic regions. Glycine currents from isolated terminals and isolated somata/dendrites showed similar sensitivity to picrotoxinin blockade. Single-channel opening recorded from isolated terminals and somata/dendrites displayed a similar main-state conductance of ~46 pS. Application of glycine effectively suppressed depolarization-evoked increases in intracellular Ca2+ at the terminals. In the presence of GABAA and GABAC antagonists, strychnine-sensitive chloride currents were evoked in RBCs in retinal slices by puffing kainate onto the inner plexiform layer. No such currents were observed if the recorded RBCs did not retain axon terminals or if Ca2+ was replaced by Co2+ in the extracellular solution. The currents displayed discrete miniature-like events, which were partially blocked by tetrodotoxin. Consistent with early studies in the rabbit and mouse, this study demonstrates that glycine receptors are highly concentrated at the axon terminals of rat RBCs. The pharmacological and physiological properties of glycine receptors located in the axon terminal and somatic/dendritic regions, however, appear to be the same. This study provides evidence for the existence of functional glycinergic synaptic input at the axon terminals of RBCs, suggesting that glycine receptors may play a role in modulating bipolar cell synaptic transmission.
Collapse
Affiliation(s)
- Jinjuan Cui
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
43
|
Fritschy JM, Brünig I. Formation and plasticity of GABAergic synapses: physiological mechanisms and pathophysiological implications. Pharmacol Ther 2003; 98:299-323. [PMID: 12782242 DOI: 10.1016/s0163-7258(03)00037-8] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
gamma-Aminobutyric acid(A) (GABA(A)) receptors mediate most of the fast inhibitory neurotransmission in the CNS. They represent a major site of action for clinically relevant drugs, such as benzodiazepines and ethanol, and endogenous modulators, including neuroactive steroids. Alterations in GABA(A) receptor expression and function are thought to contribute to prevalent neurological and psychiatric diseases. Molecular cloning and immunochemical characterization of GABA(A) receptor subunits revealed a multiplicity of receptor subtypes with specific functional and pharmacological properties. A major tenet of these studies is that GABA(A) receptor heterogeneity represents a key factor for fine-tuning of inhibitory transmission under physiological and pathophysiological conditions. The aim of this review is to highlight recent findings on the regulation of GABA(A) receptor expression and function, focusing on the mechanisms of sorting, targeting, and synaptic clustering of GABA(A) receptor subtypes and their associated proteins, on trafficking of cell-surface receptors as a means of regulating synaptic (and extrasynaptic) transmission on a short-time basis, on the role of endogenous neurosteroids for GABA(A) receptor plasticity, and on alterations of GABA(A) receptor expression and localization in major neurological disorders. Altogether, the findings presented in this review underscore the necessity of considering GABA(A) receptor-mediated neurotransmission as a dynamic and highly flexible process controlled by multiple mechanisms operating at the molecular, cellular, and systemic level. Furthermore, the selected topics highlight the relevance of concepts derived from experimental studies for understanding GABA(A) receptor alterations in disease states and for designing improved therapeutic strategies based on subtype-selective drugs.
Collapse
Affiliation(s)
- Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | |
Collapse
|
44
|
Momiyama A, Silver RA, Hausser M, Notomi T, Wu Y, Shigemoto R, Cull-Candy SG. The density of AMPA receptors activated by a transmitter quantum at the climbing fibre-Purkinje cell synapse in immature rats. J Physiol 2003; 549:75-92. [PMID: 12665613 PMCID: PMC2342931 DOI: 10.1113/jphysiol.2002.033472] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We aimed to estimate the number of AMPA receptors (AMPARs) bound by the quantal transmitter packet, their single-channel conductance and their density in the postsynaptic membrane at cerebellar Purkinje cell synapses. The synaptic and extrasynaptic AMPARs were examined in Purkinje cells in 2- to 4-day-old rats, when they receive synaptic inputs solely from climbing fibres (CFs). Evoked CF EPSCs and whole-cell AMPA currents displayed roughly linear current-voltage relationships, consistent with the presence of GluR2 subunits in synaptic and extrasynaptic AMPARs. The mean quantal size, estimated from the miniature EPSCs (MEPSCs), was approximately 300 pS. Peak-scaled non-stationary fluctuation analysis of spontaneous EPSCs and MEPSCs gave a weighted-mean synaptic channel conductance of approximately 5 pS (approximately 7 pS when corrected for filtering). By applying non-stationary fluctuation analysis to extrasynaptic currents activated by brief glutamate pulses (5 mM), we also obtained a small single-channel conductance estimate for extrasynaptic AMPARs (approximately 11 pS). This approach allowed us to obtain a maximum open probability (Po,max) value for the extrasynaptic receptors (Po,max = 0.72). Directly resolved extrasynaptic channel openings in the continued presence of glutamate exhibited clear multiple-conductance levels. The mean area of the postsynaptic density (PSD) of these synapses was 0.074 microm2, measured by reconstructing electron-microscopic (EM) serial sections. Postembedding immunogold labelling by anti-GluR2/3 antibody revealed that AMPARs are localised in PSDs. From these data and by simulating error factors, we estimate that at least 66 AMPARs are bound by a quantal transmitter packet at CF-Purkinje cell synapses, and the receptors are packed at a minimum density of approximately 900 microm-2 in the postsynaptic membrane.
Collapse
Affiliation(s)
- Akiko Momiyama
- Department of Pharmacology, University College London, UK.
| | | | | | | | | | | | | |
Collapse
|
45
|
Lim R, Oleskevich S, Few AP, Leao RN, Walmsley B. Glycinergic mIPSCs in mouse and rat brainstem auditory nuclei: modulation by ruthenium red and the role of calcium stores. J Physiol 2003; 546:691-9. [PMID: 12562997 PMCID: PMC2342600 DOI: 10.1113/jphysiol.2002.035071] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Spontaneous miniature inhibitory postsynaptic currents (mIPSCs) recorded in central neurons are usually highly variable in amplitude due to many factors such as intrinsic postsynaptic channel fluctuations at each release site, site-to-site variability between release sites, electrotonic attenuation due to variable dendritic locations of synapses, and the possibility of synchronous multivesicular release. A detailed knowledge of these factors is essential for the interpretation of mIPSC amplitude distributions and mean quantal size. We have studied glycinergic mIPSCs in two auditory brainstem nuclei, the rat anteroventral cochlear nucleus (AVCN) and the mouse medial nucleus of the trapezoid body (MNTB). Our previous results have demonstrated the location of glycinergic synapses on these neurons to be somatic, thus avoiding electrotonic complications. Spontaneous glycinergic mIPSCs were recorded from AVCN and MNTB neurons in brainstem slices, in the presence of TTX to block action potentials, and 6-cyano-7-nitroquinoxaline-2, 3-dione, (+/-)-2-amino-5-phosphonopentanoic acid and bicuculline to block glutamatergic and GABAergic synaptic currents. Ruthenium red (RuR), which was used to increase the frequency of mIPSCs, significantly changed the shape of most (90 %) mIPSC amplitude distributions by increasing the proportion of large-amplitude mIPSCs. The possibility was investigated (following previous evidence at GABAergic synapses) that large-amplitude glycinergic mIPSCs are due to synchronous multivesicular release initiated by presynaptic calcium sparks from ryanodine-sensitive calcium stores. Interval analysis of mIPSCs indicated that the number of potentially undetected (asynchrony < 0.5 ms) multivesicular mIPSCs was low in comparison with the number of large-amplitude mIPSCs. Ryanodine, thapsigargin and calcium-free perfusate did not reduce the frequency of large-amplitude mIPSCs (> 150 pA), arguing against a significant role for presynaptic calcium stores. Our results support previous evidence suggesting that RuR increases miniature postsynaptic current (mSC) frequency by a mechanism that does not involve presynaptic calcium stores. Our results also indicate that at glycinergic synapses in the AVCN and MNTB, site-to-site variability in mIPSC amplitude, rather than multivesicular release, is a major factor underlying the large range of amplitudes of glycinergic mIPSCs.
Collapse
Affiliation(s)
- Rebecca Lim
- Synaptic Structure and Function Group, Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra ACT 0200, Australia
| | | | | | | | | |
Collapse
|
46
|
Quantal size and variation determined by vesicle size in normal and mutant Drosophila glutamatergic synapses. J Neurosci 2002. [PMID: 12451127 DOI: 10.1523/jneurosci.22-23-10267.2002] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Quantal size and variation at chemical synapses could be determined presynaptically by the amount of neurotransmitter released from synaptic vesicles or postsynaptically by the number of receptors available for activation. We investigated these possibilities at Drosophila glutamatergic neuromuscular synapses formed by two separate motor neurons innervating the same muscle cell. At wild-type synapses of the two neurons we found a difference in quantal size corresponding to a difference in mean synaptic vesicle volume. The same finding applied to two mutants (dlg and lap) in which synaptic vesicle size was altered. Quantal variances at wild-type and mutant synapses were similar and could be accounted for by variation in vesicular volume. The linear relationship between quantal size and vesicular volume for several different genotypes indicates that glutamate is regulated homeostatically to the same intravesicular concentration in all cases. Thus functional differences in synaptic strength among glutamatergic neurons of Drosophila result in part from intrinsic differences in vesicle size.
Collapse
|
47
|
Karunanithi S, Marin L, Wong K, Atwood HL. Quantal size and variation determined by vesicle size in normal and mutant Drosophila glutamatergic synapses. J Neurosci 2002; 22:10267-76. [PMID: 12451127 PMCID: PMC6758758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
Abstract
Quantal size and variation at chemical synapses could be determined presynaptically by the amount of neurotransmitter released from synaptic vesicles or postsynaptically by the number of receptors available for activation. We investigated these possibilities at Drosophila glutamatergic neuromuscular synapses formed by two separate motor neurons innervating the same muscle cell. At wild-type synapses of the two neurons we found a difference in quantal size corresponding to a difference in mean synaptic vesicle volume. The same finding applied to two mutants (dlg and lap) in which synaptic vesicle size was altered. Quantal variances at wild-type and mutant synapses were similar and could be accounted for by variation in vesicular volume. The linear relationship between quantal size and vesicular volume for several different genotypes indicates that glutamate is regulated homeostatically to the same intravesicular concentration in all cases. Thus functional differences in synaptic strength among glutamatergic neurons of Drosophila result in part from intrinsic differences in vesicle size.
Collapse
Affiliation(s)
- Shanker Karunanithi
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8.
| | | | | | | |
Collapse
|
48
|
Somogyi J. Differences in ratios of GABA, glycine and glutamate immunoreactivities in nerve terminals on rat hindlimb motoneurons: a possible source of post-synaptic variability. Brain Res Bull 2002; 59:151-61. [PMID: 12379445 DOI: 10.1016/s0361-9230(02)00843-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous pharmacological and physiological data on GABA and glycine receptor-dependent components of miniature inhibitory post-synaptic currents show that the electrophysiological characteristics of synaptic transmission from inhibitory synapses on spinal motoneurons are highly variable. Although post-synaptic factors are thought to be the major underlying cause of this variability, quantitative immunohistochemical data suggest that the transmitter content of afferents also vary from terminal to terminal. To examine whether ratios of amino acid staining densities vary similar to those of components of post-synaptic currents mediated by the corresponding receptors, we quantified immunogold labeling for GABA, glycine and the major excitatory transmitter, glutamate, in nerve terminals contacting the dendrites of motoneurons retrogradely labeled from the rat hindlimb muscle, biceps femoris. Nearly all terminals (94%) were immunoreactive for at least one amino acid and 64% of these contained two or three amino acids. All possible combinations of GABA, glycine and glutamate labeling were found. Over 70% of the terminals contained glycine, of which 60% also labeled for GABA. Of these GABA/glycine boutons, 40% also had glutamate. Half of all terminals contained GABA, but terminals immunoreactive for GABA alone were extremely rare. Immunoreactivity for glutamate occurred in 48% of all terminals and nearly 60% of these also contained glycine. Labeling densities for GABA, glycine and glutamate varied over a wide range from terminal to terminal. We hypothesize that this diversity in amino acid content may be a major underlying cause of variability in GABA- and glycine receptor-mediated components of miniature inhibitory post-synaptic currents in motoneurons.
Collapse
Affiliation(s)
- Jozsef Somogyi
- Cardiovascular Neuroscience Group, Cardiovascular Medicine and Centre for Neuroscience, Flinders University, Bedford Park, SA, Australia.
| |
Collapse
|
49
|
Laube B. Potentiation of inhibitory glycinergic neurotransmission by Zn2+: a synergistic interplay between presynaptic P2X2 and postsynaptic glycine receptors. Eur J Neurosci 2002; 16:1025-36. [PMID: 12383231 DOI: 10.1046/j.1460-9568.2002.02170.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The divalent cation zinc is known to modulate chloride currents carried by native and recombinant mammalian glycine receptors (GlyRs). To unravel the effect of Zn2+ on glycinergic neurotransmission, inhibitory postsynaptic currents (IPSC) of rat spinal neurons grown in culture were analysed in the absence and presence of Zn2+. Low concentrations of Zn2+ (0.5 and 5 micro m) augmented the mean amplitude of miniature IPSCs by approximately 40% over values obtained in the absence of zinc, whereas higher concentrations of Zn2+ (50 micro m) significantly decreased mean amplitude values. Remarkably, low concentrations of Zn2+ also significantly increased the mean frequency of miniature IPSCs. This effect was blocked by the P2X receptor antagonists PPADS and suramin, indicating the presence of Zn2+-sensitive presynaptic P2X receptors on glycinergic terminals. Immunostaining with antibodies against different P2X receptor subtypes revealed that P2X2 receptors partially colocalize with the GlyR. Potentiating concentrations of Zn2+ also affected the kinetics of miniature and evoked IPSCs by significantly prolonging their decay time constants. Electrophysiological analysis of heterologously expressed glycine transporters (GlyT) revealed for GlyT2 zero, and for GlyT1 a modest (< 20%), reduction of glycine uptake in the presence of 5 micro m Zn2+, indicating that prolongation of glycinergic IPSCs by Zn2+ is not due to inhibition of glycine removal from the synaptic cleft. Together, these results suggest that Zn2+ is a potent modulator of glycinergic synaptic transmission which increases in a synergistic manner the agonist affinity of both presynaptic P2X2 receptors and postsynaptic GlyRs.
Collapse
Affiliation(s)
- Bodo Laube
- Department of Neurochemistry, Max-Planck-Institute for Brain Research, Deutschordenstrasse 46, 60528 Frankfurt, Germany.
| |
Collapse
|
50
|
Abstract
The clustering of glycine receptors and major subtypes of GABA(A) receptors at inhibitory synapses is mediated by the tubulin-binding protein gephyrin. In an attempt to identify additional components of inhibitory postsynaptic specializations, we performed a yeast two-hybrid screen using gephyrin as bait. Multiple positive clones encoded either the dynein light chain-1 (Dlc-1), also known as dynein LC8 and protein inhibitor of neuronal nitric oxide synthase, or its homolog Dlc-2. Dlc-1 protein bound efficiently to gephyrin in in vitro binding assays and colocalized with gephyrin during coexpression in HEK293 cells. The binding site for Dlc was mapped to a fragment of 63 amino acids within the central linker domain of gephyrin. In hippocampal neurons, endogenous Dlc protein was enriched at synaptic sites identified by synaptophysin and gephyrin immunostaining. Immunoelectron microscopy in spinal cord sections revealed Dlc immunoreactivity at the edges of postsynaptic differentiations, in close contact with cytoskeletal structures and at the periphery of the Golgi apparatus. Because Dlc-1 and Dlc-2 have been described as stoichiometric components of cytoplasmic dynein and myosin-Va complexes, our results suggest that motor proteins are involved in the subcellular localization of gephyrin.
Collapse
|