1
|
Paul A, Chumbale SS, Lakra A, Kumar V, Alhat DS, Singh S. Insights into Leishmania donovani potassium channel family and their biological functions. 3 Biotech 2023; 13:266. [PMID: 37425093 PMCID: PMC10326225 DOI: 10.1007/s13205-023-03692-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/26/2023] [Indexed: 07/11/2023] Open
Abstract
Leishmania donovani is the causative organism for visceral leishmaniasis. Although this parasite was discovered over a century ago, nothing is known about role of potassium channels in L. donovani. Potassium channels are known for their crucial roles in cellular functions in other organisms. Recently the presence of a calcium-activated potassium channel in L. donovani was reported which prompted us to look for other proteins which could be potassium channels and to investigate their possible physiological roles. Twenty sequences were identified in L. donovani genome and subjected to estimation of physio-chemical properties, motif analysis, localization prediction and transmembrane domain analysis. Structural predictions were also done. The channels were majorly α-helical and predominantly localized in cell membrane and lysosomes. The signature selectivity filter of potassium channel was present in all the sequences. In addition to the conventional potassium channel activity, they were associated with gene ontology terms for mitotic cell cycle, cell death, modulation by virus of host process, cell motility etc. The entire study indicates the presence of potassium channel families in L. donovani which may have involvement in several cellular pathways. Further investigations on these putative potassium channels are needed to elucidate their roles in Leishmania. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03692-y.
Collapse
Affiliation(s)
- Anindita Paul
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062 Punjab India
| | - Shubham Sunil Chumbale
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062 Punjab India
| | - Anjana Lakra
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062 Punjab India
| | - Vijay Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062 Punjab India
| | - Dhanashri Sudam Alhat
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062 Punjab India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, 160062 Punjab India
| |
Collapse
|
2
|
Chokvithaya S, Caengprasath N, Buasong A, Jantasuwan S, Santawong K, Leela-adisorn N, Tongkobpetch S, Ittiwut C, Saengow VE, Kamolvisit W, Boonsimma P, Bongsebandhu-phubhakdi S, Shotelersuk V. Nine patients with KCNQ2-related neonatal seizures and functional studies of two missense variants. Sci Rep 2023; 13:3328. [PMID: 36849527 PMCID: PMC9971330 DOI: 10.1038/s41598-023-29924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Mutations in KCNQ2 encoding for voltage-gated K channel subunits underlying the neuronal M-current have been associated with infantile-onset epileptic disorders. The clinical spectrum ranges from self-limited neonatal seizures to epileptic encephalopathy and delayed development. Mutations in KCNQ2 could be either gain- or loss-of-function which require different therapeutic approaches. To better understand genotype-phenotype correlation, more reports of patients and their mutations with elucidated molecular mechanism are needed. We studied 104 patients with infantile-onset pharmacoresistant epilepsy who underwent exome or genome sequencing. Nine patients with neonatal-onset seizures from unrelated families were found to harbor pathogenic or likely pathogenic variants in the KCNQ2 gene. The p.(N258K) was recently reported, and p. (G279D) has never been previously reported. Functional effect of p.(N258K) and p.(G279D) has never been previously studied. The cellular localization study demonstrated that the surface membrane expression of Kv7.2 carrying either variant was decreased. Whole-cell patch-clamp analyses revealed that both variants significantly impaired Kv7.2 M-current amplitude and density, conductance depolarizing shift in voltage dependence of activation, membrane resistance, and membrane time constant (Tau), indicating a loss-of-function in both the homotetrameric and heterotetrameric with Kv7.3 channels. In addition, both variants exerted dominant-negative effects in heterotetrameric with Kv7.3 channels. This study expands the mutational spectrum of KCNQ2- related epilepsy and their functional consequences provide insights into their pathomechanism.
Collapse
Affiliation(s)
- Suphalak Chokvithaya
- grid.7922.e0000 0001 0244 7875Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.419934.20000 0001 1018 2627Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330 Thailand ,grid.415584.90000 0004 0576 1386Department of Clinical Pathology and Medical Technology Laboratory, Queen Sirikit National Institute of Child Health, Ministry of Public Health, Bangkok, Thailand
| | - Natarin Caengprasath
- grid.7922.e0000 0001 0244 7875Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.419934.20000 0001 1018 2627Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330 Thailand
| | - Aayalida Buasong
- grid.7922.e0000 0001 0244 7875Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.419934.20000 0001 1018 2627Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330 Thailand
| | - Supavadee Jantasuwan
- grid.7922.e0000 0001 0244 7875Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.419934.20000 0001 1018 2627Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330 Thailand
| | - Kanokwan Santawong
- grid.7922.e0000 0001 0244 7875Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.419934.20000 0001 1018 2627Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330 Thailand
| | - Netchanok Leela-adisorn
- grid.7922.e0000 0001 0244 7875Department of Stem Cell and Cell, Therapy Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Siraprapa Tongkobpetch
- grid.7922.e0000 0001 0244 7875Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.419934.20000 0001 1018 2627Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330 Thailand
| | - Chupong Ittiwut
- grid.7922.e0000 0001 0244 7875Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.419934.20000 0001 1018 2627Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330 Thailand
| | - Vitchayaporn Emarach Saengow
- grid.416297.f0000 0004 0388 8201Department of Pediatrics, Maharat Nakhon Ratchasima Hospital, Nakhon Ratchasima, Thailand
| | - Wuttichart Kamolvisit
- grid.7922.e0000 0001 0244 7875Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.419934.20000 0001 1018 2627Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330 Thailand
| | - Ponghatai Boonsimma
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand. .,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand.
| | - Saknan Bongsebandhu-phubhakdi
- grid.7922.e0000 0001 0244 7875Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.419934.20000 0001 1018 2627Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- grid.7922.e0000 0001 0244 7875Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.419934.20000 0001 1018 2627Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330 Thailand
| |
Collapse
|
3
|
Amirkulova DB, White AD. Combining enhanced sampling with experiment-directed simulation of the GYG peptide. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1142/s0219633618400072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Experiment-directed simulation (EDS) is a technique to minimally bias molecular dynamics simulations to match experimentally observed results. The method improves accuracy but does not address the sampling problem of molecular dynamics simulations of large systems. This work combines EDS with both the parallel-tempering or parallel-tempering well-tempered ensemble replica-exchange methods to enhance sampling. These methods are demonstrated on the GYG tripeptide in explicit water. The collective variables biased by EDS are chemical shifts, where the set-points are determined by NMR experiments. The results show that it is possible to enhance sampling with either parallel-tempering and parallel-tempering well-tempered ensemble in the EDS method. This combination of methods provides a novel approach for both accurately and exhaustively simulating biological systems.
Collapse
Affiliation(s)
| | - Andrew D. White
- Chemical Engineering, University of Rochester, Rochester NY 14627, USA
| |
Collapse
|
4
|
Sonkusare SK, Dalsgaard T, Bonev AD, Nelson MT. Inward rectifier potassium (Kir2.1) channels as end-stage boosters of endothelium-dependent vasodilators. J Physiol 2016; 594:3271-85. [PMID: 26840527 DOI: 10.1113/jp271652] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/20/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Increase in endothelial cell (EC) calcium activates calcium-sensitive intermediate and small conductance potassium (IK and SK) channels, thereby causing hyperpolarization and endothelium-dependent vasodilatation. Endothelial cells express inward rectifier potassium (Kir) channels, but their role in endothelium-dependent vasodilatation is not clear. In the mesenteric arteries, only ECs, but not smooth muscle cells, displayed Kir currents that were predominantly mediated by the Kir2.1 isoform. Endothelium-dependent vasodilatations in response to muscarinic receptor, TRPV4 (transient receptor potential vanilloid 4) channel and IK/SK channel agonists were highly attenuated by Kir channel inhibitors and by Kir2.1 channel knockdown. These results point to EC Kir channels as amplifiers of vasodilatation in response to increases in EC calcium and IK/SK channel activation and suggest that EC Kir channels could be targeted to treat endothelial dysfunction, which is a hallmark of vascular disorders. ABSTRACT Endothelium-dependent vasodilators, such as acetylcholine, increase intracellular Ca(2+) through activation of transient receptor potential vanilloid 4 (TRPV4) channels in the plasma membrane and inositol trisphosphate receptors in the endoplasmic reticulum, leading to stimulation of Ca(2+) -sensitive intermediate and small conductance K(+) (IK and SK, respectively) channels. Although strong inward rectifier K(+) (Kir) channels have been reported in the native endothelial cells (ECs) their role in EC-dependent vasodilatation is not clear. Here, we test the idea that Kir channels boost the EC-dependent vasodilatation of resistance-sized arteries. We show that ECs, but not smooth muscle cells, of small mesenteric arteries have Kir currents, which are substantially reduced in EC-specific Kir2.1 knockdown (EC-Kir2.1(-/-) ) mice. Elevation of extracellular K(+) to 14 mm caused vasodilatation of pressurized arteries, which was prevented by endothelial denudation and Kir channel inhibitors (Ba(2+) , ML-133) or in the arteries from EC-Kir2.1(-/-) mice. Potassium-induced dilatations were unaffected by inhibitors of TRPV4, IK and SK channels. The Kir channel blocker, Ba(2+) , did not affect currents through TRPV4, IK or SK channels. Endothelial cell-dependent vasodilatations in response to activation of muscarinic receptors, TRPV4 channels or IK/SK channels were reduced, but not eliminated, by Kir channel inhibitors or EC-Kir2.1(-/-) . In angiotensin II-induced hypertension, the Kir channel function was not altered, although the endothelium-dependent vasodilatation was severely impaired. Our results support the concept that EC Kir2 channels boost vasodilatory signals that are generated by Ca(2+) -dependent activation of IK and SK channels.
Collapse
Affiliation(s)
- Swapnil K Sonkusare
- Department of Pharmacology, University of Vermont, VT, USA.,Department of Molecular Physiology and Biological Physics, University of Virginia, VA, USA.,Robert M. Berne Cardiovascular Research Center, University of Virginia, VA, USA
| | | | - Adrian D Bonev
- Department of Pharmacology, University of Vermont, VT, USA
| | - Mark T Nelson
- Department of Pharmacology, University of Vermont, VT, USA.,Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Prole DL, Marrion NV. Identification of putative potassium channel homologues in pathogenic protozoa. PLoS One 2012; 7:e32264. [PMID: 22363819 PMCID: PMC3283738 DOI: 10.1371/journal.pone.0032264] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 01/24/2012] [Indexed: 12/21/2022] Open
Abstract
K+ channels play a vital homeostatic role in cells and abnormal activity of these channels can dramatically alter cell function and survival, suggesting that they might be attractive drug targets in pathogenic organisms. Pathogenic protozoa lead to diseases such as malaria, leishmaniasis, trypanosomiasis and dysentery that are responsible for millions of deaths each year worldwide. The genomes of many protozoan parasites have recently been sequenced, allowing rational design of targeted therapies. We analyzed the genomes of pathogenic protozoa and show the existence within them of genes encoding putative homologues of K+ channels. These protozoan K+ channel homologues represent novel targets for anti-parasitic drugs. Differences in the sequences and diversity of human and parasite proteins may allow pathogen-specific targeting of these K+ channel homologues.
Collapse
Affiliation(s)
- David L Prole
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.
| | | |
Collapse
|
6
|
Lee YM, Thompson GA, Ashmole I, Leyland M, So I, Stanfield PR. Multiple residues in the p-region and m2 of murine kir 2.1 regulate blockage by external ba. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2009; 13:61-70. [PMID: 19885028 PMCID: PMC2766715 DOI: 10.4196/kjpp.2009.13.1.61] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have examined the effects of certain mutations of the selectivity filter and of the membrane helix M2 on Ba(2+) blockage of the inward rectifier potassium channel, Kir 2.1. We expressed mutant and wild type murine Kir 2.1 in Chinese hamster ovary (CHO) cells and used the whole cell patch-clamp technique to record K(+) currents in the absence and presence of externally applied Ba(2+). Wild type Kir2.1 was blocked by externally applied Ba(2+) in a voltage and concentration dependent manner. Mutants of Y145 in the selectivity filter showed little change in the kinetics of Ba(2+) blockage. The estimated K(d)(0) was 108 microM for Kir2.1 wild type, 124 microM for a concatameric WT-Y145V dimer, 109 microM for a WT-Y145L dimer, and 267 microM for Y145F. Mutant channels T141A and S165L exhibit a reduced affinity together with a large reduction in the rate of blockage. In S165L, blockage proceeds with a double exponential time course, suggestive of more than one blocking site. The double mutation T141A/S165L dramatically reduced affinity for Ba(2+), also showing two components with very different time courses. Mutants D172K and D172R (lining the central, aqueous cavity of the channel) showed both a decreased affinity to Ba(2+) and a decrease in the on transition rate constant (k(on)). These results imply that residues stabilising the cytoplasmic end of the selectivity filter (T141, S165) and in the central cavity (D172) are major determinants of high affinity Ba(2+) blockage in Kir 2.1.
Collapse
Affiliation(s)
- Young Mee Lee
- Department of Physiology and Biophysics, Seoul National University, College of Medicine, Seoul 110-799, Korea
| | - Gareth A. Thompson
- Department of Cell Physiology & Pharmacology, University of Leicester, PO Box 138, Leicester, LE1 9HN, UK
| | - Ian Ashmole
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL; Ion Channel Group, UK
| | - Mark Leyland
- Department of Biochemistry, University of L:eicester, LE1 7RH, UK
| | - Insuk So
- Department of Physiology and Biophysics, Seoul National University, College of Medicine, Seoul 110-799, Korea
| | - Peter R. Stanfield
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL; Ion Channel Group, UK
| |
Collapse
|
7
|
Xie LH, John SA, Ribalet B, Weiss JN. Phosphatidylinositol-4,5-bisphosphate (PIP2) regulation of strong inward rectifier Kir2.1 channels: multilevel positive cooperativity. J Physiol 2008; 586:1833-48. [PMID: 18276733 DOI: 10.1113/jphysiol.2007.147868] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Inwardly rectifying potassium (Kir) channels are gated by the interaction of their cytoplasmic regions with membrane-bound phosphatidylinositol-4,5-bisphosphate (PIP(2)). In the present study, we examined how PIP(2) interaction regulates channel availability and channel openings to various subconductance levels (sublevels) as well as the fully open state in the strong inward rectifier Kir2.1 channel. Various Kir2.1 channel constructs were expressed in Xenopus oocytes and single channel or macroscopic currents were recorded from inside-out patches. The wild-type (WT) channel rarely visited the subconductance levels under control conditions. However, upon reducing Kir2.1 channel interaction with PIP(2) by a variety of interventions, including PIP(2) antibodies, screening PIP(2) with neomycin, or mutating PIP(2) binding sites (e.g. K188Q), visitation to the sublevels was markedly increased before channels were converted to an unavailable mode in which they did not open. No channel activity was detected in channels with the double mutation K188A/R189A, a mutant which exhibits extremely weak interaction with PIP(2). By linking subunits together in tandem dimers or tetramers containing mixtures of WT and K188A/R189A subunits, we demonstrate that one functional PIP(2)-interacting WT subunit is sufficient to convert channels from the unavailable to the available mode with a high open probability dominated by the fully open state, with similar kinetics as tetrameric WT channels. Occasional openings to sublevels become progressively less frequent as the number of WT subunits increases. Quantitative analysis reveals that the interaction of PIP(2) with WT subunits exerts strong positive cooperativity in both converting the channels from the unavailable to the available mode, and in promoting the fully open state over sublevels. We conclude that the interaction of PIP(2) with only one Kir2.1 subunit is sufficient for the channel to become available and to open to its full conductance state. Interaction with additional subunits exerts positive cooperativity at multiple levels to further enhance channel availability and promote the fully open state.
Collapse
Affiliation(s)
- Lai-Hua Xie
- Cardiovascular Research Laboratory, Rm 3645 MRL Building, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
8
|
Yuill KH, Stansfeld PJ, Ashmole I, Sutcliffe MJ, Stanfield PR. The selectivity, voltage-dependence and acid sensitivity of the tandem pore potassium channel TASK-1: contributions of the pore domains. Pflugers Arch 2007; 455:333-48. [PMID: 17541788 PMCID: PMC2492388 DOI: 10.1007/s00424-007-0282-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 04/25/2007] [Indexed: 10/23/2022]
Abstract
We have investigated the contribution to ionic selectivity of residues in the selectivity filter and pore helices of the P1 and P2 domains in the acid sensitive potassium channel TASK-1. We used site directed mutagenesis and electrophysiological studies, assisted by structural models built through computational methods. We have measured selectivity in channels expressed in Xenopus oocytes, using voltage clamp to measure shifts in reversal potential and current amplitudes when Rb+ or Na+ replaced extracellular K+. Both P1 and P2 contribute to selectivity, and most mutations, including mutation of residues in the triplets GYG and GFG in P1 and P2, made channels non-selective. We interpret the effects of these--and of other mutations--in terms of the way the pore is likely to be stabilised structurally. We show also that residues in the outer pore mouth contribute to selectivity in TASK-1. Mutations resulting in loss of selectivity (e.g. I94S, G95A) were associated with slowing of the response of channels to depolarisation. More important physiologically, pH sensitivity is also lost or altered by such mutations. Mutations that retained selectivity (e.g. I94L, I94V) also retained their response to acidification. It is likely that responses both to voltage and pH changes involve gating at the selectivity filter.
Collapse
Affiliation(s)
- KH Yuill
- Molecular Physiology Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| | - PJ Stansfeld
- Department of Cell Physiology and Pharmacology, University of Leicester, PO Box 138, Leicester, LE1 9HN, UK
| | - I Ashmole
- Molecular Physiology Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - MJ Sutcliffe
- Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - PR Stanfield
- Molecular Physiology Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
9
|
Trapani JG, Andalib P, Consiglio JF, Korn SJ. Control of single channel conductance in the outer vestibule of the Kv2.1 potassium channel. ACTA ACUST UNITED AC 2006; 128:231-46. [PMID: 16880266 PMCID: PMC2151531 DOI: 10.1085/jgp.200509465] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Current magnitude in Kv2.1 potassium channels is modulated by external [K+]. In contrast to behavior expected from the change in electrochemical driving force, outward current through Kv2.1 channels becomes larger when extracellular [K+] is increased within the physiological range. The mechanism that underlies this unusual property involves the opening of Kv2.1 channels into one of two different outer vestibule conformations, which are defined by their sensitivity to TEA. Channels that open into a TEA-sensitive conformation generate larger macroscopic currents, whereas channels that open into a TEA-insensitive conformation generate smaller macroscopic currents. At higher [K+], more channels open into the TEA-sensitive conformation. In this manuscript, we examined the mechanism by which the conformational change produced a change in current magnitude. We started by testing the simplest hypothesis: that each pharmacologically defined channel conformation produces a different single channel conductance, one smaller and one larger, and that the [K+]-dependent change in current magnitude reflects the [K+]-dependent change in the percentage of channels that open into each of the two conformations. Using single channel and macroscopic recordings, as well as hidden Markov modeling, we were able to quantitatively account for [K+]-dependent regulation of macroscopic current with this model. Combined with previously published work, these results support a model whereby an outer vestibule lysine interferes with K+ flux through the channel, and that the [K+]-dependent change in orientation of this lysine alters single channel conductance by changing the level of this interference. Moreover, these results provide an experimental example of single channel conductance being modulated at the outer end of the conduction pathway by a mechanism that involves channel activation into open states with different outer vestibule conformations.
Collapse
Affiliation(s)
- Josef G Trapani
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA.
| | | | | | | |
Collapse
|
10
|
Abstract
Potassium channels are integral membrane proteins that selectively transport K+ across the cell membrane. They are present in all mammalian cells and have a wide variety of roles in both excitable and nonexcitable cells. The phenotypic diversity required to accomplish their various roles is created by differences in conductance, the timecourse and mechanisms of different gating events, and the interaction of channels with a variety of accessory proteins. Through the integration of biophysical, molecular, structural, and theoretical studies, significant progress has been made toward understanding the structural basis of K+ channel function, and diseases associated with K+ channel dysfunction.
Collapse
Affiliation(s)
- Stephen J Korn
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA.
| | | |
Collapse
|
11
|
Xie LH, John SA, Ribalet B, Weiss JN. Regulation of gating by negative charges in the cytoplasmic pore in the Kir2.1 channel. J Physiol 2004; 561:159-68. [PMID: 15459242 PMCID: PMC1665335 DOI: 10.1113/jphysiol.2004.072330] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Inward rectifier K(+) channels commonly exhibit long openings (slow gating) punctuated by rapid open-close transitions (fast gating), suggesting that two separate gates may control channel open-closed transitions. Previous studies have suggested possible gate locations at the selectivity filter and at the 'bundle crossing', where the two transmembrane segments (M1 and M2) cross near the cytoplasmic end of the pore. Wild-type Kir2.1 channels exhibit only slow gating, but mutations in the cytoplasmic pore domain at E224 and E299 have been shown to induce fast flickery gating. Since these mutations also affect polyamine affinity, we conjectured that the fast gating mechanism might affect the kinetics of polyamine block/unblock if located more intracellularly than the polyamine blocking site in the pore. Neutralization of either E224 or E299 induced fast gating and slowed both block and unblock rates by the polyamine diamine 10. The slowing of polyamine block/unblock was partly relieved by raising pH from 7.2 to 9.0, which also slowed fast gating kinetics. These findings indicate that the fast flickery gate is located intracellularly with respect to the polyamine pore-plugging site near D172, thereby excluding the selectivity filter, and implicating the bundle crossing or more intracellular site as the gate. As additional proof, fast gating induced at the selectivity filter by disrupting P loop salt bridges in WT-E138D-E138D-WT tandem had no effect on polyamine block and unblock rates. The pH sensitivity of fast gating in E224 and E299 mutants was attributed to the protonation state of H226, since the double mutant E224Q/H226K induced fast gating which was pH insensitive. Moreover, introducing a negative charge in the 224-226 region was sufficient to prevent fast gating, since the double mutant E224Q/H226E rescued wild-type Kir2.1 slow gating. These observations implicate E224 and E299 as allosteric modulators of a fast gate, located at the bundle crossing or below in Kir2.1 channels. By suppressing fast gating, these negative charges facilitate polyamine block and unblock, which may be their physiologically important role.
Collapse
Affiliation(s)
- Lai-Hua Xie
- Cardiovascular Research Laboratory, Department of Medicine, David Geffen School of Medicine at UCLA, 675 Young Drive South, MRL 3645, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
12
|
Consiglio JF, Korn SJ. Influence of permeant ions on voltage sensor function in the Kv2.1 potassium channel. J Gen Physiol 2004; 123:387-400. [PMID: 15024041 PMCID: PMC2217458 DOI: 10.1085/jgp.200308976] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated that the outer vestibule of activated Kv2.1 potassium channels can be in one of two conformations, and that K+ occupancy of a specific selectivity filter site determines which conformation the outer vestibule is in. These different outer vestibule conformations result in different sensitivities to internal and external TEA, different inactivation rates, and different macroscopic conductances. The [K+]-dependent switch in outer vestibule conformation is also associated with a change in rate of channel activation. In this paper, we examined the mechanism by which changes in [K+] modulate the rate of channel activation. Elevation of symmetrical [K+] or [Rb+] from 0 to 3 mM doubled the rate of on-gating charge movement (Qon), measured at 0 mV. Cs+ produced an identical effect, but required 40-fold higher concentrations. All three permeant ions occupied the selectivity filter over the 0.03–3 mM range, so simple occupancy of the selectivity filter was not sufficient to produce the change in Qon. However, for each of these permeant ions, the speeding of Qon occurred with the same concentration dependence as the switch between outer vestibule conformations. Neutralization of an amino acid (K356) in the outer vestibule, which abolishes the modulation of channel pharmacology and ionic currents by the K+-dependent reorientation of the outer vestibule, also abolished the K+-dependence of Qon. Together, the data indicate that the K+-dependent reorientation in the outer vestibule was responsible for the change in Qon. Moreover, similar [K+]-dependence and effects of mutagenesis indicate that the K+-dependent change in rate of Qon can account for the modulation of ionic current activation rate. Simple kinetic analysis suggested that K+ reduced an energy barrier for voltage sensor movement. These results provide strong evidence for a direct functional interaction, which is modulated by permeant ions acting at the selectivity filter, between the outer vestibule of the Kv2.1 potassium channel and the voltage sensor.
Collapse
Affiliation(s)
- Joseph F Consiglio
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
13
|
Bichet D, Haass FA, Jan LY. Merging functional studies with structures of inward-rectifier K+ channels. Nat Rev Neurosci 2003; 4:957-67. [PMID: 14618155 DOI: 10.1038/nrn1244] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inwardly rectifying K(+) (Kir) channels have a wide range of functions including the control of neuronal signalling, heart rate, blood flow and insulin release. Because of the physiological importance of these channels, considerable effort has been invested in understanding the structural basis of their physiology. In this review, we use two recent, high-resolution structures as foundations for examining our current understanding of the fundamental functions that are shared by all K(+) channels, such as K(+) selectivity and channel gating, as well as characteristic features of Kir channel family members, such as inward rectification and their regulation by intracellular factors.
Collapse
Affiliation(s)
- Delphine Bichet
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, San Francisco, California 94143-0725, USA
| | | | | |
Collapse
|
14
|
Kuo MMC, Saimi Y, Kung C. Gain-of-function mutations indicate that Escherichia coli Kch forms a functional K+ conduit in vivo. EMBO J 2003; 22:4049-58. [PMID: 12912904 PMCID: PMC175798 DOI: 10.1093/emboj/cdg409] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although Kch of Escherichia coli is thought to be a K(+) channel by sequence homology, there is little evidence that it actually conducts K(+) ions in vitro or in vivo. We isolated gain-of-function (GOF) Kch mutations that render bacteria specifically sensitive to K(+) ions. Millimolar added K(+), but not Na(+) or sorbitol, blocks the initiation or continuation of mutant growth in liquid media. The mutations are mapped at the RCK (or KTN) domain, which is considered to be the cytoplasmic sensor controlling the gate. Additional mutations directed to the K(+)-filter sequence rescue the GOF mutant. The apparent K(+)-specific conduction through the 'loose-cannon' mutant channel suggests that the wild-type Kch channel also conducts, albeit in a regulated manner. Changing the internal ATG does not erase the GOF toxicity, but removes kch's short second product, suggesting that it is not required for channel function in vivo. The mutant phenotypes are better explained by a perturbation of membrane potential instead of internal K(+) concentration. Possible implications on the normal function of Kch are discussed.
Collapse
Affiliation(s)
- Mario Meng-Chiang Kuo
- Laboratory of Molecular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
15
|
Xiao J, Zhen XG, Yang J. Localization of PIP2 activation gate in inward rectifier K+ channels. Nat Neurosci 2003; 6:811-8. [PMID: 12858177 DOI: 10.1038/nn1090] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2003] [Accepted: 05/13/2003] [Indexed: 11/09/2022]
Abstract
Ion channels respond to changes in transmembrane voltage or ligand concentration by opening or closing an activation gate. In voltage-gated K+ channels, this gate has been localized to an intracellular bundle crossing. Here we examined whether this bundle crossing, or the more internal cytoplasmic pore, acts as a gate for PIP2 activation of inward rectifier K+ (Kir) channels expressed in Xenopus laevis oocytes. We studied the open/closed state-dependence of the accessibility of intracellular cationic modifiers to a position (residue Ile176 in the TM2 helix of Kir2.1) more external to the bundle crossing. Cd2+ blocked I176C mutant channels much more weakly in the closed state than in the open state, but Ag+ and sulfhydryl-specific methanethiosulfonate reagents modified the channels with similar rates in both states. These results suggest that the TM2 helices undergo conformation changes upon PIP2 binding/unbinding, but neither they nor the cytoplasmic pore close fully to form a physical gate for K+ conduction.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Biological Sciences, Columbia University, 915 Fairchild Center, MC2462, New York, New York 10027, USA
| | | | | |
Collapse
|
16
|
Macri V, Proenza C, Agranovich E, Angoli D, Accili EA. Separable gating mechanisms in a Mammalian pacemaker channel. J Biol Chem 2002; 277:35939-46. [PMID: 12121985 DOI: 10.1074/jbc.m203485200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite permeability to both K(+) and Na(+), hyperpolarization-activated cyclic nucleotide-gated (HCN) pacemaker channels contain the K(+) channel signature sequence, GYG, within the selectivity filter of the pore. Here, we show that this region is involved in regulating gating in a mouse isoform of the pacemaker channel (mHCN2). A mutation in the GYG sequence of the selectivity filter (G404S) had different effects on the two components of the wild-type current; it eliminated the slowly activating current (I(f)) but, surprisingly, did not affect the instantaneous current (I(inst)). Confocal imaging and immunocytochemistry showed G404S protein on the periphery of the cells, consistent with the presence of channels on the plasma membrane. Experiments with the wild-type channel showed that the rate of I(f) deactivation and I(f) amplitude had a parallel dependence on the ratio of K(+)/Na(+) driving forces. In addition, the amplitude of fully activated I(f), unlike I(inst), was not well predicted by equal and independent flow of K(+) and Na(+). The data are consistent with two separable gating mechanisms associated with pacemaker channels: one (I(f)) that is sensitive to voltage, to a mutation in the selectivity filter, and to driving forces for permeating cations and another (I(inst)) that is insensitive to these influences.
Collapse
Affiliation(s)
- Vincenzo Macri
- Ion Channel Laboratory, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | | | | | |
Collapse
|
17
|
Stanfield PR, Nakajima S, Nakajima Y. Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2.0 and Kir3.0. Rev Physiol Biochem Pharmacol 2002; 145:47-179. [PMID: 12224528 DOI: 10.1007/bfb0116431] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Peter R Stanfield
- Molecular Physiology Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
18
|
Schwalbe RA, Rudin A, Xia SL, Wingo CS. Site-directed glycosylation tagging of functional Kir2.1 reveals that the putative pore-forming segment is extracellular. J Biol Chem 2002; 277:24382-9. [PMID: 11991952 DOI: 10.1074/jbc.m201668200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inwardly rectifying K+ channels or Kirs are a large gene family and have been predicted to have two transmembrane segments, M1 and M2, intracellular N and C termini, and two extracellular loops, E1 and E2, separated by an intramembranous pore-forming segment, H5. H5 contains a stretch of eight residues that are similar in voltage-dependent K+ channels, Kvs, and this stretch is called the signature sequence of K+ channels. Because mutations in this sequence altered selectivity in Kvs, it has been designated as the selectivity filter. Previously, we used N-glycosylation substitution mutants to map the extracellular topology of a weak inwardly rectifying K+ channel, Kir1.1 or ROMK1, and found that the entire H5 segment was extracellular. We now report utilization of introduced N-glycosylation sites, NX(S/T), at positions Ser(128) in E1, and Gln(140), Ileu(143), and Phe(147) in the H5 sequence of a strong inwardly rectifying K+ channel, Kir2.1. Furthermore, we show that biotinylated channel proteins with N-linked oligosaccharides attached at positions 140 and 143 in the signature sequence are located at the cell surface. Mutant channels were functional as detected by whole-cell and single-channel recordings. Unlike Kir1.1, position Lys(117) was not occupied. We conclude that, for yet another K+ channel, the invariant G(Y/F)G sequence is extracellular rather than intramembranous.
Collapse
Affiliation(s)
- Ruth A Schwalbe
- Division of Nephrology, Hypertension, and Transplantation, University of Florida, and the Nephrology Section, Department of Veterans Affairs Medical Center, Gainesville, Florida 32610, USA.
| | | | | | | |
Collapse
|
19
|
Capener CE, Sansom MSP. Molecular Dynamics Simulations of a K Channel Model: Sensitivity to Changes in Ions, Waters, and Membrane Environment. J Phys Chem B 2002. [DOI: 10.1021/jp0129986] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Charlotte E. Capener
- Laboratory of Molecular Biophysics, Department of Biochemistry, Rex Richards Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K
| | - Mark S. P. Sansom
- Laboratory of Molecular Biophysics, Department of Biochemistry, Rex Richards Building, University of Oxford, South Parks Road, Oxford, OX1 3QU, U.K
| |
Collapse
|
20
|
Loukin SH, Lin J, Athar U, Palmer C, Saimi Y. The carboxyl tail forms a discrete functional domain that blocks closure of the yeast K+ channel. Proc Natl Acad Sci U S A 2002; 99:1926-30. [PMID: 11854493 PMCID: PMC122296 DOI: 10.1073/pnas.042538599] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2001] [Indexed: 11/18/2022] Open
Abstract
Non-targeted mutagenesis studies of the yeast K(+) channel, TOK1, have led to identification of functional domains common to other cation channels as well as those so far not found in other channels. Among the latter is the ability of the carboxyl tail to prevent channel closure. Here, we show that the tail can fulfill this function in trans. Coexpression of the carboxyl tail with the tail-deleted channel core restores normal channel behavior A Ser/Thr-rich region at its amino end and an acidic stretch at its carboxyl end delineate the minimal region required for tail function. This region of 160 aa apparently forms a discrete functional domain. Interaction of this domain with the channel core is strong, being recalcitrant to removal from excised membrane patches by both high salt and reducing agents. Although the use of a cytoplasmic domain to regulate channel is common among animal channels, by using it as a "foot-in-the-door" to maintain open state appears unique to TOK1, the first fungal K(+) channel studied in depth.
Collapse
Affiliation(s)
- Stephen H Loukin
- Laboratory of Molecular Biology, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
21
|
Proks P, Capener CE, Jones P, Ashcroft FM. Mutations within the P-loop of Kir6.2 modulate the intraburst kinetics of the ATP-sensitive potassium channel. J Gen Physiol 2001; 118:341-53. [PMID: 11585848 PMCID: PMC2233698 DOI: 10.1085/jgp.118.4.341] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ATP-sensitive potassium (K(ATP)) channel exhibits spontaneous bursts of rapid openings, which are separated by long closed intervals. Previous studies have shown that mutations at the internal mouth of the pore-forming (Kir6.2) subunit of this channel affect the burst duration and the long interburst closings, but do not alter the fast intraburst kinetics. In this study, we have investigated the nature of the intraburst kinetics by using recombinant Kir6.2/SUR1 K(ATP) channels heterologously expressed in Xenopus oocytes. Single-channel currents were studied in inside-out membrane patches. Mutations within the pore loop of Kir6.2 (V127T, G135F, and M137C) dramatically affected the mean open time (tau(o)) and the short closed time (tauC1) within a burst, and the number of openings per burst, but did not alter the burst duration, the interburst closed time, or the channel open probability. Thus, the V127T and M137C mutations produced longer tau(o), shorter tauC1, and fewer openings per burst, whereas the G135F mutation had the opposite effect. All three mutations also reduced the single-channel conductance: from 70 pS for the wild-type channel to 62 pS (G135F), 50 pS (M137C), and 38 pS (V127T). These results are consistent with the idea that the K(ATP) channel possesses a gate that governs the intraburst kinetics, which lies close to the selectivity filter. This gate appears to be able to operate independently of that which regulates the long interburst closings.
Collapse
Affiliation(s)
- Peter Proks
- University Laboratory of Physiology, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Charlotte E. Capener
- Laboratory of Molecular Biophysics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Phillippa Jones
- University Laboratory of Physiology, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Frances M. Ashcroft
- University Laboratory of Physiology, University of Oxford, Oxford OX1 3PT, United Kingdom
| |
Collapse
|