1
|
Dmitriev AV, Linsenmeier RA. pH in the vertebrate retina and its naturally occurring and pathological changes. Prog Retin Eye Res 2024; 104:101321. [PMID: 39608565 DOI: 10.1016/j.preteyeres.2024.101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
This review summarizes the existing information on the concentration of H+ (pH) in vertebrate retinae and its changes due to various reasons. Special features of H+ homeostasis that make it different from other ions will be discussed, particularly metabolic production of H+ and buffering. The transretinal distribution of extracellular H+ concentration ([H+]o) and its changes under illumination and other conditions will be described in detail, since [H+]o is more intensively investigated than intracellular pH. In vertebrate retinae, the highest [H+]o occurs in the inner part of the outer nuclear layer, and decreases toward the RPE, reaching the blood level on the apical side of the RPE. [H+]o falls toward the vitreous as well, but less, so that the inner retina is acidic to the vitreous. Light leads to complex changes with both electrogenic and metabolic origins, culminating in alkalinization. There is a rhythm of [H+]o with H+ being higher during circadian night. Extracellular pH can potentially be used as a signal in intercellular volume transmission, but evidence is against pH as a normal controller of fluid transport across the RPE or as a horizontal cell feedback signal. Pathological and experimentally created conditions (systemic metabolic acidosis, hypoxia and ischemia, vascular occlusion, excess glucose and diabetes, genetic disorders, and blockade of carbonic anhydrase) disturb H+ homeostasis, mostly producing retinal acidosis, with consequences for retinal blood flow, metabolism and function.
Collapse
Affiliation(s)
- Andrey V Dmitriev
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| | - Robert A Linsenmeier
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Department of Neurobiology, Northwestern University, Evanston, IL, USA; Department of Ophthalmology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
2
|
Bhoi JD, Goel M, Ribelayga CP, Mangel SC. Circadian clock organization in the retina: From clock components to rod and cone pathways and visual function. Prog Retin Eye Res 2023; 94:101119. [PMID: 36503722 PMCID: PMC10164718 DOI: 10.1016/j.preteyeres.2022.101119] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022]
Abstract
Circadian (24-h) clocks are cell-autonomous biological oscillators that orchestrate many aspects of our physiology on a daily basis. Numerous circadian rhythms in mammalian and non-mammalian retinas have been observed and the presence of an endogenous circadian clock has been demonstrated. However, how the clock and associated rhythms assemble into pathways that support and control retina function remains largely unknown. Our goal here is to review the current status of our knowledge and evaluate recent advances. We describe many previously-observed retinal rhythms, including circadian rhythms of morphology, biochemistry, physiology, and gene expression. We evaluate evidence concerning the location and molecular machinery of the retinal circadian clock, as well as consider findings that suggest the presence of multiple clocks. Our primary focus though is to describe in depth circadian rhythms in the light responses of retinal neurons with an emphasis on clock control of rod and cone pathways. We examine evidence that specific biochemical mechanisms produce these daily light response changes. We also discuss evidence for the presence of multiple circadian retinal pathways involving rhythms in neurotransmitter activity, transmitter receptors, metabolism, and pH. We focus on distinct actions of two dopamine receptor systems in the outer retina, a dopamine D4 receptor system that mediates circadian control of rod/cone gap junction coupling and a dopamine D1 receptor system that mediates non-circadian, light/dark adaptive regulation of gap junction coupling between horizontal cells. Finally, we evaluate the role of circadian rhythmicity in retinal degeneration and suggest future directions for the field of retinal circadian biology.
Collapse
Affiliation(s)
- Jacob D Bhoi
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA
| | - Manvi Goel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Christophe P Ribelayga
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, UTHEALTH-The University of Texas Health Science Center at Houston, Houston, TX, USA; Neuroscience Honors Research Program, William Marsh Rice University, Houston, TX, USA.
| | - Stuart C Mangel
- Department of Neuroscience, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Erofeeva N, Meshalkina D, Firsov M. Multiple Roles of cAMP in Vertebrate Retina. Cells 2023; 12:cells12081157. [PMID: 37190066 DOI: 10.3390/cells12081157] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
cAMP is a key regulatory molecule that controls many important processes in the retina, including phototransduction, cell development and death, growth of neural processes, intercellular contacts, retinomotor effects, and so forth. The total content of cAMP changes in the retina in a circadian manner following the natural light cycle, but it also shows local and even divergent changes in faster time scales in response to local and transient changes in the light environment. Changes in cAMP might also manifest or cause various pathological processes in virtually all cellular components of the retina. Here we review the current state of knowledge and understanding of the regulatory mechanisms by which cAMP influences the physiological processes that occur in various retinal cells.
Collapse
Affiliation(s)
- Natalia Erofeeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| | - Darya Meshalkina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| | - Michael Firsov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
4
|
Malchow RP, Tchernookova BK, Choi JIV, Smith PJS, Kramer RH, Kreitzer MA. Review and Hypothesis: A Potential Common Link Between Glial Cells, Calcium Changes, Modulation of Synaptic Transmission, Spreading Depression, Migraine, and Epilepsy-H . Front Cell Neurosci 2021; 15:693095. [PMID: 34539347 PMCID: PMC8446203 DOI: 10.3389/fncel.2021.693095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/25/2021] [Indexed: 01/03/2023] Open
Abstract
There is significant evidence to support the notion that glial cells can modulate the strength of synaptic connections between nerve cells, and it has further been suggested that alterations in intracellular calcium are likely to play a key role in this process. However, the molecular mechanism(s) by which glial cells modulate neuronal signaling remains contentiously debated. Recent experiments have suggested that alterations in extracellular H+ efflux initiated by extracellular ATP may play a key role in the modulation of synaptic strength by radial glial cells in the retina and astrocytes throughout the brain. ATP-elicited alterations in H+ flux from radial glial cells were first detected from Müller cells enzymatically dissociated from the retina of tiger salamander using self-referencing H+-selective microelectrodes. The ATP-elicited alteration in H+ efflux was further found to be highly evolutionarily conserved, extending to Müller cells isolated from species as diverse as lamprey, skate, rat, mouse, monkey and human. More recently, self-referencing H+-selective electrodes have been used to detect ATP-elicited alterations in H+ efflux around individual mammalian astrocytes from the cortex and hippocampus. Tied to increases in intracellular calcium, these ATP-induced extracellular acidifications are well-positioned to be key mediators of synaptic modulation. In this article, we examine the evidence supporting H+ as a key modulator of neurotransmission, review data showing that extracellular ATP elicits an increase in H+ efflux from glial cells, and describe the potential signal transduction pathways involved in glial cell-mediated H+ efflux. We then examine the potential role that extracellular H+ released by glia might play in regulating synaptic transmission within the vertebrate retina, and then expand the focus to discuss potential roles in spreading depression, migraine, epilepsy, and alterations in brain rhythms, and suggest that alterations in extracellular H+ may be a unifying feature linking these disparate phenomena.
Collapse
Affiliation(s)
- Robert Paul Malchow
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Boriana K. Tchernookova
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Ji-in Vivien Choi
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
- Stritch School of Medicine, Loyola University, Maywood, IL, United States
| | - Peter J. S. Smith
- Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton, United Kingdom
- Bell Center, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Richard H. Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Matthew A. Kreitzer
- Department of Biology, Indiana Wesleyan University, Marion, IN, United States
| |
Collapse
|
5
|
Schunter C, Jarrold MD, Munday PL, Ravasi T. Diel pCO 2 fluctuations alter the molecular response of coral reef fishes to ocean acidification conditions. Mol Ecol 2021; 30:5105-5118. [PMID: 34402113 DOI: 10.1111/mec.16124] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022]
Abstract
Environmental partial pressure of CO2 (pCO2 ) variation can modify the responses of marine organisms to ocean acidification, yet the underlying mechanisms for this effect remain unclear. On coral reefs, environmental pCO2 fluctuates on a regular day-night cycle. Effects of future ocean acidification on coral reef fishes might therefore depend on their response to this diel cycle of pCO2 . To evaluate the effects on the brain molecular response, we exposed two common reef fishes (Acanthochromis polyacanthus and Amphiprion percula) to two projected future pCO2 levels (750 and 1,000 µatm) under both stable and diel fluctuating conditions. We found a common signature to stable elevated pCO2 for both species, which included the downregulation of immediate early genes, indicating lower brain activity. The transcriptional programme was more strongly affected by higher average pCO2 in a stable treatment than for fluctuating treatments, but the largest difference in molecular response was between stable and fluctuating pCO2 treatments. This indicates that a response to a change in environmental pCO2 conditions is different for organisms living in a fluctuating than in stable environments. This differential regulation was related to steroid hormones and circadian rhythm (CR). Both species exhibited a marked difference in the expression of CR genes among pCO2 treatments, possibly accommodating a more flexible adaptive approach in the response to environmental changes. Our results suggest that environmental pCO2 fluctuations might enable reef fishes to phase-shift their clocks and anticipate pCO2 changes, thereby avoiding impairments and more successfully adjust to ocean acidification conditions.
Collapse
Affiliation(s)
- Celia Schunter
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR
| | - Michael D Jarrold
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Philip L Munday
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Timothy Ravasi
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.,Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
6
|
Goel M, Mangel SC. Dopamine-Mediated Circadian and Light/Dark-Adaptive Modulation of Chemical and Electrical Synapses in the Outer Retina. Front Cell Neurosci 2021; 15:647541. [PMID: 34025356 PMCID: PMC8131545 DOI: 10.3389/fncel.2021.647541] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
The vertebrate retina, like most other brain regions, undergoes relatively slow alterations in neural signaling in response to gradual changes in physiological conditions (e.g., activity changes to rest), or in response to gradual changes in environmental conditions (e.g., day changes into night). As occurs elsewhere in the brain, the modulatory processes that mediate slow adaptation in the retina are driven by extrinsic signals (e.g., changes in ambient light level) and/or by intrinsic signals such as those of the circadian (24-h) clock in the retina. This review article describes and discusses the extrinsic and intrinsic modulatory processes that enable neural circuits in the retina to optimize their visual performance throughout day and night as the ambient light level changes by ~10 billion-fold. In the first synaptic layer of the retina, cone photoreceptor cells form gap junctions with rods and signal cone-bipolar and horizontal cells (HCs). Distinct extrinsic and intrinsic modulatory processes in this synaptic layer are mediated by long-range feedback of the neuromodulator dopamine. Dopamine is released by dopaminergic cells, interneurons whose cell bodies are located in the second synaptic layer of the retina. Distinct actions of dopamine modulate chemical and electrical synapses in day and night. The retinal circadian clock increases dopamine release in the day compared to night, activating high-affinity dopamine D4 receptors on cones. This clock effect controls electrical synapses between rods and cones so that rod-cone electrical coupling is minimal in the day and robust at night. The increase in rod-cone coupling at night improves the signal-to-noise ratio and the reliability of very dim multi-photon light responses, thereby enhancing detection of large dim objects on moonless nights.Conversely, maintained (30 min) bright illumination in the day compared to maintained darkness releases sufficient dopamine to activate low-affinity dopamine D1 receptors on cone-bipolar cell dendrites. This non-circadian light/dark adaptive process regulates the function of GABAA receptors on ON-cone-bipolar cell dendrites so that the receptive field (RF) surround of the cells is strong following maintained bright illumination but minimal following maintained darkness. The increase in surround strength in the day following maintained bright illumination enhances the detection of edges and fine spatial details.
Collapse
Affiliation(s)
- Manvi Goel
- Department of Neuroscience, Ohio State University College of Medicine, Columbus, OH, United States
| | - Stuart C Mangel
- Department of Neuroscience, Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
7
|
Cao J, Ribelayga CP, Mangel SC. A Circadian Clock in the Retina Regulates Rod-Cone Gap Junction Coupling and Neuronal Light Responses via Activation of Adenosine A 2A Receptors. Front Cell Neurosci 2021; 14:605067. [PMID: 33510619 PMCID: PMC7835330 DOI: 10.3389/fncel.2020.605067] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022] Open
Abstract
Adenosine, a major neuromodulator in the central nervous system (CNS), is involved in a variety of regulatory functions such as the sleep/wake cycle. Because exogenous adenosine displays dark- and night-mimicking effects in the vertebrate retina, we tested the hypothesis that a circadian (24 h) clock in the retina uses adenosine to control neuronal light responses and information processing. Using a variety of techniques in the intact goldfish retina including measurements of adenosine overflow and content, tracer labeling, and electrical recording of the light responses of cone photoreceptor cells and cone horizontal cells (cHCs), which are post-synaptic to cones, we demonstrate that a circadian clock in the retina itself-but not activation of melatonin or dopamine receptors-controls extracellular and intracellular adenosine levels so that they are highest during the subjective night. Moreover, the results show that the clock increases extracellular adenosine at night by enhancing adenosine content so that inward adenosine transport ceases. Also, we report that circadian clock control of endogenous cone adenosine A2A receptor activation increases rod-cone gap junction coupling and rod input to cones and cHCs at night. These results demonstrate that adenosine and A2A receptor activity are controlled by a circadian clock in the retina, and are used by the clock to modulate rod-cone electrical synapses and the sensitivity of cones and cHCs to very dim light stimuli. Moreover, the adenosine system represents a separate circadian-controlled pathway in the retina that is independent of the melatonin/dopamine pathway but which nevertheless acts in concert to enhance the day/night difference in rod-cone coupling.
Collapse
Affiliation(s)
- Jiexin Cao
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Christophe P Ribelayga
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Stuart C Mangel
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
8
|
Ko GYP. Circadian regulation in the retina: From molecules to network. Eur J Neurosci 2020; 51:194-216. [PMID: 30270466 PMCID: PMC6441387 DOI: 10.1111/ejn.14185] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022]
Abstract
The mammalian retina is the most unique tissue among those that display robust circadian/diurnal oscillations. The retina is not only a light sensing tissue that relays light information to the brain, it has its own circadian "system" independent from any influence from other circadian oscillators. While all retinal cells and retinal pigment epithelium (RPE) possess circadian oscillators, these oscillators integrate by means of neural synapses, electrical coupling (gap junctions), and released neurochemicals (such as dopamine, melatonin, adenosine, and ATP), so the whole retina functions as an integrated circadian system. Dysregulation of retinal clocks not only causes retinal or ocular diseases, it also impacts the circadian rhythm of the whole body, as the light information transmitted from the retina entrains the brain clock that governs the body circadian rhythms. In this review, how circadian oscillations in various retinal cells are integrated, and how retinal diseases affect daily rhythms.
Collapse
Affiliation(s)
- Gladys Y-P Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, Texas
| |
Collapse
|
9
|
Ribelayga C, Mangel SC. Circadian clock regulation of cone to horizontal cell synaptic transfer in the goldfish retina. PLoS One 2019; 14:e0218818. [PMID: 31461464 PMCID: PMC6713326 DOI: 10.1371/journal.pone.0218818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/10/2019] [Indexed: 11/19/2022] Open
Abstract
Although it is well established that the vertebrate retina contains endogenous circadian clocks that regulate retinal physiology and function during day and night, the processes that the clocks affect and the means by which the clocks control these processes remain unresolved. We previously demonstrated that a circadian clock in the goldfish retina regulates rod-cone electrical coupling so that coupling is weak during the day and robust at night. The increase in rod-cone coupling at night introduces rod signals into cones so that the light responses of both cones and cone horizontal cells, which are post-synaptic to cones, become dominated by rod input. By comparing the light responses of cones, cone horizontal cells and rod horizontal cells, which are post-synaptic to rods, under dark-adapted conditions during day and night, we determined whether the daily changes in the strength of rod-cone coupling could account entirely for rhythmic changes in the light response properties of cones and cone horizontal cells. We report that although some aspects of the day/night changes in cone and cone horizontal cell light responses, such as response threshold and spectral tuning, are consistent with modulation of rod-cone coupling, other properties cannot be solely explained by this phenomenon. Specifically, we found that at night compared to the day the time course of spectrally-isolated cone photoresponses was slower, cone-to-cone horizontal cell synaptic transfer was highly non-linear and of lower gain, and the delay in cone-to-cone horizontal cell synaptic transmission was longer. However, under bright light-adapted conditions in both day and night, cone-to-cone horizontal cell synaptic transfer was linear and of high gain, and no additional delay was observed at the cone-to-cone horizontal cell synapse. These findings suggest that in addition to controlling rod-cone coupling, retinal clocks shape the light responses of cone horizontal cells by modulating cone-to-cone horizontal cell synaptic transmission.
Collapse
Affiliation(s)
- Christophe Ribelayga
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- MD Anderson/UTHealth Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Stuart C. Mangel
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
10
|
Ramasamy S, Sharma S, Iyengar BR, Vellarikkal SK, Sivasubbu S, Maiti S, Pillai B. Identification of novel circadian transcripts in the zebrafish retina. J Exp Biol 2018; 222:jeb.192195. [DOI: 10.1242/jeb.192195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/07/2018] [Indexed: 01/04/2023]
Abstract
High fecundity, transparent embryos for monitoring the rapid development of organs and the availability of a well-annotated genome has made zebrafish a model organism of choice for developmental biology and neurobiology. This vertebrate model, a favourite in chronobiology studies, shows striking circadian rhythmicity in behaviour. Here, we identify novel genes in the zebrafish genome, which are expressed in the zebrafish retina. We further resolve the expression pattern over time and tentatively assign specific novel transcripts to retinal bipolar cells of the inner nuclear layer. Using chemical ablation and free run experiments we segregate the transcripts that are rhythmic when entrained by light from those that show sustained oscillations in the absence of external cues. The transcripts reported here with rigorous annotation and specific functions in circadian biology provide the groundwork for functional characterisation of novel players in the zebrafish retinal clock.
Collapse
Affiliation(s)
- Soundhar Ramasamy
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Surbhi Sharma
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Bharat Ravi Iyengar
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi, India
| | - Shamsudheen Karuthedath Vellarikkal
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Sridhar Sivasubbu
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Souvik Maiti
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Beena Pillai
- CSIR-Institute of Genomics and Integrative Biology (IGIB), Mathura Road, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
11
|
Jarrold MD, Humphrey C, McCormick MI, Munday PL. Diel CO 2 cycles reduce severity of behavioural abnormalities in coral reef fish under ocean acidification. Sci Rep 2017; 7:10153. [PMID: 28860652 PMCID: PMC5578974 DOI: 10.1038/s41598-017-10378-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/09/2017] [Indexed: 11/09/2022] Open
Abstract
Elevated CO2 levels associated with ocean acidification (OA) have been shown to alter behavioural responses in coral reef fishes. However, all studies to date have used stable pCO2 treatments, not considering the substantial diel pCO2 variation that occurs in shallow reef habitats. Here, we reared juvenile damselfish, Acanthochromis polyacanthus, and clownfish, Amphiprion percula, at stable and diel cycling pCO2 treatments in two experiments. As expected, absolute lateralization of A. polyacanthus and response to predator cue of Am. percula were negatively affected in fish reared at stable, elevated pCO2 in both experiments. However, diel pCO2 fluctuations reduced the negative effects of OA on behaviour. Importantly, in experiment two, behavioural abnormalities that were present in fish reared at stable 750 µatm CO2 were largely absent in fish reared at 750 ± 300 µatm CO2. Overall, we show that diel pCO2 cycles can substantially reduce the severity of behavioural abnormalities caused by elevated CO2. Thus, past studies may have over-estimated the impacts of OA on the behavioural performance of coral reef fishes. Furthermore, our results suggest that diel pCO2 cycles will delay the onset of behavioural abnormalities in natural populations.
Collapse
Affiliation(s)
- Michael D Jarrold
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia. .,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.
| | - Craig Humphrey
- National Sea Simulator, Australian Institute of Marine Science, PMB 3, Townsville, Queensland, 4810, Australia
| | - Mark I McCormick
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.,ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
12
|
Thoreson WB, Mangel SC. Lateral interactions in the outer retina. Prog Retin Eye Res 2012; 31:407-41. [PMID: 22580106 PMCID: PMC3401171 DOI: 10.1016/j.preteyeres.2012.04.003] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/05/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022]
Abstract
Lateral interactions in the outer retina, particularly negative feedback from horizontal cells to cones and direct feed-forward input from horizontal cells to bipolar cells, play a number of important roles in early visual processing, such as generating center-surround receptive fields that enhance spatial discrimination. These circuits may also contribute to post-receptoral light adaptation and the generation of color opponency. In this review, we examine the contributions of horizontal cell feedback and feed-forward pathways to early visual processing. We begin by reviewing the properties of bipolar cell receptive fields, especially with respect to modulation of the bipolar receptive field surround by the ambient light level and to the contribution of horizontal cells to the surround. We then review evidence for and against three proposed mechanisms for negative feedback from horizontal cells to cones: 1) GABA release by horizontal cells, 2) ephaptic modulation of the cone pedicle membrane potential generated by currents flowing through hemigap junctions in horizontal cell dendrites, and 3) modulation of cone calcium currents (I(Ca)) by changes in synaptic cleft proton levels. We also consider evidence for the presence of direct horizontal cell feed-forward input to bipolar cells and discuss a possible role for GABA at this synapse. We summarize proposed functions of horizontal cell feedback and feed-forward pathways. Finally, we examine the mechanisms and functions of two other forms of lateral interaction in the outer retina: negative feedback from horizontal cells to rods and positive feedback from horizontal cells to cones.
Collapse
Affiliation(s)
- Wallace B. Thoreson
- Departments of Ophthalmology & Visual Sciences and Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Stuart C. Mangel
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| |
Collapse
|
13
|
Kamiji NL, Yamamoto K, Hirasawa H, Yamada M, Usui S, Kurokawa M. Proton feedback mediates the cascade of color-opponent signals onto H3 horizontal cells in goldfish retina. Neurosci Res 2012; 72:306-15. [PMID: 22326780 DOI: 10.1016/j.neures.2012.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 11/28/2022]
Abstract
It has been postulated that horizontal cells (HCs) send feedback signals onto cones via a proton feedback mechanism, which generates the center-surround receptive field of bipolar cells, and color-opponent signals in many non-mammalian vertebrates. Here we used a strong pH buffer, HEPES, to reduce extracellular proton concentration changes and so determine whether protons mediate color-opponent signals in goldfish H3 (triphasic) HCs. Superfusion with 10mM HEPES-fortified saline elicited depolarization of H3 HCs' dark membrane potential and enhanced hyperpolarizing responses to blue stimuli, but suppressed both depolarization by yellow and orange and hyperpolarization by red stimuli. The response components suppressed by HEPES resembled the inverse of spectral responses of H2 (biphasic) HCs. These results are consistent with the Stell-Lightfoot cascade model, in which the HEPES-suppressed component of H3 HCs was calculated using light responses recorded experimentally in H1 (monophasic) and H2 HCs. Selective suppression of long- or long-+middle-wavelength cone signals by long-wavelength background enhanced the responses to short-wavelength stimuli. These results suggest that HEPES inhibited color opponent signals in H3 HCs, in which the source of opponent-color signals is primarily a feedback from H2 HCs and partly from H1 HCs onto short-wavelength cones, probably mediated by protons.
Collapse
Affiliation(s)
- Nilton L Kamiji
- Riken Brain Science Institute, Laboratory for Neuroinformatics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Jian K, Barhoumi R, Ko ML, Ko GYP. Inhibitory effect of somatostatin-14 on L-type voltage-gated calcium channels in cultured cone photoreceptors requires intracellular calcium. J Neurophysiol 2009; 102:1801-10. [PMID: 19605612 DOI: 10.1152/jn.00354.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The inhibitory effects of somatostatin have been well documented for many physiological processes. The action of somatostatin is through G-protein-coupled receptor-mediated second-messenger signaling, which in turn affects other downstream targets including ion channels. In the retina, somatostatin is released from a specific class of amacrine cells. Here we report that there was a circadian phase-dependent effect of somatostatin-14 (SS14) on the L-type voltage-gated calcium channels (L-VGCCs) in cultured chicken cone photoreceptors, and our study reveals that this process is dependent on intracellular calcium stores. Application of 500 nM SS14 for 2 h caused a decrease in L-VGCC currents only during the subjective night but not the subjective day. We then explored the cellular mechanisms underlying the circadian phase-dependent effect of SS14. The inhibitory effect of SS14 on L-VGCCs was mediated through the pertussis-toxin-sensitive G-protein-dependent somatostatin receptor 2 (sst2). Activation of sst2 by SS14 further activated downstream signaling involving phospholipase C and intracellular calcium stores. Mobilization of intracellular Ca2+ was required for somatostatin induced inhibition of photoreceptor L-VGCCs, suggesting that somatostatin plays an important role in the modulation of photoreceptor physiology.
Collapse
Affiliation(s)
- Kuihuan Jian
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| | | | | | | |
Collapse
|
15
|
Yanamala N, Tirupula KC, Balem F, Klein-Seetharaman J. pH-dependent Interaction of Rhodopsin with Cyanidin-3-glucoside. 1. Structural Aspects. Photochem Photobiol 2009; 85:454-62. [DOI: 10.1111/j.1751-1097.2008.00517.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Yamamoto K, Jouhou H, Iwasaki M, Kaneko A, Yamada M. Strongly pH-buffered ringer's solution expands the receptive field size of horizontal cells in the carp retina. Zoolog Sci 2008; 25:419-27. [PMID: 18459824 DOI: 10.2108/zsj.25.419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 02/07/2008] [Indexed: 11/17/2022]
Abstract
By intracellular recordings, we studied the effects of pH buffering on the size of the receptive field and the extent of dye coupling of horizontal cells (HCs) in the light-adapted carp retina. These parameters were compared between data obtained in fortified Ringer's solution and those obtained in control bicarbonate Ringer's of the same pH (7.60). In Ringer's fortified with 10 mM HEPES or 15 mM Tris, the dye-coupling ratio of HCs increased by 71% and 70%, respectively. These fortified Ringer's solutions also depolarized the dark membrane potential and increased the light-evoked response. The HC receptive field profile could be described by the exponential decline in peak response amplitude to a slit of light moved tangentially from the recording electrode. Thus, the receptive field size was determined as a space constant proportional to (gj/gm)(1/2), where gj and gm denote gap and non-gap-junctional conductances. The HEPES- or Tris-fortified Ringer's significantly increased the space constant by 43% and 41%, respectively. Since dye coupling was increased in the fortified Ringer's, it is likely that gj increased more than gm as a result of alkalinization of the cytosol. Since HEPES has an aminosulfonate moiety, it has been assumed to close the hemi-channels of connexin 26, but the pH-buffering effects were essentially the same as those of Tris that has no aminosulfonate moiety. Therefore, it is unlikely that the closure of connexin 26 hemichannels is responsible for the change in the receptive field size of HCs.
Collapse
Affiliation(s)
- Kazunori Yamamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | | | | | | | | |
Collapse
|
17
|
Wong KY, Gray J, Hayward CJC, Adolph AR, Dowling JE. Glutamatergic mechanisms in the outer retina of larval zebrafish: analysis of electroretinogram b- and d-waves using a novel preparation. Zebrafish 2008; 1:121-31. [PMID: 18248224 DOI: 10.1089/zeb.2004.1.121] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
A new preparation is described for recording the electroretinogram (ERG) from larval zebrafish (5-8 days postfertilization) which has allowed the investigation of the pharmacology of cone photoreceptor inputs onto bipolar cells. By using a pharmacological cocktail to isolate the photoreceptors and bipolar cells from inhibitory influences, it was found that an excitatory amino acid transporter (EAAT) presumably linked to a Cl() channel mediates most of the synaptic transmission from the cone photoreceptors to the ON bipolar cells, although metabotropic glutamate receptors (presumably mGluR6) also make a small contribution. On the other hand, alpha-amino-3-hydroxy- 5-methyl-4-isoxazolepropionate (AMPA)/kainate receptors mediate synaptic transmission from cone photoreceptors to OFF bipolar cells. The glutamatergic input mechanisms underlying bipolar cell responses in the larval zebrafish are adultlike and similar to those in other teleost species.
Collapse
Affiliation(s)
- Kwoon Y Wong
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | | | | | |
Collapse
|
18
|
Tsuji T, Hirota T, Takemori N, Komori N, Yoshitane H, Fukuda M, Matsumoto H, Fukada Y. Circadian proteomics of the mouse retina. Proteomics 2007; 7:3500-8. [PMID: 17726681 DOI: 10.1002/pmic.200700272] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The circadian clock in the retina regulates a variety of physiological phenomena such as disc shedding and melatonin release. Although these events are critical for retinal functions, it is almost unknown how the circadian clock controls the physiological rhythmicity. To gain insight into the processes, we performed a proteomic analysis using 2-DE to find proteins whose levels show circadian changes. Among 415 retinal protein spots, 11 protein spots showed circadian rhythmicity in their intensities. We performed MALDI-TOF MS and NanoLC-MS/MS analyses and identified proteins contained in the 11 spots. The proteins were related to vesicular transport, calcium-binding, protein degradation, metabolism, RNA-binding, and protein foldings, suggesting the clock-regulation of neurotransmitter release, transportation of the membrane proteins, calcium-binding capability, and so on. We also found a rhythmic phosphorylation of N-ethylmaleimide-sensitive fusion protein and identified one of the amino acid residues modified by phosphorylation. These findings provide a new perspective on the relationship between the physiological functions of the retina and the circadian clock system.
Collapse
Affiliation(s)
- Takahiro Tsuji
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Grewal R, Organisciak D, Wong P. Factors underlying circadian dependent susceptibility to light induced retinal damage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 572:411-6. [PMID: 17249604 DOI: 10.1007/0-387-32442-9_58] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ruby Grewal
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
20
|
Segev R, Schneidman E, Goodhouse J, Berry MJ. Role of eye movements in the retinal code for a size discrimination task. J Neurophysiol 2007; 98:1380-91. [PMID: 17625063 DOI: 10.1152/jn.00395.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The concerted action of saccades and fixational eye movements are crucial for seeing stationary objects in the visual world. We studied how these eye movements contribute to retinal coding of visual information using the archer fish as a model system. We quantified the animal's ability to distinguish among objects of different sizes and measured its eye movements. We recorded from populations of retinal ganglion cells with a multielectrode array, while presenting visual stimuli matched to the behavioral task. We found that the beginning of fixation, namely the time immediately after the saccade, provided the most visual information about object size, with fixational eye movements, which consist of tremor and drift in the archer fish, yielding only a minor contribution. A simple decoder that combined information from <or=15 ganglion cells could account for the behavior. Our results support the view that saccades impose not just difficulties for the visual system, but also an opportunity for the retina to encode high quality "snapshots" of the environment.
Collapse
Affiliation(s)
- Ronen Segev
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | |
Collapse
|
21
|
Jonz MG, Barnes S. Proton modulation of ion channels in isolated horizontal cells of the goldfish retina. J Physiol 2007; 581:529-41. [PMID: 17331999 PMCID: PMC2075170 DOI: 10.1113/jphysiol.2006.125666] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Transient changes in extracellular pH (pH(o)) occur in the retina and may have profound effects on neurotransmission and visual processing due to the pH sensitivity of ion channels. The present study characterized the effects of acidification on the activity of membrane ion channels in isolated horizontal cells (HCs) of the goldfish retina using whole-cell patch-clamp recording. Currents recorded from HCs were characterized by prominent inward rectification at potentials negative to -80 mV, a negative slope conductance between -70 and -40 mV, a sustained inward current, and outward rectification positive to 40 mV. Inward currents were identified as those of inward rectifier K(+) (Kir) channels and Ca(2+) channels by their sensitivity to 10 mM Cs(+) or 20 microm Cd(2+), respectively. Both of these currents were reduced when pH(o) decreased from 7.8 to 6.8. Glutamate (1 mM)-activated currents were also identified, as were hemichannel currents that were enhanced by removal of extracellular Ca(2+) and application of 1 mM quinidine. Both glutamate-activated and hemichannel currents were suppressed by a similar reduction of pH(o). When all of these H(+)-inhibited currents were blocked, a small, sustained inward current at -60 mV increased following a decrease in pH(o) from 7.8 to 6.8. In addition, slope conductance between -70 and -20 mV increased during this acidification. Suppression of this H(+)-activated current by removal of extracellular Na(+), and an extrapolated E(rev) near E(Na), indicated that this current was carried predominantly by Na(+) ions.
Collapse
Affiliation(s)
- Michael G Jonz
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5 Canada.
| | | |
Collapse
|
22
|
Hull C, Studholme K, Yazulla S, von Gersdorff H. Diurnal changes in exocytosis and the number of synaptic ribbons at active zones of an ON-type bipolar cell terminal. J Neurophysiol 2006; 96:2025-33. [PMID: 16738212 PMCID: PMC3572854 DOI: 10.1152/jn.00364.2006] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The number and morphology of synaptic ribbons at photoreceptor and bipolar cell terminals has been reported to change on a circadian cycle. Here we sought to determine whether this phenomenon exists at goldfish Mb-type bipolar cell terminals with the aim of exploring the role of ribbons in transmitter release. We examined the physiology and ultrastructure of this terminal around two time points: midday and midnight. Nystatin perforated-patch recordings of membrane capacitance (C(m)) revealed that synaptic vesicle exocytosis evoked by short depolarizations was reduced at night, even though Ca(2+) currents were larger. The efficiency of exocytosis (measured as the DeltaC(m) jump per total Ca(2+) charge influx) was thus significantly lower at night. The paired-pulse ratio remained unchanged, however, suggesting that release probability was not altered. Hence the decreased exocytosis likely reflects a smaller readily releasable vesicle pool at night. Electron microscopy of single sections from intact retinas averaged 65% fewer ribbons at night. Interestingly, the number of active zones did not change from day to night, only the probability of finding a ribbon at an active zone. Additionally, synaptic vesicle halos surrounding the ribbons were more completely filled at night when these on-type bipolar cells are more hyperpolarized. There was no change, however, in the physical dimensions of synaptic ribbons from day to night. These results suggest that the size of the readily releasable vesicle pool and the efficiency of exocytosis are reduced at night when fewer ribbons are present at bipolar cell terminal active zones.
Collapse
Affiliation(s)
- Court Hull
- The Vollum Institute, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | | | | | | |
Collapse
|
23
|
Dmitriev AV, Mangel SC. Electrical Feedback in the Cone Pedicle: A Computational Analysis. J Neurophysiol 2006; 95:1419-27. [PMID: 16319220 DOI: 10.1152/jn.00098.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One of the fundamental principles of neuroscience is that direct electrical interactions between neurons are not possible without specialized electrical contacts, gap junctions, because the transmembrane resistance of neurons is typically much higher than the resistance of the adjacent extracellular space. However it has been proposed that in the retina direct electrical interactions between cones and second-order neurons occur due to the specific morphology of the cone synaptic terminal. This electrical mechanism could potentially explain the phenomenon of “negative feedback” from horizontal cells to cones and the recent finding that the tips of horizontal cell dendrites contain hemichannels has rekindled interest in the idea. We quantitatively evaluated the possibility that hemichannels and/or glutamate channels mediate electrical feedback from horizontal cells to cones. The calculations show that it is unlikely that an electrical mechanism plays a significant functional role because 1) the necessity of preserving adequate cone-to-horizontal-cell synaptic transmission limits the extracellular space resistance and the horizontal-cell dendritic transmembrane resistances to values at which the effectiveness of electrical feedback is very low and its electrical effect on the cone presynaptic membrane is negligible, 2) electrical feedback is most effective in the dark and weaker during light adaptation, which contradicts the experimental data, and 3) electrical negative feedback is associated with much stronger electrical positive feedback from horizontal cells to cones, a phenomenon that has never been reported. Therefore it is likely that negative feedback from horizontal cells to cones is chemical in nature.
Collapse
Affiliation(s)
- Andrey V Dmitriev
- Dept. of Neuroscience, The Ohio State University College of Medicine, 333 W. 10th Ave., Columbus, OH 43210, USA.
| | | |
Collapse
|
24
|
Avanesov A, Dahm R, Sewell WF, Malicki JJ. Mutations that affect the survival of selected amacrine cell subpopulations define a new class of genetic defects in the vertebrate retina. Dev Biol 2005; 285:138-55. [PMID: 16231865 DOI: 10.1016/j.ydbio.2005.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amacrine neurons are among the most diverse cell classes in the vertebrate retina. To gain insight into mechanisms vital to the production and survival of amacrine cell types, we investigated a group of mutations in three zebrafish loci: kleks (kle), chiorny (chy), and bergmann (bgm). Mutants of all three genes display a severe loss of selected amacrine cell subpopulations. The numbers of GABA-expressing amacrine interneurons are sharply reduced in all three mutants, while cell loss in other amacrine cell subpopulations varies and some cells are not affected at all. To investigate how amacrine cell loss affects retinal function, we performed electroretinograms on mutant animals. While the kle mutation mostly influences the function of the inner nuclear layer, unexpectedly the chy mutant phenotype also involves a loss of photoreceptor cell activity. The precise ration and arrangement of amacrine cell subpopulations suggest that cell-cell interactions are involved in the differentiation of this cell class. To test whether defects of such interactions may be, at least in part, responsible for mutant phenotypes, we performed mosaic analysis and demonstrated that the loss of parvalbumin-positive amacrine cells in chy mutants is due to extrinsic (cell-nonautonomous) causes. The phenotype of another amacrine cell subpopulation, the GABA-positive cells, does not display a clear cell-nonautonomy in chy animals. These results indicate that environmental factors, possibly interactions among different subpopulations of amacrine neurons, are involved in the development of the amacrine cell class.
Collapse
Affiliation(s)
- Andrei Avanesov
- Department of Ophthalmology, Harvard Medical School/MEEI, 243 Charles Street, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
25
|
Ribelayga C, Mangel SC. A circadian clock and light/dark adaptation differentially regulate adenosine in the mammalian retina. J Neurosci 2005; 25:215-22. [PMID: 15634784 PMCID: PMC6725211 DOI: 10.1523/jneurosci.3138-04.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although the purine adenosine acts as an extracellular neuromodulator in the mammalian CNS in both normal and pathological conditions and regulates sleep, the regulation of extracellular adenosine in the day and night is incompletely understood. To determine how extracellular adenosine is regulated, rabbit neural retinas were maintained by superfusion at different times of the regular light/dark and circadian cycles. The adenosine level in the superfusate, representing adenosine overflow from the retinas, and the adenosine level in retinal homogenates, representing adenosine content, were measured using HPLC with fluorescence detection in the absence or presence of blockers of adenosine transport and/or extracellular adenosine synthesis. We report that darkness, compared with illumination, increases the level of extracellular adenosine, and that a circadian clock also increases extracellular adenosine at night. In addition, we show that the darkness-evoked increase in the level of extracellular adenosine results primarily from an increase in the conversion of extracellular ATP into adenosine, but that the clock-induced increase at night results primarily from an increase in the accumulation of intracellular adenosine. We also show that a slightly hypoxic state increases adenosine content and overflow to an extent similar to that of the clock. Our findings demonstrate that the extracellular level of adenosine in the mammalian retina is differentially regulated by a circadian clock and the lighting conditions and is maximal at night under dark-adapted conditions. We conclude that adenosine is a neuromodulator involved in both circadian clock and dark-adaptive processes in the vertebrate retina.
Collapse
Affiliation(s)
- Christophe Ribelayga
- Department of Neurobiology, Civitan International Research Center, University of Alabama School of Medicine, Birmingham, Alabama 35294-0021, USA
| | | |
Collapse
|
26
|
Iuvone PM, Tosini G, Pozdeyev N, Haque R, Klein DC, Chaurasia SS. Circadian clocks, clock networks, arylalkylamine N-acetyltransferase, and melatonin in the retina. Prog Retin Eye Res 2005; 24:433-56. [PMID: 15845344 DOI: 10.1016/j.preteyeres.2005.01.003] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circadian clocks are self-sustaining genetically based molecular machines that impose approximately 24h rhythmicity on physiology and behavior that synchronize these functions with the solar day-night cycle. Circadian clocks in the vertebrate retina optimize retinal function by driving rhythms in gene expression, photoreceptor outer segment membrane turnover, and visual sensitivity. This review focuses on recent progress in understanding how clocks and light control arylalkylamine N-acetyltransferase (AANAT), which is thought to drive the daily rhythm in melatonin production in those retinas that synthesize the neurohormone; AANAT is also thought to detoxify arylalkylamines through N-acetylation. The review will cover evidence that cAMP is a major output of the circadian clock in photoreceptor cells; and recent advances indicating that clocks and clock networks occur in multiple cell types of the retina.
Collapse
Affiliation(s)
- P Michael Iuvone
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Road, rm. 5107, Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Molina AJA, Verzi MP, Birnbaum AD, Yamoah EN, Hammar K, Smith PJS, Malchow RP. Neurotransmitter modulation of extracellular H+ fluxes from isolated retinal horizontal cells of the skate. J Physiol 2004; 560:639-57. [PMID: 15272044 PMCID: PMC1665295 DOI: 10.1113/jphysiol.2004.065425] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Accepted: 07/16/2004] [Indexed: 11/08/2022] Open
Abstract
Self-referencing H(+)-selective microelectrodes were used to measure extracellular H(+) fluxes from horizontal cells isolated from the skate retina. A standing H(+) flux was detected from quiescent cells, indicating a higher concentration of free hydrogen ions near the extracellular surface of the cell as compared to the surrounding solution. The standing H(+) flux was reduced by removal of extracellular sodium or application of 5-(N-ethyl-N-isopropyl) amiloride (EIPA), suggesting activity of a Na(+)-H(+) exchanger. Glutamate decreased H(+) flux, lowering the concentration of free hydrogen ions around the cell. AMPA/kainate receptor agonists mimicked the response, and the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) eliminated the effects of glutamate and kainate. Metabotropic glutamate agonists were without effect. Glutamate-induced alterations in H(+) flux required extracellular calcium, and were abolished when cells were bathed in an alkaline Ringer solution. Increasing intracellular calcium by photolysis of the caged calcium compound NP-EGTA also altered extracellular H(+) flux. Immunocytochemical localization of the plasmalemma Ca(2+)-H(+)-ATPase (PMCA pump) revealed intense labelling within the outer plexiform layer and on isolated horizontal cells. Our results suggest that glutamate modulation of H(+) flux arises from calcium entry into cells with subsequent activation of the plasmalemma Ca(2+)-H(+)-ATPase. These neurotransmitter-induced changes in extracellular pH have the potential to play a modulatory role in synaptic processing in the outer retina. However, our findings argue against the hypothesis that hydrogen ions released by horizontal cells normally act as the inhibitory feedback neurotransmitter onto photoreceptor synaptic terminals to create the surround portion of the centre-surround receptive fields of retinal neurones.
Collapse
Affiliation(s)
- Anthony J A Molina
- Department of Biological Sciences, University of Illinois at Chicago, IL 60607, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Dmitriev AV, Mangel SC. Retinal pH reflects retinal energy metabolism in the day and night. J Neurophysiol 2004; 91:2404-12. [PMID: 14960560 DOI: 10.1152/jn.00881.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The extracellular pH of living tissue in the retina and elsewhere in the brain is lower than the pH of the surrounding milieu. We have shown that the pH gradient between the in vitro retina and the superfusion solution is regulated by a circadian (24-h) clock so that it is smaller in the subjective day than in the subjective night. We show here that the circadian changes in retinal pH result from a clock-mediated change in the generation of H+ that accompanies energy production. To demonstrate this, we suppressed energy metabolism and recorded the resultant reduction in the pH difference between the retina and superfusate. The magnitude of the reduction in the pH gradient correlated with the extent of energy metabolism suppression. We also examined whether the circadian-induced increase in acid production during the subjective night results from an increase in energy metabolism or from the selective activation of glycolysis compared with oxidative phosphorylation. We found that the selective suppression of either oxidative phosphorylation or glycolysis had almost identical effects on the dynamics and extent of H+ production during the subjective day and night. Thus the proportion of glycolysis and oxidative phosphorylation is maintained the same regardless of circadian time, and the pH difference between the tissue and superfusion solution can therefore be used to evaluate total energy production. We conclude that circadian clock regulation of retinal pH reflects circadian regulation of retinal energy metabolism.
Collapse
Affiliation(s)
- Andrey V Dmitriev
- Department of Neurobiology, Civitan International Research Center, University of Alabama School of Medicine, 1719 6th Avenue S., CIRC-425, Birmingham, AL 35294-0021, USA.
| | | |
Collapse
|
29
|
Abstract
The regulation of pH is a vital homeostatic function shared by all tissues. Mechanisms that govern H+ in the intracellular and extracellular fluid are especially important in the brain, because electrical activity can elicit rapid pH changes in both compartments. These acid-base transients may in turn influence neural activity by affecting a variety of ion channels. The mechanisms responsible for the regulation of intracellular pH in brain are similar to those of other tissues and are comprised principally of forms of Na+/H+ exchange, Na+-driven Cl-/HCO3- exchange, Na+-HCO3- cotransport, and passive Cl-/HCO3- exchange. Differences in the expression or efficacy of these mechanisms have been noted among the functionally and morphologically diverse neurons and glial cells that have been studied. Molecular identification of transporter isoforms has revealed heterogeneity among brain regions and cell types. Neural activity gives rise to an assortment of extracellular and intracellular pH shifts that originate from a variety of mechanisms. Intracellular pH shifts in neurons and glia have been linked to Ca2+ transport, activation of acid extrusion systems, and the accumulation of metabolic products. Extracellular pH shifts can occur within milliseconds of neural activity, arise from an assortment of mechanisms, and are governed by the activity of extracellular carbonic anhydrase. The functional significance of these compartmental, activity-dependent pH shifts is discussed.
Collapse
Affiliation(s)
- Mitchell Chesler
- Department of Physiology & Neuroscience, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
30
|
Ribelayga C, Wang Y, Mangel SC. A circadian clock in the fish retina regulates dopamine release via activation of melatonin receptors. J Physiol 2003; 554:467-82. [PMID: 14565990 PMCID: PMC1664774 DOI: 10.1113/jphysiol.2003.053710] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Although many biochemical, morphological and physiological processes in the vertebrate retina are controlled by a circadian (24 h) clock, the location of the clock and how the clock alters retinal function are unclear. For instance, several observations have suggested that dopamine, a retinal neuromodulator, may play an important role in retinal rhythmicity but the link between dopamine and a clock located within or outside the retina remains to be established. We found that endogenous dopamine release from isolated goldfish retinae cultured in continuous darkness for 56 h clearly exhibited a circadian rhythm with high values during the subjective day. The continuous presence of melatonin (1 nM) in the culture medium abolished the circadian rhythm of dopamine release and kept values constantly low and equal to the night-time values. The selective melatonin antagonist luzindole (1 microM) also abolished the dopamine rhythm but the values were high and equal to the daytime values. Melatonin application during the late subjective day introduced rod input and reduced cone input to fish cone horizontal cells, a state usually observed during the subjective night. In contrast, luzindole application during the subjective night decreased rod input and increased cone input. Prior application of dopamine or spiperone, a selective dopamine D(2)-like antagonist, blocked the above effects of melatonin and luzindole, respectively. These findings indicate that a circadian clock in the vertebrate retina regulates dopamine release by the activation of melatonin receptors and that endogenous melatonin modulates rod and cone pathways through dopamine-mediated D(2)-like receptor activation.
Collapse
Affiliation(s)
- Christophe Ribelayga
- Department of Neurobiology, Civitan International Research Center, University of Alabama School of Medicine, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
31
|
Kainz PM, Adolph AR, Wong KY, Dowling JE. Lazy eyes zebrafish mutation affects Müller glial cells, compromising photoreceptor function and causing partial blindness. J Comp Neurol 2003; 463:265-80. [PMID: 12820161 DOI: 10.1002/cne.10763] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A behavioral assay based on the optokinetic reflex was used to screen chemically mutagenized zebrafish larvae for deficits in visual function. A homozygous recessive mutation, lazy eyes (lze), was isolated based on the observation that 5-day postfertilization (dpf) mutants displayed weaker and less frequent eye movements than wild-type fish in response to moving stripes. Electroretinographic (ERG) recordings revealed that mutants had severely reduced a- and b-wave amplitudes relative to wild-type fish, indicating outer retinal dysfunction. Retinal lamination and cellular differentiation were normal in the lze retina; however, mutant photoreceptor cells had small outer segments and pyknotic nuclei were occasionally observed in the outer retina and the marginal zone of lze. Cone, rod, amacrine, bipolar, and Müller cell marker analyses indicated that the typical lze retina contained fewer rod photoreceptors and fewer Müller cells than wild-type fish at 5 dpf. At 3 dpf, however, mutant retinas had normal numbers of rod photoreceptors and Müller cells, suggesting that the initial differentiation of these cell types occurred normally. Rod photoreceptor histology was normal at this early stage, but Müller cells were often hypertrophied, suggesting that they were unhealthy. Constant light rearing of mutant animals accelerated the Müller cell degeneration, severely worsened the visual deficit, but had no obvious affect on the photoreceptors. When ERG responses and Müller cell degeneration from the same mutant animals were analyzed, the extent of the Müller cell loss matched closely the degree to which ERG responses were reduced. In summary, the lze gene appears to be required for Müller cell viability and normal visual function. The lze mutant may be a model for the study of the involvement of Müller cells in photoreceptor development and function.
Collapse
Affiliation(s)
- Pamela M Kainz
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | | | | | | |
Collapse
|
32
|
Ribelayga C, Wang Y, Mangel SC. Dopamine mediates circadian clock regulation of rod and cone input to fish retinal horizontal cells. J Physiol 2002; 544:801-16. [PMID: 12411525 PMCID: PMC2290614 DOI: 10.1113/jphysiol.2002.023671] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A circadian (24-hour) clock regulates the light responses of fish cone horizontal cells, second order neurones in the retina that receive synaptic contact from cones and not from rods. Due to the action of the clock, cone horizontal cells are driven by cones in the day, but primarily driven by rods at night. We show here that dopamine, a retinal neurotransmitter, acts as a clock signal for the day by increasing cone input and decreasing rod input to cone horizontal cells. The amount of endogenous dopamine released from in vitro retinae was greater during the subjective day than the subjective night. Application of dopamine or quinpirole, a dopamine D(2)-like agonist, during the subjective night increased cone input and eliminated rod input to the cells, a state usually observed during the subjective day. In contrast, application of spiperone, a D(2)-like antagonist, or forskolin, an activator of adenylyl cyclase, during the subjective day reduced cone input and increased rod input. SCH23390, a D(1) antagonist, had no effect. Application of R(p)-cAMPS, an inhibitor of cAMP-dependent protein kinase, or octanol, an alcohol that uncouples gap junctions, during the night increased cone input and decreased rod input. Because D(2)-like receptors are on photoreceptor cells, but not horizontal cells, the results suggest that the clock-induced increase in dopamine release during the day activates D(2)-like receptors on photoreceptor cells. The resultant decrease in intracellular cyclic AMP and protein kinase A activation then mediates the increase in cone input and decrease in rod input.
Collapse
Affiliation(s)
- Christophe Ribelayga
- Department of Neurobiology, University of Alabama School of Medicine, Birmingham, 35294, USA
| | | | | |
Collapse
|
33
|
Twig G, Malchow RP, Hammar K, Smith PJS, Levy H, Perlman I. A novel turtle retinal preparation for simultaneously measuring light-induced electrical activity and changes in metabolite levels. THE BIOLOGICAL BULLETIN 2002; 203:198-200. [PMID: 12414576 DOI: 10.2307/1543395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- Gilad Twig
- Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
34
|
Bebas P, Cymborowski B, Giebultowicz JM. Circadian rhythm of acidification in insect vas deferens regulated by rhythmic expression of vacuolar H+-ATPase. J Exp Biol 2002; 205:37-44. [PMID: 11818410 DOI: 10.1242/jeb.205.1.37] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Recent studies have demonstrated that the peripheral tissues of vertebrates and invertebrates contain circadian clocks; however, little is known about their functions and the rhythmic outputs that they generate. To understand clock-controlled rhythms at the cellular level, we investigated a circadian clock located in the reproductive system of a male moth (the cotton leaf worm Spodoptera littoralis) that is essential for the production of fertile spermatozoa. Previous work has demonstrated that spermatozoa are released from the testes in a daily rhythm and are periodically stored in the upper vas deferens (UVD). In this paper, we demonstrate a circadian rhythm in pH in the lumen of the UVD, with acidification occurring during accumulation of spermatozoa in the lumen. The daily rhythm in pH correlates with a rhythmic increase in the expression of a proton pump, the vacuolar H+-ATPase (V-ATPase), in the apical portion of the UVD epithelium. Rhythms in pH and V-ATPase persist in light/dark cycles and constant darkness, but are abolished in constant light, a condition that disrupts clock function and renders spermatozoa infertile. Treatment with colchicine impairs the migration of V-ATPase-positive vesicles to the apical cell membrane and abates the acidification of the UVD lumen. Bafilomycin, a selective inhibitor of V-ATPase activity, also prevents the decline in luminal pH. We conclude that the circadian clock generates a rhythm of luminal acidification by regulating the levels and subcellular distribution of V-ATPase in the UVD epithelium. Our data provide the first evidence for circadian control of V-ATPase, the fundamental enzyme that provides the driving force for numerous secondary transport processes. They also demonstrate how circadian rhythms displayed by individual cells contribute to the synchrony of physiological processes at the organ level.
Collapse
Affiliation(s)
- Piotr Bebas
- Department of Entomology and Center for Gene Research and Biotechnology, Oregon State University, Corvallis, OR 97330, USA
| | | | | |
Collapse
|
35
|
Larkin P, Semple-Rowland SL. A null mutation in guanylate cyclase-1 alters the temporal dynamics and light entrainment properties of the iodopsin rhythm in cone photoreceptor cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 92:49-57. [PMID: 11483241 DOI: 10.1016/s0169-328x(01)00136-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Guanylate cyclase-1 (GC1) plays a critical role in visual phototransduction and its absence severely compromises the ability of the photoreceptor cells to transduce light for vision. In this study we sought to determine if the absence of GC1 has any effect on light entrainment of the circadian oscillators located in these cells. We compared the rhythmic changes in transcript levels of iodopsin, a photoreceptor-specific gene whose expression is regulated by circadian oscillators, in retinas of normal chickens and GUCY1*B (*B) chickens that carry a null mutation in GC1. Our results show that iodopsin rhythms are present in *B retinas and that they can be entrained to light; however, the rise and fall of iodopsin transcript levels in *B retina under cyclic light conditions is significantly more rapid than that observed in normal retina, and under constant dark conditions, the phase of the iodopsin rhythm in *B retina is advanced by 6 h relative to that observed in normal retina. In addition, the rate of entrainment of the iodopsin rhythm in *B retina to a reversal of the light cycle is significantly slower than normal. The results of our study show that a functioning visual phototransduction cascade is not essential for light entrainment of the oscillators that drive the iodopsin rhythm in photoreceptor cells. We propose that the abnormal synthesis of cGMP in *B photoreceptors underlies the irregular iodopsin rhythms observed in post-hatch *B retina.
Collapse
Affiliation(s)
- P Larkin
- Department of Neuroscience, McKnight Brain Institute, University of Florida, 100 S. Newell Dr., Gainesville, FL 32610-0244, USA
| | | |
Collapse
|
36
|
Mangel SC. Circadian clock regulation of neuronal light responses in the vertebrate retina. PROGRESS IN BRAIN RESEARCH 2001; 131:505-18. [PMID: 11420966 DOI: 10.1016/s0079-6123(01)31040-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- S C Mangel
- Department of Neurobiology, University of Alabama School of Medicine, CIRC 425, 1719 6th Avenue South, Birmingham, AL 35294, USA.
| |
Collapse
|
37
|
Abstract
Although it is generally accepted that the acid-base ratio of tissue, as represented by the pH, is strictly regulated to maintain normal function, recent studies in the mammalian nervous system have shown that neuronal activity can result in significant shifts in pH. In the mammalian retina, many cellular phenomena, including neuronal activity, are regulated by a circadian clock. We thus investigated whether a clock regulates retinal pH, using pH-sensitive microelectrodes to measure the extracellular pH (pH(o)) of the in vitro rabbit retina in the subjective day and night, that is, under conditions of constant darkness. These measurements demonstrated that a circadian clock regulates the pH(o) of the rabbit retina so that the pH(o) is lower at night than in the day. This day/night difference in retinal pH(o) was observed when the rabbits were maintained on a normal light/dark cycle and after they were maintained on a light/dark cycle that was phase-delayed by 9 hr. Continuous recordings of retinal pH(o) around subjective dusk indicated that the change from daytime to nighttime pH(o) is relatively fast and suggested that the clock that regulates pH(o) is located in the retina. The lowest pH(o) recorded in the retina in both the day and night was in the vicinity of the inner segments of photoreceptor cells, supporting the idea that photoreceptors serve as the primary source of protons. The circadian-induced shift in pH(o) was several times greater than light-induced pH(o) changes. These findings suggest that a circadian clock in the mammalian retina regulates retinal pH.
Collapse
|
38
|
Dmitriev AV, Mangel SC. Circadian clock regulation of pH in the rabbit retina. J Neurosci 2001; 21:2897-902. [PMID: 11306641 PMCID: PMC6762511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2000] [Revised: 01/16/2001] [Accepted: 01/29/2001] [Indexed: 02/19/2023] Open
Abstract
Although it is generally accepted that the acid-base ratio of tissue, as represented by the pH, is strictly regulated to maintain normal function, recent studies in the mammalian nervous system have shown that neuronal activity can result in significant shifts in pH. In the mammalian retina, many cellular phenomena, including neuronal activity, are regulated by a circadian clock. We thus investigated whether a clock regulates retinal pH, using pH-sensitive microelectrodes to measure the extracellular pH (pH(o)) of the in vitro rabbit retina in the subjective day and night, that is, under conditions of constant darkness. These measurements demonstrated that a circadian clock regulates the pH(o) of the rabbit retina so that the pH(o) is lower at night than in the day. This day/night difference in retinal pH(o) was observed when the rabbits were maintained on a normal light/dark cycle and after they were maintained on a light/dark cycle that was phase-delayed by 9 hr. Continuous recordings of retinal pH(o) around subjective dusk indicated that the change from daytime to nighttime pH(o) is relatively fast and suggested that the clock that regulates pH(o) is located in the retina. The lowest pH(o) recorded in the retina in both the day and night was in the vicinity of the inner segments of photoreceptor cells, supporting the idea that photoreceptors serve as the primary source of protons. The circadian-induced shift in pH(o) was several times greater than light-induced pH(o) changes. These findings suggest that a circadian clock in the mammalian retina regulates retinal pH.
Collapse
Affiliation(s)
- A V Dmitriev
- Department of Neurobiology, University of Alabama School of Medicine, Birmingham, Alabama 35294, USA
| | | |
Collapse
|